
Skyline Algorithms on Streams of
Multidimendsional Data

Alexander Tzanakas Eleftherios Tiakas Yannis Manolopoulos

Department of Informatics, Aristotle University, Thessaloniki, 54124 Greece
{tzanakas,tiakas,manolopo}@csd.auth.gr

Abstract. We compare three algorithms for skyline processing on streams
of multidimensional data with centralized processing, namely, the Look-
Out, Lazy and Eager methods, with different dataset types and dimen-
sionalities, data cardinalities and sliding window sizes. Experimental re-
sults for time performance and memory consumption are presented. In
addition, the problem of computing the exclusive dominance region in
higher dimensions is reviewed and a novel correct solution is proposed.

1 Introduction

Skyline queries stem in applications where user preferences determine the result.
More formally, if a dominance realtionship in a dataset is defined, a skyline query
returns the objects that cannot be dominated by any other object. In other
words, if the dataset contains multidimensional objects, an object dominates
another one if it is as good in all dimensions, and better in at least one dimension.

Skyline computation algorithms are divided into two categories. The first
category consists of algorithms that inspect static data; there are no insertions
or deletions while executing the algorithm. For example, a user wants to pick
a hotel based on the price and its distance from the beach. The user defines in
the dominance relationship that the lower price and the smaller distance, the
better. In 1a, the X-axis depicts the distance from the beach, the Y-axis depicts
the price, whereas the zigzag line represents the skyline. But hotel rooms are
booked by other users and become unavailable, so a mechanism for removing
the unavailable rooms, or inserting new ones is needed. This case of skyline
computation is called continuous, because the skyline is continuously calculated
and updated. Figures 1b-1c depict the change of skyline after deleting object x.

Skyline queries have been examined thoroughly in the past. Börzsönyi et
al. proposed the use of the skyline operator [1]. Tan et al. used bitmaps and
B+-trees to compute the skyline [11]. Kossmann et al. developed an algorithm
that enables users to include their preferences at execution time [4]. Chomicki
et al. proposed the SFS algorithm that uses a monotone function to compute
the skyline mainly in relational data [2]. Papadias et al. computed the skyline
using the distance from the axis origin with the use of spatial indexing tech-
niques [9].Skyline algorithms on data streams assuming various environments
have lastly received increased attention [5]. For example, algorithms for skyline



(a) Static Skyline (b) Skyline at time t=a (c) Skyline at time t=b

Fig. 1: Skyline examples

queries over data streams and centralized processing are: the LookOut algorithm
[8], Lazy and Eager algorithms [12]. Also, recent algorithms for skyline queries
over data streams and distributed processing are: the SWSMA algorithm [15]
and the Two-phase solution [6].

Even though a lot of work has been done for assorted instances of skyline
queries, not much has been done for a rather global and exhaustive evaluation of
the skyline algorithms in centralized environments. This paper tries to address
these issues by comparing the algorithms for skyline queries over data streams
and centralized processing that are widely used: the LookOut, Lazy, and Eager
algorithms. In particular, the contribution of this paper lies in:

1. thoroughly evaluating the above skyline algorithms over data streams under
several multidimensional datasets, dataset cardinalities and sliding window
(SW) sizes

2. explaining the deficiency of the Lazy algorithm during the computation of the
exclusive dominance region in high dimensions (see Section 2.1), and propos-
ing a solution. This results in an improvement, which makes the algorithms
to work more properly and remain efficient for high dimensionalities

3. establishing a simple solution that can be applied in any skyline algorithm
over data streams, which uses the exclusive dominance region.

Further insights can be found in the full version of this paper [13].

2 Continuous Skyline Computation Algorithms

Here, we examine the LookOut [8], Lazy and Eager methods [12]. First, certain
implementation aspects are examined and then they are evaluated on the basis
of execution time, memory allocation and SW size.

2.1 The Lazy Algorithm

The Lazy algorithm has been presented by Tao and Papadias in [12]. Changes
in skylines may arise if: (i) a new tuple is inserted in the database, or/and (ii)



an object expires and has to be removed from the database. The expiration time
of an object equals arrival time + sliding window size. The Lazy algorithm uses
a pre-processing module (L-PM) and a maintenance module (L-MM). When a
tuple r is inserted, the L-PM module checks if it is dominated by a tuple of
the current skyline. E.g. in Fig. 2a the arrival of tuple f at time t=14 does not
affect the current skyline, because f is dominated by d. Thus, f is saved with the
objects not currently used in the skyline, but possibly to be included at a later
time. The database which stores the inactive data is called DBrest, whereas the
database which stores the skyline is called DBsky.

