Artif Intell Rev
DOI 10.1007/s10462-013-9416-9

Going over the three dimensional protein structure
similarity problem

Nantia Iakovidou - Eleftherios Tiakas -
Konstantinos Tsichlas - Yannis Manolopoulos

© Springer Science+Business Media Dordrecht 2013

Abstract This article presents in detail our novel proposed methodology for detecting sim-
ilarity between or among three dimensional protein structures. The innovation of our algo-
rithm relies on the fact that during the similarity process, it has the ability to combine many
attributes together and fulfill lots of preconditions, which are extensively discussed through-
out the paper. Our concept is also supported by an efficient and effective indexing scheme,
that provides convincing results comparing to other known methods.

Keywords Protein structure similarity - Indexing scheme - Combined linear measure

1 Introduction

A significant task in the area of structural biology and bioinformatics is finding proteins,
whose structures or substructures are similar to those of other proteins. Since the knowledge of
the 3D structure of a protein can yield useful information about its functional properties, then
structural similarity can be a very good predictor of functional similarity and evolutionary-
related proteins (protein families) (Needleman and Wunsch 1970). Several opinions support
that sequence alignment methods can also be useful for this purpose, but this turns out to be
less the case when the sequence identity of the involved proteins is lower than 30 % (Gan 2002;
Lesk 2004; Micheletti and Orland 2009). This practically means that below this threshold
the involved proteins have low sequence similarity and consequently possible detection of

N. Iakovidou (X)) - E. Tiakas - K. Tsichlas - Y. Manolopoulos
Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: niakovid@csd.auth.gr

E. Tiakas
e-mail: tiakas @csd.auth.gr

K. Tsichlas
e-mail: tsichlas@csd.auth.gr

Y. Manolopoulos
e-mail: manolopo@csd.auth.gr

Published online: 12 July 2013 9\ Springer

N. Iakovidou et al.

evolutionary and/or functional relatedness is more appropriately complemented by structural
alignment techniques (Koehl 2001; Lichtarge and Sowa 2002), which is in fact the focus of
the present study.

Various methods for detecting protein structural relationships have been proposed in recent
years. Some of them perform alignment in rigid structures at the level of C-alpha atoms of pro-
teins. A typical example of this category is the root mean square deviation measure (RMSD),
which computes the minimum average distance between the backbones of superimposed
proteins. According to Cohen and Sternberg (1980), Koehl (2001), Rogen and Fain (2003),
Zhi et al. (2006) RMSD provides a pragmatic definition of structural similarity but consists
an excellent measure of it only for nearly identical structures. Once the shape of two proteins
begins to diverge, RMSD looses its effectiveness. In general, the majority of these approaches
obtain best alignment by minimizing a suitable measure of geometric compatibility, such as
the similarity of distance matrices in DALI over the possible amino acid pairings (Holm and
Sander 1993), or the weighted sums of distances of equivalent C-alpha atoms that are used in
CE algorithm (Shindyalov and Bourne 1998) and MAMMOTH-mult (Lupyan et al. 2005).
Usually, the deficiencies of these methods arise from the fact that in many cases the distance-
based measures of similarity do not satisfy the triangle inequality: d (x, y)+d(y, z) > d(x, 2).
When a method violates the triangle inequality, it is fundamentally unable to judge dissimi-
larity and this problem worsens with increasing distance (Rogen and Fain 2003).

Several other methods align proteins by reducing them to a coarse metric such as secondary
structure elements (SSEs). Such kind of approaches require some criterion for assigning
secondary structures to proteins, that is to say some method to classify residues in the protein
as belonging to helices, strands (namely « -helices and g -strands) or loops (of various
types) or not being part of an SSE at all. Tableau-based methods generally belong to this
category, such as SA Tableau Search (Stivala et al. 2010) and IR Tableau (Zhang et al. 2010).
Other representative methods of this group are VAST (Gibrat et al. 1996; Madej et al. 1995),
SSM (Krissinel and Henrick 2004), GANGSTA (Kolbeck et al. 2006), LOCK?2 (Shapiro and
Brutlag 2004) and SARF2 (Alexandrov 1996). The truth about SSE methods is that there is
not an exact procedure of assignment and also opinions vary about the precise beginning and
end of SSEs (Stivala et al. 2010). Also a major drawback of these approaches is that they need
to perform an exhaustive sequential scan of a structure database to find similar structures to a
target protein (Park et al. 2006). Furthermore, using only SSEs means that regions of protein
structures that are not defined as being part of an SSE are not used at all and this fact can
lead to less sensitive results.

Methods that do not perform any kind of alignment have also been proposed (Budowski-
Tal et al. 2010; Carugo and Pongor 2002; Rogen and Fain 2003; Zhi et al. 2006). These
methods use various ways to represent the protein molecules for example as paths or vectors,
in order to use this representation to identify candidate sets of structural neighbors. Some other
algorithms also step away from distance-based criteria by focusing on statistical distributions
of local distances or by comparing and classifying proteins on the basis of their topological
properties. The drawback of these approaches is that they can lead to loss of secondary
structure information and less accurate results. This happens because in order to perform
faster, they use an approximate representation of the protein molecule, ignoring the fact that
utilizing secondary structure information aids in filtering out noisy solutions and achieving
efficiency and robustness (Dror et al. 2003).

