Compressing Large Signature Trees

Maria Kontaki, Yannis Manolopoulos, and Alexandros Nanopoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece
{kontaki,manolopo,alex}@delab.csd.auth.gr

Abstract. In this paper we present a new compression scheme for signature tree
structures. Beyond the reduction of storage space, compression attains signifi-
cant savings in terms of query processing. The latter issue is of critical impor-
tance when considering large collections of set valued data, e.g., in object-
relational databases, where signature tree structures find important applications.
The proposed scheme works on a per node basis, by reorganizing node entries
according to their similarity, which results to sparse bit vectors that can be
drastically compressed. Experimental results illustrate the efficiency gains due
to the proposed scheme, especially for interesting real-world cases, like basket-
market data or Web-server logs.

1 Introduction

Nowadays, the database sizes continuously increase due to the increase in the size of
data. During the previous years, various structures have been proposed for the storage
of data in smaller space, but mainly for their more efficient processing [WMB99].
One of these structures is the signature tree (S-tree) [Depp86], which is used to index
objects with multi-valued attributes. Objects of this type are used in object-oriented
databases, in digital library systems, in WWW search engines, or in multimedia data-
bases.

The value of each attribute of an object can be represented by a signature, that is, a
bit vector produced by applying a hashing function on the attribute's value. The total
number of aces (bits equal to one) is the weight of the signature. An object’s signature
is produced by superimposing (i.e., OR-ing) each of its attribute signatures. Initially,
signatures were used as indices in the signature files that are sequential structures and
require the scanning of the entire collection of signatures.

Deppisch [Depp86] proposed the S-tree, which similar to the B+-tree, is a height-
balanced tree structure. In the S-tree, a signature of a node at level i is produced by
superimposing all signatures of its child nodes that at level i+1, considering that the
root is at level 0. As result, the upper levels have signatures with 'heavy' weight
(many aces with respect to the length of signature). Therefore, the selectivity of such
nodes reduces and the performance of structure during query processing is affected,
since for each query a large number of nodes are retrieved. With primary goal the
reduction of signatures weight, improved signature structures were proposed
[TNMOO].

Due to the way that signature construction is performed (using a hashing function),
information loss may be imported: it is possible that two different objects have the

L. Kalinichenko et al. (Eds.): ADBIS 2003, LNCS 2798, pp. 163-177, 2003.
© Springer-Verlag Berlin Heidelberg 2003

164 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

same signature and, thus, it is possible to retrieve objects that do not satisfy the query.
The latter case corresponds to the false-drops. False-drops affect the performance of
the structure, and for this reason, several methods of signature construction were
developed, which decrease the false-drops probability [Zezu88].

Two factors mainly affect the performance: (a) the node retrieval time (I/O) and (b)
the node processing time (CPU). Although progress has been marked in the disk tech-
nology and the reduction of access time, it is, however, not as significant as the prog-
ress in processor speeds. Thus, factor (a) still has a significant impact. To overcome
this problem, the technique of compression can be considered as means to decrease
the number of disk accesses. Compression has been primarily associated with the
reduction of storage space. However, nowadays, this does not anymore comprise a
crucial objective, since the problem of storage space is not considered as much in-
tense as the need of performance during query processing. For this reason, the focus
in on how compression can reduce the I/O overhead (node retrieval time) by storing
the nodes in less disk pages and, thus, reducing their retrieval time. By achieving a
good rate of compression, the performance of query processing can be significantly
improved, despite the overhead that is added by the additional (CPU) time required by
the compression and decompression.

A generalized framework for compressing index structures (e.g. B-tree, R-tree, etc)
has been introduced by [Teuh01], which describes two categories of compression: (a)
compression of stored information, and (b) compression of pointers in nodes. The
effectiveness of the former (a) category depends on the distribution and the number of
different values. In this category compression can apply the lossy scheme (which
leads to an increase of false drops) or the lossless scheme.

