

J. Eder et al. (Eds.): ADBIS 2005, LNCS 3631, pp. 153 – 166, 2005.
© Springer-Verlag Berlin Heidelberg 2005

VA-Files vs. R*-Trees in Distance Join Queries*

Antonio Corral1, Alejandro D’Ermiliis1, Yannis Manolopoulos2,
and Michael Vassilakopoulos3

1 Department of Languages and Computing, University of Almeria, 04120 Almeria, Spain
{acorral, sandro}@ual.es

2 Department of Informatics, Aristotle University, GR-54124 Thessaloniki, Greece
manolopo@csd.auth.gr

3 Department of Informatics, Technological Educational Institute of Thessaloniki,
P.O. BOX 141, GR-57400, Thessaloniki, Greece

vasilako@it.teithe.gr

Abstract. In modern database applications the similarity of complex objects is
examined by performing distance-based queries (e.g. nearest neighbour search)
on data of high dimensionality. Most multidimensional indexing methods have
failed to efficiently support these queries in arbitrary high-dimensional datasets
(due to the dimensionality curse). Similarity join queries and K closest pairs
queries are the most representative distance join queries, where two high-
dimensional datasets are combined. These queries are very expensive in terms
of response time and I/O activity in case of high-dimensional spaces. On the
other hand, the filtering-based approach, as applied by the VA-file, has turned
out to be a very promising alternative for nearest neighbour search. In general,
the filtering-based approach represents vectors as compact approximations,
whereas by first scanning these approximations, only a small fraction of the real
vectors is visited. Here, we elaborate on VA-files and develop VA-file based
algorithms for answering similarity join and K closest pairs queries on high-
dimensional data. Also, performance-wise we compare the use of VA-files and
R*-trees (a structure that has been proven to be of robust nature) for answering
these queries. The results of the comparison do not lead to a clear winner.

1 Introduction

Large sets of complex objects are used in modern applications (e.g. multimedia
databases [11], medical images databases [15], etc.). To examine the similarity of
these objects, high-dimensional feature vectors (i.e. points in the high-dimensional
spaces) are extracted from them and organized in multidimensional indexes. Then,
distance-based queries (e.g. nearest neighbour, similarity join, K closest pairs, etc.)
are applied on the high-dimensional points. The most representative high-dimensional
distance join queries (DJQ), where two datasets are involved, are the similarity join

* Supported by the ARCHIMEDES project 2.2.14, «Management of Moving Objects and the

WWW», of the Technological Educational Institute of Thessaloniki (EPEAEK II), co-funded
by the Greek Ministry of Education and Religious Affairs and the European Union,
INDALOG TIC2002-03968 project «A Database Language Based on Functional Logic
Programming» of the Spanish Ministry of Science and Technology under FEDER funds, and
the framework of the Greek-Serbian bilateral protocol.

154 A. Corral et al.

query (SJ) and the K closest pairs query (K-CPQ). The SJ query discovers all pairs of
points from two different point datasets, where the distance does not exceed a
distance threshold δ. The K-CPQ discovers K>0 distinct pairs of points formed from
two different point datasets that have the K smallest distances between them. The
former does not take into account the cardinality and order of the final result (but only
the user-defined distance threshold δ), whereas the latter does not consider any
distance bound (but only the user-defined final result cardinality K). Note that these
queries have been successfully applied in data mining algorithms (e.g. clustering
algorithms based on similarity join [3] and closest pairs [16]).

Here, we focus on performing DJQ using a filtering-based approach that has
proven to outperform a sequential scan for high dimensionalities, when a tree index
fails to process a K nearest neighbour query (K-NNQ) efficiently (dimensionality
curse). The VA-file (vector-approximation file) is the most representative access
method of this category [20]. Instead of partitioning, the VA-file constructs the index
file by compressing each feature vector. With respect to query processing, the
compact vector approximations are sequentially scanned and filtered in the first stage
so that a small fraction of them remains to be visited in the second stage. The
improvement for K-NNQ arises due to the reduced I/O accesses (as the index file size
is small) and due to the smaller response time (because of the fewer distance
computations).

The main goal of this paper is to develop VA-file based algorithms for DJQ
involving two sets of high-dimensional data. More specifically, we develop
algorithms for SJs and K-CPQs in high-dimensional spaces, where both point datasets
are indexed by VA-files. To achieve this goal, we propose new bounds on the
distance between pairs of points and new pruning conditions. Moreover, we present
experimental results comparing the performance of these algorithms with analogous
algorithms that make use of R*-trees [1], in terms of the I/O activity and the response
time. Based on these results, we draw conclusions about the behaviour of the
algorithms that use VA-files for DJQ in high-dimensional spaces.

The paper is organized as follows. In Section 2, we review the related literature and
motivate the research reported here. In Section 3, a brief description of the VA-file
structure, definitions of the most representative DJQ, approximation-based distance
functions and pruning conditions are presented. In Section 4, algorithms based on
distance bounds and pruning conditions over VA-files for K-CPQ and SJ are
examined. In Section 5, a comparative performance study of these algorithms is
reported. Finally, in Section 6, conclusions on the contribution of this paper and
future work are summarized.

