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Abstract We present a new finger search tree with O(log logd) expected search time
in the Random Access Machine (RAM) model of computation for a large class of
input distributions. The parameter d represents the number of elements (distance) be-
tween the search element and an element pointed to by a finger, in a finger search tree
that stores n elements. Our data structure improves upon a previous result by Anders-
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son and Mattsson that exhibits expected O(log logn) search time by incorporating the
distance d into the search time complexity, and thus removing the dependence on n.
We are also able to show that the search time is O(log logd + φ(n)) with high prob-
ability, where φ(n) is any slowly growing function of n. For the need of the analysis
we model the updates by a “balls and bins” combinatorial game that is interesting in
its own right as it involves insertions and deletions of balls according to an unknown
distribution.

Keywords Data structures · Dictionary problem · Balls and bins problem ·
Interpolation search · Expected analysis

1 Introduction

Search trees and in particular finger search trees are fundamental data structures that
have been extensively studied and used. Applications of finger search trees include
optimal algorithms for the basic operations of union, intersection and difference on
sets [25], efficient list splitting [25], efficient implementation of priority queues [17],
efficient sorting of nearly ordered files [17] and sorting of Jordan sequences in linear
time [20]. They also find applications in computational geometry, for example in con-
structing the visibility graph of a polygon [16, 19], in deriving optimal algorithms for
the 3-dimensional layers-of-maxima problem [5], and in obtaining improved methods
for dynamic point location [5].

A finger search tree is a leaf-oriented search tree storing n elements, in which
the search procedure for a target element x can start from an arbitrary element (leaf)
pointed to by a finger f (for simplicity, we shall not distinguish throughout the paper
between an element and its key, as well as between f and the element pointed to
by f ). The goal is twofold: (i) to find x in a time complexity that is a function of the
“distance” d , defined as the number of leaves between f and x; and (ii) to update
the data structure after the deletion of f or after the insertion of a new element next
to f .

Several results for finger search trees have been achieved on the Pointer Machine
and the Random Access Machine models of computation. Before discussing the re-
sults, we review these models.

1.1 Models of Computation

A Random Access Machine (RAM) [1, 9, 37] consists of a finite program, a finite
collection of registers, each of which can store a number of arbitrary (theoretically
infinite) precision, and a memory consisting of a (theoretically infinite) collection of
addressable locations or words (with addresses 0,1,2, . . .), where each location has
the capacity of storing a number of arbitrary (theoretically infinite) precision. Arith-
metic or logical operations on the contents of registers as well as reading (fetching
the contents of a location into a register) and writing (storing the contents of a register
in a location) operations are assumed to take one unit of time. Arithmetic operations
are allowed for computing memory addresses. This model is known as the unit-cost
RAM.
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Since the manipulation of numbers of arbitrary size in unit time can result in an
unreasonably powerful model (by encoding several numbers in one), a standard as-
sumption to prevent this is to set a limit on the size of representable integers and
to restrict the operations allowed on reals [37, Chap. 1]. In particular, for an input
of n elements, it is tacitly assumed that arithmetic and Boolean operations as well
as operations for indexing an n-element array are carried out in constant time on
O(logn)-bit integers; on real numbers, the typical operations allowed are compari-
son, addition and sometimes multiplication with no clever encoding allowed on such
numbers. This RAM variant is known as the unit-cost RAM with logarithmic word
size.

An extension of this unit-cost RAM variant is the so-called unit-cost real RAM
[31, 34] that has become the standard model in computational geometry. The ex-
tension concerns additional operations allowed on real numbers which, apart from
comparison and addition, include subtraction, multiplication, division, and analytic
functions (k-root, trigonometric, exponential, logarithmic, etc.). A floor function can
also be supported provided that the resulting integer has O(logn) bits (this is crucial
since otherwise, we again run in an unreasonably powerful model that is able to solve
in polynomial time PSPACE-complete problems [32]).

Yet another variant of the unit-cost RAM is the so-called word RAM [13, 18]. In
this variant, the memory is divided into addressable locations or words, each hav-
ing a word length of w bits, and these addresses are themselves stored in memory
words. For an input of size n, it should hold that w ≥ logn (since otherwise n is
not representable), and the memory locations store integers in the range [0,2w − 1].
In other words, the word RAM is a unit-cost RAM with word size at least logn.
The restriction to integers is not crucial. Real numbers of finite precision can also
be handled [3, 4, 18, 38, 40, 41], as for example numbers following the IEEE 754
floating-point standard. It is also assumed that the word RAM can perform the stan-
dard AC0 operations of addition, subtraction, comparison, bitwise Boolean opera-
tions and shifts, as well as multiplications in constant worst-case time on O(w)-bit
operands.

A Pointer Machine (PM) [36, 37] is similar to RAM with the exception of memory
organization. In a PM, the memory consists of an unbounded collection of locations
connected by pointers. Each location is divided into a fixed number of fields, and each
field can hold a pointer to another location or a number of arbitrary (theoretically in-
finite) precision. Reading from or writing into location fields, creating or destroying
a location, and operations on register contents are carried out in unit time. Contrary
to RAMs, arithmetic is not allowed in order to compute the address of a location.
The only way to access a location in a PM is by following pointers. The aforemen-
tioned discussion in the RAM context regarding the representation of integers and
the allowed operations on reals applies also to the numbers stored in the registers and
location fields of a PM [37].

1.2 Previous Work

Finger search trees with O(1) update time and O(logd) search time have already
been devised by Dietz and Raman [11] in the unit-cost RAM model with logarithmic
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word size and in which the only operation allowed on reals is comparison. Recently,
for the word RAM model, Andersson and Thorup [3, 4] presented a new data struc-
ture for finger search trees with O(1) update time and O(

√
logd/ log logd ) search

time, which is optimal since there exists a matching lower bound for searching on
a word RAM [6]. In the PM model, Brodal et al. [7] presented a finger search tree
with O(1) update time and O(logd) search time, which is optimal for this model
due to the lower bound on sorting [24]. The only operation allowed on the numbers
(reals) stored in location fields of PM is comparison. All these bounds are worst-case
time complexities and since they have matching lower bounds, there is no room for
improvement.

However, simpler data structures and/or improvements regarding the search com-
plexities can be obtained if randomization is allowed, or if certain classes of input
distributions are considered.

An example for the former is the simple and elegant finger search tree developed
by Seidel and Aragon [33] on the PM model, that achieves O(1) expected update
time when decisions for rebalancing operations are guided by tosses of coins, while
the search operation is carried out in O(logd) expected time.

A famous example for the latter, on the RAM model, is the method of interpola-
tion search, first suggested by Peterson [30]. Unlike classical search methods, which
use an arbitrary rule to select a splitting element (e.g., the middle element in binary
search) to split the input into two subfiles aiming to reduce the size of the subfile to
be searched, the main idea of interpolation search is to select the splitting element by
taking advantage of the statistical properties of the input elements. In this way, the
consecutive splitting elements are spread closer and closer to the target element x,
thus gradually eliminating the size of the subfile to be searched for x and improving
the search time. The interpolation search method for random data generated accord-
ing to the uniform distribution achieves �(log logn) expected search time. This was
shown in [15, 28, 42]. Willard in [39] showed that this time bound holds for an ex-
tended class of distributions, called regular.1

A remark is in place w.r.t. the variant of the RAM model used in the aforemen-
tioned results concerning interpolation search. The input elements are real numbers,
since they are produced by a continuous probability distribution. This assumption
does not aim to illegally facilitate searching via any hidden-cost operations, it only
aims to simplify the probabilistic analysis of the algorithms, since the conditional
input distribution of the subfile remains unaffected per recursive application of inter-
polation steps. Specific operations on these reals are required in order to carry out the
interpolation step (see Sect. 2 for details); namely, these operations include (except
for comparison) subtraction, multiplication, division and the floor function.

Hence, although not explicitly stated, all the aforementioned papers [15, 28, 30,
39, 42] as well as the ones [2, 14, 26, 29] that will be discussed in the remainder of this
subsection use the unit-cost real RAM model, without supporting analytic functions,
but enhanced with the floor function where it is implicitly assumed that the resulting
integer has O(logn) bits, since it indexes a particular array of size n.

