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Abstract. In modern database applications the similarity of complex objects is 
examined by performing distance-based queries (e.g. nearest neighbour search) 
on data of high dimensionality. Most multidimensional indexing methods have 
failed to efficiently support these queries in arbitrary high-dimensional datasets 
(due to the dimensionality curse). Similarity join queries and K closest pairs 
queries are the most representative distance join queries, where two high-
dimensional datasets are combined. These queries are very expensive in terms 
of response time and I/O activity in case of high-dimensional spaces. On the 
other hand, the filtering-based approach, as applied by the VA-file, has turned 
out to be a very promising alternative for nearest neighbour search. In general, 
the filtering-based approach represents vectors as compact approximations, 
whereas by first scanning these approximations, only a small fraction of the real 
vectors is visited. Here, we elaborate on VA-files and develop VA-file based 
algorithms for answering similarity join and K closest pairs queries on high-
dimensional data. Also, performance-wise we compare the use of VA-files and 
R*-trees (a structure that has been proven to be of robust nature) for answering 
these queries. The results of the comparison do not lead to a clear winner. 

1   Introduction 

Large sets of complex objects are used in modern applications (e.g. multimedia 
databases [11], medical images databases [15], etc.). To examine the similarity of 
these objects, high-dimensional feature vectors (i.e. points in the high-dimensional 
spaces) are extracted from them and organized in multidimensional indexes. Then, 
distance-based queries (e.g. nearest neighbour, similarity join, K closest pairs, etc.) 
are applied on the high-dimensional points. The most representative high-dimensional 
distance join queries (DJQ), where two datasets are involved, are the similarity join 
                                                           
* Supported by the ARCHIMEDES project 2.2.14, «Management of Moving Objects and the 

WWW», of the Technological Educational Institute of Thessaloniki (EPEAEK II), co-funded 
by the Greek Ministry of Education and Religious Affairs and the European Union, 
INDALOG TIC2002-03968 project «A Database Language Based on Functional Logic 
Programming» of the Spanish Ministry of Science and Technology under FEDER funds, and 
the framework of the Greek-Serbian bilateral protocol. 



154 A. Corral et al. 

 

query (SJ) and the K closest pairs query (K-CPQ). The SJ query discovers all pairs of 
points from two different point datasets, where the distance does not exceed a 
distance threshold δ. The K-CPQ discovers K>0 distinct pairs of points formed from 
two different point datasets that have the K smallest distances between them. The 
former does not take into account the cardinality and order of the final result (but only 
the user-defined distance threshold δ), whereas the latter does not consider any 
distance bound (but only the user-defined final result cardinality K). Note that these 
queries have been successfully applied in data mining algorithms (e.g. clustering 
algorithms based on similarity join [3] and closest pairs [16]). 

Here, we focus on performing DJQ using a filtering-based approach that has 
proven to outperform a sequential scan for high dimensionalities, when a tree index 
fails to process a K nearest neighbour query (K-NNQ) efficiently (dimensionality 
curse). The VA-file (vector-approximation file) is the most representative access 
method of this category [20]. Instead of partitioning, the VA-file constructs the index 
file by compressing each feature vector. With respect to query processing, the 
compact vector approximations are sequentially scanned and filtered in the first stage 
so that a small fraction of them remains to be visited in the second stage. The 
improvement for K-NNQ arises due to the reduced I/O accesses (as the index file size 
is small) and due to the smaller response time (because of the fewer distance 
computations). 

The main goal of this paper is to develop VA-file based algorithms for DJQ 
involving two sets of high-dimensional data. More specifically, we develop 
algorithms for SJs and K-CPQs in high-dimensional spaces, where both point datasets 
are indexed by VA-files. To achieve this goal, we propose new bounds on the 
distance between pairs of points and new pruning conditions. Moreover, we present 
experimental results comparing the performance of these algorithms with analogous 
algorithms that make use of R*-trees [1], in terms of the I/O activity and the response 
time. Based on these results, we draw conclusions about the behaviour of the 
algorithms that use VA-files for DJQ in high-dimensional spaces. 