1.1 Contributions and Layout

In this paper, we propose a novel compression scheme for the S-tree, which is based
on the aforementioned issues. The proposed scheme is lossless and is applied in the
data entries of nodes (stored information), i.e., the (a) category according to the
aforementioned framework. In particular, the scheme works on a per node basis by
reorganizing node entries according to their similarity (exploiting node clustering),
which results to sparse bit vectors that can be drastically compressed. Emphasis is
given to the query processing performance. For this reason the scheme contains an
efficient decompression method that requires low CPU times, thus it does not com-
promise the gains due to the reduction of I/O overhead. Moreover, the proposed
scheme is based on compression techniques for sparse vectors, which have been
studied in depth during the previous years [BK91].
The contributions of this paper are summarized in the following:

- The development of the compression scheme for the S-tree structure, accord-
ing to the framework of [TeuhO1].

- The development of a novel decompression method which, during query proc-
essing, avoids the decompression of the entire tree and, moreover, it uses op-
timisations (e.g., the adjustment of bits in the query according to the bits in the
decompressed nodes). As a result, the CPU time required for decompression is
kept significantly low.

Compressing Large Signature Trees 165

- Detailed experiment results, with both real and synthetic data, which examine
the weight of signatures, the correlation between the signatures (a case that is
met often in real-world applications), and the query length.

It must be additionally noticed that although the proposed compression scheme
follows the framework described in [TeuhO1], the latter describes index structures in
general (containing a small discussion on the S-tree, which comprises the motivation
in our scheme), whereas its experiments focused on the R-tree. Our scheme proposes
a number of significant contributions compared to the aforementioned general frame-
work, namely: (a) the efficient decompression method, that makes feasible the query
processing with the compressed tree by drastically reducing the CPU overhead; (b)
the detailed examination of specific details with respect to signature data and the S-
tree, e.g., the correlation between signatures; and (c) the experimental results that
study the effectiveness of the approach on the S-tree structure.

The rest of the paper is organised as follows. Section 2 describes the related work.
In Section 3, we present the proposed scheme. Section 4 contains the experimental
results, while the conclusions and the future work are given in Section 5.

2 Related Work

The first approach to index signatures was through sequential signature files [CF84].
Although sequential files reduce the cost for searching the data, they have the draw-
back that all the signatures in the sequential file are probed during the searching.
S-trees have been proposed in [Depp86], to overcome the aforementioned problem. S-
trees are height-balanced tree (analogous to B'-trees) and they organize the signatures
according to criteria like the minimization of weight increase (for more details, see
Section 2.1). Also, [S-DR87] have proposed a two-level index structure for the effi-
cient organization of signatures.

Several shortcomings of the original S-tree, especially with respect to the node-
split policy, where addressed in [TNMOO]. Other improvements for the organization
of signatures in tree structures can be found in [TBMO02,NMO02], which also examine
different types of queries (e.g., super-set queries, similarity queries, etc). Extensions
of the use of signature indexes to several applications are included in [NTVMO2,
MNTO03]

A description of compression schemes that can be applied to tree structures, in
general, is given in the [TeuhO1]. Experiments in [TeuhO1] have focused on the R-tree
structure, whereas it also contains a small description regarding the S-tree, which
forms the motivation in our approach (for the new contributions of our approach, see
the discussion in Section 1.1). A thorough examination of the advantages of compres-
sion can be found in the [WMB99]. Finally, [BBJK+00] proposes a compression
method for indexes for high dimensional spaces and [GRS98] for relational databases
and indexes for relational data. However, these approaches address much different
requirements than the ones considered by our approach.

166 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

2.1 The S-Tree

S-trees [Depp86], similarly to B*-trees, are height-balanced trees having all leaves at
the same level. Each node contains a number of pairs, where each pair consists of a
signature and a pointer to the child node. The S-tree is defined by two integer pa-
rameters: K and k. The root can accommodate at least two and at most K pairs,
whereas all other nodes can accommodate at least k and at most K pairs. Unlike B-
trees where k = K/2, here it holds that: 1 < k < K/2. The tree height for n signatures is
at most:) = |_10g L n— 1_|. Signatures in internal nodes are formed by superimpos-

ing (OR-ing) the signatures of their children nodes.

Due to the hashing technique used to extract the object signatures, the S-tree may
contain duplicate signatures corresponding to different objects. In Figure 1, an exam-
ple of an S-tree with height A=3 is depicted, where signatures in the leaves represent
individual set signatures (i.e. the indexed objects). For simplicity these signatures are
assumed to be of equal weight, i.e., y(s) = 3, but they vary from 3 to 6 in upper levels
due to superimposition.