A parameter that is also taken into account during the study of 3D protein structures is
sequentiality, which means that subsequent amino acids in one protein must correspond
to subsequent amino acids in the partner protein. The majority of methods follow this
restriction while the number of methods that are non-sequential is still limited. Some of

@ Springer

Going over the three dimensional protein

the methods included in the non-sequential category are CA, MULTIPROT, SCALI and
GANGSTA+ (Bachar et al. 1993; Guerler and Knapp 2008; Shatsky et al. 2004; Yuan and
Bystroff 2005). The drawback of sequential approaches is that they can decrease the possi-
bility to discover evolutionary relationships (Xie and Bourne 2008) as new protein structures
can arise from the combination and permutation of substructures of a protein (structural
rearrangements) (Bashton and Chothia 2007; Fong et al. 2007). In this way, they fail to cap-
ture similar structures with extensive conformation changes such as internal rearrangements,
which means that these methods ignore the flexibility of the polypeptide chains (Zhi et al.
2006).

Certain other issues also arise when structural comparison of proteins is studied such
as pairwise and multiple comparison. The result of a pairwise alignment or comparison
procedure concerns two particular proteins, while the multiple comparison procedure gives
similarity results between a certain protein and a list of other known proteins. Another term
called ‘dynamics-based-alignment’ has also been recently introduced (Zen et al. 2008) and
is intended to compare the dynamic motions of different proteins, such as the ALADYN
approach (Potestio et al. 2010). Furthermore, methods that perform structural alignment
between a model protein and the true known structure of the protein have also been pro-
posed (Ortiz et al. 2002) and they are known as model comparison methodologies, but these
last two subjects are out of the scope of the current paper.

In this paper we present in detail our prototype algorithm that performs 3D protein structure
comparison at the level of C-alpha atoms and aims at detecting similarity between a query
protein and a set of one or more other known protein structures. In contrast to many of the
aforementioned algorithms, ours does not perform an alignment and in the same time it uses
an exact, but simplified representation of the protein molecule (without loss of secondary
structure information) and a robust indexing technique to store and classify the data.

In particular, in our framework each protein molecule is represented as a sequence of
weights, which come up from the combination of two measures. If we suppose for example
that » is the number of C-alpha atoms in the protein molecule, then we compute (a) the n — 1
distances between consecutive C-alpha atoms and (b) the n — 2 cosines of their associated
turning angles, which according to Zhi et al. (2006) consist a sufficient angle descriptor and
no use of torsion angles is needed. Then we combine these two quantities n — 1 times in
order to produce a series of the hybrid measure w (wy, wa, ..., w,—1), which, as will be
proved on the next section, satisfies the triangular inequality. In this way, local secondary
structural information is maintained and also the use of the DIStance and COsine measures,
from which our algorithm’s name (DISCO) is produced, ensures that the algorithm is rotation
and translation independent.

On the next step, we divide this sequence of weights into overlapping subsequences, which
correspond to all possible consecutive protein substructures of the molecule. After repeating
the same procedure for all proteins, we make use of an indexing technique (M-tree) in
order to store these data and search for similarities either between pairs of proteins (Pair-
DISCO Algorithm), either between a particular query protein and a set of other proteins
(Multi-DISCO algorithm). The use of overlapping subsequences enables us to detect not
only similar structures but also similar substructures (motifs) in protein molecules, without
thinking about sequentiality, which means about the order of appearance of the substructures
into the molecule. This is very important because it means that we can capture both local
and global similarity of protein structures and also because it enriches our algorithm with
flexibility.

In fact, the use of indexing technique in our approach helps us to construct a database of
protein structures in order to efficiently support and handle similarity queries of a specific

@ Springer

N. Iakovidou et al.

protein across the totality of proteins that are stored in the determinate database. As will
be shown in the paper, the indexing method calculates accurate similarities without having
access to the whole database. In this way, the searching procedure becomes more efficient
and rapid providing also dynamic data handling.

Until now, DISCO is the only algorithm that combines and supports so many options
and characteristics such as pairwise and multiple comparisons, motif extraction, translation-
rotation independence, non-sequentiality, flexibility, detection of global and local similarity,
absence of any kind of alignment, maintenance of secondary structure information and in the
same time using a robust indexing technique with a distance-based similarity measure that
satisfies triangular inequality. For this reason it is difficult to be compared with other methods
that do not perform so many procedures simultaneously. Nevertheless, in this paper we are
compared with two representative and most close to our algorithm’s philosophy methods that
perform pairwise and multiple comparisons respectively.

The rest of the paper is organised as follows. In Sects. 2 and 3 our proposed approach
is described. Its experimental evaluation is presented in Sect. 4 and discussion follows in
Sect. 5.

2 The proposed approach
2.1 Data representation

Let P be a set of proteins, and let a protein P, € P, and its lengthn = |P,|, which
is defined as the total number of C-alpha atoms that it contains. For the protein P, let
x[1...n],y[1...n],z[1...n] be the corresponding 3D coordinates of the C-alpha atoms
that it contains in the Euclidean three dimensional space, following the order of the protein
structure.