The paper is organized as follows. In Section 2, we review the related literature and 
motivate the research reported here. In Section 3, a brief description of the VA-file 
structure, definitions of the most representative DJQ, approximation-based distance 
functions and pruning conditions are presented. In Section 4, algorithms based on 
distance bounds and pruning conditions over VA-files for K-CPQ and SJ are 
examined. In Section 5, a comparative performance study of these algorithms is 
reported. Finally, in Section 6, conclusions on the contribution of this paper and 
future work are summarized. 

2   Related Work and Motivation 

Numerous algorithms have been proposed for satisfying DJQ in high-dimensional 
environments. For similarity joins on high-dimensional point datasets, the most 
representative papers are [18, 14, 10, 4]. In [18] an index structure (ε-kdB tree) and an 
algorithm for similarity self-join on high-dimensional points was presented. The basic 
idea is to partition the dataset perpendicularly to a selected dimension into stripes of 
the width ε to restrict the join algorithm to pairs of subsequent stripes. In [14] the 
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problem of computing high-dimensional similarity joins between two high-
dimensional point datasets, where neither input is indexed (Multidimensional Spatial 
Join, MSJ), was investigated. The basic idea of this access method is to partition the 
dataset into level-files, each of which contains the points of a level in the order of 
their Hilbert values. In [10] a new algorithm (Generic External Space Sweep, GESS), 
which introduces a rate of data replication to reduce the number of distance 
computations as an enhancement of MSJ, was proposed. In [4], a complex and 
interesting index architecture (Multipage Index, MuX) and join algorithm (MuX-
join), which allows a separate optimization CPU time and I/O time, were presented. 
On the other hand, the K-CPQ has not been studied in-depth for high-dimensionality 
data. In [8], DFS-based approximate algorithms for the K-CPQ using R-trees [13] 
have been proposed (in order to get suboptimal results in reasonable time). One of the 
main objectives of this work was to examine the influence of the approximate 
parameters on the trade-off between accuracy and efficiency of such algorithms. 

Many approaches have been proposed to overcome the curse of dimensionality in 
the context of K-NNQ. They are usually classified into five major categories: (1) tree 
index structures by partitioning the data space or data-partitioning; (2) space-filling 
curves, (3) dimensionality reduction approaches; (4) approximate algorithms and (5) 
filtering-based (i.e. approximation) approaches. In this paper, we are going to focus 
on the last category. The filtering-based approach overcomes the dimensionality curse 
by filtering the points so that only a small fraction of them must be visited during a 
search. In this respect, the most representative access method is the VA-file [20], 
which divides the data space into 2b rectangular cells, where b denotes a user-
specified number of bits. The VA-file allocates a unique bit-string of length b to each 
cell and approximates data points that fall into a cell by that bit-string. In general, the 
VA-file itself is simply an array on disk of these compact approximations of points. 

Following the ideas of the VA-file, many variants have proposed to improve the 
performance of K-NNQ. The VA+-file [12] combines a linear decorrelation using 
KLT (Karhunen-Loève Transformation) along with a variance specific quantization 
scheme using the VA-file principles. The LPC-file [6] enhances the VA-file by 
adding polar coordinate information of the point (vector) to approximation, increasing 
the discriminatory power. The GC-tree [5] pursues a hybrid strategy which 
incorporates a quad-tree-like hierarchical space partitioning with bit-encoded clusters 
and a point approximation based on local polar coordinates on the leaf nodes. In the 
IQ-tree [2], all points are globally approximated according to one fixed grid (like the 
VA-file) and it also maintains a flat directory containing the minimum bounding 
rectangles (MBRs) of the approximate data representations. The A-tree [17] combines 
hierarchical indexing and local approximation by quantization. The MBRs of point 
clusters are approximated by quantization in so-called virtual bounding rectangles 
(VBRs). And recently, the SA-tree [9] was proposed, which combines data clustering 
and compression (i.e. it employs the characteristics of each cluster to adaptively 
compress points to bit-string) to speed up processing of high-dimensional K-NNQ. 