11
(————— o0

11100001

11000111
14100001 11304014 Q01014014 QO0014114¢
01100001 21000141 001011040 000114010
111000040 100040011 Q0104114 o0011100
110006001

Fig. 1. An example of an S-tree

Successful searches in an S-tree proceed as follows. Given a user query for all sets
that contain a specified subset of objects, we compute its signature and compare it to
the signatures stored in the root. For all signatures of the root that contain 1s at least at
the same positions as the query signature, we follow the pointers to the children of the
root. Evidently, more than one signature may satisfy this comparison. The process is
repeated recursively for all these children down to the leaf level following multiple
paths. Thus, at the leaf level, all signatures satisfying the user query lead to the ob-
jects that may be the desired ones (after discarding false drops). In the case of an
unsuccessful search, searching may stop early at some level above the leaf level, if the
query signature has 1s at positions where the stored signatures have 0s. Due to lack of
space, more details (regarding, insertion, deletion, etc.) can be found in [Depp86].

Compressing Large Signature Trees 167

3 Proposed Scheme

Based on the general framework of [TeuhO1], we consider two approaches of com-
pressing an entry x of node N: (a) compressing x with respect to the content of the
father of node N, and (b) compressing x with respect to the entries that are stored
before x in the node N. Both (a) and (b) cases stand exceptions, without of course
creating problem in the compression. For instance, in case (a), the root does not have
father node, and, in case (b), the first signature of each node does not have any entries
that are stored prior to it. Since the use of (a) does not prevent the use of (b), and vice
versa, the proposed scheme exploits both of them. The gain from the first approach
(a) is that it limits the possible values of x, thus x is stored in a more condensed way.
The second approach (b) represents x as px+Ax, where px it is the value of the previ-
ous entry in N and Ax is the difference between x and px. The difference Ax is possi-
ble to contain less information than the entry itself, especially when considering the
existence of similarity between the entries stored in a node; something that is in gen-
eral attained by tree index structures, like the S-tree. Therefore, the gain is due to the
smaller requirements for the storage space of Ax compared to that of x.

Regarding query execution, we focus on containment queries. In terms of signa-
tures, given a query signature g, such queries search for those signatures s in the tree
for which it holds that s AND g = g (these queries are also called subset queries).
Evidently, for the purpose of query processing, a straightforward approach is to first
decompress the entire S-tree and then to execute the query. Nevertheless, we develop
a different method, which avoids the cost of decompressing the entire tree and con-
centrates only to the relevant parts of it (i.e., those invoked by the query). In the re-
mainder of this section, we describe in more detail the compression/decompression
methods.

3.1 Compression Method

The first step of the method is the compression with respect to the father node. The
signature of the father has resulted by applying the OR-ing of the signatures in its
children nodes, and thus it is impossible to have any signature in a child node that has
ace in a position that the signature of father has zero. Consequently all these zeroes,
which “are imposed” by the father, can be omitted.

As described, the second step of the method is the compression with respect to the
previous entry in the same node. This step required that consecutive signatures in a
node to be as much as possible similar. As a distance measure (i.e., measure of in-
verse similarity) one can use the broadly used hamming distance, that is, the number
of bits that the signatures differ. Since the signatures in a node of the S-tree are not
ordered, and they are entered in the order they arrive, we can order the signatures
within the node so that the total sum of distance between consecutive signatures is
minimized.

The aforementioned requirement can be easily transmuted in finding a solution for
the problems that belong in the family of travelling salesman problems (TSP). TSP is
applied to an underlying graph. In our case, the graph consists of the node’s signa-
tures, which correspond to the vertices, whereas the edges are the intelligible lines
that imply consecutive signatures. The hamming distance between two signatures

168 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

(vertices) comprises the weight of the corresponding edge that connects them. Evi-
dently, for large graphs (that correspond to nodes with many entries), one has to resort
to one of the several well-known heuristics for the TSP problem. For purposes of
simplicity, we used the heuristic that is based on the minimum spanning tree of the
graph.

Considering all the aforementioned issues, the compression scheme for a given
node, is described as follows:

1. Remove from signatures of the children nodes, the positions that the signa-
ture of the father node has zeroes (obvious all the signatures of root are ex-
cluded from this step).