2 Related Work and Motivation

Numerous algorithms have been proposed for satisfying DJQ in high-dimensional
environments. For similarity joins on high-dimensional point datasets, the most
representative papers are [18, 14, 10, 4]. In [18] an index structure (ε-kdB tree) and an
algorithm for similarity self-join on high-dimensional points was presented. The basic
idea is to partition the dataset perpendicularly to a selected dimension into stripes of
the width ε to restrict the join algorithm to pairs of subsequent stripes. In [14] the

 VA-Files vs. R*-Trees in Distance Join Queries 155

problem of computing high-dimensional similarity joins between two high-
dimensional point datasets, where neither input is indexed (Multidimensional Spatial
Join, MSJ), was investigated. The basic idea of this access method is to partition the
dataset into level-files, each of which contains the points of a level in the order of
their Hilbert values. In [10] a new algorithm (Generic External Space Sweep, GESS),
which introduces a rate of data replication to reduce the number of distance
computations as an enhancement of MSJ, was proposed. In [4], a complex and
interesting index architecture (Multipage Index, MuX) and join algorithm (MuX-
join), which allows a separate optimization CPU time and I/O time, were presented.
On the other hand, the K-CPQ has not been studied in-depth for high-dimensionality
data. In [8], DFS-based approximate algorithms for the K-CPQ using R-trees [13]
have been proposed (in order to get suboptimal results in reasonable time). One of the
main objectives of this work was to examine the influence of the approximate
parameters on the trade-off between accuracy and efficiency of such algorithms.

Many approaches have been proposed to overcome the curse of dimensionality in
the context of K-NNQ. They are usually classified into five major categories: (1) tree
index structures by partitioning the data space or data-partitioning; (2) space-filling
curves, (3) dimensionality reduction approaches; (4) approximate algorithms and (5)
filtering-based (i.e. approximation) approaches. In this paper, we are going to focus
on the last category. The filtering-based approach overcomes the dimensionality curse
by filtering the points so that only a small fraction of them must be visited during a
search. In this respect, the most representative access method is the VA-file [20],
which divides the data space into 2b rectangular cells, where b denotes a user-
specified number of bits. The VA-file allocates a unique bit-string of length b to each
cell and approximates data points that fall into a cell by that bit-string. In general, the
VA-file itself is simply an array on disk of these compact approximations of points.

Following the ideas of the VA-file, many variants have proposed to improve the
performance of K-NNQ. The VA+-file [12] combines a linear decorrelation using
KLT (Karhunen-Loève Transformation) along with a variance specific quantization
scheme using the VA-file principles. The LPC-file [6] enhances the VA-file by
adding polar coordinate information of the point (vector) to approximation, increasing
the discriminatory power. The GC-tree [5] pursues a hybrid strategy which
incorporates a quad-tree-like hierarchical space partitioning with bit-encoded clusters
and a point approximation based on local polar coordinates on the leaf nodes. In the
IQ-tree [2], all points are globally approximated according to one fixed grid (like the
VA-file) and it also maintains a flat directory containing the minimum bounding
rectangles (MBRs) of the approximate data representations. The A-tree [17] combines
hierarchical indexing and local approximation by quantization. The MBRs of point
clusters are approximated by quantization in so-called virtual bounding rectangles
(VBRs). And recently, the SA-tree [9] was proposed, which combines data clustering
and compression (i.e. it employs the characteristics of each cluster to adaptively
compress points to bit-string) to speed up processing of high-dimensional K-NNQ.

All the previous efforts have been mainly focused on enhancing the VA-file to
improve the performance during the K-NNQ (a query applied on a single set of high-
dimensional data). The main objective of this paper is to investigate the behaviour of
VA-files on DJQ involving pairs of high-dimensional data sets (SJs and K-CPQs). For

156 A. Corral et al.

this reason, we propose new bounds of the distance between pairs of points, new
pruning conditions and lead to algorithms for these DJQ using VA-files.

3 Distance Join Queries for VA-Files

3.1 Distance Join Queries

Let us consider points in the dim-dimensional data space (Ddim = ℜdim) and a distance
function for a pair of these points. A general distance function is the Lt-distance (dt) or
Minkowski distance between two points pi and qj from two different datasets (P = {pi:
0≤i≤|P|–1} and Q = {qj: 0≤j≤|Q|–1}, respectively) in Ddim (pi = (pi[0], pi[1],…, pi[dim-
1]) and qj = (qj[0], qj[1],…, qj[dim-1])), where pi[d] (qj[d]) is the coordinate value of
pi (qj) in dimension d, that is defined by:

() ∞<≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= ∑
−

=

tifdqdpqpd
t

d
jijit 1 ,][][,

1
1dim

0

, and ()][][max,
1dim0

dqdpqpd ji
d

ji −=
−≤≤∞

For t = 2 and t = 1 we have the Euclidean and the Manhattan distances. They are
the most known Lt-distances. Often, the Euclidean distance is used as a distance
function, but, depending on the application, other distance functions may be more
appropriate. The dim-dimensional Euclidean space (metric space), Edim, is the pair
(Ddim, d2). In the following, we will use dist instead of d2. The most representative
DJQ in Edim are the following:

Definition. Similarity Join (SJ). Let P and Q be two point datasets (P≠∅ and Q≠∅) in
Edim and δ a real number δ≥0. Then, the result of the Similarity Join is the set
SJ(P,Q,δ) ⊆ P×Q containing all possible pairs of points of P×Q that can be formed by
choosing one point of P and one point of Q, having a distance smaller than or equal to
δ: SJ(P, Q, δ) = {(pi,qj) ∈ P×Q: dist(pi,qj) ≤ δ}.