All the previous efforts have been mainly focused on enhancing the VA-file to 
improve the performance during the K-NNQ (a query applied on a single set of high-
dimensional data). The main objective of this paper is to investigate the behaviour of 
VA-files on DJQ involving pairs of high-dimensional data sets (SJs and K-CPQs). For 
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this reason, we propose new bounds of the distance between pairs of points, new 
pruning conditions and lead to algorithms for these DJQ using VA-files. 

3   Distance Join Queries for VA-Files 

3.1   Distance Join Queries 

Let us consider points in the dim-dimensional data space (Ddim = ℜdim) and a distance 
function for a pair of these points. A general distance function is the Lt-distance (dt) or 
Minkowski distance between two points pi and qj from two different datasets (P = {pi: 
0≤i≤|P|–1} and Q = {qj: 0≤j≤|Q|–1}, respectively) in Ddim (pi = (pi[0], pi[1],…, pi[dim-
1]) and qj = (qj[0], qj[1],…, qj[dim-1])), where pi[d] (qj[d]) is the coordinate value of 
pi (qj) in dimension d, that is defined by: 
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For t = 2 and t = 1 we have the Euclidean and the Manhattan distances. They are 
the most known Lt-distances. Often, the Euclidean distance is used as a distance 
function, but, depending on the application, other distance functions may be more 
appropriate. The dim-dimensional Euclidean space (metric space), Edim, is the pair 
(Ddim, d2). In the following, we will use dist instead of d2. The most representative 
DJQ in Edim are the following: 

Definition. Similarity Join (SJ). Let P and Q be two point datasets (P≠∅ and Q≠∅) in 
Edim and δ a real number δ≥0. Then, the result of the Similarity Join is the set 
SJ(P,Q,δ) ⊆ P×Q containing all possible pairs of points of P×Q that can be formed by 
choosing one point of P and one point of Q, having a distance smaller than or equal to 
δ: SJ(P, Q, δ) = {(pi,qj) ∈ P×Q: dist(pi,qj) ≤ δ}. 

Definition. K closest pairs query (K-CPQ). Let P and Q be two point datasets (P≠∅ 
and Q≠∅) in Edim and K an integer number in the range 1≤K≤|P|·|Q|. Then, the result 
of the K closest pairs query is the set K-CPQ(P,Q,K) ⊆ P×Q containing all the 
ordered sequences of K different pairs of points of P×Q with the K smallest distances 
between all possible pairs of points that can be formed by choosing one point of P and 
one point of Q: K-CPQ(P,Q,K) = {((p1,q1), (p2,q2), ..., (pK,qK)) ∈ (P×Q)K: p1, p2, ..., 
pK ∈ P, q1, q2, ..., qK ∈ Q, (pi,qi) ≠ (pj,qj) i≠j 1≤i,j≤K, ∀(pi,qj) ∈ P×Q – {(p1,q1), 
(p2,q2), ..., (pK,qK)} and dist(p1,q1) ≤ dist(p2,q2) ≤ … ≤ dist(pK,qK) ≤ dist(pi,qj)}. 

For SJ, if the sets P and Q coincide, then the DJQ is called similarity self-join 
(widely studied in [18, 14, 10, 4]). Fig. 1 illustrates these DJQs, where the points of P 
and Q are represented by starts (*) and crosses (+), respectively. In the left part of Fig. 
1, we can observe that SJ(P,Q,δ) = {(p3,q1), (p4,q6), (p6,q6), (p8,q8), (p8,q9), (p8,q10), 
(p11,q9), (p11,q10)} where δ = 0.8. If we want to obtain the four closest pairs (K = 4) of 
the two data-sets depicted in the right part of Fig. 1, the result is K-CPQ(P,Q,K) = 
{(p8,q8), (p11,q10), (p4,q6), (p8,q9)}. 
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Fig. 1. Examples of SJ and K-CPQ using 2-dimensional points 