1A density μ is regular if there are constants b1, b2, b3, b4 such that μ(x) = 0 for x < b1 or x > b2, and
μ(x) ≥ b3 > 0 and |μ′(x)| ≤ b4 for b1 ≤ x ≤ b2.
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A natural extension is to adapt interpolation search into dynamic data structures,
that is, data structures which support insertion and deletion of elements in addition
to interpolation search. Their study was started with the works of [12, 21] for inser-
tions and deletions performed according to the uniform distribution, and continued
by Mehlhorn and Tsakalidis [26], and Andersson and Mattsson [2] for μ-random in-
sertions and random deletions, where μ is a so-called smooth density. An insertion is
μ-random if the element to be inserted is drawn randomly with density function μ; a
deletion is random if every element present in the data structure is equally likely to
be deleted (these notions of randomness are also described in [23]).

The notion of smooth input distributions that determine insertions of elements in
the update sequence were introduced in [26], and were further generalized and refined
in [2]. Informally, a distribution defined over an interval I is smooth if the probability
density over any subinterval of I does not exceed a specific bound, however small this
subinterval is (i.e., the distribution does not contain sharp peaks). Formally:

Definition 1 [2] Given two functions f1 and f2, a density function μ = μ[a, b](x) is
(f1, f2)-smooth if there exists a constant β , such that for all c1, c2, c3, a ≤ c1 < c2 <

c3 ≤ b, and all integers n, it holds that∫ c2

c2− c3−c1
f1(n)

μ[c1, c3](x) dx ≤ β · f2(n)

n

where μ[c1, c3](x) = 0 for x < c1 or x > c3, and μ[c1, c3](x) = μ(x)/p for c1 ≤
x ≤ c3 where p = ∫ c3

c1
μ(x)dx.

Intuitively, function f1 partitions an arbitrary subinterval [c1, c3] ⊆ [a, b] into f1
equal parts, each of length c3−c1

f1
= O( 1

f1
); that is, f1 measures how fine is the par-

titioning of an arbitrary subinterval. Function f2 guarantees that no part, of the f1
possible, gets more probability mass than βf2

n
; that is, f2 measures the sparseness

of any subinterval [c2 − c3−c1
f1

, c2] ⊆ [c1, c3]. The class of (f1, f2)-smooth distribu-
tions (for appropriate choices of f1 and f2) is a superset of both regular and uniform
classes of distributions, as well as of several non-uniform classes [2, 25]. Actually,
any probability distribution is (f1,�(n))-smooth, for a suitable choice of β .

In [26] a dynamic interpolation search data structure was introduced, called In-
terpolation Search Tree (IST). This data structure requires O(n) space for storing n

real elements. The amortized insertion and deletion cost is O(logn), while the ex-
pected amortized insertion and deletion cost is O(log logn). The worst-case search
time is O(log2 n), while the expected search time is O(log logn) on sets generated
by μ-random insertions and random deletions, where μ is a (�nα�,√n )-smooth den-
sity function and 1

2 ≤ α < 1. An IST is a multi-way tree, where the degree of a node
u depends on the number of leaves of the subtree rooted at u (in the ideal case the
degree of u is the square root of this number). Each node of the tree is associated
with two arrays: a REP array which stores a set of sample elements, one element
from each subtree, and an ID array that stores a set of sample elements approximat-
ing the inverse distribution function. In particular, for a node with degree

√
m and

having m leaves in its subtree, the ID array divides the interval covered by the node
in mα subintervals, where 1/2 ≤ α < 1. Each interval is associated with a pointer to
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a proper subtree. The search algorithm for the IST uses the ID array in each visited
node to interpolate REP and locate the element, and consequently the subtree where
the search is to be continued.

In [2], Andersson and Mattsson explored further the idea of dynamic interpola-
tion search by observing that: (i) the larger the ID array the bigger becomes the class
of input distributions that can be efficiently handled with an IST-like construction;
and (ii) the IST update algorithms may be simplified by the use of a static, implicit
search tree whose leaves are associated with binary search trees and by applying
the incremental global rebuilding technique of [27]. The resulting new data structure
in [2] is called the Augmented Sampled Forest (ASF). Assuming that H(n) is an non-
decreasing, invertible and o(logn) function (whose full details are given in Sects. 2
and 4.2) denoting the height of the static implicit tree, Andersson and Mattsson [2]
showed that an expected search and update time of �(H(n)) can be achieved for μ-
random insertions and random deletions where μ is (n · g(H(n)),H−1(H(n) − 1))-
smooth and g is a function satisfying

∑∞
i=1 g(i) = �(1). In particular, for H(n) =

�(log logn) and g(x) = x−(1+ε) (ε > 0), they get �(log logn) expected search
and update time for any (n/(log logn)1+ε, n1−δ)-smooth density, where ε > 0 and
0 < δ < 1 (note that (�nα�,√n ])-smooth ⊂ (n/(log logn)1+ε, n1−δ)-smooth). The
worst-case search and update time is O(logn), while the worst-case update time can
be reduced to O(1) if the update position is given by a finger. Moreover, for several
but more restricted than the above smooth densities they can achieve o(log logn) ex-
pected search and update time complexities; in particular, for the uniform and any
bounded distribution the expected search and update time becomes O(1).

The above are the best results so far in both the realm of dynamic interpolation
structures and the realm of dynamic search tree data structures for μ-random in-
sertions and random deletions on the RAM model. We remind that, although not
explicitly stated, all the aforementioned papers [2, 14, 15, 26, 28–30, 39, 42] use
the unit-cost real RAM model, without supporting analytic functions, but enhanced
with the floor function where it is implicitly assumed that the resulting integer has
O(logn) bits, since it indexes the ID array.

1.3 New Results

Based upon dynamic interpolation search, we present in this paper a new finger search
tree which, for μ-random insertions and random deletions, achieves O(log logd) ex-
pected search time, with d being the distance of the target element from the finger ele-
ment. It works on the unit-cost real RAM model of computation for the same class of
unknown smooth density functions μ considered in [2], thus improving upon the dy-
namic search structure of Andersson and Mattsson with respect to the expected search
time complexity. We can also show that the search time is O(log logd + φ(n)) with
high probability,2 where φ(n) is any slowly growing function of n (e.g., the inverse
Ackermann function [35]). The update time of our data structure is O(1). In particu-
lar, deletions are performed in O(1) worst-case time, while insertions are performed
in O(1) time with high probability. Using standard techniques, we are also able to

2Throughout the paper, we say that an event E occurs with high probability if Pr[E] = 1 − o(1).
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show that in the worst-case we can achieve O(
√

logd/ log logd ) search time and
O(1) update (insertion or deletion) time. Moreover, for the same classes of restricted
smooth densities considered in [2], we can achieve o(log logd) expected search and
update time complexities (e.g., O(1) times for the uniform and any bounded distri-
bution). We would like to note that: (i) the expected bounds in [2, 26] have not been
proved to hold with high probability; (ii) this is the first work (to the best of our
knowledge) that uses the dynamic interpolation search paradigm in the framework of
finger search trees.

Our data structure is based on a rather simple idea. It consists of two levels: the
top level is a tree structure, called static interpolation search tree (SIST—see Sect. 2).
The elements (unlike in [26]) are not stored in the leaves, but (similarly to [2]) in a
family of buckets, which comprises the bottom level of our data structure. These
buckets store a truncated version, up to a sufficiently large precision, of the real el-
ements along with pointers to a sorted list containing the real elements. Actually,
we show that O(logn) bits suffice to represent the truncated elements. Buckets are
treated as a kind of “indexing structure” to the real elements and are implemented
using the q∗-heap machinery [13, 40, 41] (Sect. 2.2). This can be seen as a small
trick to accelerate the execution of the search and update operations. We also show
that the mapping from fixed precision elements to the (arbitrary precision) real ones
does not affect the efficiency of our operations.

