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Abstract. In this paper, the most appropriate buffer structure, page
replacement policy and buffering scheme for closest pairs queries, where
both spatial datasets are stored in R-trees, are investigated. Three buffer
structures (i.e. single, hybrid and by levels) over two buffering schemes
(i.e. local to each R-tree, and global to the query) using several page
replacement algorithms (e.g. FIFO, LRU, 2Q, etc.) are studied. In order
to answer K closest pair queries (K-CPQs, with K ≥ 1) we employ re-
cursive and non-recursive (iterative) branch-and-bound algorithms. The
outcome of this study is the derivation of the outperforming configuration
(in terms of buffer structure, page replacement algorithm and buffering
scheme) for CPQs. In all cases, the savings in disk accesses is larger for
a recursive algorithm than for a non-recursive one, in the presence of
buffer space. Also, the global buffering scheme is more appropriate for
small or medium buffer sizes for recursive algorithms, whereas the lo-
cal scheme is the best choice for large buffers. If we use non-recursive
algorithms, the global buffering scheme is the best choice in all cases.
Moreover, LRU is the most appropriate page replacement algorithm for
small or medium buffer sizes for both types of branch-and-bound algo-
rithms. FIFO and LRU are the best choices for recursive algorithms and
2Q for the non-recursive ones, when the buffer is large enough.

1 Introduction

The use of buffers is very important in DBMSs, since it can improve the perfor-
mance substantially (reading data from the disk is significantly more expensive
than reading from a main memory buffer). There exist two basic research di-
rections that aim at reducing the disk I/O activity and enhancing the system
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throughput during query processing using buffers. The first one focuses on the
availability of buffer pages at runtime by adapting memory management tech-
niques for buffer managers used in operating systems to database systems [1,9,
13,15]. The second one focuses on query access patterns, where the query opti-
mizer dictates the query execution plan to the buffer manager, so that the latter
can allocate and manage its buffer accordingly [4,6,20].

The spatial selections, nearest neighbor searches and joins are considered
the most important queries in spatial databases that are based on R-trees.
R-trees [10] are multi-dimensional, height balanced tree structures for secondary
storage, that handle objects by means of their Minimum Bounding Rectangles
(MBRs). In [5] a new kind of spatial query, called K closest pairs query (K-CPQ),
is presented. It combines join and nearest neighbor queries for discovering the
K pairs (K ≥ 1) of spatial objects from two datasets that have the K smallest
distances between them (1-CPQ is treated as special case). Like a join query,
all pairs of objects are candidates for the result. Like a nearest neighbor query,
proximity metrics are the basis for pruning strategies and the final ordering.

The main objective of this work is to find the most appropriate buffer struc-
ture, page replacement policy and buffering scheme for CPQs, where both spatial
datasets are indexed with R-trees. Based on experimental results, we draw con-
clusions about the importance of using an appropriate buffer management for the
I/O performance of this kind of query. We present a comparative study, where
several parameters (such as the buffer structure, page replacement algorithms,
buffering schemes, buffer size in pages, number of pairs in the result K and the
nature of indexed datasets) and corresponding values are considered.

The rest of this paper is organized as follows. In Sect- 2, we review the liter-
ature (CPQs using R-trees and buffering) and motivate the research topic under
consideration. In Sect. 3, a brief description of the spatial access method (i.e.
R-tree) and the branch-and-bound algorithms (i.e. recursive and non-recursive)
for satisfying CPQs are presented. In Sect. 4, in order to study the effect of
buffering in the performance of this kind of query, we examine combinations
of buffer structures, page replacement algorithms and buffering schemes. More-
over, in Sect. 5, an extensive comparative performance study of CPQ algorithms
over these alternative combinations is presented. Finally, in the last section,
the conclusions on the contribution of this paper and future research plans are
summarized.

2 Related Work and Motivation

In DBMSs, the buffer manager is responsible for operations in the buffer pool,
including buffer space assignment to queries, replacement decisions and buffer
reads and writes in the event of page faults. When buffer space is available, the
manager decides about the number of pages that are allocated to an activated
query. This decision may depend on the availability of pages at runtime (page
replacement algorithms), or the access pattern of queries (nature of the query).
A number of studies focus on adapting memory management techniques used
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in operating systems to database systems, such as FIFO, LRU, LFU, Gclock,
etc. [1,9,13,15]. Other research efforts aim at determining the buffer requirements
of queries based on their access patterns (the nature of the query) without con-
sidering the availability of buffer pages at runtime [4,6,20].

