
Indexing Mobile Objects on the Plane Revisited

S. Sioutas, K. Tsakalidis, K. Tsihlas, C. Makris, and Y. Manolopoulos

Department of Informatics, Ionian University, Corfu, Greece
sioutas@ionio.gr

Computer Engineering and Informatics Department, University of Patras, Greece
{tsakalid,tsihlas,makri}@ceid.upatras.gr

Department of Informatics, Aristotle University of Thessaloniki, Greece
manolopo@csd.auth.gr

Abstract. We present a set of time-efficient approaches to index objects
moving on the plane to efficiently answer range queries about their future
positions. Our algorithms are based on previously described solutions as
well as on the employment of efficient data structures. Finally, an exper-
imental evaluation is included that shows the performance, scalability
and efficiency of our methods.

Keywords: Spatio-Temporal Databases, Indexing.

1 Introduction

This paper focuses on the problem of indexing mobile objects in two dimensions
and efficiently answering range queries over the objects locations in the future.
This problem is motivated by a set of real-life applications such as intelligent
transportation systems, cellular communications, and meteorology monitoring.
There are two basic approaches used when trying to handle this problem; those
that deal with discrete and those that deal with continuous movements.

In a discrete environment the problem of dealing with a set of moving objects
can be considered to be equivalent to a sequence of database snapshots of the ob-
ject positions/extents taken at time instants t1 < t2 < . . ., with each time instant
denoting the moment where a change took place. From this point of view, the
indexing problems in such environments can be dealt with by suitably extend-
ing indexing techniques from the area of temporal [30] or/and spatial databases
[11]; in [21] it is elegantly exposed how these indexing techniques can be gen-
eralized to handle efficiently queries in a discrete spatiotemporal environment.
When considering continuous movements there exists a plethora of efficient data
structures [2,14,17,22,23,28,29,33].

The common thrust behind these indexing structures lies in the idea of ab-
stracting each object’s position as a continuous function f(t) of time and up-
dating the database whenever the function parameters change; accordingly an
object is modeled as a pair consisted of its extent at a reference time (design
parameter) and of its motion vector. One categorization of the aforementioned
structures is according to the family of the underlying access method used. In

Y. Ioannidis, B. Novikov, and B. Rachev (Eds.): ADBIS 2007, LNCS 4690, pp. 189–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 S. Sioutas et al.

particular, there are approaches based either on R-trees or on Quad-trees as
explained in [25,26,27]. On the other hand, these structures can be also par-
titioned into (a) those that are based on geometric duality and represent the
stored objects in the dual space [2,17,23] and (b) those that leave the original
representation intact by indexing data in their native n-d space [4,22,28,29,33].
The geometric duality transformation is a tool heavily used in the Computational
Geometry literature, which maps hyper-planes in Rn to points and vice-versa. In
this paper we present and experimentally evaluate techniques using the duality
transform that are based on previous approaches [17,22] to efficiently index the
future locations of moving points on the plane.

In Section 2 we give a formal description of the problem. In Sections 3 and 4
we present our new solutions that outperform the solution presented in [17,22]
since they use more efficient indexing schemes. In particular, Section 4 presents
two alternative solutions. The first one is very easily implemented and has many
practical merits. The second one has only theoretical interest since it uses clever
but very complicated data structures, the implementation of which is very dif-
ficult and constitutes an open future problem. Section 5 presents an extended
experimental evaluation and Section 6 concludes the paper.

2 Definitions and Problem Description

We consider a database that records the position of moving objects in two di-
mensions on a finite terrain. We assume that objects move with a constant
velocity vector starting from a specific location at a specific time instant. Thus,
we can calculate the future object position, provided that its motion character-
istics remain the same. Velocities are bounded by [umin, umax]. Objects update
their motion information, when their speed or direction changes. The system is
dynamic, i.e. objects may be deleted or new objects may be inserted.