Definition. K closest pairs query (K-CPQ). Let P and Q be two point datasets (P≠∅
and Q≠∅) in Edim and K an integer number in the range 1≤K≤|P|·|Q|. Then, the result
of the K closest pairs query is the set K-CPQ(P,Q,K) ⊆ P×Q containing all the
ordered sequences of K different pairs of points of P×Q with the K smallest distances
between all possible pairs of points that can be formed by choosing one point of P and
one point of Q: K-CPQ(P,Q,K) = {((p1,q1), (p2,q2), ..., (pK,qK)) ∈ (P×Q)K: p1, p2, ...,
pK ∈ P, q1, q2, ..., qK ∈ Q, (pi,qi) ≠ (pj,qj) i≠j 1≤i,j≤K, ∀(pi,qj) ∈ P×Q – {(p1,q1),
(p2,q2), ..., (pK,qK)} and dist(p1,q1) ≤ dist(p2,q2) ≤ … ≤ dist(pK,qK) ≤ dist(pi,qj)}.

For SJ, if the sets P and Q coincide, then the DJQ is called similarity self-join
(widely studied in [18, 14, 10, 4]). Fig. 1 illustrates these DJQs, where the points of P
and Q are represented by starts (*) and crosses (+), respectively. In the left part of Fig.
1, we can observe that SJ(P,Q,δ) = {(p3,q1), (p4,q6), (p6,q6), (p8,q8), (p8,q9), (p8,q10),
(p11,q9), (p11,q10)} where δ = 0.8. If we want to obtain the four closest pairs (K = 4) of
the two data-sets depicted in the right part of Fig. 1, the result is K-CPQ(P,Q,K) =
{(p8,q8), (p11,q10), (p4,q6), (p8,q9)}.

 VA-Files vs. R*-Trees in Distance Join Queries 157

1

+q6

+ q7

+ q10
q8 + + q9

+q1

+ q4
+q3

+ q5

X

Y

(0, 0)

 p1
*

X (0, 0)

*p2

*p4

 p1

*

 p6

*

* p7

*p5 * p9

 p8

*

*p11 * p10

* p12

p3
* +q2

Y

2

3
4

+q6

+ q7

+ q10

q8 + + q9

+q1

+ q4 +q3

+ q5

*p2

*p4

 p6
*

* p7
*p5 * p9

 p8
*

*p11 * p10

* p12

p3
* +q2

Fig. 1. Examples of SJ and K-CPQ using 2-dimensional points

3.2 The VA-File (Vector-Approximation File)

The VA-file [20] does not partition the data, but the data space is partitioned into
rectangular cells which are used to generate bit-encoded approximations of the points.
Therefore, the VA-file consists of two files: one contains an approximation of the
feature representation of each point (approximation file), whereas the other one the
exact representation of each point (vector file). They are connected by indexes, since
they are simple arrays on disk. The quantization is obtained by laying a grid over the
data space and approximating the points by their surrounding cells (see left part of
Fig. 2). The grid has db2 intervals along dimension d (0≤d≤dim–1), where b = ∑dbd is
the number of bits per approximation, bd is the number of bits for dimension d and
dim the dimensionality of the data space. In Fig. 2, bd = 2 and dim = 2 (a realistic bd
value for nearest neighbour search would be between 6 and 8 according to [20]). The
intervals of this grid are numbered from 0 to db2 – 1 (see left part of Fig. 2), and the
partition points m[d, 0], m[d, 1], …, m[d, db2] bound them. That is, m[d, k] represents
the k-th partition point in dimension d; and in total, there are db2 + 1 partition points

dist
uBnd

data space

00 01 10 11

11

10

01

00

m[1,4]

m[1,3]

m[1,2]

m[1,1]

m[1,0]

m[0,0] m[0,1] m[0,2] m[0,3] m[0,4]

VA-file

*

+

-

* 0001

+ 1011

- 1100

vector file

* 0.1 0.4

+ 0.6 0.8

- 0.9 0.1

m[d, id(pi)+1]

m[d, id(pi)]

c(pi)

* pi

m[d, id(qj)+1]

m[d, id(qj)]
c(qj)

+ qj

lBnd

approximation file

0

1

2

0

1

2

Fig. 2. Structure of the VA-file and, distances between points and cells

158 A. Corral et al.

and db2 intervals. These partition points are determined so that each interval contains
the same number of vectors. Given a point pi, id(pi) denotes the interval in dimension
d that pi falls into, i.e. it is the approximation of a point pi (P = {pi: 0≤i≤|P|–1}) in
dimension d and id(pi) ∈ {0,1,…, db2 – 1}. Thus, the following expression holds (pi[d]
is the value of pi in dimension d): m[d, id(pi)] ≤ pi[d] < m[d, id(pi)+1], ∀d: 0≤d≤dim–1.