Since this paper is related to the research directions based on the nature of the
query, we focus in the most representative papers about the buffer management
on indices. In [18], an LRU buffer structure for indices was presented (OLRU),
where the addressing space is logically partitioned into L independent regions,
each managed by a local LRU chain. In [6] an extensible and dynamic priority-
based hint mechanism was proposed to design an optimal replacement strategy
by exploiting the predictable access pattern of indexing methods. An application
on their hint mechanism was to design a hybrid replacement strategy, combining
the LRU and MRU page replacement policies. There are several studies on spatial
queries involving more than one R-tree, and most of them examine the use of
buffering to reduce the I/O activity [3,5,7,11,12,17].

All the previous papers involved more than one R-tree for the query and used
a buffer pool with LRU or FIFO replacement policy, but they did not justify the
use of these policies. In other words, they did not examine several alternatives for
the buffer structure, or for the page replacement strategies in order to reduce the
disk activity. In this paper, our objective is to find the most appropriate buffer
pool structure (i.e. single, hybrid and by levels) over two buffering schemes (i.e.
local and global) and the best page replacement policy (e.g. FIFO, LRU, Gclock,
etc.) for CPQs, where both spatial datasets are indexed by R-trees.

3 R-Trees and Algorithms for Closest Pairs Queries

3.1 R-Trees

R-trees [10] are hierarchical, height balanced data structures based on B+-trees,
used for the dynamic organization of k-dimensional geometric objects that are
represented by k-dimensional MBRs. R-trees obey the following rules. Leaves
reside on the same level and contain pairs of the form (R, O), where R is the
MBR containing the object determined by the identifier O, spatially. Internal
nodes contain pairs of the form (R, P), where P is a pointer to a child of the
node and R is the MBR containing (spatially) the rectangles stored in this child.
Also, internal nodes correspond to MBRs containing (spatially) the MBR of their
children. An R-tree of class (m, M) has the characteristic that every node, except
possibly for the root, contains between m and M pairs, where m ≤ dM/2e. If the
root is not a leaf, it contains at least two pairs. Figure 1 depicts some rectangles
on the right and the corresponding R-tree on the left. Dotted lines denote the
bounding rectangles of the subtrees that are rooted in inner nodes.

Many R-tree variants have appeared in the literature. One of the most popu-
lar variations is the R∗-tree [2], which follows a sophisticated node split technique
and is considered to be the most efficient variant of the R-tree family. In this
paper, we have chosen R∗-trees to perform our experimental study, although in
the sequel, the terms R-tree and R∗-tree will be used interchangeably.
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Fig. 1. An example of an R-tree

3.2 Algorithms for Closest Pairs Queries

A new spatial query was presented in [5], called K closest pairs query (K-CPQ).
It combines join and nearest neighbor queries for discovering the K pairs (K ≥ 1)
of spatial objects from two datasets that have the K smallest distances between
them. These queries are defines as follows.

1-CPQ. Assume two object datasets P and Q (where P 6= ∅, Q 6= ∅), stored
in two R-trees, RP and RQ, respectively. Find the pair of objects p, p ∈ P × Q,
such that: dist(p) ≤ dist(p′),∀p′ ∈ (P × Q − {p}), where dist is a Minkowski
distance of the pairs of P × Q.

K-CPQ. Assume two object datasets P and Q (where P 6= ∅, Q 6= ∅), stored
in two R-trees, RP and RQ, respectively. Find the K ordered pairs of objects
p1, p2, . . . , pK , pi ∈ P × Q, such that: dist(p1) ≤ dist(p2) ≤ . . . ≤ dist(pK) ≤
dist(p′),∀p′ ∈ (P × Q − {p1, p2, . . . , pK}).