3.2   The VA-File (Vector-Approximation File) 

The VA-file [20] does not partition the data, but the data space is partitioned into 
rectangular cells which are used to generate bit-encoded approximations of the points. 
Therefore, the VA-file consists of two files: one contains an approximation of the 
feature representation of each point (approximation file), whereas the other one the 
exact representation of each point (vector file). They are connected by indexes, since 
they are simple arrays on disk. The quantization is obtained by laying a grid over the 
data space and approximating the points by their surrounding cells (see left part of 
Fig. 2). The grid has db2  intervals along dimension d (0≤d≤dim–1), where b = ∑dbd is 
the number of bits per approximation, bd is the number of bits for dimension d and 
dim the dimensionality of the data space. In Fig. 2, bd = 2 and dim = 2 (a realistic bd 
value for nearest neighbour search would be between 6 and 8 according to [20]). The 
intervals of this grid are numbered from 0 to db2 – 1 (see left part of Fig. 2), and the 
partition points m[d, 0], m[d, 1], …, m[d, db2 ] bound them. That is, m[d, k] represents 
the k-th partition point in dimension d; and in total, there are db2 + 1 partition points  
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Fig. 2. Structure of the VA-file and, distances between points and cells 
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and db2  intervals. These partition points are determined so that each interval contains 
the same number of vectors. Given a point pi, id(pi) denotes the interval in dimension 
d that pi falls into, i.e. it is the approximation of a point pi (P = {pi: 0≤i≤|P|–1}) in 
dimension d and id(pi) ∈ {0,1,…, db2 – 1}. Thus, the following expression holds (pi[d] 
is the value of pi in dimension d): m[d, id(pi)] ≤ pi[d] < m[d, id(pi)+1], ∀d: 0≤d≤dim–1. 

A bit-string of length b = ∑dbd (0≤d≤dim–1) represents each cell. Such a bit-string 
is the concatenation of the bit-strings of the interval numbers of the cell (for example, 
the point (+) falls into the cell with the bit-string 1011). Thus, the approximation of pi 
is the bit-string of the cell (represented by c(pi)) that contains pi and it is denoted by 
a(pi) (i.e. elements of approximation file). Thus, the approximation file is simply an 
array of these approximations. Intuitively, a(pi) contains sufficient information to 
determine the cell c(pi) in which pi lies. Notice that for large dim values, the volume 
of a cell is so small that it is highly unlikely the two points lie in the same cell. 

3.3   Distance Bounds Between Cells and Pruning Conditions 

Next, we are going to show how pairs of cells can be used to derive (lower and upper) 
bounds between pairs of points. Given two points from two different points datasets pi 
∈ P and qj ∈ Q, the minimum (maximum) distance between their cells (c(pi) and c(qj), 
respectively) is a lower (upper) bound of its distance. Thus, given the cells of two 
points from two different datasets, we can bound from below and above their distance 
(dist(pi,qj)) as follows (according to the terminology of [20]): lBnd(c(pi), c(qj)) ≤ 
dist(pi, qj) ≤ uBnd(c(pi), c(qj)). 

The lower bound, lBnd(c(pi), c(qj)), is the smallest distance between the cells of pi 
and qj. Obviously, lBnd(c(pi),c(qj),d) ≤ lBnd(c(pi),c(qj)), ∀d: 0≤d≤dim–1 [7]. 
Analogously, we can obtain the upper bound, uBnd(c(pi), c(qj)). The right part of the 
Fig. 2 shows these distance bounds and its relation with dist(pi, qj). 
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In order to design efficient algorithms for DJQ using the VA-file structure, pruning 
conditions need to be defined. 

Pruning Condition 1. If lBnd(c(pi),c(qj)) > z, then the pair of points (pi,qj) will be 
discarded from the final result, where z is the δ distance threshold for SJ, or the 
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distance value of the K-th closest pair that has been found so far (K-cpdist(p,q)) for K-
CPQ. lBnd(c(pi), c(qj)) ≤ δ ⇒ (pi, qj) ∈ SJ(P, Q, δ) and lBnd(c(pi), c(qj)) ≤ K-cpdist(p, 
q) ⇒ (pi, qj) ∈ KCPQ(P, Q, K) 

Pruning Condition 2. If lBnd(c(pi),c(qj)) > y, then the pair of points (pi, qj) will be 
discarded from the final result, where y is the δ distance threshold for SJ, or the 
distance value of the K-th largest upper bound encountered so far (K-cpuBnd(c(p), 
c(q))) for K-CPQ. lBnd(c(pi), c(qj)) > δ ⇒ (pi, qj) ∉ SJ(P, Q, δ) and lBnd(c(pi), c(qj)) 
> K-cpuBnd(c(p), c(q)) ⇒ (pi, qj) ∉ KCPQ(P, Q, K). Note that in the case of SJ the two 
pruning conditions are the same. 