Note that it is not at all obvious how a combination of the aforementioned top
(SIST) and bottom level data structures (buckets) can give better bounds, since dele-
tions of elements may create long sequences of consecutive empty buckets (which
all must be parsed, till the first non empty one that contains the predecessor of the
target element). To alleviate this problem and prove the expected search bound, we
use an idea of independent interest. We model the insertions and deletions as a com-
binatorial game of bins and balls. This combinatorial game is innovative in the sense
that it is not used in a load-balancing context, but it is used to model the behavior
of a dynamic data structure as the one we describe in this paper. We provide upper
and lower bounds on the number of elements in a bucket and show that, with high
probability, a bucket never gets empty. This fact implies that with high probability
there cannot exist consecutive sequences of empty buckets, which in turn allows us
to express the search time bound in terms of the parameter d . Note that the combi-
natorial game presented here is different from the known approaches for balls and
bins games (see e.g., [8]), since in those approaches the bins are considered static and
the distribution of balls uniform. On the contrary, the bins in our game are random
variables since the distribution of balls is unknown. This also makes the initialization
of the game a non-trivial task which is tackled by first sampling a number of balls
and then determining appropriate bins which allow the almost uniform distribution
of balls into them.

Our data structure is designed for the unit-cost real RAM (without analytic func-
tions). This is a direct consequence of modeling the elements of the structure as be-
ing generated by a continuous distribution, a characteristic common to all previous
results on interpolation search [2, 14, 15, 26, 28–30, 39, 42]. Note that we do not use
the arbitrary precision for any hidden costly calculation, it is just an artifact of the
modeling of the source of the elements and the preservation of their nice statistical
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properties. Except for the standard operations of the unit-cost real RAM, we assume
that the operation of truncating a real number of arbitrary precision to a number of
an appropriately large (but fixed) precision takes constant time, and that fixed preci-
sion numbers are stored in memory words of O(logn) bits. We can indeed make this
assumption, since we prove that a precision of O(logn) bits suffices for truncated
elements. We also assume that multiplication and the standard AC0 operations (addi-
tion, subtraction, comparison, bitwise Boolean operations and shifts), required for the
manipulation of elements within buckets (truncated real numbers), can be performed
in constant worst-case time on O(logn)-bit operands.

The remainder of the paper is organized as follows. In Sect. 2, we discuss pre-
liminary notions and results that are used throughout the paper, and define the static
interpolation search tree. Our data structure is presented in Sect. 3, while the analy-
sis of the time complexities of its operations is discussed in Sect. 4. The analysis of
the combinatorial game, upon which our expected search time is based, is given in
Sect. 5. We conclude in Sect. 6. A preliminary version of this work appeared in [22].

2 Preliminaries

The predecessor search problem is fundamental in data structures. For our purposes,
it is defined as follows. Consider a random file F = {X1, . . . ,Xn}, where each ele-
ment Xi ∈ [a, b] ⊂ R, 1 ≤ i ≤ n, obeys an unknown (in our case (f1, f2)-smooth; see
Definition 1) distribution μ, and let S = {X(1), . . . ,X(n)} be an increasing ordering
of F . The goal is to find the largest element X(j) ∈ S that precedes (i.e., is less than or
equal to) a target element y, starting the searching procedure from the entry point of
the data structure representing S (e.g., if S is represented by a tree, then its entry point
is the root of the tree). In this paper, we will mainly deal with the finger search variant
of the predecessor search problem, where the searching procedure does not necessar-
ily start from the entry point of the data structure, but from an arbitrary element (leaf
of the search tree) pointed to by a finger f .

2.1 Static Interpolation Search Tree

One crucial component of our design is a search tree data structure, which we call
Static Interpolation Search Tree (SIST). It is a static and explicit version of the
search trees used in [2, 26] that both address the predecessor search problem. Fol-
lowing [2, 26], a static interpolation search tree corresponding to the ordered file S

of n elements, stored in the leaves of SIST, is fully characterized by three functions
H(n) : N → R

+
0 , R(n) : N → R

+
0 and I (n) : N → R

+
0 , which are non-decreasing and

invertible with a second derivative less than or equal to zero. H(n) denotes the height
of the tree.3 R(n) denotes the out-degree3 of the root of the tree, splitting the ordered
file of n elements into R(n) equal subfiles. That is, these R(n) children of the root
node partition the ordered file S into R(n) equal subfiles

S1 = {X(1), . . . ,X( n
R(n)

)}, . . . , SR(n) = {X((R(n)−1) n
R(n)

+1), . . . ,X(n)} (1)

3Whenever H(n) refers to height, R(n) refers to out-degree, and I (n) refers to number of equal parts, we
mean �H(n)�, �R(n)�, and �I (n)�, respectively.
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I (n) denotes the number of equal parts3 that the interval [a, b] ⊆ R (in which the
elements of F lie) is partitioned. That is, there are I (n) parts denoted as

I1 =
(

a, a + b − a

I (n)

]
, I2 =

(
a + b − a

I (n)
, a + 2

b − a

I (n)

]
, . . . ,

II (n) =
(

a + (
I (n) − 1

)b − a

I (n)
, a + I (n)

b − a

I (n)

] (2)

of size b−a
I (n)

each.
In general, each node v at depth i = 0, . . . ,H(n) of SIST is the corresponding root

of a subtree of ni elements (with n0 = n) and is associated to a pair of arrays, namely
ID and REP, of size I (ni) and R(ni), respectively. The ID and REP arrays help to
locate the appropriate child (subtree of ni

R(ni )
elements) of node v eligible to contain

the predecessor of the target element y. This is achieved as follows.
For the root of SIST, index REP[i], i = 1, . . . ,R(n), points to the i-th subfile

Si = {X ∈ S | X((i−1) n
R(n)

) < X ≤ X(i n
R(n)

)}, as defined in (1) above. More com-
pactly, REP[i] can be seen as the representative of the element X(i n

R(n)
) of sub-

file Si ; i.e., REP[i] maps only to X(i n
R(n)

). On the other hand, the i-th index ID[i],
i = 1, . . . , I (n), of the root node of SIST points to each representative element
X(i1

n
R(n)

), . . . ,X(ik
n

R(n)
) ∈ Ii , with Ii as defined in (2) above. In other words, the i-th

ID index points to all (possibly many) representatives spread within the i-th part of
interval [a, b] ⊆ R. When searching for the predecessor of a target element y, the first
interpolation step determines in O(1) time the natural number jy

jy =
⌊

y − a

b − a
I (n)

⌋
+ 1 (3)

which denotes the jy -th interval Ijy of length b−a
I (n)

where the target element y lies:

Ijy =
(

a + (jy − 1)
b − a

I (n)
, a + jy

b − a

I (n)

]
(4)

Suppose that in this subinterval Ijy lie k = O(1) REP indices (representative ele-
ments). Then we can determine within O(1) time the unique REP index that corre-
sponds to the subfile that the predecessor of the target element y must be subsequently
searched for. This is because y is compared with at most O(1) other representatives
that lie in Ijy .

For an internal node v of SIST, the associated ID and REP arrays can be defined
in a similar way. Consider an internal node v of SIST at depth i ≥ 0 and assume that
ni (recall n0 = n) elements of S are stored in the subtree rooted at v taking values
in the subinterval [	,u] ⊆ [a, b] ⊆ R. The internal node v at depth i is associated
with an array REP[1..R(ni)] of sample elements, containing one representative ele-
ment for each of its subtrees and an array ID[1..I (ni)]. Similarly to the case of the
root node above, the ID array partitions the interval [	,u] ⊆ R into I (ni) equal parts,
each of length u−	

I (ni )
, and the REP array partitions its associated ordered subfile of

S into R(ni) equal subfiles, each of size ni

R(ni )
. Furthermore, for each node we ex-

plicitly maintain parent, child, and sibling pointers. Pointers to sibling nodes will be
alternatively referred to as level links. The required pointer information can be easily
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incorporated in the construction of SIST. The ID array is used to interpolate the REP
array in order to determine the subtree of v from which the search procedure will con-
tinue, in a way similar to the first interpolation search at the root node. In particular,
the ID[1..I (ni)] array associated with v has the property that ∀s = 1, . . . , I (ni) the
s-th ID entry ID[s] points to each j -th entry of REP[1..R(ni)] such that (recall (4))

REP[j ] ∈
(

	 + (s − 1)
u − 	

I (ni)
, 	 + s

u − 	

I (ni)

]
(5)

Now, when searching for the predecessor of target element y, we interpolate the
REP array and locate the corresponding representative of the subtree containing
y’s predecessor by working similarly to (3): compute in O(1) time the index j ′

y =
�(y − 	)/(u − 	))�I (ni) + 1 of the ID array of node v. In turn, this computed ID[j ′

y]
entry points to all representatives REP[j ] satisfying (5) with respect to s = j ′

y , and
hence it remains to sequentially search within these representatives until the appro-
priate subtree containing y’s predecessor is located.