We compute the n — 1 Euclidean distances between consecutive C-alpha atoms using the
equation:

di = J(x[i] —x[i = 1>+ O[] = yli = 1D* + li] — z[i — 1])* (1

fori =2,...,n.Note that d; = 0.
At the following, we compute the n —2 convex angles 6; € [0, 7] between the linear vector
segments u, v associated to the secondary structures of proteins, using the cosine formula:

cosb; = v (2)
[ul|v]
where,
w-v=(x[i—1]—=xi]) [+1] =x[i]D) + QL — 11—yl (i + 11 = y[iD
+ (zli — 1] —z[iD(z[i + 1] —z[i]D

luf = \/(X[i — 1 =x[iD? + (li — 1 = yliD* + (li — 1] = z[iD?

v = Jcli + 11 = 20D + (1 + 11— y[iD? + Gli + 1] — 2li])

fori =2,...,n— 2. Note that 6, =6, = 0.
We compute the convex angles between all the protein atoms sequentially according to
the Protein Data Bank file format (Berman 2007). In this way we can capture the struc-

@ Springer

Going over the three dimensional protein

tural characteristics of all the recorded side-chains of the proteins in their regular backbone
structure.

For the protein P, we normalize the calculated distances d; and angles 6; in the interval
[0, 1]:

d;

d = B 3
M naxiid;) ©
noy = @

T

and we calculate the following combined linear measure for the C-alpha protein atoms:
w; =a-nd; + (1 —a)-nb; 5)

fori = 1,...,n — 1, and for a selected real number a € [0, 1], which defines how much
the distances or the angles will affect the final calculated weights w; between the protein
C-alpha atoms.

Proposition 1 The combined linear measure w; = a - nd; + (1 — a) - n6; satisfies the metric
space properties, which are symmetry, positivity and triangular inequality.

Proof The cosine similarity (Eq. 2) is a measure of similarity between two vectors u, v, but
it does not satisfy the metric properties (symmetry, positivity, triangular inequality). From
the cosine similarity, the angular similarity is derived, which expresses the normalized angle
between the vectors and it is a similarity function within [0, 1]:

0; u-v
| where 6, = cos~! ()
b 4 [ul - |v]

The advantage of the angular similarity is that when used as a distance measure (by
subtracting it from 1), it is a proper distance metric (it satisfies the metric space properties)
(Wikipedia http://en.wikipedia.org). Therefore, the corresponding distance:

0\ O
1—(1——’):—’:;1@
T T

is a metric distance function, returning values into [0, 1].
Moreover, the distances d; are calculated using the Euclidean distance metric L,, thus the
normalized distance:

d;
max; {d;}

nd,- =

satisfies the metric space properties, and is a proper metric distance function, returning values
into [0, 1].

Therefore, we have two norms (metric distances) nd; and n6; which return values into
[0, 1]. Also, it is well known (http://en.wikipedia.org), that the linear combination:

a-nd; + (1 —a) - nb;

where a € [0, 1] is also a norm (metric distance function), i.e. satisfies the metric space
properties.
Finally, we construct the protein’s data as a sequence of the weights w;:

Py — (wy, w2, ..., wy—1)

Henceforth, all proteins of P will be represented by this sequence of weights.

@ Springer

http://en.wikipedia.org
http://en.wikipedia.org

N. Iakovidou et al.

M-Tree

| P2|P1]| ps|ps |ps | ps [P1o|P7 | P4 Ps]

Fig. 1 Data indexing with the M-Tree

2.2 Data indexing

As already mentioned, structure of biological molecules is a very important clue to under-
standing biological functions and for this reason robust tools for manipulating protein shapes
are needed. Among the existing indexing tools for metric spaces, we use the Metric-Tree
(M-tree) (Ciaccia et al. 1997) to index the protein data, as it combines both efficient query
processing and dynamic data handling. The M-Tree is a balanced tree that can index objects
with attributes in a metric space, compared by distance functions which satisfy the metric
properties (symmetry, positivity, triangular inequality). A simple example of such an index-
ing is depicted in Fig. 1. As in any tree-based data structure, the M-tree is composed of nodes
and leaves. In each node there is a data object that identifies it uniquely and a pointer to a
sub-tree where its children reside. Every leaf has several data objects. For each node there is
aradius () that defines a circle in the desired metric space, as shown in Fig. 1. Thus, every
node ¢; and leaf p; residing in a particular node C, is at most distance r from the node that
belongs to (C), and every node ¢; and leaf p; with node parent C keeps the distance from it.

Using the M-tree, we have the advantage of inserting, updating and deleting dynami-
cally new and old protein structures, and supporting efficiently nearest neighbors and range
queries. Moreover, with the defined similarity (or distance) measures, which satisfy the
metric space properties, we can support similarity queries between large protein struc-
tures, by partitioning the proteins into sub-proteins and using incremental nearest neighbor
queries for ranking. The next section describes the proposed methodology for such similarity
queries.