4   Algorithms for Distance Join Queries Using VA-Files 

The previous distance bounds between cells and pruning conditions can be embedded 
into search algorithms for VA-files and obtain the result of DJQ. In this section we 
describe additional data structures needed for DJQ, a distance-based sweeping 
technique for fast pruning, and two search algorithms using VA-files as in [20]. 

4.1   Data Structures for the Result and Distance-Based Sweep Technique 

In order to design algorithms for processing K-CPQ in a non-incremental way (K 
must be fixed in advance) [7], an extra data structure that holds the K closest pairs 
(result of K-CPQ) is needed. This data structure is organized as a maximum binary 
heap, called Kheap [8]. The closest pair with the largest distance (K-cpdist(p,q)) resides 
on top of the Kheap (the root), and it will be used in pruning condition 1. Notice that 
this data structure will also be used to calculate K-cpuBnd(c(p),c(q)), used in pruning 
condition 2. On the other hand, the result of the SJ must not be ordered, and the 
Kheap is not needed. Therefore, the data structure that holds the result set is (instead 
of Kheap) a file of records (resultFile) of three fields, where the first field will be the 
distance, whereas the second and the third ones will be the pair of points (pi,qj). To 
accelerate the performance of SJs, a page buffer is used in main memory to hold the 
records as they are computed and as soon as it gets full, we add a new page to the 
result file. 

Since the approximation file itself is simply a flat array on disk of all the 
approximations of points (approximation file), we can adapt the distance-based plane-
sweep technique [7] for the high-dimensional space to avoid processing all possible 
combinations of pairs from two approximations files. In general, this technique 
consists of choosing a sweeping dimension and sorting the approximations on this 
dimension in increasing order (if both files are sorted already on a common 
dimension, no sorting is necessary). First, the sweeping dimension (0≤sd≤dim–1) is 
established (e.g. sd = 0 or X-axis). After that, two pointers are maintained initially 
pointing to the first entry of each sorted approximation file. Let pivot be the entry of 
the smallest value of the approximation over the sweeping dimension pointed by one 
of these two pointers, e.g. pivot = a(p0) {a(pi): 0≤i≤|P|–1}. The cell of the pivot must 
be paired up with the cells determined by the approximations stored in the other 
approximation file {a(qj): 0≤j≤|Q|–1} from left to right that satisfy lBnd(c(pivot), 
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c(qj),sd) ≤ z (where z is a pruning distance, e.g. z = δ for SJs), obtaining a set of 
candidate pairs of approximations where the element pivot is fixed. After all possible 
pairs of approximations that contain pivot have been found, the pointer of the pivot is 
increased to the next entry, pivot is updated with the approximation of the next 
smallest value of the approximation over the sweeping dimension pointed by one of 
the two pointers and the process is repeated until one of the approximation file is 
completely scanned. 

Notice that we apply lBnd(c(pi),c(qj),sd) because in this technique, the sweeping 
takes place only over one dimension. Moreover, the search is only restricted to the 
closest cells (obtained from approximations of points) with respect to the cell of the 
pivot entry according to the current z value. No duplicated pairs are obtained, since 
the cells are always scanned over sorted approximation files. 

4.2   Distance-Based Sweep Algorithm (VA-DBSA) 

The general schema for search algorithms using the VA-file structure has two phases. 
In the first phase (filtering step), the approximations of points (approximation file) are 
scanned to determine lower bounds on the distance of cells pairs, and pairs of points 
are pruned according to the distance-based sweep technique and the pruning 
conditions. In the second phase (refinement step), the filtered points (vector file) are 
visited and the pairs of points that satisfy the distance condition (SJ or K-CPQ) are 
chosen for the final result. Notice that the performance of this algorithm depends 
upon the ordering of the approximations and points. The algorithm for processing the 
K-CPQ is described by the following steps (z = K-cpdist(p,q); at the beginning z = ∞): 

− Filtering step: Apply the distance-based sweep technique over the two 
approximation files, according to lBnd(c(pi),c(qj),sd). Then, from these filtered 
pairs of approximations (a(pi),a(qj)) select only those that satisfy the pruning 
condition 1, i.e. lBnd(c(pi),c(qj)) ≤ z. 