A bit-string of length b = ∑dbd (0≤d≤dim–1) represents each cell. Such a bit-string
is the concatenation of the bit-strings of the interval numbers of the cell (for example,
the point (+) falls into the cell with the bit-string 1011). Thus, the approximation of pi
is the bit-string of the cell (represented by c(pi)) that contains pi and it is denoted by
a(pi) (i.e. elements of approximation file). Thus, the approximation file is simply an
array of these approximations. Intuitively, a(pi) contains sufficient information to
determine the cell c(pi) in which pi lies. Notice that for large dim values, the volume
of a cell is so small that it is highly unlikely the two points lie in the same cell.

3.3 Distance Bounds Between Cells and Pruning Conditions

Next, we are going to show how pairs of cells can be used to derive (lower and upper)
bounds between pairs of points. Given two points from two different points datasets pi
∈ P and qj ∈ Q, the minimum (maximum) distance between their cells (c(pi) and c(qj),
respectively) is a lower (upper) bound of its distance. Thus, given the cells of two
points from two different datasets, we can bound from below and above their distance
(dist(pi,qj)) as follows (according to the terminology of [20]): lBnd(c(pi), c(qj)) ≤
dist(pi, qj) ≤ uBnd(c(pi), c(qj)).

The lower bound, lBnd(c(pi), c(qj)), is the smallest distance between the cells of pi
and qj. Obviously, lBnd(c(pi),c(qj),d) ≤ lBnd(c(pi),c(qj)), ∀d: 0≤d≤dim–1 [7].
Analogously, we can obtain the upper bound, uBnd(c(pi), c(qj)). The right part of the
Fig. 2 shows these distance bounds and its relation with dist(pi, qj).

()
()
()∑

−

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

+>+−

+>+−

=
1dim

0

2

2

 ,0

]1)(,[])(,[,]1)(,[])(,[

]1)(,[])(,[,]1)(,[])(,[

)(),(
d

idjdidjd

jdidjdid

ji

otherwise

pidmqidmpidmqidm

qidmpidmqidmpidm

qcpclBnd

()
()
()

()
()

∑
−

=

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−+

+>−+

+>−+

=
1dim

0

2

2

2

2

 ,
])(,[]1)(,[

,])(,[]1)(,[
max

]1)(,[])(,[,])(,[]1)(,[

]1)(,[])(,[,])(,[]1)(,[

)(),(
d

idjd

jdid

idjdidjd

jdidjdid

ji

otherwise
pidmqidm

qidmpidm

pidmqidmpidmqidm

qidmpidmqidmpidm

qcpcuBnd

In order to design efficient algorithms for DJQ using the VA-file structure, pruning
conditions need to be defined.

Pruning Condition 1. If lBnd(c(pi),c(qj)) > z, then the pair of points (pi,qj) will be
discarded from the final result, where z is the δ distance threshold for SJ, or the

 VA-Files vs. R*-Trees in Distance Join Queries 159

distance value of the K-th closest pair that has been found so far (K-cpdist(p,q)) for K-
CPQ. lBnd(c(pi), c(qj)) ≤ δ ⇒ (pi, qj) ∈ SJ(P, Q, δ) and lBnd(c(pi), c(qj)) ≤ K-cpdist(p,
q) ⇒ (pi, qj) ∈ KCPQ(P, Q, K)

Pruning Condition 2. If lBnd(c(pi),c(qj)) > y, then the pair of points (pi, qj) will be
discarded from the final result, where y is the δ distance threshold for SJ, or the
distance value of the K-th largest upper bound encountered so far (K-cpuBnd(c(p),
c(q))) for K-CPQ. lBnd(c(pi), c(qj)) > δ ⇒ (pi, qj) ∉ SJ(P, Q, δ) and lBnd(c(pi), c(qj))
> K-cpuBnd(c(p), c(q)) ⇒ (pi, qj) ∉ KCPQ(P, Q, K). Note that in the case of SJ the two
pruning conditions are the same.

4 Algorithms for Distance Join Queries Using VA-Files

The previous distance bounds between cells and pruning conditions can be embedded
into search algorithms for VA-files and obtain the result of DJQ. In this section we
describe additional data structures needed for DJQ, a distance-based sweeping
technique for fast pruning, and two search algorithms using VA-files as in [20].

4.1 Data Structures for the Result and Distance-Based Sweep Technique

In order to design algorithms for processing K-CPQ in a non-incremental way (K
must be fixed in advance) [7], an extra data structure that holds the K closest pairs
(result of K-CPQ) is needed. This data structure is organized as a maximum binary
heap, called Kheap [8]. The closest pair with the largest distance (K-cpdist(p,q)) resides
on top of the Kheap (the root), and it will be used in pruning condition 1. Notice that
this data structure will also be used to calculate K-cpuBnd(c(p),c(q)), used in pruning
condition 2. On the other hand, the result of the SJ must not be ordered, and the
Kheap is not needed. Therefore, the data structure that holds the result set is (instead
of Kheap) a file of records (resultFile) of three fields, where the first field will be the
distance, whereas the second and the third ones will be the pair of points (pi,qj). To
accelerate the performance of SJs, a page buffer is used in main memory to hold the
records as they are computed and as soon as it gets full, we add a new page to the
result file.