Having discussed SIST in detail, it remains to describe some important properties
of the functions H(n),R(n), and I (n) towards formally establishing in Lemma 1
the time and space bounds for building a SIST. As mentioned in the Introduction,
we are particularly interested in the class of (n · g(H(n)),H−1(H(n) − 1))-smooth
distributions.

First, as (1) easily implies, each child at depth 1 of the root node corresponds to a
subfile of S of size n1 = n/R(n) (recall that n0 = n). Hence, for the height of SIST
we get H(n1) = H(n/R(n)) = H(n) − 1. Recall that H is invertible, so by applying
H−1 to the previous equation we get n/R(n) = H−1(H(n) − 1). Solving this with
respect to R(n) we get that, for having a SIST of height H(n), the degree R(n) must
be R(n) = n/H−1(H(n) − 1). This dictates that H−1(i) �= 0, for 1 ≤ i ≤ H(n) − 1.
In order to handle the largest possible class of distributions μ, the approximation of
the sample density should be as fine as possible, implying that I (n) should be as large
as possible. Since I (n) affects space, it is chosen as

I (n) = n · g(
H(n)

)
(6)

for a function g : N → R such that
∑∞

i=1 g(i) = �(1), so that the space of SIST
remains linear.

Now, consider a node v at depth i ≥ 0 and assume that ni elements of S are stored
in the subtree rooted at v. Then, node v has R(ni) children, each one corresponding to
a subfile of S of size ni+1 = ni/R(ni). It can be easily verified that H(ni) = H(n)−i,
which implies that

ni = H−1(H(n) − i
)

(7)

Since ni+1 = ni/R(ni), we have that H(ni/R(ni)) = H(ni+1) = H(ni) − 1 =
H(n) − i − 1 implying that

ni/R(ni) = H−1(H(n) − i − 1
)

(8)

or that v has degree R(ni) = H−1(H(n) − i)/H−1(H(n) − i − 1)). Moreover,
I (ni) = ni · g(H(ni)) = ni · g(H(n) − i).
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Since we are interested in the class of (n · g(H(n)),H−1(H(n) − 1))-smooth
distributions, we observe that by choosing H(n) = �(logn) we get the class of
(n · g(�(logn)),�(n))-smooth distributions that contains all densities. Hence, as in
[2], we can always assume that H(n) = O(logn). The following lemma characterizes
the time and space complexity of SIST.

Lemma 1 A SIST on an ordered file of n elements drawn from an (n · g(H(n)),

H−1(H(n)−1))-smooth distribution can be built in O(n) time and uses O(n) space.

Proof The proof is similar to the proof of [2, Theorem 6] and we provide it here for
completeness.

Let C(n) be the time to build a SIST on n elements. The time needed to build the
ID and REP arrays is linear to their sizes. Thus the following recurrence relation for
the build time of SIST holds:

C(n) = I (n) + R(n) + R(n)C

(
n

R(n)

)

Let C(n) = nP (n). Then,

nP (n) = I (n) + R(n) + R(n)
n

R(n)
P

(
n

R(n)

)

or

P(n) = I (n)

n
+ R(n)

n
+ P

(
n

R(n)

)
(9)

Taking into account (8), we have R(ni)
ni

= 1
H−1(H(n)−i−1)

, and (6) gives I (ni )
ni

=
g(H(n) − i), for i ≥ 0 with n0 = n. Substituting these, with n = n0, into (9) we
get

P(n) = g
(
H(n)

) + 1

H−1(H(n) − 1)
+ P

(
H−1(H(n) − 1

))
(10)

Equation (7) gives H−1(H(n) − 1) = n1, and hence (10) becomes

P(n) = g
(
H(n)

) + 1

H−1(H(n) − 1)
+ P(n1)

= g
(
H(n)

) + 1

H−1(H(n) − 1)
+ g

(
H(n) − 1

) + 1

H−1(H(n) − 2)
+ · · ·

+ P
(
�(1)

)
(11)

Since the height is H(n) and P(�(1)) = C(�(1))
�(1)

= �(1), we get from (11):

P(n) =
H(n)−1∑

i=1

(
g
(
H(n) − i + 1

) + 1

H−1(H(n) − i)

)
+ �(1)

=
H(n)∑
i=2

g(i) +
H(n)−1∑

i=1

1

H−1(i)
+ �(1) (12)
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The first sum of (12) is �(1) by the properties of function g (see the line follow-
ing (6)). Since it always holds that H(n) = O(logn) (and as a result H−1(n) =

(cn), for some c > 1) the second sum is also �(1). Thus, P(n) = �(1) and conse-
quently C(n) = �(n). As the time to build the structure is linear, the space cannot be
larger and the lemma follows. �

Remark 1 Equations (6) and (8) imply that the class of (n ·g(H(n)),H−1(H(n)−1))-
smooth distributions can be alternatively written as the (I (n), n/R(n))-smooth class.

Remark 2 It is easy to check that a SIST on n elements with parameters R(n) = nδ

and I (n) = n/(log logn)1+ε , where ε > 0 and 0 < δ < 1, has height H(n) =
O(log logn).

2.2 q∗-Heaps

Another crucial component of our design is a search tree data structure called q∗-heap
[40, 41], originally implemented on a word RAM of word length w. This data struc-
ture is similar to fusion trees [13, 40, 41], but it uses q-heaps instead of an ad-hoc
static table in each node of the tree and achieves the same bounds with those of the
fusion tree. Let M be the current number of elements in the q∗-heap and let N be
an upper bound on the maximum number of elements ever stored in the q∗-heap, im-
posing that w ≥ logN . Then, insertion, deletion and search operations are carried out
in O(1 + logM/ log logN) worst-case time after an O(N) preprocessing overhead.
Choosing M = polylog(N), all operations are performed in O(1) time. We will use
this structure to guarantee constant worst-case update operations.

2.3 Global Rebuilding

To guarantee good update bounds in our new finger search data structure, we make
use of the well-known incremental global rebuilding technique [27]. For reasons of
completeness, we present in this subsection the main idea of incremental global re-
building, establishing the analogue of [27, Theorem 1] with respect to the predecessor
search problem, and refer the reader to [27] for the full details. We start with a few
definitions.

Let T be a structure of n elements, and let PT (n) be the construction time of T ,
QT (n) be the time to answer a predecessor query on T , DT (n) be the time for delet-
ing an element from T , and IT (n) be the time for inserting an element in T . Updates
are called weak if the procedures to carry them out on a newly constructed structure
of n elements merely guarantee that, after rn total updates (r < 1), the query time on
the resulting set is still bounded by QT (n). Let WDT (n) and WIT (n) be the time to
perform a weak deletion and insertion respectively on the structure T of n elements.

The global rebuilding technique is based on the maintenance of two structures
for T , which are called OLD-MAIN and MAIN. Usually only the MAIN structure ex-
ists. Assume that a new MAIN has taken the place of the OLD-MAIN and let its size
be n0. When 1

2n0 updates are performed on MAIN, then it changes to OLD-MAIN
and a construction is initiated to build a new MAIN incrementally. In the meanwhile,



Algorithmica (2013) 66:249–286 261

update and query operations are carried out in OLD-MAIN, until the new MAIN un-
der construction takes over. This new MAIN is constructed on the set of elements cur-
rently stored by OLD-MAIN, let this number be n1, where n0 − 1

2n0 ≤ n1 ≤ n0 + 1
2n0.