Metrics (MINIMINDIST, MINMAXDIST and MAXMAXDIST) and prop-
erties between two MBRs in the k-dimensional Euclidean space were proposed
for the 1-CPQ and K-CPQ in [5] as bounds for the branch-and-bound (recursive
and non-recursive) algorithms. The recursive branch-and-bound algorithm (with
a synchronous traversal, following a depth-first search strategy) for processing
the 1-CPQ between two sets of points stored in two R-trees with the same height
can be described by the following steps:

CPQ1. Start from the roots of the two R-trees and set the minimum distance
found so far, T , to ∞.

CPQ2. If you access a pair of internal nodes, then calculate the minimum
of MINMAXDIST for all possible pairs of MBRs. If this minimum is smaller
than T , then update T . Calculate MINMINDIST for each possible pair of MBRs.
Propagate downwards recursively only for those pairs having MINMINDIST≤T .

CPQ3. If you access two leaves, then calculate the distance of each possible
pair of points. If this distance is smaller than T , then update T .

The non-recursive branch-and-bound algorithm (with a synchronous traver-
sal, following a best-first search strategy using a minimum heap) for processing
the 1-CPQ between two sets of points stored in two R-trees with the same height
can be described by the following steps:
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CPQ1. Start from the roots of the two R-trees, set T to ∞ and initialize
the minimum heap.

CPQ2. If you access a pair of internal nodes, then calculate the minimum of
MINMAXDIST for all possible pairs of MBRs. If this minimum is smaller than
T , then update T . Calculate MINMINDIST for each possible pair of MBRs.
Insert into the minimum heap those pairs having MINMINDIST≤T .

CPQ3. If you access two leaves, then calculate the distance of each possible
pair of points. If this distance is smaller that T , then update T .

CPQ4. If the minimum heap is empty, then stop.
CPQ5. Get the pair on top of the minimum heap. If this pair has MINMIN-

DIST>T , then stop. Else, repeat the algorithm from CPQ2 for this pair.

The pseudo-code of the recursive and non-recursive algorithms can be found
in the technical report [8]. Moreover, in order to process the K-CPQ, an extra
structure that holds the K closest pairs is necessary. More details can be found
in [5].

4 Buffer Management

DBMSs use indices to speed up query processing (e.g. various spatial databases
use R-trees). Indices may partly reside in main memory buffers. This reduces re-
sponse times. The buffering effect should be studied, since even a small number
of buffer pages can substantially improve the global database performance. Our
objective is to find the best structure of the buffer pool, the best page replace-
ment algorithm and the best buffering scheme for the buffer manager in order to
reduce the number of disk accesses for K-CPQs. We propose three structures of
the buffer pool (i.e. single, hybrid and by levels) managed by a variety of page
replacement algorithms (e.g. FIFO, LRU, etc.).

The buffer pool structure will be organized adopting two buffering schemes
as depicted in Fig. 2. In the first scheme, the buffer pool is split in two parts,
each one allocated locally to an R-tree (left part of Fig. 2). We call it, thus, a
Local buffering scheme. In the second one, the buffer pool is allocated globally
to the query (right part of Fig. 2), giving rise to a Global buffering scheme.

In [9] a systematic description of replacement algorithms was presented for a
single buffer structure. The FIFO (First-In First-Out) algorithm replaces the old-
est page, even if its reference frequency gives the priority to the youngest page.
The LFU schema (Least Frequently Used) replaces the page with the lowest
reference frequency. Gclock consists of a circular decrementing of the reference
counters until 0 is reached. When a buffer fault occurs, the first page having a
counter equal to 0 is replaced. The LRU (Least Recently Used) algorithm gives
the priority to the most recently used page, replacing the page that was the
least recently used. MRU (Most Recently Used) is the opposite of LRU and re-
places the page that was the most recently used. The LRU/2 is a particular case
of LRU/K, proposed in [15] for K = 2, replacing the page whose penultimate
(second-to-last) access is the least recent among all penultimate accesses. LRD
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(Least Reference Density) is not a page replacement algorithm based on page
ages, but on its reference density (reference probability) from the first time that a
page was accessed. The page replacement algorithm LRD rejects from the buffer
the page with the minimum reference density. Finally, in [16] a page replace-
ment algorithm for spatial databases, called LRD-Manhattan, was proposed as
a variation of LRD.
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Fig. 2. Local and Global buffering schemes