Since the approximation file itself is simply a flat array on disk of all the
approximations of points (approximation file), we can adapt the distance-based plane-
sweep technique [7] for the high-dimensional space to avoid processing all possible
combinations of pairs from two approximations files. In general, this technique
consists of choosing a sweeping dimension and sorting the approximations on this
dimension in increasing order (if both files are sorted already on a common
dimension, no sorting is necessary). First, the sweeping dimension (0≤sd≤dim–1) is
established (e.g. sd = 0 or X-axis). After that, two pointers are maintained initially
pointing to the first entry of each sorted approximation file. Let pivot be the entry of
the smallest value of the approximation over the sweeping dimension pointed by one
of these two pointers, e.g. pivot = a(p0) {a(pi): 0≤i≤|P|–1}. The cell of the pivot must
be paired up with the cells determined by the approximations stored in the other
approximation file {a(qj): 0≤j≤|Q|–1} from left to right that satisfy lBnd(c(pivot),

160 A. Corral et al.

c(qj),sd) ≤ z (where z is a pruning distance, e.g. z = δ for SJs), obtaining a set of
candidate pairs of approximations where the element pivot is fixed. After all possible
pairs of approximations that contain pivot have been found, the pointer of the pivot is
increased to the next entry, pivot is updated with the approximation of the next
smallest value of the approximation over the sweeping dimension pointed by one of
the two pointers and the process is repeated until one of the approximation file is
completely scanned.

Notice that we apply lBnd(c(pi),c(qj),sd) because in this technique, the sweeping
takes place only over one dimension. Moreover, the search is only restricted to the
closest cells (obtained from approximations of points) with respect to the cell of the
pivot entry according to the current z value. No duplicated pairs are obtained, since
the cells are always scanned over sorted approximation files.

4.2 Distance-Based Sweep Algorithm (VA-DBSA)

The general schema for search algorithms using the VA-file structure has two phases.
In the first phase (filtering step), the approximations of points (approximation file) are
scanned to determine lower bounds on the distance of cells pairs, and pairs of points
are pruned according to the distance-based sweep technique and the pruning
conditions. In the second phase (refinement step), the filtered points (vector file) are
visited and the pairs of points that satisfy the distance condition (SJ or K-CPQ) are
chosen for the final result. Notice that the performance of this algorithm depends
upon the ordering of the approximations and points. The algorithm for processing the
K-CPQ is described by the following steps (z = K-cpdist(p,q); at the beginning z = ∞):

− Filtering step: Apply the distance-based sweep technique over the two
approximation files, according to lBnd(c(pi),c(qj),sd). Then, from these filtered
pairs of approximations (a(pi),a(qj)) select only those that satisfy the pruning
condition 1, i.e. lBnd(c(pi),c(qj)) ≤ z.

− Refinement step: From the final candidates of the filtering step, select only those
pairs of points from vector files having dist(pi,qj) ≤ z. Insert all of them into Kheap
until it gets full. Then remove the root of the Kheap and insert the new pair of
points (pi,qj), updating this data structure and z = K-cpdist(p,q).

The adaptation of this algorithm (VA-DBSA) from K-CPQ to the SJ is very simple.
In the filtering and refinement steps, replace z with δ. Notice that Kheap is now
unnecessary and the final result is stored in resultFile.

4.3 Near Optimal Distance-Based Sweep Algorithm (VA-NODBSA)

In [20] a near optimal algorithm for K-NNQ which minimizes the number of vectors
visited was proposed. Here, we present a version of near optimal algorithm for DJQ,
although it is more complex, time-consuming and has memory-overhead. It has also
two phases. (1) During the filtering step the approximations are scanned, the distance-
based sweep technique is applied and, the lBnd and uBnd are computed for each pair
of approximations. Assuming that K-cpuBnd(c(p),c(q)) is also calculated using a
Kheap, if a pair of approximations is encountered such that lBnd(c(pi),c(qj)) > K-
cpuBnd(c(p),c(q)), then the pair of points (pi,qj) can be discarded. The selected pairs of

 VA-Files vs. R*-Trees in Distance Join Queries 161

approximations and their lBnd are organized as a minimum binary heap, called Nheap
[7]. The size of Nheap could be very large with the increase of dim and the cardinality
of the datasets, and a hybrid memory/disk scheme and techniques based on range
partitioning could be needed [8]. (2) During the refinement step the pairs stored in
Nheap are visited in increasing order of lBnd to determine the final answer set. Not all
these candidate pairs of points are visited, but this phase ends when lBnd(c(pi),c(qj)) >
K-cpdist(p,q), (recall that K-cpdist(p,q) is also calculated using a Kheap). The algorithm
for K-CPQ is described by the following steps (z = K-cpdist(p,q) and y = K-
cpuBnd(c(p),c(q)), at the beginning z = ∞ and y = –∞):

− Filtering step: Create Nheap, and a Kheap structure based on uBnd, called
KheapU. Apply the distance-based sweep technique over the two approximation
files, according to lBnd(c(pi),c(qj),sd). Then, from these pairs of approximations
(a(pi), a(qj)) select only those that satisfy the pruning condition 2, i.e.
lBnd(c(pi),c(qj)) ≤ y, and store them in Nheap. y = K-cpuBnd(c(p), c(q)) is computed
using KheapU.