3 Algorithm’s description
3.1 Top-k protein-to-protein similarity query (Multi-DISCO algorithm)

Let P be a set of proteins. Each protein P; € P is divided into |P;| — T + 1 sub-proteins ,
with length 7', which are indexed in an M-tree file. Let us consider an example. If a protein
P; has length 10, depicted by the series [1 234567 89 10] and T = 3 then the set
of |P;| — T + 1 sub-proteins that our algorithm will create will be the following: ([1 2 3],
[234],[345],[456],[567],[678],[789],[89 10]). We are interested in ranking all

@ Springer

Going over the three dimensional protein

proteins in comparison with a given query protein P, and to retrieve the best top-k results.
The idea is as follows.

For any sub-protein §; of P, we retrieve incrementally its nearest neighbor sub-proteins.
For that purpose we use an M-tree cursor, which we initialize to the first nearest neighbor
of §;, and we retrieve the next nearest neighbors of S; incrementally. An M-tree cursor
(which has been implemented in the M-Tree project http://www-db.deis.unibo.it/Mtree/),
provide sorted access from a specific object to the nearest neighbor order from that object
and retrieve incrementally its nearest neighbors one by one. All existing sub-proteins into
the M-tree will have a specific nearest neighbor order position from §;. However, we do not
leave the M-tree cursor to scan the entire indexed data-set by retrieving all nearest neighbors.
When we retrieve at least one sub-protein from all existing proteins, we stop scanning the
nearest neighbor order with the cursor. For any retrieved sub-protein we record its nearest
neighbor order position as a ranking value of its corresponding protein. We repeat this process
for any existing sub-protein S; of P, and we keep the ranking results in a table. Then, the
final rankings of the proteins are computed in another table R by taking the minimum or the
maximum or the average of the recorded corresponding positions. The top-k similar proteins
are extracted from the table R after an ascending sort. It is important to mention here that
we can tune the parameter 7', which is the length of each sub-protein, in order to have small
or large sub-proteins. In this way we can detect either local similarity (small sub-proteins),
either global similarity (large sub-proteins). Figure 2 presents the outline of the proposed
algorithm for a top-k protein-to-protein similarity query.

3.2 Pairwise similarity query (Pair-DISCO algorithm)

The pairwise similarity query is performed in a straightforward way. Each protein P; is again
divided into | P;| — T + 1 sub-proteins, as described before. The idea is to take any sub-protein
S1; from the first protein Py and to compute its distance to any sub-protein S2; from the
second protein P,. Then, using a specific rule we compute the average of the minimum or
maximum or average distances and return this value as a final score. When this score is close
to 0, the proteins are similar. When this score is close to 1 the proteins are dissimilar. It
is important to note that we retrieve the data of the proteins P, P, from the M-tree into
memory, before the distance computations. This leads to a significant improvement in the
performance of the query. In Fig. 3 we present the outline of this algorithm.

3.3 Motif extraction (Sub-structure query)

As already mentioned before, we divide each protein P; € P into |P;| — T + 1 sub-proteins,
with length 7. In this way, motif extraction is achieved as an intermediate step of Multi-
DISCO algorithm, where we detect at least one sub-protein from all existing proteins to be
the most similar to the each time examinant sub-protein. Because sub-structures of proteins
are overlapping, for example if the first sub-structure is [1 234 56 7 8 9 10] then the second
one willbe [234 567 89 10 11], we have ranking results for all possible sub-proteins of
the molecule. An example is shown in Table 1. Let us consider a dataset of 30 proteins. The
numbers in the first column represent the protein and its sub-protein respectively. The second
column contains the most similar sub-proteins from all twenty proteins of the example dataset
in a row. That is to say, the first number of the second column corresponds to the most similar
sub-protein of the first molecule, the second number (which is 120) corresponds to the most
similar sub-protein of the second protein and so on.

@ Springer

http://www-db.deis.unibo.it/Mtree/

N. Iakovidou et al.

Algorithm Multi-DISCO

Input

Py: query protein

rule: min, max, average

k: number or top results

Output

RJ[1...|P|]: final rankings table

Output to File

Pos|[1...|S|,1...|P|]: sub-proteins positions table

01. initialize rankings table R[] and positions table Pos|,].

02. for any sub-protein S; of Py, (i =1,...,|Py| —T + 1) do

03. allocate an M-Tree cursor C to S; for incremental retrieval
04. h =1 (initialize NN-position)

05. while exist any Pos[S;, Pj] =0, (j =1,...,|P|) do

06. S; = C.Get-Next-NN-Object()
07. P; = protein-ID of sub-protein S;
08. if Pos[S;, Pj] = 0 then Pos[S;, P;] = h
09. h=h+1
10. end-while
11. end-for
12. for j =1,...,|P| do
13. if rule = min then
R[j] = min;{Pos[S;, P;]}, Vi=1,...,|Pg| =T +1
14. if rule = max then
R[j] = max;{Pos[S;, P;]},Vi=1,..,|Py| =T +1
15. if rule = average then

. | Pg|—T+1

R[j] = ﬁ i1 Pos[S;, Pj]

16. end-for

17. sort ascending the final rankings R[] using an ID-index

18. return the Top-k scores with their corresponding protein-ID’s.

Fig. 2 Outline of the Multi-DISCO algorithm (Top-k protein-to-protein similarity query algorithm)

4 Experimental procedure
4.1 Parameters

It is known by this time that our methodology makes use of two parameters: a and 7. The
first one is a real number between 0 and 1 which specifies how much the distances or the
angles affect the final score and the second one refers to the sub-protein length. We focused
on several groups of proteins that were previously used as test cases, e.g. Konagurthu et
al. (2006), Micheletti and Orland (2009), in order to “train” our algorithm in terms of a
and 7.