− Refinement step: From the final candidates of the filtering step, select only those 
pairs of points from vector files having dist(pi,qj) ≤ z. Insert all of them into Kheap 
until it gets full. Then remove the root of the Kheap and insert the new pair of 
points (pi,qj), updating this data structure and z = K-cpdist(p,q). 

The adaptation of this algorithm (VA-DBSA) from K-CPQ to the SJ is very simple. 
In the filtering and refinement steps, replace z with δ. Notice that Kheap is now 
unnecessary and the final result is stored in resultFile. 

4.3   Near Optimal Distance-Based Sweep Algorithm (VA-NODBSA) 

In [20] a near optimal algorithm for K-NNQ which minimizes the number of vectors 
visited was proposed. Here, we present a version of near optimal algorithm for DJQ, 
although it is more complex, time-consuming and has memory-overhead. It has also 
two phases. (1) During the filtering step the approximations are scanned, the distance-
based sweep technique is applied and, the lBnd and uBnd are computed for each pair 
of approximations. Assuming that K-cpuBnd(c(p),c(q)) is also calculated using a 
Kheap, if a pair of approximations is encountered such that lBnd(c(pi),c(qj)) > K-
cpuBnd(c(p),c(q)), then the pair of points (pi,qj) can be discarded. The selected pairs of 
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approximations and their lBnd are organized as a minimum binary heap, called Nheap 
[7]. The size of Nheap could be very large with the increase of dim and the cardinality 
of the datasets, and a hybrid memory/disk scheme and techniques based on range 
partitioning could be needed [8]. (2) During the refinement step the pairs stored in 
Nheap are visited in increasing order of lBnd to determine the final answer set. Not all 
these candidate pairs of points are visited, but this phase ends when lBnd(c(pi),c(qj)) > 
K-cpdist(p,q), (recall that K-cpdist(p,q) is also calculated using a Kheap). The algorithm 
for K-CPQ is described by the following steps (z = K-cpdist(p,q) and y = K-
cpuBnd(c(p),c(q)), at the beginning z = ∞ and y = –∞): 

− Filtering step: Create Nheap, and a Kheap structure based on uBnd, called 
KheapU. Apply the distance-based sweep technique over the two approximation 
files, according to lBnd(c(pi),c(qj),sd). Then, from these pairs of approximations 
(a(pi), a(qj)) select only those that satisfy the pruning condition 2, i.e. 
lBnd(c(pi),c(qj)) ≤ y, and store them in Nheap. y = K-cpuBnd(c(p), c(q)) is computed 
using KheapU. 

− Refinement step: Process Nheap from these pairs of approximations (a(pi), a(qj)) 
while lBnd(c(pi),c(qj)) ≤ z, i.e. using the pruning condition 1. z = K-cpdist(p,q) is 
computed using a Kheap structure based on dist, called KheapD. Moreover, select 
only those pairs of points from vector files having dist(pi, qj) ≤ z, and insert all of 
them into KheapD until it gets full. Then remove the root of the KheapD and insert 
the new pair of points (pi, qj), updating this data structure and z = K-cpdist(p,q). 

The adaptation of this algorithm (VA-NODBSA) from K-CPQ to the SJ is analogous 
to the adaptation of VA-DBSA for both phases (filtering and refinement). 

5   Experimental Results 

In this section, we have evaluated the performance of our algorithms over real high-
dimensional datasets of image features (unlike [20] where uniform data have been 
used) extracted from a Corel image collection (http://corel.digitalriver.com/), 
available from [21]. We have chosen two datasets of features based on the colour 
histogram (CH) and colour histogram layout (HL). Each real dataset contains 68,040 
feature vectors of dim = 32. From each 32-dimensional vector, we have chosen the 
first 4, 8, 12, 16 and 32 dimensions, giving rise to pairs of points datasets with 
different dimensionalities and the same cardinality (68,040). These pairs of datasets 
are used in K-CPQ and SJ. 