− Refinement step: Process Nheap from these pairs of approximations (a(pi), a(qj))
while lBnd(c(pi),c(qj)) ≤ z, i.e. using the pruning condition 1. z = K-cpdist(p,q) is
computed using a Kheap structure based on dist, called KheapD. Moreover, select
only those pairs of points from vector files having dist(pi, qj) ≤ z, and insert all of
them into KheapD until it gets full. Then remove the root of the KheapD and insert
the new pair of points (pi, qj), updating this data structure and z = K-cpdist(p,q).

The adaptation of this algorithm (VA-NODBSA) from K-CPQ to the SJ is analogous
to the adaptation of VA-DBSA for both phases (filtering and refinement).

5 Experimental Results

In this section, we have evaluated the performance of our algorithms over real high-
dimensional datasets of image features (unlike [20] where uniform data have been
used) extracted from a Corel image collection (http://corel.digitalriver.com/),
available from [21]. We have chosen two datasets of features based on the colour
histogram (CH) and colour histogram layout (HL). Each real dataset contains 68,040
feature vectors of dim = 32. From each 32-dimensional vector, we have chosen the
first 4, 8, 12, 16 and 32 dimensions, giving rise to pairs of points datasets with
different dimensionalities and the same cardinality (68,040). These pairs of datasets
are used in K-CPQ and SJ.

All experiments were performed on an Intel/Linux workstation with a Pentium IV
2.5 GHz processor, 1 GByte of main memory, and several GBytes of secondary
storage, using the gcc compiler. The index page size was 8 Kb, and the number of
items sharing the same disk page decreased as the dimensionality increased. All the
elements were fetched directly from the disk without caching. The performance
measurements are mainly: (a) the elapsed time (wall-clock time) reported in seconds
and (b) the number of page accesses. For comparison purposes, we have also
implemented distance join algorithms using nested loops over the vector files and R-
tree-based distance join algorithms [8], applying in both cases the distance-based

162 A. Corral et al.

sweep technique described previously. Besides, the index construction was not taken
into account for the total elapsed time.

Our first experiment seeks the most appropriate number of bits per dimension (bd)
for VA-files that will be used in the next experiments. The suggested value in [20] for
bd was 8, although here we have obtained (after many experiments) that bd = 10
reports better results for DJQ. For higher values of bd the size of the approximation
file can be larger than the size of the vector file, and the filtering power is seriously
affected, since the vectors themselves are used without being approximated. We have
also observed that VA-NODBSA minimizes the number of vectors visited, although it
is time-consuming (slower than VA-DBSA), because in the filtering step it is
necessary to maintain two auxiliary structures Nheap and KheapU (variable sizes).

0

35

70

105

140

175

15000 30000 45000 68040

Cardinality of the datasets

E
la

ps
ed

 T
im

e
(s

ec
.)

VA-DBSA VA-NODBSA

0

170

340

510

680

850

15000 30000 45000 68040

Cardinality of the datasets

V
ec

to
r

A
cc

es
se

s

VA-DBSA VA-NODBSA

Fig. 3. Performance of VA-files algorithms for K-CPQ with respect to the dataset sizes

In the second experiment, we have studied the behaviour of the VA-file-based
algorithms for K-CPQ when the cardinality of the datasets varies. We have the
following configuration: dim = 16, |P| = |Q| = 15,000, 30,000, 45,000 and 68,040, K =
100 and bd = 10. Fig. 3 shows that VA-DBSA is faster than VA-NODBSA, although
it requires a smaller number of vector accesses (in the refinement step). In addition,
we can also observe the effect of the increase of the size of the datasets for VA-
NODBSA. This results to the increase of the consumed time and the increase of the
memory-overhead, since more items have to be combined in the filtering step.

In the third experiment, we compare the performance of the VA-file-based
algorithms (VA-DBSA = DB and VA-NODBSA = NO) with a nested loops algorithm
only using vector files (NL) and with an R*-tree distance join algorithm (Rtree),
varying the dimensionality (dim = 4, 8, 12, 16 and 32). Fig. 4 shows the performance
measurements for the following configuration: |P| = |Q| = 68,040, K=100, bd = 10 and,
the maximum branching factors for R*-trees were 227, 120, 81, 62 and 31 for each
dim value, using a node size of 8 Kb. When comparing the results of the K-CPQ
algorithms with respect to the I/O activity and the elapsed time, we observe that this
query becomes more expensive as the dimensionality grows, in particular for values
larger than 16. Notice, also, that the huge number of pages accesses (the sum of the
number of approximation and vector accesses in the VA-file structure) in all
algorithms is due to the absence of global buffering. The R-tree version was the
fastest in all cases (e.g. 5 times faster than NL for dim = 2), although for low and

 VA-Files vs. R*-Trees in Distance Join Queries 163

medium dimensions it needed many page accesses. NL is also an interesting
alternative with respect to the total elapsed time because the expensive filtering step is
avoided, but for dim = 32 it obtained the largest value of page accesses. DB is better
than NO for these two performance metrics, but the latter gets the minimum number
of vector accesses after an expensive filtering phase over the two approximation files.
For example, for dim = 32 the total number of vector accesses was 277 for NO and
2,811 for DB, whereas the number of approximation accesses was 17,227,051 and
8,255,818, respectively.