2. Apply a heuristic for the travelling salesman problem. The result of the heu-
ristic will be an ordering of the node’s signatures, which results to a small
sum of Hamming distances between the consecutive signatures within this
ordering.

3. Store the first signature of the resulting ordering, as it is. For each of the
following signatures, calculate the XOR result with its previous signature (by
applying the XOR logical operator between the bits in corresponding posi-
tions).

4. The signatures that result from step 3 are sparse vectors (due to the minimi-
zation of hamming distance). Apply a compression of the resulting sparse
vectors (to be explained in the following).

To perform the compression in the entire S-tree, we have to apply the previously
described algorithm (that works on a per node basis) to each of its node. The corre-
sponding algorithm must be applied in a post-order tree traversal. This way of tra-
versal is required due to the need of knowing the bits of the father’s signature that are
equal to 0, when compressing the signatures in its children. Initially, the root node is
excluded from the compression. Then, for each node, we apply the node compression
to its children nodes, store them, and then apply it also to the node itself. For a more
clear description, the 3" step of the node compression method is exemplified in Fig. 2.

Sigmatures 0 | | Signature 1 | Signature z | | Signature 3 | | Signature 4
HOR iR HioR HOR
| Signature L' | | Signature z' || Signature 3' || Signature 4'

Sigraturs 0o

Fig. 2. An example of step 3 in the S-tree node compression scheme

Compressing Large Signature Trees 169

For the 4" step of the node compression method, in our implementation we used a
simple way of compressing sparse vectors. Consider that [is the length of signature
and s is the number of aces in the signature (i.e., the weight of signature). For sparse
vectors it holds that s << I. We mark the bit positions that are equal to /. For the
storage of a position, d=|log,]| bits are required. Therefore, for each signature, sxd bits
are needed. Evidently, the use of more sophisticated methods for compressing sparse
vectors will lead to improved compression of the entire structure. This is left as a
topic of future work, since herein we are interested in testing the effectiveness of the
proposed scheme regardless of the specific method used for sparse vectors (i.e., we
would like test its viability even for simple such methods). Important is the observa-
tion that, with respect to the proposed compression scheme, the resulting signatures
do not have the same length (even in the same node), due to the compression of sparse
vectors. Therefore, along with each sparse vector, we also store the length of the re-
sulting signature (in Step 4 of the node compression method).

Finally, we have to notice that, in the uncompressed S-tree, each node is stored in
an entire disk page, something that will lead to space wastefulness in the case of the
compressed S-tree. The reason is that a compressed node occupies smaller space
compared to an uncompressed one. Therefore, at each disk page, we store as many
(compressed) nodes as possible. In our implementation, for reasons of simplicity, we
considered that a node does not span different pages, thus a small fragmentation may
incur. Nevertheless, if we do not use this simplification, the performance gains are
expected to increase further.

3.2 Basic Node Decompression Method

As described, a straightforward method for processing queries would be to apply the
reverse process of compression for the entire tree and, then, to execute the query over
the decompressed tree. However, this would not be effective for two reasons: (a) no
gain can be reaped, because the latter part in this procedure is equivalent to the que-
rying of the tree when compression is not applied at all; (b) the total cost is burdened
by the additional cost to uncompress the tree. Obviously, due to (a) and (b), the total
performance would be worse than in the case where compression is not used.

Thus, in the proposed scheme, only the required part of the tree (the nodes invoked
by the query) is involved during decompression, which is performed simultaneously
with the processing of the query. Therefore, the overhead of decompression is de-
creased drastically.

As in the compression procedure, herein we will first describe a node decompres-
sion method and then the complete decompression algorithm. The first step in the
node decompression method is the decompression of sparse vectors: we compute the
number d (number of the bits that is required for the storage of a bit with value equal
to one in an uncompressed signature) and, moreover, we initialize the new signature
(all bits are initially set to 0). We divide the signature into groups of d bits. We find
the positions of aces and set them to 1 (putting 1 to the corresponding bit of the new
signature), turning each such group into a decimal number. It has been observed (by
our experiments) that this is the most time-consuming step in the whole decompres-
sion method.