The construction of the new MAIN is performed incrementally and in an accelerated
pace. The idea is that, for each one of the next r1n1 update operations, PT (n1)

r1n1
work is

performed for the construction of the new MAIN, for some constant r1 < 1
3 , since in

that case rn0 = 1
2n0 + r1n1 < 1

2n0 + 1
3 · 3

2n0 = n0, and thus r < 1 as required. Such a
process would certainly result in fully constructing the new MAIN in time. However,
the update operations occurring during this incremental construction (and which are
carried out on OLD-MAIN) will make the new MAIN outdated by the time its con-
struction is completed. Hence, before the new MAIN is released, it should be updated
with the update operations (insertions and deletions) occurred during its construction.
For this reason, all update operations that occur during the construction of the new
MAIN are inserted in a queue Q (apart from being carried out on OLD-MAIN).
Now, to cater also for the updating of MAIN and still be in time, its incremental
construction is sped up by actually performing more than PT (n1)

r1n1
construction work4

per update operation. After the construction of MAIN on the n1 elements, all update
operations in the queue Q have to be performed on MAIN. To ensure that the whole
process will overtake itself (i.e., the new MAIN will take over from OLD-MAIN af-
ter carrying out a total of at most r1n1 updates), the update operations already in Q
have to be performed at an accelerated pace after each of the new update operations;
note that these new update operations continue to come, still affect the OLD-MAIN,
and are also inserted in Q. By accelerated pace we mean that for each new update
operation, a number of c > 1 updates in Q are performed. Since the processing of
these updates is accelerated, we are bound to empty Q, and as soon as this happens
OLD-MAIN is discarded and the new MAIN is released. By choosing appropriately
the parameter c, it can be guaranteed that the new MAIN takes over after at most r1n1
updates (for details see [27]).

Let T ′ be the structure consisting of MAIN and OLD-MAIN. The time bounds
for searching and updating T ′ can be easily derived from those of T as follows. First
observe that the cost of an update operation in T ′ is the cost of a weak update in the
OLD-MAIN (i.e., in T ) as well as the worst-case cost of an incremental work related
to the construction of the new MAIN. The cost of this incremental work is O(

PT (n1)
n1

),
since MAIN is going to be completed after r1n1 update operations. Now, the time for
searching T ′ comes straightforwardly from the fact that searching is applied to OLD-
MAIN (i.e., to T ), for which weak updates guarantee that the search time will remain
O(QT (n1)).

The above discussion provides a proof sketch of the following theorem, whose full
proof details can be found in [27].

Theorem 1 Given a structure T with n elements for the predecessor search prob-
lem, there is a structure T ′ for the same problem such that: QT ′(n) = O(QT (n)),

4Actually, PT (n1)
r1n1

+ WIT (n1(1 + r1)) work per insertion, and PT (n1)
r1n1

+ WDT (n1(1 + r1)) work per

deletion [27]. As it is also shown in [27] and adopted in our case, any r1 < 1
3 suffices for the global

rebuilding technique.
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DT ′(n) = O(WDT (n) + PT (n)
n

), and IT ′(n) = O(WIT (n) + PT (n)
n

). All bounds are
worst-case.

3 The Data Structure

For clarity we divide the description of the data structure into two parts. In the first
part (Sect. 3.1) we provide a high level description, while in the second part (Sect. 3.2)
we get into the details as well as the implementation of the operations on the data
structure.

3.1 High-Level Description of Our Data Structure

As stated in the Introduction, our data structure T is designed for the unit-cost real
RAM. This is a direct consequence of modeling the elements of the structure as being
generated by a continuous distribution. It serves as a common simplifying assump-
tion for the probabilistic analysis of SIST (Sect. 2.1), constituting the upper static
part of our data structure. Note that we do not use the arbitrary precision for any
hidden costly calculation, it is just an artifact of the modeling of the source of the el-
ements and the preservation of their nice statistical properties captured by Lemma 2
(Sect. 3.2). However, in order to speed-up update and search operations, we imple-
ment each bucket (SIST subtree of O(logn) elements), constituting the lower dy-
namic level of our data structure, as a q∗-heap (Sect. 2.2).

This implies that the real numbers of the upper SIST structure must be truncated
to numbers of adequate precision to be processed by the lower q∗-heap structures.
Thus, we have to map the arbitrary precision representation of a real number (needed
for traversing probabilistically fast the upper SIST structure towards landing to the
appropriate bucket) to its fixed precision representation (needed for updating deter-
ministically fast the landed bucket) and vice-versa. Of course, there are some impli-
cations of this mapping which however can be easily tackled as shown in Sects. 3.2
and 4. This can be seen as a small trick to accelerate the execution of the operations
supported by our data structure. In the following, we represent the truncated version
of a real x to any degree of accuracy by x̃, and we denote by |̃x| the number of bits
in the binary representation of x̃.

From a high-level point of view, our data structure T consists of two levels. The top
level is a SIST (Sect. 2.1), where the recursive interpolation step stops when a subfile
of size �(logn) is encountered, namely a bucket. Thus, the elements (unlike in [26])
are not stored in the leaves of SIST, but (similarly to [2]) in a family of buckets being
implemented as q∗-heaps (Sect. 2.2), which comprise the bottom dynamic level of our
data structure. These buckets store a truncated version of the real elements along with
pointers to a sorted doubly-linked list L containing the real elements. In particular,
for each real element x, its truncated version x̃, up to a sufficiently large precision, is
stored in some bucket along with a pointer to x in L. Due to the limited number of bits
in the truncation, it is possible that k such distinct real elements x1 �= · · · �= xk in L

coincide when truncated to x̃. Hence, the following definition is in place concerning
the chain of a truncated element along with its associated pointers.



Algorithmica (2013) 66:249–286 263

Definition 2 Given an arbitrary truncated element x̃ ∈ [a, b], its chain of length k

consists of all real elements x1 �= · · · �= xk ∈ L whose truncated value equals x̃. Fur-
thermore, there is a pointer from each such real element xi , 1 ≤ i ≤ k, to x̃, while
there is a pointer from x̃ to just one of the reals xi .

Given that an arbitrary x̃ is being returned by a q∗-heap, the above representation
introduces an additional �(k) time overhead for locating the targeted real element x,
since we have to determine (via sequential search) in its chain the corresponding real
xj , j ∈ [k], stored in L such that xj = x, or its predecessor. We show (Lemma 4) that
with high probability O(logn) bits suffice to represent the truncated elements stored
in the q∗-heaps, in a way that we can retrieve and update in O(1) expected time from
the associated list L the real elements. This is achieved by showing that the expected
chain length is O(1). Furthermore, we show that (Corollary 1) the chain length is
very unlikely to increase with respect to n. In other words, in expectation only O(1)

real elements stored in the list L are mapped to an arbitrary truncated number x̃, such
that |̃x| = O(logn), for the wide class of unknown smooth input distributions.

Our approach has two advantages: (i) We treat buckets as a kind of “indexing
structure” to the real elements. Since buckets store elements of fixed precision, we
can employ the q∗-heap machinery to implement them, and hence accelerate the exe-
cution of the search and update operations within the buckets. (ii) The mapping from
fixed precision elements to the real ones introduces only a O(1) expected overhead
in searching time, and hence the searching time for an element x is dominated by the
time required to search SIST and the appropriate bucket in order to locate x̃.

3.2 The Details of Our Data Structure

3.2.1 Construction and Maintenance

Our data structure T is a two-level structure. The top level is a static interpolation
search tree (the SIST), while the bottom level consists of buckets of elements. T is
maintained by incrementally performing global reconstructions using the global re-
building technique of Theorem 1. Assume that S0 is the set of stored elements at
the latest reconstruction, where S0 = {x1, . . . , xn0} in sorted order and xi ∈ [a, b],
1 ≤ i ≤ n0. The top level of T is a SIST on all elements of S0.