We tested parameter a, using at the same time various values of 7 expressed as a percentage
of the average protein length of the examined dataset. Specifically, we tested every value of
a with step 0.01 across the values of T that correspond to a percentage [5—-100 %] of the
average protein length with step 5 %. For example, if the average protein length of a dataset
is equal to 500, then we set the parameter T equal to 5 % x 500 = 25, 10 % x 500 = 50, ...,
etc. Precision was computed as the ratio of similar proteins in the top-10 ranking list to
10. Figure 4a depicts the average precision values for a € [0, 0.05] across parameter 7T,

@ Springer

Going over the three dimensional protein

Algorithm Pair-DISCO
Input

P1, P>: query proteins
rule: min, max, average
Output

r: final score

01. retrieve protein data of P;, P> from M-tree.

02. fdmin = fdmazxz = fdavg = 0

03. for any sub-protein S1; of P1, (i =1,...,|P1|—T+1) do

04. dmin = oo, dmaz = 0,davg = 0

05. for any sub-protein S2; of P2, (j=1,...,|P2| =T+ 1) do

06. d = distance(S1;, 52;)

07. if d < dmin then dmin = d
08. if d > dmax then dmazx = d
09. davg = davg + d

10. end-for

11. davg = davg/(|P2| — T + 1)
12. fdmin = fdmin 4+ dmin

13. fdmazx = fdmax 4+ dmaz

14. fdavg = fdavg + davg

15. end-for

16. fdmin = fdmin/(|Pi| — T + 1)
17. fdmaz = fdmax/(|P1| — T + 1)
18. fdavg = fdavg/(|P1| —T + 1)

19. if rule = min then return fdmin
20. if rule = max then return fdmaz
21. if rule = average then return fdavg

Fig. 3 Outline of the Pair-DISCO algorithm (Pairwise similarity query algorithm)

concerning a specific representative protein dataset. From Fig. 4 we see that as a increases
the performance of the algorithm decreases and for this reason we set the parameter a in the
interval [0, 0.05]. Also, we can see that best performance is achieved when 7" equals the [20—
30 %] of the average protein length. Similar results were obtained with other representative
datasets as well, so consequently we decided to set our parameters a = 2% and T = 20 %.
We chose a very low value for a, because distance between two C-alpha atoms is almost
constant for the majority of proteins, but it can still be usefull and make the difference when
we are talking about exact secondary structure information. 7" was set to 20 % because this
was the lowest value giving the best results. Of course these values can be changed and
adapt to the each time user needs. For example parameter a can be set equal to O for those
who don’t want to use it at all. We also conducted the same set of experiments for each
proposed rule (Fig. 2, steps 13—15). Best results were derived using the min rule, which
are the ones shown in Fig. 4. The same applies also when pairwise comparison is taking
place.

4.2 Results
In the first section we talked about our algorithm’s distinctiveness of combining many

attributes together, about the reason why it is different from methods that have been pro-
posed so far and about why it is difficult to be compared with these methods. We finally

@ Springer

N. Iakovidou et al.

Table 1 Example of
sub-structure (motif) query 1-1: 1120645103 1774 182921 623850 125298 1213749209

1-2: 18021448 10282124508823 14781136 1328310345
1-3: 156164521016 147 423 122345843 182719201110253
1-4: 18633343 1143174298 1110147108 235213323920
1-5: 166222519 866671361074 13151652430496618
1-6: 159231321 11666125824 117516264 14176 15 60 20
1-7: 1292460461126 144 22632193 13475891065 1227 18
1-8: 1817 108 65 1399 96 438 66 19448 11 146221275421 19
1-9: 14951751461 5540677 16533 11 1593228 1228 1040
1-10: 1211352510812030324157227914610589321
1-11: 1746236508248 1814463238702010113 1332
1-12: 175310473 1134710319437483412163021955
1-13: 111659271 15260 104230473108 14436224 34
1-14: 111658263 1328212733953415101624132444
1-15: 126262935758289633451641048247 1932123
1-16: 17835942468 56376828222673729132123327
1-17: 16136737509264026104221073414322191517
1-18: 184475813304444620954916840592121523

1-19: 135258141 16057 1434128271038218734776

1-20: 1221769 127 85849 1604014591528114312271 10
1-21: 11151494 58759224762955135124421231166
1-22: 1101524160340 101244 6725123273217219 113120
1-23: 1121659043253 145101144409346194 6582628
1-24: 1261689127236 152712344330 1511849402269
1-25: 1331685035331287711442235641843322160
1-26: 174211370669 4632839471837331645281575
1-27: 13261441903 8455282247 1636109928 155824
1-28: 1251028856506529431941417737274124323
1-29: 155109082 155684 6893917914 1135685 16179616
1-30: 13635856 1674207723 3114246996133771105272

chose two algorithms in order to perform pairwise and multiple comparison with ours. We
use the FATCAT-pairwise algorithm (Ye and Godzik 2003) to perform pairwise comparisons,
which has been proved to provide good results between both flexible and rigid structures and
also to outperform other known classical algorithms, such as RMSD and the ones provided
by DALI and CE (Holm and Sander 1993; Veeramalai et al. 2008). We also use the CURVE
algorithm (Zhi et al. 2006) to perform multiple comparisons as it uses a representation simi-
lar to ours and has also been proved to outperform many known algorithms (Can and Wang
2004).