The most representative methods for the hybrid buffer structure are the
techniques called 2Q and FIFO LRU. The 2Q algorithm divides the buffer pool in
two areas: the hot area managed as an LRU queue and the cold area maintained
as a FIFO queue [13]. On the first reference of a page, 2Q places it in the cold
area (FIFO). If the page is re-referenced while in the cold area, then it is moved
to the hot area (LRU). Evidently, if a page is not re-referenced while in the cold
area, it is rejected from the buffer. In order to solve the “correlated references”
problem, 2Q divides the cold area in two parts, one for pages and another for
page identifiers. The FIFO LRU technique works in the same way as 2Q, but the
hot area is implemented as a FIFO replacement algorithm and the cold area is
managed with an LRU policy [1].

Here, we present a buffer structure linked to each R-tree based on its height,
h, for solving K-CPQs. This means that the buffer pool is split in h independent
areas. For each R-tree level we allocate a number of pages according to its min-
imum fan-out factor m and its height, with the exception of the root, for which
we allocate only one page. We create this buffer structure in a bottom-up way,
trying to set a distribution of pages per level as fair as possible (root level=level
h − 1 : m0, level h − 2 : m1, level h − 3 : m2, . . ., level 1 : mh−2, leaf level=level
0 : mh−1). In the case of K-CPQs, pages at lower levels are very important for
the branch-and-bound algorithms. Besides, we manage these h independent ar-
eas using a specific page replacement algorithm, for example LRU (LRU L=LRU
by levels), or FIFO (FIFO L=FIFO by levels).
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5 Experimentation

This section summarizes the results of an extensive experimentation that aims
at measuring and evaluating the behavior of the recursive and non-recursive
branch-and-bound algorithms for K-CPQs using different structures, schemes,
policies and buffer sizes. We ignore the effect of path-buffer [5], since it offers
more advantages to the recursive algorithms, regardless of the page replacement
policy.

For our experiments, we have built several R∗-trees [2] using the following
datasets: (a) a real dataset from the Sequoia project [19] consisting of 62.536
points that represent specific country sites of California (Real), (b) a point
dataset produced from the real one by moving randomly every point (Real′) and
(c) two datasets of cardinality 62.536 points, which completely overlap and follow
uniform and skewed distributions [5]. All experiments have run on a Linux work-
station with 128 Mb of main memory and several Gb of secondary storage, mak-
ing use of GNU C++ compiler. The page size was 1 Kb, resulting to a maximum
R∗-tree node capacity M = 21 (minimum capacity was set to m = M/3 = 7, a
reasonable choice according to [2]). The quantity counted in all experiments was
the number of disk accesses required to perform the K-CPQs.

5.1 K-CPQ Algorithms Using a Local Buffering Scheme

We now proceed to the performance comparison of the recursive and non-recur-
sive branch-and-bound algorithms for K-CPQs using a Local buffering scheme
in order to investigate the best page replacement policy and buffer structure.
We used a buffer pool, B, with varying size from 0 to 512 pages, dedicating
different portions of B to each R∗-tree. The datasets joined were Real/Real′ and
Uniform/Skewed. However, in the sequel we focus on Real/Real′ data sets, since
both cases gave very similar trends.

First of all, for the hybrid structure in the Local or Global buffering scheme,
we have performed several experiments with different B values (B/2 for each
R∗-tree) using recursive and non-recursive algorithms to derive the best page
distribution for the hot and cold regions in the buffer. If BP is the number of
pages in the local buffer of the R∗-tree RP , the best configuration was <Hot,
Cold> = < BP /2, BP /2 >. Moreover, for the Local buffering scheme, we have
assigned a varying number of pages to each R∗-tree, and the best distribution
of the buffer was to assign more pages to the largest R∗-tree, whatever the type
(recursive, or non-recursive) of algorithm used. Since in our experimentation
we have point datasets with identical cardinalities, (B/2, B/2) was the best
configuration [8].