The bottom level of T is a set of ρ buckets implemented as q∗-heaps [40, 41].
Each bucket Bi , 1 ≤ i ≤ ρ, stores a subset of (the truncated versions of) ele-
ments in S0 and is represented by the element rep(i) = max{x : x̃ ∈ Bi}. The set
of elements stored in the buckets constitute an ordered collection B1, . . . , Bρ such
that max{x : x̃ ∈ Bi} < min{y : ỹ ∈ Bi+1} for all 1 ≤ i ≤ ρ − 1. In other words,
Bi = {̃x : x ∈ (rep(i − 1), rep(i)]}, for 2 ≤ i ≤ ρ, and B1 = {̃x : x ∈ [rep(0), rep(1)]},
where rep(0) = a and rep(ρ) = b.

To be more precise, in the reconstruction stage, the set S1 = {xi·lnn0 : i =
1, . . . ,

n0
lnn0

−1}∪ {b} is defined. The i-th element of S1 is the representative rep(i) of
the i-th bucket Bi , where 1 ≤ i ≤ ρ and ρ = |S1| = n0

lnn0
. An element x ∈ S0 is stored

twice:

1. As a leaf of the SIST in T containing x.
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2. In the appropriate bucket Bi is stored as x̃, iff rep(i − 1) < x ≤ rep(i), for 2 ≤
i ≤ ρ; otherwise (x ≤ rep(1)), x̃ is stored in B1.

Each element x in a leaf of the SIST maintains a pointer to the bucket which
contains x̃. Additionally, each bucket maintains a pointer to the leaf containing its
representative. All representatives are connected in an ordered doubly-linked list R.
This list is used during insertions to determine the correct bucket to update.

The purpose of storing the elements in the leaves of the SIST, during reconstruc-
tion, is to define the range of values stored in the buckets. Note that during insertions
and deletions the SIST (top level of T ) remains unaffected – the insertions and dele-
tions are carried out at the bottom level of T . This means that a leaf of the SIST may
correspond to an element which has been deleted, while an element in a bucket may
not be stored in any leaf of the SIST. Knowing, however, the range of values of ele-
ments stored in the buckets allows us, with the help of the list R, to insert an element
in the correct bucket.

This redundancy which comes from storing elements in buckets as well as in the
leaves of the SIST during the reconstruction may seem curious, but it has a critical
role in the analysis of the expected performance of T . First, the elements of S0 are
stored in the bottom level (buckets), because they guarantee that it is highly unlikely
that a bucket will become empty due to random deletions (see Sect. 5). Second, the
elements of S0 are stored in the top level of T (SIST), because they guarantee the
expected performance of the search procedure in a similar manner to the interpolation
search trees presented in [2, 26]. This is captured by the following lemma.

Lemma 2 Let T be a SIST on a set S of n elements generated by a μ-random distri-
bution and let T ′ be any subtree of T which spans a consecutive subset S′ ⊂ S. Then,
the elements of S′ are also μ-randomly distributed.

Proof Similar to the proof of Lemma 4 in [26]. �

In conjunction with T , a sorted doubly linked list L of all the real elements in
the data structure is also maintained. L is used mainly to map truncated elements,
stored in the buckets, to their real counterparts. To achieve this, an arbitrary element
x in L maintains a pointer to its truncated version x̃, while x̃ maintains a pointer
to one among all the elements that are truncated to it (recall Definition 2). Search
operations will always conclude at list L, either by locating the element we search or
its predecessor. Consequently, fingers will always point to elements of list L, since
they can only be updated as a result of a search operation.

We now turn to the description of the maintenance of our data structure T by
incrementally performing global reconstructions. The crucial property comes from
Theorem 9 (Sect. 5), which dictates that each time the number of updates exceeds rn0,
where 0 < r < 1, T must be reconstructed in order to always guarantee with high
probability the size of the buckets. Theorem 9 guarantees that during at most rn0

updates the size of all buckets is bounded in size with high probability. Thus, during
this period of time, weak updates are performed on T . By applying Theorem 1, in a
period of rn0 updates we turn weak updates into normal updates.
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Let us now discuss the implementation of Theorem 1 in our case. Assume that a
new MAIN (the structure T consisting of a SIST with buckets) becomes available at
time t , where time is defined with respect to update operations. Let n0 be the number
of elements in MAIN at time t . After 1

2n0 updates this MAIN will be turned to an
OLD-MAIN and the incremental construction of a new MAIN is initiated. Assume
that at this point (time t + 1

2n0) the MAIN that turns to OLD-MAIN has n1 elements.
After r1n1 update operations in total (at time t + 1

2n0 + r1n1), MAIN will take over
from OLD-MAIN (recall from Sect. 2.3 that any constant r1 < 1

3 suffices, since in
that case rn0 = 1

2n0 + r1n1 < 1
2n0 + 1

3 · 3
2n0 = n0, and thus r < 1 as required). By

accelerating updates, that is, by making a constant number of steps for constructing
MAIN per each update operation (recall Sect. 2.3), we first construct MAIN on the n1
elements. The update operations during the construction of MAIN are not taken into
account and are put in a queue Q, while they are performed on OLD-MAIN as well as
on L. Finally, after MAIN has been constructed on the n1 elements, we start applying
in an accelerating pace the updates in Q on MAIN until Q becomes empty at which
point OLD-MAIN is discarded. In the following we elaborate on this procedure.

To begin with, the list L is augmented in order to facilitate the construction of
MAIN by introducing additional fields to each node. Each node in L maintains a
pointer to a record in a list L′—to be specified below—which is NIL if this is not
applicable. If during the construction of MAIN an insertion operation of an element
x is performed, then we insert x in L as well as a new entry in Q recording this
insertion. We also establish a pointer from the entry corresponding to x in Q to L.
If element x is deleted, then we add an entry to Q recording this deletion while
the corresponding node in L is removed from the list but not destroyed. This node is
called a floating node and has its successor and predecessor pointers set to NIL, while
it maintains all other pointers. Note that this floating node may have been created by
an insertion which is also recorded in Q.

Our first concern is how to start building MAIN on the n1 elements at time t + 1
2n0,

since L changes due to updates. To do that, we incrementally construct a new list L′
starting from time t and ending at time t + 1

2n0, so that at the end both L and L′ store
the same set of elements. After time t + 1

2n0, L′ does not change due to updates but
exists only for the purpose of constructing the new MAIN.

To construct L′, we traverse incrementally L and copy its elements to L′. That
is, we initiate a pointer pL to point to the head of L. After the update (insertion or
deletion) to L at time t + 1, we advance pL so that the first 3 elements of L are
copied to L′. For each element in L′ there is a pointer to the respective element in L

and vice-versa. After the insertion of x in L at time t + i, 2 ≤ i ≤ 1
2n0, we copy 3

elements of L by advancing pL on L; if the successor of x (if we are at the end of the
list we check the predecessor) has been copied to L′ (by checking the corresponding
pointer), then we also apply the insertion of x to L′. After the deletion of x from L

at time t + i, 2 ≤ i ≤ 1
2n0, we again copy 3 elements of L by advancing pL on L and

then if x has been copied to L′ (we can check this by the pointers between L and L′)
we also delete it from L′. After the update at time t + 1

2n0, both lists contain the same
set of elements.

As soon as the current MAIN becomes OLD-MAIN at time t + 1
2n0, we proceed

with the construction of the new MAIN based on the n1 elements stored in L′. Dur-
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ing the construction of q∗-heaps in MAIN by using the pointers between L′ and L,
we establish the necessary pointers between the truncated elements in the q∗-heaps
and list L. Additionally, we maintain pointers from L′ to the buckets (q∗-heaps) in
MAIN that contain the corresponding truncated elements. These pointers facilitate
the processing of Q as we see below. For each update in OLD-MAIN, which is added
to Q, some incremental work for the construction of MAIN on the elements of L′
is performed. The minimum amount of incremental work per insertion or deletion is
determined in Sect. 2.3. During the construction of q∗-heaps, we also construct the
lower levels of the SIST (i.e., the SIST subtrees of height O(H(|Bi |)) corresponding
to the elements stored in the bucket Bi ) establishing pointers between its leaves and
the corresponding elements in the buckets. Finally, when the construction of q∗-heaps
is concluded we continue with the incremental construction of the higher levels of the
SIST.