4.2.1 Pairwise comparison
As already mentioned, proteins that belong to the same family (a superfamily or a sub-family)

typically have similar three-dimensional structures and functions. We first used Pair-DISCO
algorithm to compare pairs of proteins that belong to same protein families and same protein

@ Springer

Going over the three dimensional protein

(a)

Precision %
Precision %

Sub-protein length %

Precision %
Precision %
%o
&

5 10 15 20 25 30 35 40 45 50
Sub-protein length % Sub-protein length %

Fig. 4 Average precision versus sub-protein length for a values: a [0-0.05], b [0.05-0.1], ¢ [0.1-0.15], d
[0.15-0.2], with step 0.01

sub-families. Similarly we applied the algorithm to compare proteins that belong to different
protein families. In order to be compared with FATCAT-pairwise, which reports its similarity
measured as a P-value, we performed extensive experimentation to set a threshold for Pair-
DISCO algorithm as well, with a view to distinguish significant similar proteins from simply
similar ones. In general, values near zero indicate similar proteins. Significant similarity
though is detected when the value of Pair-DISCO result is under 0.05.

We then applied Pair-DISCO algorithm in a representative sequence independent
dataset (Fischer et al. 1996), obtained by using the Protein Data Bank (Berman 2007) and tak-
ing into account only structural criteria. Each structural protein family is equally represented
in this dataset and also every chain within it has <30 % sequence identity.

Table 2 summarizes the results of the Pair-DISCO algorithm. The first two columns contain
the PDB id of the compared proteins and the third column shows the obtained similarity
score. The forth column uses the aforementioned defined threshold in order to discriminate
the significant similarities. On the fifth column we appose the corresponding results from
FATCAT-pairwise.

In our results we can see that proteins with PDB ids lonc and 7rsa, which correspond
to proteins P-30 and RNase-A respectively, are not signed to be significantly similar. This
happens because the two proteins may be part of the same protein family (RNase), but
the first one was found to perform functions and activities, that the second one does not
possess (Mosimann et al. 1994). On the other hand, proteins with PDB ids 1gal and 3cox
were found to be significantly similar and this is true because they are enzymes that belong
to the same category (oxidases), which constitutes a subclass of the oxidoreductases protein
family. They also perform a similar function which is to catalyze an oxidation-reduction
reaction, involving molecular oxygen (O3) as the electron acceptor. Generally, Pair-DISCO
algorithm provides quite accurate results, similar to those of the FATC AT-pairwise algorithm
and sometimes more precise ones, taking into account that FATCAT-pairwise considers two
proteins to be significantly similar if the P-value is lower than 0.05, as well.

@ Springer

N. Iakovidou et al.

Table 2 Pairwise results of Pair-DISCO algorithm

Proteinl Protein2 Pair-DISCO Signif. similar FATCAT-pairwise
Inpx 3grs 0.0198731 Yes Yes
lonc Trsa 0.0809089 No Yes
losa 4cpv 0.0295322 Yes Yes
2cmd 61dh 0.0510457 No Yes
laba lego 0.0567986 No Yes
leaf 4cla 0.0234494 Yes Yes
2sga 4ptp 0.0321825 Yes Yes
laaj 1paz 0.0259216 Yes Yes
5fd1 2fxb 0.0753062 No Yes
1gal 3cox 0.0240907 Yes Yes
1tlk 2rhe 0.0306053 Yes Yes
lomf 2por 0.0508227 No Yes
8ilb 4fgf 0.0645641 No Yes
Imup 1rbp 0.0321935 Yes Yes
larb 4ptp 0.0330052 Yes Yes
2pia 1fnr 0.0267139 Yes Yes
3cd4 2rhe 0.0690796 No Yes
2mnr 4enl 0.0190777 Yes Yes
2gbp 2liv 0.0325059 Yes Yes
1fxiA lubq 0.03846 Yes Yes
Iten 3hhrB 0.069999 No No
2azaA 1paz 0.034002 Yes Yes
lcewl ImolA 0.032229 Yes Yes
lcid 2rhe 0.040133 Yes Yes
lerl lede 0.031879 Yes Yes
2sim InsbA 0.04458 Yes Yes
1bgeB 2gmfA 0.056033 No Yes
1tie 4fef 0.033885 Yes Yes

4.2.2 Multiple comparison

The authors in Zhi et al. (2006) proved that turning angles can be a representative descriptor
of protein structures without any use of torsion angles and in our theory we adopted this idea.
The basic differences though between CURVE and Multi-DISCO algorithm is that CURVE
performs alignment and makes use of SSEs, while our algorithm doesn’t and in this way, our
method has an advantage over CURVE. Since we can not be compared in terms of alignment,
we used the top-n ranking list that these two algorithms produce and computed the precision
measure. In the majority of cases Multi-DISCO is superior as it uses a precise and not an
approximate protein molecule representation and of course because it uses a combination of
attributes to detect protein similarities (see Sect. 1).