Let Pz(t0) = [x0, y0] be the initial position at time t0 of object z. If object
z starts moving at time t > t0, its position will be Pz(t) = [x(t), y(t)] = [x0 +
ux(t− t0), y0 +uy(t− t0)], where U = (ux, uy) is its velocity vector. For example,
in Figure 1 the lines depict the objects trajectories on the (t, y) plane.

We would like to answer queries of the form: “Report the objects located
inside the rectangle [x1q , x2q]× [y1q , y2q] at the time instants between t1q and t2q

(where tnow ≤ t1q ≤ t2q), given the current motion information of all objects.”

3 Indexing Mobile Objects in Two Dimensions

3.1 Indexing Mobile Objects in One Dimension

The Duality Transform. The duality transform, in general, maps a hyper-
plane h from Rn to a point in Rn and vice-versa. In this subsection we briefly
describe how we can address the problem at hand in a more intuitive way, by
using the duality transform on the 1-d case.

Indexing Mobile Objects on the Plane Revisited 191

Y

Time
t1

y1

O1O2

O3

y2

y3

y4

t3 t4 t1q t2q

y1q

y2q

O4

t2

Fig. 1. Trajectories and query in (t, y) plane

Hough-X Transform. One duality transform for mapping the line with equa-
tion y(t) = ut+a to a point in R2 is by using the dual plane, where one axis rep-
resents the slope u of an objects trajectory (i.e. velocity), whereas the other axis
represents its intercept a. Thus we get the dual point (u, a) (this is the so called
Hough-X transform [17,22]). Accordingly, the 1-d query [(y1q , y2q), (t1q , t2q)] be-
comes a polygon in the dual space. By using a linear constraint query [12], the
query in the dual Hough-X plane is expressed as follows (see Figure 2):

a

u

Umin Umax

y1q

y2q

Qhough-x

E1hough-x

E2hough-x

Fig. 2. Query in the Hough-X dual plane

Thus, the initial query [(t1q , t2q), (y1q , y2q)] in the (t, y) plane is transformed
to the following rectangular query [(umin, umax), (y1q − t1qumax, y2q − t2qumin)]
in the (u, a) plane.

Hough-Y Transform. By rewriting the equation y = ut + a as t = 1
uy − a

u ,
we can arrive to a different dual representation (the so called Hough-Y transform
in [17,22]). The point in the dual plane has coordinates (b, n), where b = − a

u
and n = 1

u . Coordinate b is the point where the line intersects the line y = 0 in
the primal space. By using this transform horizontal lines cannot be represented.

192 S. Sioutas et al.

n

b

1/umax

Qhough-y

E1hough-y

1/umin

t1q t2q

E2hough-y

Fig. 3. Query on the Hough-Y dual plane

Similarly, the Hough-X transform cannot represent vertical lines. Nevertheless,
since in our setting lines have a minimum and maximum slope (velocity is bounded
by [umin, umax]), both transforms are valid.

Similarly, the initial query [(t1q , t2q), (y1q , y2q)] in the (t, y) plane (see Figure 3)
can be transformed to the following rectangular query in the (b, n) plane:
[(t1q − y2q

umin
, t2q − y1q

umax
), (1

umax
, 1

umin
)].

3.2 The Proposed Algorithm for Indexing Mobile Objects in Two
Dimensions

In [17,22], motions with small velocities in the Hough-Y approach are mapped
into dual points (b, n) having large n coordinates (n = 1/u). Thus, since few
objects can have small velocities, by storing the Hough-Y dual points in an
index structure such as an R∗-tree, MBR’s with large extents are introduced,
and the index performance is severely affected. On the other hand, by using
a Hough-X for the small velocities’ partition, this effect is eliminated, since
the Hough-X dual transform maps an object’s motion to the (u, a) dual point.
The query area in Hough-X plane is enlarged by the area E, which is easily
computed as EHough−X = (E1hough−X +E2hough−X). By QHough−X we denote
the actual area of the simplex query. Similarly, on the dual Hough-Y plane,
QHough−Y denotes the actual area of the query, and EHough−Y denotes the
enlargement. According to these observations the solution in [17,22] proposes
the choice of that transformation which minimizes the following criterion: c =
EHough−X

QHough−X
+ EHough−Y

QHough−Y
.