All experiments were performed on an Intel/Linux workstation with a Pentium IV 
2.5 GHz processor, 1 GByte of main memory, and several GBytes of secondary 
storage, using the gcc compiler. The index page size was 8 Kb, and the number of 
items sharing the same disk page decreased as the dimensionality increased. All the 
elements were fetched directly from the disk without caching. The performance 
measurements are mainly: (a) the elapsed time (wall-clock time) reported in seconds 
and (b) the number of page accesses. For comparison purposes, we have also 
implemented distance join algorithms using nested loops over the vector files and R-
tree-based distance join algorithms [8], applying in both cases the distance-based 
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sweep technique described previously. Besides, the index construction was not taken 
into account for the total elapsed time. 

Our first experiment seeks the most appropriate number of bits per dimension (bd) 
for VA-files that will be used in the next experiments. The suggested value in [20] for 
bd was 8, although here we have obtained (after many experiments) that bd = 10 
reports better results for DJQ. For higher values of bd the size of the approximation 
file can be larger than the size of the vector file, and the filtering power is seriously 
affected, since the vectors themselves are used without being approximated. We have 
also observed that VA-NODBSA minimizes the number of vectors visited, although it 
is time-consuming (slower than VA-DBSA), because in the filtering step it is 
necessary to maintain two auxiliary structures Nheap and KheapU (variable sizes). 
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Fig. 3. Performance of VA-files algorithms for K-CPQ with respect to the dataset sizes 

In the second experiment, we have studied the behaviour of the VA-file-based 
algorithms for K-CPQ when the cardinality of the datasets varies. We have the 
following configuration: dim = 16, |P| = |Q| = 15,000, 30,000, 45,000 and 68,040, K = 
100 and bd = 10. Fig. 3 shows that VA-DBSA is faster than VA-NODBSA, although 
it requires a smaller number of vector accesses (in the refinement step). In addition, 
we can also observe the effect of the increase of the size of the datasets for VA-
NODBSA. This results to the increase of the consumed time and the increase of the 
memory-overhead, since more items have to be combined in the filtering step. 

In the third experiment, we compare the performance of the VA-file-based 
algorithms (VA-DBSA = DB and VA-NODBSA = NO) with a nested loops algorithm 
only using vector files (NL) and with an R*-tree distance join algorithm (Rtree), 
varying the dimensionality (dim = 4, 8, 12, 16 and 32). Fig. 4 shows the performance 
measurements for the following configuration: |P| = |Q| = 68,040, K=100, bd = 10 and, 
the maximum branching factors for R*-trees were 227, 120, 81, 62 and 31 for each 
dim value, using a node size of 8 Kb. When comparing the results of the K-CPQ 
algorithms with respect to the I/O activity and the elapsed time, we observe that this 
query becomes more expensive as the dimensionality grows, in particular for values 
larger than 16. Notice, also, that the huge number of pages accesses (the sum of the 
number of approximation and vector accesses in the VA-file structure) in all 
algorithms is due to the absence of global buffering. The R-tree version was the 
fastest in all cases (e.g. 5 times faster than NL for dim = 2), although for low and 
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medium dimensions it needed many page accesses. NL is also an interesting 
alternative with respect to the total elapsed time because the expensive filtering step is 
avoided, but for dim = 32 it obtained the largest value of page accesses. DB is better 
than NO for these two performance metrics, but the latter gets the minimum number 
of vector accesses after an expensive filtering phase over the two approximation files. 
For example, for dim = 32 the total number of vector accesses was 277 for NO and 
2,811 for DB, whereas the number of approximation accesses was 17,227,051 and 
8,255,818, respectively. 
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Fig. 4. Performance of distance-join algorithms where the dimensionality is increased 