(a) A new tuple ar-
rives at t=14. The
SW size is 5.

(b) r.ADR and r.DR re-
gions

(c) EDR for a 2-d ex-
ample

Fig. 2: Skyline algorithms’ features

If the incoming object dominates some of the skyline objects, it is stored
in DBsky, whereas the dominated data are deleted as they will never appear
again. The algorithm also defines two regions of a tuple r: (i) the dominance
region r.DR with starting point the coordinates of the object r and ending point
the maximum coordinates that can appear, and (ii) the anti-dominance region
r.ADR, which covers a region that spans from the start of the axes to the object
itself. Fig. 2b depicts the shape of r.DR and r.ADR in a 2-d setting.

When a tuple arrives, we check if any of the skyline objects are in the r.ADR
region. In contrast, the Lazy algorithm performs an r.DR query to find the
objects belonging in the dominance region of the new tuple. If an object is found
in the r.ADR region, then the new tuple is stored in the DBrest database, where
it will stay until it is included in the skyline or it expires. On the other hand,
if there are objects in the r.DR region, they are expunged from the system and
the new one is inserted in the skyline. The expiration time for the skyline is set
to the lowest value found in it.

The L-MM module maintains the data existing in the database already. For
this reason, it is executed at the time specified by the L-PM module, i.e. when
an object expires and has to be deleted from the skyline. The algorithm removes
the specific object and removes the objects that are stored in DBrest and have
expired already. Then the skyline is recomputed, only for the objects that are



dominated exclusively by a tuple r, which is about to be deleted. In Fig. 2c the
Exclusive Dominance Region (EDR) for a 2-d example is depicted. Then, the
algorithm defines the next execution time for the L-MM module, namely the
time an object will be deleted from the system.

2.2 The Eager Algorithm

The Lazy algorithm has some disadvantages: it stores obsolete data, i.e. tuples
that will never be used in the skyline. This motivated its authors to consider
the Eager algorithm [12], which aims to: (i) lower the memory consumption by
keeping only the tuples that are or will be part of the skyline, and (ii) lower
the cost of the maintenance module, in this case the E-MM. Eager achieves
these two goals by doing more in the pre-processing module E-PM, where the
influence time is computed to predict at arrival time, if a tuple will be included
in a future skyline. If there is no such time, the object can safely be discarded.
Eager uses an Event List, in which the events are sorted ascending based on
the time of their respective events. Such events are the expiration of an object,
or the transfer from the database to the skyline. Each tuple that is not part
of the skyline but will be in the future, is marked and transferred to it at the
proper time. Specifically in the E-PM module, for each incoming tuple, a query
finds the tuples that are dominated by the incoming one. These tuples are then
removed from the system. The new r tuple is inserted in the database and the
influence time is computed by finding all the skyline objects that are in the
r.ADR region and then keeping the greatest expiry time. At that time point,
tuple r will be transferred from the database to the skyline. If the computed
influence time equals the arrival time, then the tuple is directly inserted in the
skyline, whereas in the event list is marked with an EX value. Otherwise, it is
stored in the database with the an EL value.

When the time for an event comes, the E-MM method is executed. This
method is less complicated than its respective in Lazy algorithm, because more
processing is being done in the E-PM module. Thus, if the next event in the
list is marked as EX, then the tuple is simply removed. Otherwise, the tuple is
included in the skyline and a new event is stored in the event list to indicate the
tuple expiry time.

3 The LookOut Algorithm

The LookOut algorithm connects each object with a time interval for which it is
valid [8]. This time interval consists of the arrival time and the expiry time. The
skyline can change in two occasions: (i) some skyline data are about to expire,
and (ii) new data are inserted in the database.

The LookOut algorithm takes advantage of two important observations in
hierarchical spatial indexes, e.g. R-trees [3] and quadtrees [10]: (i) if point p
dominates all corners of a node n, then p dominates all the objects of the node
and its children, and (ii) if all corners of a node n dominate a point p, then all



objects and its children dominate that point. With these observations pruning
of nodes is possible and rejection of new objects is faster. Each new object is
inserted in the database and then the expiry time is stored in a min heap. The
object is checked if it belongs to the skyline by an isSkyline algorithm. If an
object must be removed, then all candidates that may replace it in the skyline
are computed by a MINI algorithm. Final insertion is done only if isSkyline
returns true.

isSkyline uses BFS, i.e. nodes with the lowest distance are inserted first in
the heap. When expanding a node, if the lower left corner does not dominate the
arriving tuple, it is rejected. If the upper right corner of a child dominates the
new tuple, then the algorithm terminates with negative output and the tuple
is not inserted in the skyline. If the node is a leaf, the tuple is compared for
domination against all tuples of the leaf. If there is such a leaf, the incoming
object is not inserted in the skyline, otherwise it is.