The procedure for building the index follows:

1. Decompose the 2-d motion into two 1-d motions on the (t, x) and (t, y)
planes.

2. For each projection, build the corresponding index structure.

Partition the objects according to their velocity:

– Objects with small velocity are stored using the Hough-X dual transform,
while the rest are stored using the Hough-Y dual transform.

– Motion information about the other projection is also included.

Indexing Mobile Objects on the Plane Revisited 193

The outline of the algorithm for answering the exact 2-d query follows:

1. Decompose the query into two 1-d queries, for the (t, x) and (t, y) projection.
2. For each projection get the dual - simplex query.
3. For each projection calculate the criterion c and choose the one (say p) that

minimizes it.
4. Search in projection p the Hough-X or Hough-Y partition.
5. Perform a refinement or filtering step “on the fly”, by using the whole motion

information. Thus, the result set contains only the objects that satisfy the
query.

In [17,22], QHough−X is computed by querying a 2-d partition tree, whereas
QHough−Y is computed by querying a B+-tree that indexes the b parameters of
Figure 3. Our construction instead is based: (a) on the use of the Lazy B-tree
[15] instead of the B+-tree when handling queries with the Hough-Y transform
and (b) on the employment of a new index that outperforms partition trees in
handling polygon queries with the Hough-X transform. In the next section we
present the main characteristics of our proposed structures.

4 The Access Methods

4.1 Handling Polygon Queries When Using the Hough-Y Transform

As described in [17,22], polygon queries when using the Hough-Y transform
can be approximated by a constant number of 1-d range queries that can be
handled by a classical B-tree [9]. Our construction is based on the use of a B-
tree variant, which is called Lazy B-tree and has better dynamic performance as
well as optimal I/O complexities for both searching and update operations [15].
An orthogonal effort towards developing another yet B-tree variant under the
same name has been proposed in [20]. The Lazy B-tree of [15] is a simple but
non-trivial externalization of the techniques introduced in [24]. In simple words,
it is a typical case of a two-level access method as depicted in Figure 4.

The Lazy B-tree operates on the external memory model of computation. The
first level consists of an ordinary B-tree, while the second one consists of buckets
of size O(log2 n), where n is approximately equal to the number of elements
stored in the access method. Each bucket consists of two list layers, L and Li

respectively, where 1 ≤ i ≤ O(log n), each of which has O(log n) size. The
rebalancing operations are guided by the global rebalancing lemma given in [24]
(see also [10,19]). In this scheme, each bucket is assigned a criticality indicating
how close this bucket is to be fused or split. Every O(logB n) updates we choose
the bucket with the largest criticality and make a rebalancing operation (fusion
or split). The update of the Lazy B-tree is performed incrementally (i.e., in a
step-by-step manner) during the next O(logB n) update operations and until the
next rebalancing operation. The global rebalancing lemma ensures that the size
of the buckets will never be larger than O(log2 n).

194 S. Sioutas et al.

B-tree

. . .

. . .

. . .List L

Disk
Block

. . .

. . .

List Li

Bucket

Fig. 4. The Lazy B-tree

Let n be approximately equal to the number of elements stored in the access
method, and B be the size of blocks in the external memory. Then:

Theorem 1. The Lazy B-Tree supports the search operation in O(logB n) worst-
case block transfers and update operations in O(1) worst-case block transfers,
provided that the update position is given.

4.2 Handling Polygon Queries When Using the Hough-X Transform

Our construction is based on an interesting geometric observation that the poly-
gon queries are a special case of the general simplex query and hence can be
handled more efficiently without resorting to partition trees.

Let us examine the polygon (4-sided) indexability of Hough-X transformation.
Our crucial observation is that the query polygon has the nice property of being
divided into orthogonal objects, i.e. orthogonal triangles or rectangles, since the
lines X = Umin and X = Umax are parallel.

We depict schematically the three basic cases that justify the validity of our
observation.