For our experiments we used representative datasets that were produced by utilizing the
PDB select tool (Griep and Hobohm 2010) and especially the new—August 2012 version.

@ Springer

Going over the three dimensional protein

PDBselect (http://bioinfo.tg.fh-giessen.de/pdbselect/) provides the user with lists of repre-
sentative protein chains with low mutual sequence identity (< 25 %) selected from the protein
data bank (Berman 2007), which also includes gap-junction and ion-channel proteins (http://
en.wikipedia.org). The user can also handle preselected ids and chains in order to get a rep-
resentative set of PDB chains. In this way, we created several datasets of 100 representative
structures (Can and Wang 2004; Zhi et al. 2006) from a database provided by the PDBfilter-
select. Each of these structures was used as a query to search against the dataset and the
precision measure was applied to evaluate the results. In our case precision is defined as the
ratio of similar proteins in the top-» ranking list to n. We used the top-1 and top-3 ranking lists
to evaluate the results, because in representative datasets there are at most 3 proteins from
the same family. We must also mention here that we include every time the query proteins
in the examined datasets for reasons of verification.

The results of our experiments, which include the average values of precision for several
random representative protein datasets are summarized as follows. In all cases both algorithms
ranked the query protein correctly firstin all of the top-1 lists (100 % precision). Things change
though in top-3 ranking lists, were our method has again a performance of 100 % precision
contrary to CURVE algorithm, which in that case has a performance of 86.4 % precision.

5 Discussion

In this paper we studied one of the most important issues in biology, which is to describe
and compare biological structures. For this reason, we used a simple and comprehensive
representation of protein data, which in the same time maintains all the necessary structural
information of the data. Since these structures help us to understand and manipulate biological
functions, consequently we need robust tools for comparing and classifying the universe of
protein shapes. Towards this direction, we proposed two schemes (Multi-DISCO and Pair-
DISCO algorithms) which are both based on the M-tree access method (Ciaccia et al. 1997).

Apart from the advantages of M-tree that we mentioned in Sect. 2.1, we need to recall
that the M-tree is already equipped by the necessary tools to handle queries, as it has been
reported in Ciaccia et al. (1997). The only requirement for the M-tree to work properly is
that the distance used must satisfy the metric space properties. Since our metric measure
satisfies these properties as shown in Sect. 2.1, it can be used as distance measure in the
M-tree. Of course, other secondary memory schemes for metric spaces or any other metric
access method could be applied equally well (Guttman 1984; Traina et al. 2000), but note
that among all the metric indexing schemes we choose the M-tree because of its simplicity.

To sum up, we extensively presented our methodology for detecting similarity among
or between 3D protein structures using a robust indexing technique. The novelty of our
method is summarized as follows: it supports both pairwise/multiple comparisons and motif
extraction, it is translation-rotation independent and non-sequential, it can detect both global
and local similarity, it maintains the secondary structure information and flexibility of the
protein molecule without performing any kind of alignment and in the same time it uses a
robust indexing technique with a distance-based similarity measure that satisfies triangular
inequality.

Due to our algorithm’s distinctiveness it was difficult for our method to be compared
with others. Nevertheless, we used two representative and well-known algorithms, one for
pairwise comparison and one for multiple comparison, which as was shown in the paper,
proved to be inferior to our method.

@ Springer

http://bioinfo.tg.fh-giessen.de/pdbselect/
http://en.wikipedia.org
http://en.wikipedia.org

N. Iakovidou et al.

References

Alexandrov NN (1996) SARFing the PDB. Protein Eng 9:727-732

Bachar O, Fischer D, Nussinov R, Wolfson H (1993) A computer vision based technique for 3D sequence-
independent structural comparison of proteins. Protein Eng 6:279-288

Bashton M, Chothia C (2007) The generation of new protein functions by the combination of domains.
Structure 15:85-99

Berman HM et al (2007) The protein data bank. Nucleic Acids Res 28:235-242

Budowski-Tal I, Nov Y, Kolodny R (2010) FragBag, an accurate representation of protein structure, retrieves
stuctural neighbors from the entire PDB quickly and accurately. Proc Natl Acad Sci USA 107:3481-3486

Can T, Wang YF (2004) Protein structure alignment and fast similarity search using local shape signatures.
J Bioinform Comput Biol 2:215-239

Carugo O, Pongor S (2002) Protein fold similarity estimated by a probabilistic approach based on C(alpha)-
C(alpha) distance comparison.] Mol Biol 315:887-898

Ciaccia P, Patella M, Zezula P (1997) M-tree: an efficient access method for similarity search in metric spaces.
In: Proceedings of the 23rd international conference on very large databases (VLDB)

Cohen FE, Sternberg MJE (1980) Use of chemically derived distance constraints in the prediction of protein
structure with myoglobin as an example.] Mol Biol 137:9-22

Dror O, Benyamini H, Nussinov R, Wolfson HJ (2003) Multiple structural alignment by secondary structures:
algorithm and applications. Protein Sci 12:2492-507

Fischer D, Elofsson A, Rice D, Eisenberg D (1996) Assessing the performance of fold recognition methods
by means of a comprehensive benchmark. In: Pacific symposium on biocomputing, pp 300-318