We have run experiments using different page replacement policies over the
three buffer pool structures. The best policies for the recursive algorithms were
FIFO and LRU in case of small buffers (e.g. B ≤ 64), but in case of large buffers
(e.g. B ≥ 128) LRU L was slightly better than FIFO and LRU. FIFO and LRU
were better than LFU, Gclock, MRU, LRU/2 and LRD, because recursion favors
the youngest and most recently used pages in the backtracking phase and this
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behavior is slightly improved in case of large buffers organized by levels (FIFO L
and LRU L). On the other hand, for the non-recursive algorithms and small
buffers (e.g. B ≤ 64), FIFO and LRU were again the best policies, whereas for
large buffers (e.g. B ≥ 128) 2Q was slightly better than FIFO and LRU. In
this case, we did not use recursion and the organization of the buffer pool in two
regions (i.e. hot and cold) provided a good performance, when the search strategy
was best-first implemented through a heap of minimums and the buffer was large
enough. For instance, for the recursive 1-CPQ, using a single buffer structure,
MRU was 35% worse with respect to the LRU. Under these conditions, Gclock
was 4% worse with respect to LRU, LFU 35% worse than FIFO, LRU/2 20%
worse than LRU, and LRD 32% worse than FIFO. These behaviors are depicted
in Fig. 3, where different page replacement policies are compared, using the
recursive algorithm for 1-CPQ in a single buffer structure. Besides, if we include
a large buffer (e.g. B = 512) with the single structure and the LRU policy, the
savings in I/O operations were 73% for the recursive algorithm and 68% for the
non-recursive one with respect to the absence of buffer space (B = 0). For the
non-recursive algorithm the results were very similar.
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Fig. 3. The performance of the 1-CPQ recursive algorithm for various page replacement
policies and a single buffer structure, as a function of the buffer size

For the recursive and non-recursive algorithms, in Fig. 4 we illustrate the
performance of the 1-CPQ recursive (left) and non-recursive (right) algorithms
for various page replacement policies, as a function of the buffer size. It can be
seen that the two charts follow the same trend. When the buffer size is small
(e.g. B ≤ 64), the single structure with LRU policy is the best (with 6% and
5% savings for LRU in comparison with 2Q, for recursive and non-recursive
algorithms, respectively), the second is the hybrid and the third one is by levels.
However, in case of large buffers (e.g. B ≥ 128) the difference is almost negligible
for all page replacement policies, although LRU L and 2Q are slightly better that
the other for the recursive and non-recursive algorithms, respectively.

The results of the recursive K-CPQ algorithm for a given buffer size (e.g.
B = 512) showed that the best behavior was for LRU L with a 0.5% improvement
over LRU (for all K values), whereas the worst results appeared in the case of
the hybrid structure (2Q and FIFO LRU). For the non-recursive algorithm with
the same number of buffer pages (B = 512), the best behavior was for 2Q with a
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Fig. 4. The performance of the of 1-CPQ recursive (left) and non-recursive (right)
algorithms for various page replacement policies, as a function of the buffer size

0.6% improvement over LRU (for all K values), whereas the worst results were
for FIFO LRU [8].

In the case of 1-CPQ, the recursive algorithm presents 10% excess of I/O
activity in comparison to the non-recursive one with the same page replacement
policy (LRU), as can be noticed by the gap between the two lines in the left part
in the Fig. 5. The gap for K-CPQ is bigger when the K value is incremented; it
is 25% bigger for K ≤ 10000, but it reaches 45% when K = 100000 (see the right
part of Fig. 5). Besides, by increasing K values (1..100000), the performance of
the recursive algorithm is not significantly affected; with a buffer of 512 pages
and the best page replacement algorithm there is an extra cost of 2%. On the
other hand, this extra cost is about 39% for the non-recursive algorithm using
the same buffer characteristics. If we do not have any buffer space (B = 0),
then increasing K implies an additional cost of 33% for the recursive algorithm
and 16% for the non-recursive one. Moreover, the recursive variant demonstrates
savings in the range 73%-82%, when K increases (1..100000) and a buffer of 512
pages is used, in comparison to the no buffer case (B = 0). The non-recursive
algorithm under the same buffer setup results in savings from 68% to 57%.
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Fig. 5. The performance of the 1-CPQ (left) and the K-CPQ (right) recursive (REC)
and non-recursive (NREC) algorithms using the best page replacement policies and
B = 512, as a function of the buffer size