The MINI algorithm uses also BFS and a min heap for the distance from the
origin to the point coordinates. An object that is about to be deleted is passed as
an argument and returns the objects that are dominated by it. In addition, these
objects are checked before insertion for domination by others that have already
been inserted. According to the isSkyline algorithm, if the upper right corner
is dominated by the object that is about to be deleted, the node is rejected,
otherwise if it is an internal dominated node, it is inserted in the heap. If the
node currently checked is a leaf, then the local skyline is computed and stored.

4 Experimentation and Evaluation

4.1 Methodology

For a thorough experimentation we rely on well selected datasets. For this reason
three data types have been created, by using the generator of [1], and tested: (i)
correlated data, (ii) anti-correlated data, and (iii) independent data. As spatial
index we use R-trees [3], [7], which store objects in nodes dynamically generated
at insertion time. Every node represents a Minimum Bounding Rectangle (MBR)
and is created by using the coordinates of the lower-left and upper-right MBR
corners. This way, during traversal it is possible to prune insignificant nodes.

The Branch-and-Bound Skyline (BBS) algorithm was used for all three algo-
rithms [9]. The BBS algorithm traverses the tree and expands each node, storing
in ascending order the distances from the axes origin. In each iteration, the node
with the lowest distance is expanded or discarded. If the node is dominated by
the existing skyline, it is rejected, otherwise kept. When the algorithm finds a
leaf, it inserts the data in the skyline, because they already have been checked.

4.2 Improvement of Lazy Algorithm

According to the Lazy algorithm, the EDR must be computed for L-MM algo-
rithm to work. This is easily achieved in 2-d datasets. An ascending ordered



array is needed for each skyline dimension. Then finding the next value, after
the point that is about to be deleted, creates a tuple for the upper-right corner
of the EDR. The EDR region is computed by using the coordinates of the point
to be deleted with the coordinates of the upper-right corner. This is depicted in
Fig. 3.

Fig. 3: Computing a 2-d EDR

However, in more than 2 dimensions the shape of the EDR becomes com-
plicated and its computation hard or even impossible [14]. The authors of [12]
do not clarify how the EDRs were computed and if the datasets allowed the
creation of EDRs that could be computed easily as in 2-d datasets.

To correct these problems we made an improvement in the Lazy algorithm by
replacing the EDR computation of a point with its dominance region (DR) for
dimensions higher than 2. With this technique Lazy can return correct results
for all dimensions and remain efficient.

4.3 Time Performance

Several tests were conducted by varying the dimensionality and the SW size
on an Intel Core 2 Duo P8600, with 3GB RAM, 5400 RPM HDD and 64-bit
Windows OS. In all tests the Eager algorithm prevails, as tuples are checked
only once at arrival time if they belong in the skyline. In addition, the Eager
algorithm has a linear scaling in all dimensions and SW sizes. The Lazy algorithm
has similar performance for 2-d datasets; however, its performance is heavily
compromised in higher dimensions. This is due to the dominance region in more
than 2 dimensions. In this case, the search region is far greater than in the EDR
region and, thus, the number of tuples to be checked is much greater as well.

The LookOut algorithm is worse in all cases. For small SW sizes the difference
is comparable, but for sizes greater than some hundreds, the execution time
increases dramatically. One reason is the MINI algorithm. For mini-skyline to
be computed, all tuples that have not been pruned in the expansion phase, are
potential insertions in the skyline and have to be checked. When the SW size
gets larger, more tuples are possible members of the skyline and must be checked
with each other. Another issue of the LookOut algorithm is after the execution of
the MINI, when the isSkyline has to be executed, so that the potential members
are sorted and accordingly rejected or inserted in the skyline.



In addition, all three algorithms seem to perform better in correlated data.
This is probably due to better MBR creation and more effective pruning, which
results in faster tree traversals. Tables 1-3 contain the experimental results.