Case I. Figure 5 depicts the first case where the polygon query has been
transformed to four range queries employing the orthogonal triangles (P1P2P5),
(P2P7P8), (P4P5P6), (P3P4P7) and one range query for querying the rectangle
(P5P6P7P8).

Case II. The second case is depicted in the Figure 6. In this case the polygon
query has been transformed to two range queries employing the orthogonal tri-
angles (P1P4P5) and (P2P3P6) and one range query for querying the rectangle
(P2P5P4P6).

Case III. The third case is depicted in the Figure 7. In this case the poly-
gon query has been transformed to two range queries employing the orthogonal

Indexing Mobile Objects on the Plane Revisited 195

a

u

Umin Umax

y1q

y2q

P1

P2

P3

P4

P5

P7 P6

P8

Fig. 5. Orthogonal triangulations: Case I

a

u

Umin
Umax

y1q

y2q P1

P2

P3

P4P5

P6

P8

P6

Fig. 6. Orthogonal triangulations: Case II

triangles (P1P4P5) and (P2P3P6) and one range query for querying the rectangle
(P2P1P5P6).

The problem of handling orthogonal range search queries has been handled
in [3], where an optimal solution was presented to handle general (4-sided)
range queries in O((N/B)(log(N/B)) log logB N) disk blocks and could answer
queries in O(logB N + T/B) I/O’s ; the structure also supports updates in
O((logB N)(log(N/B))/ log logB N) I/O’s.

Let us now consider the problem of devising an access method for handling
orthogonal triangle range queries; in this problem we have to determine all the
points from a set S of n points on the plane lying inside an orthogonal triangle.
Recall that a triangle is orthogonal if two of its edges are axis-parallel. A basic
ingredient of our construction will be a structure for handling half-plane range
queries, i.e. queries that ask for the reporting all the points in a set S of n points
in the plane that lie on a given side of a query line L.

A main memory solution presented in [6] and achieves optimal O(log n + A)
query time and linear space using the notion of duality. The above main memory

196 S. Sioutas et al.

a

u

Umin Umax

y1q

y2q

P1

P2

P3

P4

P5

P6

P8

P6

Fig. 7. Orthogonal triangulations: Case III

construction was extended to external memory in [1], where an access method
was presented that was the first optimal one for answering 2-d halfpspace range
queries in the worst case, based on the geometric technique called filtering search
[7]. It uses O(n) blocks of space and answers a query using O(logB n + A) I/Os,
where A is the answer size. We will use these methods to satisfy orthogonal
triangle range queries on points.

Let us now return to our initial problem, i.e the devise of a structure suitable
for handling orthogonal triangle range queries. Recall, a triangle is orthogonal if
two of its edges are axis-parallel. Let T be an orthogonal triangle defined by the
point (xq, yq) and the line Lq that is not axis-parallel (see Figure 8). A retrieval
query for this problem can be supported efficiently by the following 3-layered
access method.

To set up the access method, we first sort the n points according to their
x-coordinates and then store the ordered sequence in a leaf-oriented balanced
binary search tree of depth O(log n). This structure answers the query: “deter-
mine the points having x-coordinates in the range [x1, x2] by traversing the two
paths to the leaves corresponding to x1, x2”. The points stored as leaves at the
subtrees of the nodes which lie between the two paths are exactly these points in
the range [x1, x2]. For each subtree, the points stored at its leaves are organized
further to a second level structure according to their y-coordinates in the same
way. For each subtree of the second level structure, the points stored at its leaves

qL),(qq yx

Fig. 8. The query triangle

Indexing Mobile Objects on the Plane Revisited 197

are organized further to a third level structure as in [1,6] for half-plane range
queries. Thus, each orthogonal triangle range query is performed through the
following steps:

1. In the tree storing the pointset S according to x-coordinates, traverse the
path to xq . All the points having x-coordinate in the range [xq, ∞) are stored
at the subtrees on the nodes that are right sons of a node of the search path
and do not belong to the path. There are at most O(log n) such disjoint
subtrees.