When the construction of MAIN on the n1 elements is concluded, then all elements
inside MAIN maintain pointers to list L or to some floating nodes that are to be
deleted. Then, the update operations stored in Q are processed. For each new update
that is also added to Q, we process a constant number of updates already stored in
this queue. Assume that the update extracted and processed from Q is the insertion
of x, which has been already inserted in L. Then, the insertion algorithm described
in Sect. 3.2.2 is applied with the exception that L needs not to be updated. In the
case where the update from Q is a deletion of element x, then we follow the pointer
to the floating node containing x. The algorithm for deletion described in Sect. 3.2.2
is applied to x with the exception that the node to be deleted is floating. As soon as
Q gets empty and OLD-MAIN and MAIN contain the same set of elements, OLD-
MAIN is discarded. Then the whole process restarts for the new MAIN.

3.2.2 Update and Search Operations

Having concluded the description of the data structure, we move to the discussion of
the update and search operations supported by T . First, we discuss the weak update
operations and then we move to the discussion of the search operation. Note that the
SIST is not affected by any update operation between two consecutive reconstruc-
tions. The SIST will change only after a new MAIN takes over.

Deletions can be handled quite easily. We are provided with a finger to the element,
let it be ψ , subject to deletion in list L. We check whether any of the two adjacent
elements of ψ in L point to the same truncated element ψ̃ . If this is the case, then
we further check if the unique pointer of ψ̃ to its chain points to ψ . If indeed, we
update this pointer so that it now points to the adjacent element of ψ in the same
chain. Finally, we remove ψ from L and terminate. This case takes O(1) worst-case
time, since we have to manipulate only a constant number of pointers. Otherwise (if
none of the two adjacent elements of ψ in L point to the same truncated element),
ψ is the only element of L pointing to ψ̃ and thus we remove ψ (from L) as well as
ψ̃ from the respective bucket in O(1) worst-case time, since the bucket is organized
as a q∗-heap. This concludes the deletion operation that takes O(1) worst-case time
in total.

The insertion of a new element ψ follows a similar approach. Assume that ψ is to
be inserted next to an element y of L pointed to by a finger f . Initially, ψ is inserted
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in L next to y in O(1) worst-case time, since only a constant number of pointers need
to be manipulated. Let y′ be the other adjacent element of ψ . We first check whether
ỹ or ỹ′, or both are equal to ψ̃ . If this is the case, then we create a pointer from ψ to
the respective truncated element and terminate. Otherwise, we find the representative
rep(i) of the bucket Bi in which ỹ is stored. By using the list of representatives R,
we check whether ψ̃ belongs to the bucket Bi or to some other bucket. This check
is necessary, since if Bi+1 is empty and ψ̃ should be inserted in it due to the fact
that ỹ belongs to Bi , we would erroneously insert ψ̃ to bucket Bi . Thus, if there is a
sequence of such empty buckets (a very unlikely event due to Theorem 9), we may
have to search R sequentially to locate the correct bucket. As soon as we locate the
correct bucket, we insert ψ̃ to the corresponding empty q∗-heap. Finally, a pointer is
established from ψ̃ to ψ . By Theorem 9, there is no sequence of empty buckets with
high probability. Thus, since an insertion in a q∗-heap requires O(1) worst-case time,
we get that the insertion operation takes O(1) time with high probability, due to the
location of the correct bucket.

Recall that: (i) in both insertions and deletions the SIST remains unaffected, and
a leaf of the SIST may correspond to an element which has been deleted, while an
element in a bucket may not be stored in any leaf of the SIST; (ii) the leaves of the
SIST define the range of values stored in the corresponding bucket and this is exactly
why we need to use list R, to ensure that an element is inserted in the correct bucket.

Now, we turn to the description of the predecessor search operation which is
slightly more involved than the update operations, due to the interplay between the
bottom level of T and the list L. The search procedure for locating an element ψ

in T , provided that the finger f points to element y in list L, is carried out as follows.
Initially, the search procedure in T compares ψ with y in order to decide whether

ψ is to the left or to the right of y. Assume, without loss of generality, that ψ is to the
right of y. The pointer from y to ỹ is followed in order to determine the bucket Bi in
which ỹ belongs.

Let Bi+1 be the bucket to the right of Bi . Three cases are considered, which can
be distinguished by comparing ψ with the representatives of Bi and Bi+1:

1. ψ ≤ rep(i): In this case, we just retrieve from the q∗-heap that implements Bi

the element z̃0 which is equal to the target element ψ̃ or its predecessor in O(1)

worst-case time (Sect. 2.2). Note that (Sect. 3.1) there may be many real elements
z0 �= z1 �= · · · �= zl stored in list L (possibly all not equal to the target ψ ) with
truncated value equal to z̃0 stored in the q∗-heap. According to Definition 2, these
real elements zi , 0 ≤ i ≤ l, constitute the chain of z̃0 of length l + 1. The element
zi can be located in L by following the pointer from z̃0 to list L and then making
a sequential search during which each zi , 0 ≤ i ≤ l, is compared to target ψ and
either a match is found or the largest element less than ψ is returned (predecessor)
in O(l) time (at most linear to chain length).

2. rep(i) < ψ ≤ rep(i + 1): This means that element ψ belongs to bucket Bi+1.
Case 1 is applied for this bucket.

3. ψ > rep(i + 1): The elements are stored in different buckets Bi and Bj , j �= i + 1,
containing ỹ and ψ̃ respectively. In this case, the search starts from rep(i) (by
following the respective pointer from Bi ) and continues towards the root of the
SIST. Assuming that node v is reached, it is checked whether ψ is stored in a
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descendant of v or in the right neighbor z of v. This can be easily accomplished
by checking the boundaries of the REP arrays of both nodes. If they are not stored
in the subtrees of v and z, then the search proceeds to the parent of v, otherwise it
continues in the particular subtree using the ID and REP arrays (see Sect. 2.1, in
particular equation (5)). When a leaf is reached, the pointer to its respective bucket
Bj is followed and Case 1 is invoked for this bucket.

It follows from the above description that the time complexity of the search oper-
ation depends on the traversal of the internal nodes of the SIST, the searching time
within a bucket (q∗-heap), and the expected length of the chain. Regarding the latter,
observe that if the length of the chain of ψ̃ is 	(ψ̃), then there will be an additive term
of O(	(ψ̃)) in the time complexity of the search operation. Thus, it would be best to
bound the expected length of an arbitrary chain. We can provide such an expected
bound as shown in the next section (Lemma 4) and also show that it is very unlikely
that the chain length increases (Corollary 1) with respect to n.

4 Analysis of Time and Space Complexity

In this section we analyze the time complexities of the operations of our data struc-
ture. We start with the preprocessing and update bounds.

Let n = O(n0) be the number of elements in the latest reconstruction, which are
stored in the sorted list L, and are drawn from an (n · g(H(n)),H−1(H(n) − 1))-
smooth distribution.

Lemma 3 The preprocessing time and the space usage of our data structure is �(n).
Deletions are performed in O(1) worst-case time, while insertions are performed in
O(1) time with high probability.

Proof The time and space bounds regarding the top level (SIST) follow from
Lemma 1. The other components of our structure are built in O(n) time by sim-
ply traversing the proper subtrees of the top level. The time bounds of the up-
date operations follow from the discussion in Sect. 3.2.2, the results in [40, 41]
(see also Sect. 2.2) as well as Theorem 1. In particular, since PT (n) = O(n) and
WDT (n) = WIT (n) = O(1), it follows by Theorem 1 that the insertion and deletion
time is O(1), the former with high probability while the latter in the worst-case. �

We now turn to the time complexity of the predecessor search operation. We dis-
tinguish between two cases for the sake of simplicity. First, we study the case of
(n/(log logn)1+ε, n1−δ)-smooth densities, and then we discuss how our result can be
extended to the general case of (n · g(H(n)),H−1(H(n) − 1))-smooth densities.