170 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

The next step of the node decompression method is to “inverse” the XOR opera-
tion between the consecutive signatures. We begin from most leftmost (first) signa-
ture of the node, in which the XOR operation was not applied so as to constitute our
base for the inversion. For each pair of consecutive signatures, we apply the XOR
operation (notice that by XOR-ing twice, we get the inverse) and, thus, we take the
initial signatures. In Figure 3 is given an example that clarifies the previous proce-
dure.

Finally, the node decompression method is completed by adding to the node’s sig-
natures the bits of the father’s signature, which are equal to 0.

Si1gqratur= 0O' | | Sirgratur= 1' | | Sigmature z! | | S1qrature 3! | | Srgrat ur= 4'
HOR
AOR HOR HOR
| Sigrnatur= L | | Sigrnaturs 2 | | S1gratur= 3 | | Sigratur= 4

Fig. 3. An example of node decompression

3.3 Improved Decompression Method

In the basic node decompression method, the last step (i.e., the addition of bits ac-
cording to the ones in the father’s node signature, which have value equal to 0),
overloads by far the decompression time, since it has to be applied in each signature
of the node. To overcome this problem, we can omit the corresponding bits of the
father’s signature (i.e., those equal to 0) from the query signature. Please recall that
the decompression is executed at the same time with the query. For example, let a
node containing 90 signatures and its father’s signature has 15 bits equal to 0. There-
fore with the basic process, we should add 1350 bits, in total, to the signatures of the
node. In contrast, with the method that was previously described, we entirely avoid
this cost. It has to be noticed that the omission of the bits from the query signature is
performed only for the signatures in the subtree of the father’s signature (i.e., at each
node, a local copy of the query’s signature is used). From this, it is easy to see that the
correctness of the query result is not affected.

Regarding the complete decompression method, different from the case of com-
pression, the node decompression algorithm is applied through a preorder traversal of
the S-tree. This is because it is necessary to first decompress the father-node before
we continue with his children, so as to know the bit positions that are equal to 0. The

Compressing Large Signature Trees 171

decompression method considers as basic unit the node (i.e. when one node is se-
lected, all his signatures decompress). This is contrast to the approach of [GRS98],
which considers as basic unit each individual entry in an index structure.

4 Performance Study

In this section, we present the experiment results that measure the performance gains
due to the proposed scheme. We have conducted experiments to measure the com-
pression rate (i.e., ratio of size between the compressed and uncompressed cases).
However, due to space constraints, we herein focus on the measurement of perform-
ance during query execution, since, as described, this measure corresponds to the case
of interest. The compressed S-tree is denoted as COMP and the uncompressed as
ORIG. Next, we first describe the experimental setup and then we present the results.

4.1 Experimental Setup

For both COMP and ORIG we used the improved construction methods that were
proposed in [TNMOO]. For each experiment we present two diagrams: (a) one for the
comparison between COMP and ORIG in terms of the disk accesses required by the
query, and (b) one for the CPU time (measured in seconds) required by the decom-
pression during the query execution (this time is presented only for COMP, since
ORIG does not require it). The number of the disk accesses does not result from the
count of the actual disk accesses but from the count of disk pages accesses and this
holds for all experiments. As mentioned, we focus on the containment (subset) que-
ries, which are measured with respect to the items involved in the query signature.
The default page size is 8 K. The experiments were conducted on a PC with processor
AMD Athlon at 1.6 GHz.

We used both real and synthetic data sets, with various values of weight/length of
signatures. Hereafter, s denotes a signature, F its length, and with w(s) its weight (the
number of aces that contains). In addition, we use the notion of fraction weight, de-
noted as wF(s), in order to express the number of bits in s that are equal to 1 with
respect to its length (e.g., if F is equal to 512 and w(s) is 256, then wF(s) is equal
to 0.5). For synthetic data, a fraction of the number of bits that were equal to 1 in a
signature were also set to 1 in the immediately next generated signature. This yields to
a correlation between the generated signatures. We have observed this in several real-
world cases (e.g., basket market data), which are in contrast to the non-realistic as-
sumption of independent bit values within signatures. Correlation is characterized by
the aforementioned fraction, which is denoted as correlation factor (corF).