2. For every such subtree traverse the path to yq. By a similar argument as
in the previous step, at most O(log n) disjoint subtrees are located, storing
points that have y-coordinate in the range [yq, ∞).

3. For each subtree in Step 2, apply the half-plane range query of [1,6] to
retrieve the points that lie on the side of line Lq towards the triangle.

The correctness of the above algorithm follows from the structure used. In each
of the first two steps we have to visit O(log n) subtrees. If in step 3 we apply
the main memory solution of [6], then the query time becomes O(log3 n + A),
whereas the required space is O(n log2 n). Otherwise, if we apply the external
memory solution of [1], then our method above requires O(log2 n logB n + A)
I/O’s and O(n log2 n) disk blocks. Although the space becomes superlinear the
O(log2 n logB n+A) worst-case I/O complexity of our method is better than the
O(

√
n/B + A/B)) worst-case I/O complexity of a partition tree.

5 Experimental Evaluation

The structure presented in [1] is very complicated and thus it is not easily im-
plemented neither efficient in practice. For this reason, the solution presented
in Subsection 4.2 is interesting only from a theoretical point of view. On the
other hand, as implied by the following experiments, the solution presented in
Subsection 4.1 is very efficient in practice.

This section compares the query/update performance of our solution with
those ones that use B+-trees and TPR∗-tree [33], respectively. For all exper-
iments, the disk size is set to 1 Kbyte, the key length is 8 bytes, whereas
the pointer length is 4 bytes. This means that the maximum number of en-
tries (< x > or < y >, respectively) in both Lazy B-trees and B+-trees is
1024/(8+4)=85. In the same way, the maximum number of entries (2-d rectan-
gles or < x1, y1, x2, y2 > tuples) in TPR∗-tree is 1024/(4*8+4)=27. We use a
small page size so that the number of nodes in an index simulates realistic sit-
uations. Similar methodology was used in [4]. We deploy spatio-temporal data
that contain insertions at a single timestamp 0. In particular, objects’ MBRs
(Maximum Bounded Rectangles) are taken from the real spatial dataset LA
(128971 MBRs) [Tiger], where each axis of the space is normalized to [0,10000].
For the TPR∗-tree, each object is associated with a VBR (Velocity Bounded
Rectangle) such that (a) the object does not change spatial extents during
its movement, (b) the velocity value distribution is skewed (Zipf) towards 0

198 S. Sioutas et al.

NA vs. update num. (LA)

0,000
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000

1000,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

NA vs. update num. (LA)

0,000

200,000

400,000

600,000

800,000

1000,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

Fig. 9. qV len = 5, qT len = 50 qRlen = 100 (top), qRlen = 2500 (bottom)

NA vs. update num. (LA)

0,000

200,000

400,000

600,000

800,000

1000,000

1200,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

Fig. 10. qRlen = 3000, qV len = 5, qT len = 50

in range [0,50], and (c) the velocity can be either positive or negative with
equal probability. For each dataset, all indexes have similar sizes. Specifically,
for LA, each tree has 4 levels and around 6700 leaves. Each query q has three
parameters: qRlen, qV len, and qT len, such that (a) its MBR qR is a square,
with length qRlen, uniformly generated in the data space, (b) its VBR is qV =
−qV len/2, qV len/2, −qV len/2, qV len/2, and (c) its query interval is qT =
[0, qT len]. The query cost is measured as the average number of node accesses

Indexing Mobile Objects on the Plane Revisited 199

in executing a workload of 200 queries with the same parameters. Implementa-
tions were carried out in C++ including particular libraries from SECONDARY
LEDA v4.1. The main performance metric is measured in number of I/Os.