Dimensions 2-d 4-d 6-d

SW size Lazy Eager LookOut Lazy Eager LookOut Lazy Eager LookOut

100 16.05 6.17 24.32 14.19 6.49 102.87 29.91 7.09 184.71

1K 7.26 11.01 63.11 122.89 13.29 411.80 139.78 12.49 1264.03

10K 13.09 16.41 189.27 1249.90 30.09 1819.39 11415.70 27.59 9969.60

Table 1: Execution time (in seconds), for anti-correlated data

Dimensions 2-d 4-d 6-d

SW size Lazy Eager LookOut Lazy Eager LookOut Lazy Eager LookOut

100 5.06 5.44 21.56 14.18 7.56 113.59 25.24 6.72 162.12

1K 6.52 10.89 52.75 123.09 12.93 428.73 137.27 11.79 1231.35

10K 13.99 16.18 184.63 1776.30 31.15 1773.00 12522.34 47.05 12920.20

Table 2: Execution time (in seconds), for independent data

Dimensions 2-d 4-d 6-d

SW size Lazy Eager LookOut Lazy Eager LookOut Lazy Eager LookOut

100 5.28 4.74 18.45 12.20 5.76 86.32 17.96 6.00 151.75

1K 5.48 9.03 45.29 103.70 11.62 323.01 117.59 10.93 1083.14

10K 7.12 14.85 166.96 1118.71 28.10 1624.72 11814.40 38.53 12492.90

Table 3: Execution time (in seconds), for correlated data

4.4 Memory Consumption

Authors of [12] state that Eager algorithm was developed to consume less mem-
ory than Lazy. This is verified by the experiments, because even in the 6-d
datasets and the largest SW, the algorithm consumes less than 10Mb of memory
as shown in Table 4.

On the other hand, the Lazy and the LookOut algorithms have higher mem-
ory consumption, since they exceed in some cases dozens of Mb even in 2-d
datasets. The Lazy algorithm displays fluctuations in the memory allocation at
small SW sizes, but its memory consumption is linear in greater sizes. The Look-
Out algorithm has linear consumption, but when the SW size is 1M the memory
consumption reaches and surpasses 50Mb (see Table 5).

5 Conclusions

This paper examines three skyline algorithms and compares their performance.
Experiments established the fact that the dimensionality and the SW size are the
main factors that affect the performance and the effectiveness of an algorithm,



which is not clearly visible in small datasets. Also, the dominance region was
used in the Lazy algorithm for the computation of the skyline, as the Exclusive
Dominance Region is sometimes impossible to be computed in higher dimensions.

SW size 2-d 4-d 6-d

100 0.5 0.5 0.5
1K 0.5 0.6 0.6
10K 0.5 0.8 1.2
100K 0.6 1.2 2.9
1M 0.6 1.2 6.9

Table 4: Memory consumption (in Mb)
of Eager algorithms for 2-, 4-, 6-d data

SW size Lazy LookOut

100 10 0.5
1K 2.9 0.6
10K 2.3 1.4
100K 7.5 8.5
1M 67.5 58.0

Table 5: Memory consumption (in Mb)
of LookOut and Lazy for 2-d data

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. ICDE.
pp. 421–430 (2001)

2. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proc.
ICDE. pp. 717–719 (2003)

3. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc.
SIGMOD. pp. 47–57 (1984)

4. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm
for skyline queries. In: Proc. VLDB. pp. 275–286 (2002)

5. Li, X., Wang, Y., Li, X., Wang, Y.: Parallel skyline queries over uncertain data
streams in cloud computing environments. International Journal on Web & Grid
Services 10(1), 24–53 (2014)

6. Lu, H., Zhou, Y., Haustad, J.: Efficient and scalable continuous skyline monitoring
in two-tier streaming settings. Information Systems 38(1), 68–81 (2013)

7. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A., Theodoridis, Y.: R-Trees:
Theory and Applications. Springer (2005)

8. Morse, M., Patel, J., Grosky, W.: Efficient continuous skyline computation. Infor-
mation Sciences 177(17), 3411–3437 (2007)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proc. SIGMOD. pp. 467–478 (2003)

10. Samet, H.: The quadtree and related hierarchical data structures. ACM Computing
Surveys 16(2), 187–260 (1984)

11. Tan, K.L., Eng, P.K., Ooi, B.: Efficient progressive skyline computation. In: Proc.
VLDB. pp. 301–310 (2001)

12. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. TKDE
18(3), 377–391 (2006)

13. Tzanakas, A., Tiakas, E., Manolopoulos, Y.: Revisited skyline query algorithms on
streams of multidimensional data. Tech. rep. (2016), http://delab.csd.auth.gr

14. Wu, P., Agrawal, D., Egecioglu, O., El Abbadi, A.: DeltaSky: optimal maintenance
of skyline deletions without exclusive dominance region generation. In: Proc. ICDE.
pp. 486–495 (2007)

15. Xin, J., Wang, G., Chen, L., Zhang, X., Wang, Z.: Continuously maintaining sliding
window skylines in a sensor network. In: Proc. DASFAA. pp. 509–521 (2007)