The real data that we used are two WWW traces, namely: (a) the ClarkNet data set,
that contains two week's worth of all HTTP requests to the ClarkNet WWW server,
and (b) the NASA data set, that contains two month's worth of all HTTP requests to
the NASA Kennedy Space Center.! From these traces, we extracted user sessions,
where each one was represented by a signature. The number of signatures for the
ClarkNet data set is about 75,000 and the distinct items are 7200. For the NASA data

! The ClarkNet and NASA data sets can be obtained from http://ita.ee.lbl.gov/html/traces.html.

172 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

set, the number of signatures is equal to 100,000 and the distinct items are 1800. Both
data sets present the aforementioned characteristic of correlation.

The performance metrics we used were: i) the accessed tree nodes, and ii) the
compression ratio. Regarding the former (i) we did not employ a buffering scheme,
since we wanted to focus on the complexity of query execution in terms of the num-
ber of nodes invoked during a query. Nevertheless, it is expected that the use of buff-
ering will have the equivalent impact on all methods (thus, the relative performance
difference will be preserved).

4.2 Experimental Results

In the first experiment, we examine performance for synthetic data with respect to the
size of query, which is given in terms of its wF(q). For each data signature s, its
length F is equal to 512 and its wF(s) is 0.05. The correlation factor was set up equal
to 0.5. For the experiment we used an S-tree with a maximum of 120 signatures per
node and with a minimum of 40 (denoted as 120/40), whereas the number of signa-
tures were 50,000. The results are depicted in Figure 4. More specifically, the left part
of Figure 4 depicts the number of disk accesses (denoted as DA), whereas the right
part of Figure 4 depicts the CPU overhead due to decompression (for COMP only).
As shown, a clear reduction in the number of disk accesses is attained by COMP.
Moreover, the cost of decompression is low enough to guarantee that the total cost of
query execution for COMP is much smaller than that for ORIG. As wF(g) increases,
the number of disk accesses is reduced for both COMP and ORIG. This is as ex-
pected, because with increased wF(g) less data signatures satisfy the query and, thus,
less nodes are examined (analogous reasoning can be followed for the reduction of the
decompression time for COMP).

The second experiment is similar to first, however using different values for certain
parameters. The factor weight wF(s) is equal to 0.9 and the correlation factor is equal
to 0.3. The values of other parameters remain the same as in the previous experiment.
The left part of Figure 5 shows the number of disk accesses for the COMP and the
ORIG and right part of Figure 5 shows the time of decompression for the COMP. As
shown, in this case, again, the number of disk accesses of COMP is less than that of
ORIG (the decompression time is also quite low). Comparing the two experiments,
however, we observe that at the second experiment the number of disk accesses for
both methods is significantly increased. Moreover, the number of disk accesses is not
decreased with increasing query factor weight. This is as expected, due to the high
‘heavy’ data signatures that were used, which lead to the creation of data signatures
with low selectivity. Only in the case where the query factor weight is very high,
number of signatures that satisfies the query (and the number of disk accesses) is
relatively decreased.

In the following experiment we examined a different type of synthetic data sets to
model basket market data, i.e., customer transactions, which were produced using the
generator described in [AS94]. The characteristics of these data are that their signa-
tures are sparse (they have few aces with respect to the length of the signature) and
that the correlation between them is high (i.e., a case analogous to the one examined
in the first experiment). Because the queries were generated from the data (to follow
their distribution), the performance is examined with respect to the absolute weight of
a query signature w(q) instead of the query weight factor wF(q). Following the nota-

Compressing Large Signature Trees 173

tion of [AS94], the used dataset was the T10.16.D100K, thus the number of data sig-
natures was 100,000, the average number of items per customer transaction was equal
to 10, and the other parameters were the default ones used by the generator. The re-
sults are illustrated in Figure 6. The left part of Figure 6 illustrates that COMP signifi-
cantly outperforms ORIG in terms of required number of disk accesses, whereas the
decompression time (right part of Figure 6) is low enough. This result indicates that
for such interesting real-world cases, the proposed scheme can attains significant
performance improvements, due to the characteristics of the data.