Query Cost Comparison. We measure the performance of our technique
earlier described (two Lazy B-trees, one for each projection, plus the query pro-
cessing between the two answers), the traditional technique (two B+-trees, one
for each projection, plus the query processing between the two answers) and that
one of TPR∗-tree, using the same query workload, after every 10000 updates.
The following figures show the query cost (for datasets generated from LA as
described above) as a function of the number of updates, using workloads with
different parameters. In figures concerning query costs our solution is almost the
same efficient as the solution using B+-trees ((B+)(x), (B+)(y) plus CQ). This
fact is an immediate result of the same time complexity of searching procedures
in both structures B+-tree and Lazy B-trees, respectively. In particular, we have
to index the appropriate b parameters in each projection and then to combine the
two answers by detecting and filtering all the pair permutations. Obviously, the
required number of block transfers depends on the answer’s size and is exactly
the same in both solutions for all conducted experiment.

Figure 9 depicts the efficiency of our solution toward that one of TPR∗-tree.
The performance of our solution degrades as the length of the query rectangle
grows from 100 to 2500. It is almost equally efficient to the solution of B+-trees.

NA vs. update num. (LA)

0,000

100,000

200,000

300,000

400,000

500,000

600,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

NA vs. update num. (LA)

0,000
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

Fig. 11. qV len = 10, qT len = 50, qRlen = 400 (top), qRlen = 2500 (bottom)

200 S. Sioutas et al.

NA vs. update num. (LA)

0,000
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

NA vs. update num. (LA)

0,000

50,000

100,000

150,000

200,000

250,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

Fig. 12. qV len = 5, qT len = 1, qRlen = 400 (top), qRlen = 1000 (bottom)

NA vs. update num. (LA)

0,000

50,000

100,000

150,000

200,000

250,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)+ CQ

[B+](x)+[B+](y)+ CQ

Fig. 13. qRlen = 400, qV len = 5, qT len = 100

In Figure 10 the TPR∗-tree outperforms the other two solutions since the length
of the query rectangle became too large (3000).

Figure 11 depicts the efficiency of our solution towards that one of TPR∗-tree
in case the velocity vector grows up. The performance of our solution degrades
as the length of the query rectangle grows from 400 to 2500. It is almost the
same efficient with the solution of B+-trees.

Figure 12 depicts the efficiency of our solution toward that one of TPR∗-tree
in case the length of time interval extremely degrades to value 1. The perfor-
mance of our solution outperforms the TPR∗-tree after 50.000 updates have been
occurred. It is almost the same efficient as the solution of B+-trees is.

Indexing Mobile Objects on the Plane Revisited 201

NA vs. update num. (LA)

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 1,E+05

number of updates

n
o

d
e

ac
ce

ss
es

TPR*-tree

LBT(x)+LBT(y)

B+(x)+B+(y)

Fig. 14. Update Cost Comparison

Figure 13 depicts the efficiency of our solution toward that one of TPR∗-tree
in case the length of time interval enlarges to value 100. Apparently, the length
of the query rectangle remains in sensibly realistic levels. It is almost the same
efficient with the solution of B+-trees.

Update Cost Comparison. Figure 14 compares the average cost (amortized
over each insertion and deletion) as a function of the number of updates. The
Lazy B-trees for the x- and y-projections (LBT(x) and LBT(y) respectively) have
nearly optimal update performance and consistently outperform the TPR∗-tree
by a wide margin. They also outperform the update performance of B+-trees by
a logarithmic factor but this is not depicted clearly in Figure 14 due to small
datasets.

For this reason we performed another experiment with gigantic synthetic data
sets of size n0 ∈ [106, 1012]. In particular, we initially have 106 mobile objects and
during the experiment we continuously insert new till their number becomes 1012.
For each object we considered a synthetic linear function where the velocity value
distribution is skewed (zipf) towards 30 in the range [30,50]. The velocity can
be either positive or negative with equal probability. For simplicity, all objects
are stored using the Hough-Y dual transform. This assumption is also realistic,
since in practice the number of mobile objects, which are moving with very small
velocities, is negligible.

Due to gigantic synthetic dataset we increased the page size from 1024 to 4096
bytes. Since the length of each key is 8 bytes and the length of each pointer is 4
bytes the block size now becomes 341. We have not measured the performance
of the initialization bulk-loading procedure. In particular, we have measured the
performance of update only operations.