The forth experiment compares the performance of the VA-file-based algorithms 
(DB and NO) with NL and Rtree, varying K from 1 to 100,000. Fig. 5 illustrates the 
performance measurements for the configuration: dim = 16, |P| = |Q| = 68,040, bd = 10 
and the maximum branching factor for R*-trees was 62. In the left chart, we see that 
the slowest was NO, due to its time and memory consumption, although it needs the 
minimum number of vector accesses (e.g. K = 100,000, it was 83,033). The DB 
obtains interesting results for the total number of page accesses, when we have large 
K values. NL reports very good results since it avoids the filtering step and only 
works over the vector files using the distance-based sweep technique. For example, it 
was the fastest and the cheapest in terms of I/O activity for small K values (1 and 10). 
Finally, the results of the K-CPQ algorithm over R*-trees are very interesting as well, 
since it is the fastest for large K values and it obtains a small number of page 
accesses, mainly due to the high pruning in the internal nodes on the R*-trees, the use 
of distance-based sweep technique and the use of large fan-outs of the R-tree nodes. 

The last experiment studies the performance of the best VA-file-based algorithm 
(VA-DBSA), NL and the Rtree variant, for similarity join (SJ) using different δ 
values (0.001, 0.003, 0.005, 0.008, 0.01, 0.03 and 0.05). Fig. 6 illustrates the 
performance measurements for the configuration: dim = 16, |P| = |Q| = 68,040, bd = 10 
and the maximum branching factor for R*-trees was 62. We can deduce that the R-
tree distance join algorithm using distance-based sweep technique is the best 
alternative. For example, it was 10.7 times faster than NL for δ = 0.001 (in the result, 
each point has an average of 7.1 join mates) and 8.1 times for δ = 0.05 (141.8 join 
mates per point). NL (the filtering step is not performed) is slightly faster than  
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Fig. 5. Performance of K-CPQ when K is varied from 1 to 100,000 

VA-DBSA, but it needs more page accesses. An interesting behaviour of the R-tree 
variant is that from δ = 0.01 to δ = 0.05, it needed 3.3 times more page accesses than 
for δ = 0.001, whereas for VA-DBSA this was of 17.5 times. 

From the previous performance comparison for real high-dimensional datasets, the 
most important conclusions are the following: (1) the filtering power of VA-file-based 
algorithms for DJQ is reduced when the dimensionality, cardinality of the datasets, K 
and δ are increased. (2) VA-NODBSA minimizes the number of vector accesses at the 
expense of time consumption and memory-overhead. (3) Including the distance-based 
sweep technique in the R-tree distance join algorithm improves notably its 
performance mainly with respect to the CPU cost. (4) And finally, the most important 
conclusion is that for DJQ where two real high-dimensional datasets are involved, the 
use of hierarchical multidimensional access methods (as R*-trees) with optimization 
techniques (like distance-based sweep) to the processing of index nodes (controlling 
the trade-off between I/O and CPU cost with respect to the page size [KoS01]) is the 
best alternative since its filtering power is increased, when K and δ are not very large 
(in this case the nested loops is the best alternative because it has no additional index 
overhead). 
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Fig. 6. Performance of SJ when δ is varied 
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6   Conclusions and Future Work 

The contribution of this paper is twofold. (1) It reports the first development of 
algorithms for DJQ on pairs of high-dimensional data sets using VA-files. For this 
purpose, special bounds and pruning conditions have been proposed and employed. 
(2) It reports a detailed performance comparison of VA-files vs. R*-trees with respect 
to DJQ using real data. More specifically, for K-NNQs and distance range queries, 
where one real high-dimensional dataset and one query point are involved, one of the 
best alternatives to overcome the dimensionality curse is the use of VA-files (a 
filtering-based approach). For K-CPQs and SJs, where two real high-dimensional 
datasets are combined, this is not the best alternative with respect to the CPU cost, 
because the filtering step is overloaded, while it is competitive with respect to the I/O 
cost. The use of efficient hierarchical multi-dimensional access methods with 
optimization techniques in the processing of index nodes is a very interesting choice 
(since the filtering power can be improved notably). Future research may include the 
use of approximation techniques on VA-files [19, 8], the cost estimation of VA-file-
based DJQ [19] and the study of the buffering impact over these DJQs, as in [4]. 
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