1

10

100

1000

10000

100000

4 8 12 16 32

Dimensions (dim)

E
la

ps
ed

 T
im

e
(s

ec
.)

DB NO NL Rtree

1000

10000

100000

1000000

10000000

100000000

4 8 12 16 32

Dimensions (dim)

P
ag

e
A

cc
es

se
s

DB NO NL Rtree

Fig. 4. Performance of distance-join algorithms where the dimensionality is increased

The forth experiment compares the performance of the VA-file-based algorithms
(DB and NO) with NL and Rtree, varying K from 1 to 100,000. Fig. 5 illustrates the
performance measurements for the configuration: dim = 16, |P| = |Q| = 68,040, bd = 10
and the maximum branching factor for R*-trees was 62. In the left chart, we see that
the slowest was NO, due to its time and memory consumption, although it needs the
minimum number of vector accesses (e.g. K = 100,000, it was 83,033). The DB
obtains interesting results for the total number of page accesses, when we have large
K values. NL reports very good results since it avoids the filtering step and only
works over the vector files using the distance-based sweep technique. For example, it
was the fastest and the cheapest in terms of I/O activity for small K values (1 and 10).
Finally, the results of the K-CPQ algorithm over R*-trees are very interesting as well,
since it is the fastest for large K values and it obtains a small number of page
accesses, mainly due to the high pruning in the internal nodes on the R*-trees, the use
of distance-based sweep technique and the use of large fan-outs of the R-tree nodes.

The last experiment studies the performance of the best VA-file-based algorithm
(VA-DBSA), NL and the Rtree variant, for similarity join (SJ) using different δ
values (0.001, 0.003, 0.005, 0.008, 0.01, 0.03 and 0.05). Fig. 6 illustrates the
performance measurements for the configuration: dim = 16, |P| = |Q| = 68,040, bd = 10
and the maximum branching factor for R*-trees was 62. We can deduce that the R-
tree distance join algorithm using distance-based sweep technique is the best
alternative. For example, it was 10.7 times faster than NL for δ = 0.001 (in the result,
each point has an average of 7.1 join mates) and 8.1 times for δ = 0.05 (141.8 join
mates per point). NL (the filtering step is not performed) is slightly faster than

164 A. Corral et al.

1

10

100

1000

10000

1 10 10^2 10^3 10^4 10^5

Cardinality of the result of KCPQ

E
la

ps
ed

 T
im

e
(s

ec
.)

DB NO NL Rtree

10000

100000

1000000

10000000

1 10 10^2 10^3 10^4 10^5

Cardinality of the result of KCPQ

P
ag

e
A

cc
es

se
s

DB NO NL Rtree

Fig. 5. Performance of K-CPQ when K is varied from 1 to 100,000

VA-DBSA, but it needs more page accesses. An interesting behaviour of the R-tree
variant is that from δ = 0.01 to δ = 0.05, it needed 3.3 times more page accesses than
for δ = 0.001, whereas for VA-DBSA this was of 17.5 times.

From the previous performance comparison for real high-dimensional datasets, the
most important conclusions are the following: (1) the filtering power of VA-file-based
algorithms for DJQ is reduced when the dimensionality, cardinality of the datasets, K
and δ are increased. (2) VA-NODBSA minimizes the number of vector accesses at the
expense of time consumption and memory-overhead. (3) Including the distance-based
sweep technique in the R-tree distance join algorithm improves notably its
performance mainly with respect to the CPU cost. (4) And finally, the most important
conclusion is that for DJQ where two real high-dimensional datasets are involved, the
use of hierarchical multidimensional access methods (as R*-trees) with optimization
techniques (like distance-based sweep) to the processing of index nodes (controlling
the trade-off between I/O and CPU cost with respect to the page size [KoS01]) is the
best alternative since its filtering power is increased, when K and δ are not very large
(in this case the nested loops is the best alternative because it has no additional index
overhead).

10

100

1000

10000

0.001 0.005 0.010 0.050

Distance threshold for SJ

E
la

ps
ed

 T
im

e
(s

ec
.)