Figure 15 establishes the overall efficiency of our solution. It is also expected
that the block transfers for the update operations will remain constant even for
gigantic data sets. This fact is an immediate result of the time complexity of
update procedures in the Lazy B-tree.

202 S. Sioutas et al.

Rebalancing Operations for 2-D prediction queries

0

2

4

6

8

10

12

14

1,E+06 1,E+07 1,E+08 1,E+09 1,E+10 1,E+11 1,E+12

Number of stored elements

N
u

m
b

er
 o

f
I/O

s

two B+ trees, one for each projection two Lazy B-trees, one for each projection

Fig. 15. Rebalancing Operations for the particular problem of 2-D Prediction Queries

6 Conclusions

We presented access methods for indexing mobile objects that move on the
plane to efficiently answer range queries about their location in the future. The
performance evaluation illustrates the applicability of our first solution since the
second solution has only theoretical interest. Our future plan is to simplify the
second complicated solution to be more implementable and as a consequence
more applicable in practice.

References

1. Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient Search-
ing with Linear Constraints. Journal of Computer and System Sciences 61(2), 194–
216 (2000)

2. Agarwal, P.K., Arge, L., Erickson, J.: Indexing Moving Points. In: Proceedings
19th ACM Symposium on Principles of Database Systems (PODS), Dallas, TX,
pp. 175–186 (2000)

3. Arge, L., Samoladas, V., Vitter, J.S.: On Two-Dimensional Indexability and Opti-
mal Range Search Indexing. In: Proceedings 18th ACM Symposium on Principles
of Database Systems (PODS), Philadelphia, PA, pp. 346–357 (1999)

4. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R∗-tree: an Efficient
and Robust Access Method for Points and Rectangles. In: Proceedings ACM In-
ternational Conference on Management of Data (SIGMOD), Atlantic City, NJ, pp.
322–331 (1990)

5. Chazelle, B.: Optimal Algorithms for Computing Depths and Layers, Brown Uni-
versity, Technical Report CS-83-13 (1983)

6. Chazelle, B., Guibas, L., Lee, D.L.: The Power of Geometric Duality. In: Proceed-
ings 24th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
Tucson, AZ, pp. 217–225 (1983)

7. Chazelle, B.: Filtering Search: a New Approach to Query Answering. SIAM Journal
on Computing 15(3), 703–724 (1986)

8. Chazelle, B., Cole, R., Preparata, F.P., Yap, C.K.: New Upper Bounds for Neighbor
Searching. Information and Control 68(1-3), 105–124 (1986)

Indexing Mobile Objects on the Plane Revisited 203

9. Comer, D.: The Ubiquitous B-Tree. ACM Computing Surveys 11(2), 121–137
(1979)

10. Dietz, P., Raman, R.: A Constant Update Time Finger Search Tree. Information
Processing Letters 52(3), 147–154 (1994)

11. Gaede, V., Gunther, O.: Multidimensional Access Methods. ACM Computing Sur-
veys 30(2), 170–231 (1998)

12. Goldstein, J., Ramakrishnan, R., Shaft, U., Yu, J.B.: Processing Queries by Linear
Constraints. In: Proceedings 16th ACM Symposium on Principles of Database
Systems (PODS), Tucson, AZ, pp. 257–267 (1997)

13. Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. In: Pro-
ceedings ACM International Conference on Management of Data (SIGMOD),
Boston, MA, pp. 47–57 (1984)

14. Jensen Christian, S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based
Indexing of Moving Objects. In: VLDB 2004, pp. 768–779 (2004)

15. Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, K.:
ISB-Tree: a New Indexing Scheme with Efficient Expected Behaviour. In: Proceed-
ings International Symposium on Algorithms and Computation (ISAAC), Sanya,
Hainan, China (2005)

16. Kollios, G., Gunopulos, D., Tsotras, V.: Nearest Neighbor Queries in a Mobile
Environment. In: Proceedings 1st Workshop on Spatio-Temporal Database Man-
agement (STDBM), Edinburgh, Scotland, pp. 119–134 (1999)