Fong JH, Geer LY, Panchenko AR, Bryant SH (2007) Modeling the evolution of protein domain architectures
using maximum parsimony. J] Mol Biol 366:307-315

Gan HH et al (2002) Analysis of protein sequence/structure similarity relationships. Biophys J 83:2781-2791

Gibrat JF, Madej T, Bryant SH (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol
6:377-385

Griep S, Hobohm U (2010) PDBselect 1992-2009 and PDBfilter-select. Nucleic Acids Res Database Issue
38:318-319

Guerler A, Knapp EW (2008) Novel protein folds and their nonsequential structural analogs. Protein Sci
17:1374-1382

Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM
SIGMOD conference, p 4757

Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123—
138

Koehl P (2001) Protein structure similarities. Curr Opin Struct Biol 11:348-353

Kolbeck B, May P, Schmidt-Goenner T, Steinke T, Knapp EW (2006) Connectivity independent protein-
structure alignment. BMC Bioinform 7:510-510

Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure
alignment in three dimensions. Acta Crystallogr 60:2256-2268

Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment
algorithm, proteins: structures. Funct Bioinform 64:559-574

Lesk AM (2004) Introduction to protein science: architecture, function and genomics. Oxford University
Press, Oxford

Lichtarge O, Sowa ME (2002) Evolutionary predictions of binding surfaces and interactions. Curr Opin Struct
Biol 12:21-27

Lupyan D, Leo-Macias A, Ortiz AR (2005) A new progressive-iterative algorithm for multiple structure
alignment. Bioinformatics 21:3255-3263

Madej T, Gibrat JE, Bryant SH (1995) Threading a database of protein cores. Proteins 23:356-369

Micheletti C, Orland H (2009) MISTRAL: a tool for energy-based multiple structural alignment of proteins.
Oxf Univ Press 20:2663-9

Mosimann SC, Ardelt W, James MNG (1994) Refined 1.7 a X-ray crystallographic structure of P-30 protein,
an amphibian ribonuclease with anti-tumor activity. J Mol Biol 236:1141-1153

Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino
acid sequence of two proteins. J Mol Biol 48:443-453

Ortiz AR, Strauss CEM, Olmea O (2002) MAMMOTH: an automated method for model comparison. Protein
Sci 11:2606-2621

Park C, Park S, Kim D, Park S, Sung M, Lee H, Shin J, Hwang C (2006) Fast protein structure alignment
algorithm based on local geometric similarity. In: MICAI 2006, LNAI 4293, pp 1179-1189

@ Springer

Going over the three dimensional protein

Potestio R, Aleksiev T, Pontiggia F, Cozzini S, Micheletti C (2010) ALADYN: a web server for aligning
proteins by matching their large-scale motion. Nucleic Acids Res 38:W41-W45

Rogen P, Fain B (2003) Automatic classification of protein structure by using Gauss integrals. Proc Natl Acad
Sci 100:119-124

Shapiro J, Brutlag D (2004) FoldMiner: structural motif discovery using an improved superposition algorithm.
Protein Sci 13:278-294

Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous alignment of multiple protein struc-
tures. Proteins 56:143-156

Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE)
of the optimal path. Protein Eng 11:739-747

Stivala AD, Stuckey PJ, Wirth AI (2010) Fast and accurate protein substructure searching with simulated
annealing and GPUs. BMC Bioinform 11:446-463

Traina C, Traina AJM, Seeger B, Faloutsos C (2000) Slim-trees: high performance metric trees minimizing
overlap between nodes. In: Proceedings of the seventh international conference on extending database
technology (EDBT), pp 51-65

Veeramalai M, Ye Y, Godzik A (2008) TOPS++FATCAT: fast flexible structural alignment using constraints
derived from TOPS+ Strings Model. BMC Bioinformatics 9:358

Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space. Proc Natl Acad Sci
USA 105:5441-5446

Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists.
Bioinformatics 19:246-255

Yuan X, Bystroff C (2005) Non-sequential structure-based alignments reveal topology-independent core pack-
ing arrangements in proteins. Bioinformatics 21:1010-1019

Zen A, Carnevale V, Lesk AM, Micheletti C (2008) Correspondences between low-energy modes in enzymes:
dynamics-based alignment of enzymatic functional families. Protein Sci 17:918-929

Zhi D, Krishna S, Cao H, Pevzner P, Godzik A (2006) Representing and comparing protein structures as paths
in three-dimensional space. BMC Bioinform 7:460-475

Zhang L, Bailey J, Konagurthu AS, Ramamohanarao K (2010) A fast indexing approach for protein structure
comparison. BMC Bioinform 11:5S46

@ Springer

	Going over the three dimensional protein structure similarity problem
	Abstract
	1 Introduction
	2 The proposed approach
	2.1 Data representation
	2.2 Data indexing

	3 Algorithm's description
	3.1 Top-k protein-to-protein similarity query (Multi-DISCO algorithm)
	3.2 Pairwise similarity query (Pair-DISCO algorithm)
	3.3 Motif extraction (Sub-structure query)

	4 Experimental procedure
	4.1 Parameters
	4.2 Results
	4.2.1 Pairwise comparison
	4.2.2 Multiple comparison

	5 Discussion
	References