In Fig. 6, the percentage of I/O cost savings (induced by the use of buffer size
B > 0 in contrast to not using any buffer) of the K-CPQ recursive algorithm
with LRU L policy (left) and non-recursive algorithm with 2Q policy (right) is
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depicted. For the recursive algorithm, the percentage of savings grows as buffer
sizes increase, for all K values, although it is bigger for K = 100000. The be-
havior of non-recursive algorithm is slightly different. When the buffer becomes
larger, the percentage of savings also increases, but when we fix the buffer size,
the increase of K causes a decrease in the percentage of savings. From all these
results, we notice that the influence of buffering for a Local scheme is more
important for the recursive algorithm than for the non-recursive one.
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Fig. 6. The I/O cost savings of the K-CPQ recursive algorithm with LRU L policy
(left) and non-recursive algorithm with 2Q policy (right), as a function of B and the
cardinalities of the data sets

5.2 K-CPQ Algorithms Using a Global Buffering Scheme

For the Global buffering scheme, we have used the same parameters as for the
Local one in order to investigate the best page replacement policy and buffer
structure. In particular we used: (a) several replacement algorithms (FIFO, LRU,
LRU L, FIFO L, 2Q and FIFO LRU) for the three buffer structures, (b) the same
number of pages for the buffer (B varying from 0 to 512 pages), and (c) the
recursive and non-recursive algorithms for K-CPQ with K varying from 1 to
100000.

We have performed experiments with 1-CPQ using several replacement al-
gorithms in the Global buffering scheme. When the buffer size was small or
medium (e.g. B ≤ 128), the single structure with LRU policy was the best (with
3% savings with respect to 2Q, for recursive and non-recursive algorithms), the
second was the hybrid and the third one was by levels. Again, when the buffer
was large (e.g. B ≥ 256) the difference was almost negligible for all page replace-
ment policies, although FIFO and 2Q were slightly better than the other ones
for the recursive and non-recursive algorithms, respectively [8].

In the left part of Fig. 7, we depict the performance of the recursive K-CPQ
algorithm for a given buffer size (e.g. B = 512). The best behavior is for FIFO
with savings of 0.6% in relation to the LRU (for all K values), and the worst
results are again for the hybrid structure (2Q and FIFO LRU). On the other
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hand, the results of the non-recursive K-CPQ algorithm are illustrated in the
right part of Fig. 7 for the same buffer size (B = 512). The best behavior arises
for 2Q with savings of 0.6% in relation to LRU (for all K values), and the worst
results are for FIFO LRU.

For 1-CPQ, the buffering increased the performance of the recursive algo-
rithm by 9% in comparison to the non-recursive one with the same page re-
placement policy (LRU). For K-CPQ, when the K value was incremented, this
improvement was 26% approximately for K ≤ 10000 and 47% for K = 100000.
Besides, for increasing K values, the I/O cost of the recursive algorithm was not
significantly affected, when we had a buffer of 512 pages and the best page re-
placement algorithm had only an extra cost of 2%. On the other hand, this extra
cost was about 39% for the non-recursive algorithm using the same buffer char-
acteristics. Moreover, the recursive variants demonstrated savings in the range
73%-81% as K increased, between the case of a 512 pages buffer and the case no
buffer at all (B = 0). The non-recursive algorithm, under the same buffer setup,
resulted in 68%-57% savings. In general, these results were very similar to the
Local buffering scheme ones [8].
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Fig. 7. The performance of the K-CPQ algorithm for different page replacement poli-
cies as a function of the buffer size for recursive (left) and non-recursive (right) algo-
rithms and B = 512 pages

In Fig. 8, we see the performance of K-CPQ recursive and non-recursive
algorithms as a function of buffer size (B ≥ 0) with LRU policy. For the recursive
algorithm, when B ≥ 32, the savings in terms of disk accesses are large and
almost the same for all K values. However, the savings are considerably less when
B ≤ 16, whereas for K = 100000 and B = 0 we can notice a characteristic peak.
For the non-recursive algorithm, the savings trend is similar to the recursive
one, but for high K values these savings become considerably less than the
recursive one. For instance, if we have available enough buffer space, the recursive
algorithm is the best alternative, because it provides an average I/O savings of
20% in respect to the non-recursive one for K-CPQ using LRU. For all these
results, we notice that the influence of buffering for a Global scheme is more
important for the recursive algorithm than for the non-recursive one in the K-
CPQs, when we have enough buffer space. It is the same conclusion to that for
the Local buffering scheme.
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Fig. 8. The performance of K-CPQ recursive (left) and non recursive (right) algorithms
with LRU policy, as a function of the buffer size and the cardinality of the data sets