180 — — 018 — ————
COMP —s— COMP —=—
170 . ORIG —— 1 017 1
ooy | 046
150
140 0.15
i
< 130 = 014
120 E 013
1o 012
100 o
% _ 0.
a0 ‘-""': 01
70 — 0.09 —
o1 02 02 04 05 06 07 06 09 of 02 03 04 05 06 07 08 09
wHg) wHg)

Fig. 4. Query performance with respect to query size for synthetic data. Left: Disk accesses
w.r.t. wF(g). Right: Decompression time

COMP —— 0.4 COMP ——
ORlG ——
300 A] 035
250 ; 0.3
4
a 2 opp
150 2
015
100
01
50 0.05
0f 02 03 04 05 06 07 0B 00 0f 02 03 04 05 08 07 0B 09
wr(g) wHg

Fig. 5. Query performance with respect to query size for synthetic data. Left: Disk accesses
w.r.t. wF(g). Right: Decompression time

174 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

500 T T T

COMP ——
550 [, CRG —— |

S SN
450
400

DA
K
time (s)

350 T,
300
250]

200
150 L L L L L L L 015

wig) wig)

Fig. 6. Query performance with respect to query size for market basket data. Left: Disk accesses
w.r.t. w(q). Right: Decompression time

Also, we conducted two more experiments with real data sets, in order to verify the
measurements obtained with synthetic data. Similar to the basket-market case, the
queries were generated from the data signatures and their length is given with the
w(g) measure.

The results for the ClarkNet data set are illustrated in Figure 7. We observe that the
disk accesses (left part of Figure 7) and the decompression time (right part of Fig-
ure 7) are similar with those in previous experiments. COMP clearly outperforms
ORIG for all query sizes. The results for the NASA data set are depicted in Figure 8.
As shown, for small queries (w(q) less than 4) COMP is significantly better than
ORIG. For higher weights, however, both methods require similar disk accesses, since
the data signatures in this case are very sparse and the number of signatures that sat-
isfy the query is very small. Therefore, compression may not pay-off for this cases,
considering that, although small, the additional cost of decompression has to be paid.

Table 1. Compression ratios

Data set S-tree Compressed | Compression
S-tree Ratio

Synth: wF(s)=0.05, corF=0.5 3155 KB 1798 KB 43%

Synth: wF(s)=0.9, corF=0.3 3162 KB 2964 KB 6.3%

Market basket data 5894 KB 1711 KB 71%

ClarkNet 6333 KB 794 KB 87.5%

NASA 4762 KB 911 KB 80.9%

Compressing Large Signature Trees 175

450 ' T 0.95
COMP —e—
400 _ ORIG —— | 09 r
085 |
30 o 1
ngt
80 1 - o0mf
< 050 | . . 1op 07
000 | e T Tl] F st
06 ¢
180 | 1
055
100 b 05t
50 L L L L L L 1 045
2 3 4 5 6§ 7 8§ 9 10

wig)
Fig. 7. Query performance with respect to query size for the ClarkNet data set. Left: Disk ac-
cesses w.r.t. w(q). Right: Decompression time

180 — —
COMP ——
160 + ORIG —— |
140 1%
120
100 - 0)
& g
O L L L 1 1 L L 01 1 L 1 1 L L 1
2 3 4 5 6 7 & 9 10 2 3 4 5 § 7 8 9 10
w(q) w(q)

Fig. 8. Query performance with respect to query size for the NASA data set. Left: Disk accesses
w.r.t. w(q). Right: Decompression time

5 Conclusions and Future Work

We have examined the problem of compressing large signature tree structures aiming
to significantly improvement in performance during query processing. We proposed
ascheme that consists of the corresponding compression and decompression method.
Both methods work on a per node basis and are based on the grouping of node entries
according to their similarity, the production of sparse vectors, and the compression of
the latter. The decompression method overcomes the problems of the straightforward
approach (i.e., the decompression of the entire tree) and attains low overhead for this
operation.

176 M. Kontaki, Y. Manolopoulos, and A. Nanopoulos

Detailed experimental results with real and synthetic data illustrated the gains
reaped due to the proposed scheme. Especially for interesting real-world cases (basket
market data, real traces), the proposed scheme presents significant improvements in
terms of I/O cost, and very low CPU time overhead for decompression.