VA-DBSA NL Rtree

100000

1000000

10000000

100000000

0.001 0.005 0.010 0.050

Distance threshold for SJ

P
ag

e
A

cc
es

se
s

VA-DBSA NL Rtree

Fig. 6. Performance of SJ when δ is varied

 VA-Files vs. R*-Trees in Distance Join Queries 165

6 Conclusions and Future Work

The contribution of this paper is twofold. (1) It reports the first development of
algorithms for DJQ on pairs of high-dimensional data sets using VA-files. For this
purpose, special bounds and pruning conditions have been proposed and employed.
(2) It reports a detailed performance comparison of VA-files vs. R*-trees with respect
to DJQ using real data. More specifically, for K-NNQs and distance range queries,
where one real high-dimensional dataset and one query point are involved, one of the
best alternatives to overcome the dimensionality curse is the use of VA-files (a
filtering-based approach). For K-CPQs and SJs, where two real high-dimensional
datasets are combined, this is not the best alternative with respect to the CPU cost,
because the filtering step is overloaded, while it is competitive with respect to the I/O
cost. The use of efficient hierarchical multi-dimensional access methods with
optimization techniques in the processing of index nodes is a very interesting choice
(since the filtering power can be improved notably). Future research may include the
use of approximation techniques on VA-files [19, 8], the cost estimation of VA-file-
based DJQ [19] and the study of the buffering impact over these DJQs, as in [4].

References

1. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B.: “The R*-tree: an Efficient and
Robust Access Method for Points and Rectangles”, Proc. SIGMOD Conf. (1990) 322-331

2. Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H. P., Sander, J.: “Independent
Quantization: an Index Compression Technique for High-Dimensional Data Spaces”, Proc.
ICDE Conf. (2000) 577-588

3. Böhm, C., Braunmuller, B., Breuning, M. M., Kriegel, H. P.: “High Performance
Clustering based on Similarity Join”, Proc. CIKM Conf. (2000) 298-305

4. Böhm, C., Kriegel, H. P.: “A Cost Model and Index Architecture for the Similarity Join”,
Proc. ICDE Conf. (2001) 411-420

5. Cha, G. H., Chung, C. W.: “The GC-tree: a High-Dimensional Index Structure for
Similarity Search in Image Databases”, Transactions on Multimedia, Vol. 4, No. 2 (2002)
235-247

6. Cha, G. H., Zhu, X., Petkovic, D, Chung, C.W.: “An Efficient Indexing Method for
Nearest Neighbor Searches in High-Dimensional Image Databases”, Transactions on
Multimedia, Vol. 4, No. 1 (2002) 76-87

7. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: “Algorithms for
Processing K-Closest-Pair Queries in Spatial Databases”, Data and Knowledge
Engineering Journal, Vol. 49, No. 1 (2004) 67-104

8. Corral, A., Vassilakopoulos, M.: “On Approximate Algorithms for Distance-Based
Queries using R-trees”, The Computer Journal, Vol. 48, No. 2 (2005) 220-238

9. Cui, B., Hu, J., Shen, H., Yu, C.: “Adaptive Quantization of the High-Dimensional Data
for Efficient KNN Processing”, Proc. DASFAA Conf. (2004) 302-313

10. Dittrich, J. P., Seeger, B.: “GESS: a Scalable Similarity-Join Algorithm for Mining Large
Data Sets in High Dimensional Spaces”, Proc. SIGKDD Conf. (2001) 47-56

11. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.:
“Efficient and Effective Querying by Image Content”, Journal of Intelligent Information
System, Vol.3, No.3-4 (1994) 231-262

166 A. Corral et al.

12. Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A. E.: “Vector Approximation
Based Indexing for Non-Uniform High Dimensional Data Sets”, Proc. CIKM Conf. (2000)
202-209

13. Guttman, A.: “R-trees: a Dynamic Index Structure for Spatial Searching”, Proc. SIGMOD
Conf. (1984) 47-57

14. Koudas, N., Sevcik, K. C.: “High Dimensional Similarity Joins: Algorithms and
Performance Evaluation”, Transactions on Knowledge and Data Engineering, Vol. 12, No.
1 (2000) 3-18

15. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, C., Protopapas, Z.: “Fast Nearest
Neighbor Search in Medical Images Databases”, Proc. VLDB Conf. (1996) 215-226

16. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: “C2P: Clustering based on Closest
Pairs”, Proc. VLDB Conf. (2001) 331-340

17. Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: “The A-tree: an Index Structure for
High-Dimensional Spaces using Relative Approximation”, Proc. VLDB Conf. (2000) 516-
526

18. Shim, K., Srikant, R., Agrawal, R.: “High-Dimensional Similarity Joins”, Proc. of ICDE
Conf. (1997) 301-311

19. Weber, R., Böhm, K.: “Trading Quality for Time with Nearest Neighbor Search”, Proc.
EDBT Conf. (2000) 21-35

20. Weber, R., Schek, H. J., Blott, S.: “A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces”, Proc. VLDB Conf. (1998) 194-
205

21. Web site: http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

	Introduction
	Related Work and Motivation
	Distance Join Queries for VA-Files
	Distance Join Queries
	The VA-File (Vector-Approximation File)
	Distance Bounds Between Cells and Pruning Conditions

	Algorithms for Distance Join Queries Using VA-Files
	Data Structures for the Result and Distance-Based Sweep Technique
	Distance-Based Sweep Algorithm (VA-DBSA)
	Near Optimal Distance-Based Sweep Algorithm (VA-NODBSA)

	Experimental Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