17. Kollios, G., Gunopulos, D., Tsotras, V.: On Indexing Mobile Objects. In: Proceed-
ings 18th ACM Symposium on Principles of Database Systems (PODS), Philadel-
phia, PA, pp. 261–272 (1999)

18. Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Indexing
Animated Objects Using Spatiotemporal Access Methods. IEEE Transactions on
Knowledge and Data Engineering 13(5), 758–777 (2001)

19. Levcopoulos, S., Overmars, M.H.: Balanced Search Tree with O(1) Worst-case Up-
date Time. Acta Informatica 26(3), 269–277 (1988)

20. Manolopoulos, Y.: B-trees with Lazy Parent split. Information Sciences 79(1-2),
73–88 (1994)

21. Manolopoulos, Y., Theodoridis, Y., Tsotras, V.: Advanced Database Indexing.
Kluwer Academic Publishers, Dordrecht (2000)

22. Papadopoulos, D., Kollios, G., Gunopulos, D., Tsotras, V.J.: Indexing Mobile Ob-
jects on the Plane. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA
2002. LNCS, vol. 2453, pp. 693–697. Springer, Heidelberg (2002)

23. Patel, J., Chen, Y., Chakka, V.: STRIPES: an Efficient Index for Predicted Tra-
jectories. In: Proceedings ACM International Conference on Management of Data
(SIGMOD), Paris, France, pp. 637–646 (2004)

24. Raman, R.: Eliminating Amortization: on Data Structures with Guaranteed Re-
sponse Time”, Ph.D. Thesis, Technical Report TR-439, Department of Computer
Science, University of Rochester, NY (1992)

25. Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: Towards Quadtree-based
Moving Objects Databases. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.)
ADBIS 2004. LNCS, vol. 3255, pp. 230–245. Springer, Heidelberg (2004)

26. Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: Efficient Processing of
Past-future Spatiotemporal Queries. In: Proceedings 21st ACM Symposium on
Applied Computing (SAC), Minitrack on Advances in Spatial and Image-based
Information Systems (ASIIS), Dijon, France, pp. 68–72 (2006)

27. Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: On Past-time Indexing
of Moving Objects. Journal of Systems and Software 79(8), 1079–1091 (2006)

204 S. Sioutas et al.

28. Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.A.: Indexing the Positions of
Continuously Moving Objects. In: Proceedings ACM International Conference on
Management of Data (SIGMOD), Dallas, TX, pp. 331–342 (2000)

29. Saltenis, S., Jensen, C.S.: Indexing of Moving Objects for Location-Based Services.
In: Proceedings 18th IEEE International Conference on Data Engineering (ICDE),
San Jose, CA, pp. 463–472 (2002)

30. Salzberg, B., Tsotras, V.J.: A Comparison of Access Methods for Time-Evolving
Data. ACM Computing Surveys 31(2), 158–221 (1999)

31. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison Wesley,
Reading (1990)

32. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: a Dynamic Index for
Multi- Dimensional Objects. In: Proceedings 13th International Conference on Very
Large Data Bases (VLDB), Brighton, England, pp. 507–518 (1987)

33. Tao, Y., Papadias, D., Sun, J.: The TPR∗-Tree: an Optimized Spatio-Temporal Ac-
cess Method for Predictive Queries. In: Proceedings 29th. International Conference
on Very Large Data Bases (VLDB), Berlin, Germany, pp. 790–801 (2003)

	Indexing Mobile Objects on the Plane Revisited
	Introduction
	Definitions and Problem Description
	Indexing Mobile Objects in Two Dimensions
	Indexing Mobile Objects in One Dimension
	The Proposed Algorithm for Indexing Mobile Objects in Two Dimensions

	The Access Methods
	Handling Polygon Queries When Using the Hough-Y Transform
	Handling Polygon Queries When Using the Hough-X Transform

	Experimental Evaluation
	Query Cost Comparison.

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