Future work includes the examination of more complicated techniques for the
compression of sparse vectors [BK91]. Also, we will focus on the development of
compression schemes that will support the construction of dynamic S-trees. The naive
technique is the decompression of entire tree, the insertion of a signature and the
compression again of entire tree. This technique is not effective. An efficient algo-
rithm, similar with the one that we follow in the stage of decompression, is: decom-
press only the nodes that are invoked in the insertion and are determined from the
insertion algorithm, which is executed simultaneously. More gain can be achieved by
the observation that if the father of a node is the same before and after the insertion
then all the nodes above this node (i.e., the nodes more close to the root) will be the
same and therefore it is not need to compress them again. Moreover a great overhead
is introduced in the stage of node split and therefore the criteria of signature insertion
should be selected in order to minimize the number of splits. Further issues should be
researched.

References

[AS94] R. Agrawal, R. Srikant. “Fast Algorithms for Mining Association Rules in Large
Databases”. Proc. Conf. On Very Large Databases (VLDB’94), pp. 3—14, 1995.

[BBJK+00] S. Berchtold, C. Bohm, H. Jagadish, H.-P. Kriegel, J. Sander. “Independent
Quantization: an Index Compression Technique for High Dimensional Data
Spaces”. Proc. Conf. on Data Engineering (ICDE’2000), pp. 577-588, 2000.

[BK91] A. Bookstein, S. Klein. “Compression of Correlated Bit-Vectors”. Information
Systems, Vol.16, No.4, pp.387-400, 1991.
[CF84] S. Christodoulakis, C. Faloutsos. “Signature Files: An Access Method for

Documents and its Analytical Performance Evaluation”. ACM Transactions on
Office Information Systems, Vol. 2, pp. 267-288, 1984.

[Depp86] U. Deppisch. “S-tree: A Dynamic Balanced Signature Index for Office Re-
trieval”. Proc. ACM SIGIR Conf., pp. 77-87, 1986.

[GRS98] J. Goldstein, R. Ramakrishnan, U. Shaft. “Compressing Relations and Indexes”.
Proc. Conf. on Data Engineering, pp. 370-379, 1998.

[MNTO3] Y. Manolopoulos Y., A. Nanopoulos, E. Tousidou. “Advanced Signature In-
dexing for Multimedia and Web Applications”, The Kluwer International Series
on Advances in Databases Systems, Kluwer Academic Publishers, 2003, in
print.

[NMO02] A. Nanopoulos, Y. Manolopoulos. “Efficient Similarity Search for Market
Basket Data”. The VLDB Journal, Vol. 11, No. 2, pp. 138-152, 2002.

[NTVMO2] M. Nascimento, E. Tousidou, C. Vishal, Y. Manolopoulos. “Image Indexing and
Retrieval Using Signature Trees”. Data and Knowledge Engineering, Vol. 43,
No. 1, pp. 57-77, 2002.

[S-DR87] R. Sacks-Davis, K. Ramamohanarao. “Multikey Access Methods Based On
Superimposed Coding Techniques”. ACM Transactions on Database Systems,
Vol. 12, No. 4, pp. 655-696, 1987.

[TeuhO1] J. Teuhola. “A General Approach to Compression of Hierarchical Indexes”.
Proc. Database and Expert Systems Applications (DEXA’2001), pp. 775784,
2001.

[TBMO2]

[TNMOO0]

[WMB99]

[Zezu88]

Compressing Large Signature Trees 177

E. Tousidou, P. Bozanis, Y. Manolopoulos. “Signature-based Structures for
Objects with Set-valued Attributes”. Information Systems, Vol. 27, No. 2, pp.
93-121, 2002.

E. Tousidou, A. Nanopoulos, Y. Manolopoulos. “Improved Methods for Signa-
ture-Tree Construction”. The Computer Journal, Vol. 43, No. 4, pp. 301-314,
2000.

1. Witten, A. Moffat, T. Bell. “Managing Gigabytes — Compressing and Index-
ing Documents and Images”. Morgan Kaufmann, 1999.

P. Zezula. “Linear Hashing For Signatures Files”. Proc. IFIP TC6 and TC8
Symp. on Network Information Processing Systems, pp. 192—-196, 1988.

	1 Introduction
	1.1 Contributions and Layout
	2 Related Work
	2.1 The S-Tree

	3 Proposed Scheme
	3.1 Compression Method
	3.2 Basic Node Decompression Method
	3.3 Improved Decompression Method

	4 Performance Study
	4.1 Experimental Setup
	4.2 Experimental Results