5.3 Comparison of the Buffering Schemes for K-CPQ

Table 1 contains the results of an exhaustive comparison of the Local and Global
buffering schemes, using the best buffer structure and page replacement algo-
rithms for each of them. These results concern the performance of K-CPQs
(K ≥ 1) using the recursive (REC) and non-recursive (NREC) algorithms.

Table 1. Comparison of the Local and Global buffering schemes

Buffer Size 8 16 32 64 128 256 512
REC G (LRU) G (LRU) L (LRU) G (LRU) G (LRU) G (FIFO) L (LRU L)
NREC G (LRU) G (LRU) G (LRU) G (LRU) G (2Q) G (2Q) G (2Q)

From this table (where L and G stand for Local and Global, respectively), we
deduce that the Global buffering scheme is the best alternative in most cases,
except for B = 32 and B = 512 for the recursive algorithm where the Local
scheme prevails. The difference between the Global and Local schemes is around
1%-2% in terms of disk accesses for all cases. Since the difference is small, we
suggest to use the Global buffering scheme, because, in this case, the buffer
manager may: (a) include and handle more than two R-trees in the same buffer
area, (b) give priority to a specific R-tree, (c) manage and assign dynamically
more pages to one R-tree and (d) introduce global optimization techniques.

Besides, LRU is the most appropriate page replacement algorithm with a sin-
gle buffer structure when the buffer size is small or medium. On the other hand,
when the buffer is large the best alternatives are FIFO (single structure) and
LRU L (structure by level) for the recursive algorithm and 2Q (hybrid structure)
for the non-recursive one. Since the difference between LRU and the other win-
ner page replacement algorithms (FIFO, LRU L and 2Q) is in the range 1%-2%,
we suggest to use LRU as the policy with the best overall stable performance.
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6 Conclusions and Future Work

Efficient processing of closest pairs queries (K-CPQs with K ≥ 1) is of great
importance in a wide area of applications like spatial databases, GIS, image
databases, etc. Buffering is very important in DBMSs, because it improves the
performance considerably (since reading from disk is orders of magnitude more
expensive than reading from a buffer). In this paper we have examined the most
important factors that affect the performance in the presence of a buffer. These
are: the buffer structure, the page replacement algorithm, and the buffering
scheme. From the experimentation we deduce the following conclusions:

– The I/O savings for the recursive algorithm are larger than that of the non-
recursive one for K-CPQ when we have enough buffer space. The reason
is that the use of recursion in a depth-first way is affected by the buffer-
ing scheme more than the case of a best-first search strategy implemented
through a heap of minimums.

– With a fixed buffer size, increasing the number K of pairs in a CPQ for
the recursive algorithm results in a negligible extra cost with respect to the
additional cost for the non-recursive one.

– The Global buffering scheme is more appropriate when the buffer size is
small or medium for the recursive algorithm, while the Local scheme is the
best choice for large buffers. On the other hand, if we use the non-recursive
algorithm, the Global buffering scheme is the best alternative for all cases.

– LRU is the most appropriate page replacement algorithm with a single buffer
structure when the buffer size is small or medium, whatever the type (recur-
sive, or non-recursive) of algorithm for K-CPQs. On the other hand, when
the buffer is large, then the best alternatives are FIFO (single structure)
and LRU L (structure by levels) for the recursive algorithm and 2Q (hybrid
structure) for the non-recursive one.

Future research may include:

– Study of alternative choices for the buffer structure, page replacement algo-
rithm and buffering scheme in the Self-CPQ and Semi-CPQ [5], which are
extensions of 1-CPQ and K-CPQ.

– Consideration of other spatial data structures and multi-dimensional data.
– Development of a cost model, taking into account the effect of buffering to

analyze the number of disk accesses required for K-CPQs for R∗-trees (along
the same lines as in [14], where a cost model for range queries in R-trees has
been developed).
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