4.1 The Case of (n/(log logn)1+ε, n1−δ)-Smooth Densities

As it was mentioned earlier (Sect. 3.2.2), the search time is affected (among others)
by the expected length of the chain (Definition 2) of a truncated element, and before
going into the details of our search time investigation, we provide a bound for this
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length. Note that the chain of a truncated element is initially created during the con-
struction of SIST and it is subsequently affected only by update operations (as new el-
ements are inserted or existing elements are deleted). Hence, the sought chain length
should be provided with respect to update operations. This is precisely recorded by
Lemma 4 below, which states that the length of a chain is O(1) in expectation during
the update operations.

This result is crucial in efficiently locating—via q∗-heaps—an arbitrary target
real ψ . To see this, recall that our q∗-heaps work with fixed precision numbers. As-
sume that when searching for a real ψ , the appropriate q∗-heap locates a fixed preci-
sion number z̃ that coincides with or is the predecessor of our target element ψ̃ . Then,
Lemma 4 implies that the chain of z̃ has O(1) expected length, which are real ele-
ments inserted during the rn0 update operations. Therefore, by following the pointer
from z̃ towards one of these real elements among all of them that consist its chain, we
can determine within O(1) expected search time, if the real ψ appears in the linked
list L and find its predecessor. Moreover, Lemma 4 guarantees that O(logn) bits suf-
fice to represent all chains. In other words, O(logn) bits suffice to create indices as
well as to represent and manipulate the truncated versions of the real elements in the
buckets. Finally, an easy consequence of Lemma 4 is Corollary 1 showing that it is
very unlikely that the chain length gets large.

Lemma 4 Let the elements in our data structure belong to [a, b] ⊂ R and are drawn
according to an (f1, f2)-smooth input distribution μ, where f1(n) = n

log1+ε logn
and

f2(n) = n1−δ = nα , α < 1. Consider an arbitrary truncated element x̃ ∈ [a, b] en-
coded with up to |̃x| = O(logn) bits. Then, during each update operation, the ex-
pected chain length of x̃ ∈ [a, b] is O(1).

Proof Let the elements in S0 ordered increasingly as x1, x2, . . . , xn0 , that is, these n0

real numbers are stored in our data structure at the end of the latest reconstruction.
These reals belong to [a, b] ⊂ R and are drawn according to the unknown (f1, f2)-
smooth input distribution μ, where (recall Remark 1) f1(n) = I (n) = n

log1+ε logn
and

f2(n) = n/R(n) = nα , α < 1. For convenience, let x0 = a and xn0+1 = b.
According to Definition 1 and the discussion in Sect. 2.1, the interval [a, b] is di-

vided initially to f1(n) equally sized subintervals each of which gets at most β·f2(n)
n

mass probability and β·f2(n)
n

× n = β · f2(n) = βnα elements in expectation. For
simplicity and without loss of generality we will not take into account β , since it is
a constant. This procedure is applied recursively until we reach a sufficiently small
subinterval with probability mass as low as possible in order to get C = O(1) ele-
ments in expectation. Thus, if h is the number of recursions it suffices:

nαh = C �⇒ h = O(log1/α logn) (13)

Note that in the 1-st recursion the number of subintervals is f1(n) = f1(n
α0

) =
n

log1+ε logn
. In the 2-nd recursive division of the range, each such subinterval will

be split into f1(n
α) = f1(n

α1
) = nα1

log1+ε lognα1 further subintervals. In general, in the
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(i + 1)-th recursive division, each subinterval produced during the i-th recursion will

be divided into f1(n
αi

) = nαi

log1+ε lognαi further subintervals.

We call the subintervals at the final h-th level (with h determined by (13) above)
of recursion as indivisible subintervals. Notice that (13) implies that for each update
operation, each such indivisible subinterval is expected to contain only O(1) real
elements stored in L. Thus, an arbitrary truncated element x̃ ∈ [a, b] can be indexed
in terms of these indivisible subintervals, while guaranteeing O(1) expected chain
length (Definition 2). It only remains to show that O(logn) bits suffice to encode
this indexing via indivisible subintervals. But, this reduces in showing that the total
number of indivisible subintervals is nO(1), which is proved below.

Taking into account (13), in the final level of recursion the total number of indi-
visible subintervals is

h∏
i=0

f1
(
nαi ) =

O(log1/α logn)∏
i=0

f1
(
nαi ) =

O(log1/α logn)∏
i=0

nαi

log1+ε lognαi

<

O(log1/α logn)∏
i=0

nαi

(14)

It follows that the total number of bits needed to represent all these indivisible subin-
tervals is at most

log

(O(log1/α logn)∏
i=0

nαi

)
(15)

which is

O(log1/α logn)∑
i=0

lognαi = logn

O(log1/α logn)∑
i=0

αi < logn

∞∑
i=0

αi

= logn · 1

1 − α
= O(logn) (16)

Thus, O(logn) bits are sufficient to represent all indivisible subintervals, and as a re-
sult of the aforementioned recursive division each such indivisible subrange contains
O(1) elements in expectation. �

The following corollary is an easy consequence of Lemma 4.

Corollary 1 Let the elements in our data structure belong to [a, b] ⊂ R and
are drawn according to an (f1, f2)-smooth input distribution μ, where f1(n) =

n

log1+ε logn
and f2(n) = n1−δ = nα , α < 1. Consider an arbitrary truncated element

x̃ ∈ [a, b] encoded with up to |̃x| = O(logn) bits. Then, during each update opera-
tion, the chain length of x̃ ∈ [a, b] is O(φ(n)) with high probability, for any function
φ(n) slowly growing with respect to n.
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Fig. 1 An overview of the tree
structure as well as the search
path from a finger f to an
element y

Proof It is a straightforward application of the Markov’s inequality, since by
Lemma 4 the expected chain length of any x̃ ∈ [a, b] is O(1). That is, if the ran-
dom variable 	(̃x) is the chain length of x̃ then Pr[	(̃x) > φ(n)] ≤ E[	(̃x)]

φ(n)
→ 0, as

φ(n) → ∞ with respect to n. �

The complexity of our search operation is captured by the following theorem.

Theorem 2 Suppose that the top level of T is a static interpolation search tree with
parameters R(n0) = (n0)

δ , I (n0) = n0/(log logn0)
1+ε , where ε > 0, 0 < δ < 1. Let

d be the number of elements between the finger f and the search element y in list L,
let Bi and Bj be the buckets containing f̃ and ỹ respectively, and let n denote the
current number of elements drawn from a (n/(log logn)1+ε, n1−δ)-smooth distribu-
tion. Then, the time complexity of a search operation is equal to: (a) O(

log |Bi |
log logn

+
log |Bj |
log logn

+ log logd) in expectation; (b) O(
log |Bi |
log logn

+ log |Bj |
log logn

+ log logd + φ(n)) with
high probability, where φ(n) is any slowly growing function of n.

Proof The search operation in T can be decomposed into four basic steps (see
also Fig. 1): (i) the search for ỹ in the q∗-heap implementing Bi or its adjacent
bucket Bi+1, (ii) the traversal of internal nodes of the static interpolation search tree,
using ancestor pointers, level links and interpolation search in order to find Bj con-
taining ỹ, (iii) the search for ỹ in the q∗-heap implementing Bj and (iv) the search in
L for y.

From the results in [40, 41] (see also Sect. 2.2), the time complexity for the exe-

cution of steps (i) and (iii) is equal to O(
log |Bi |

log logn0
+ log |Bj |

log logn0
), where n0 is the number

of stored elements at the latest reconstruction. Since log logn0 = �(log logn), this
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time complexity is equal to O(
log |Bi |
log logn

+ log |Bj |
log logn

). Once locating ỹ in Bj , we get from
Lemma 4 and Corollary 1 that step (iv) can be accomplished in O(1) expected time,
or in O(φ(n)) time with high probability.

Step (ii) introduces the distance d (number of elements between f and y in L) in
the time complexity. To begin with, if f and y lie in the same bucket Bi or in adjacent
buckets then the first two cases in the description of the search procedure (Sect. 3.2)
guarantee that in an O(1) number of steps we will have identified this case. Assume,
that this is not the case. This means that the minimum distance between f and y

is �(logn) with high probability (see Theorem 9) since there is at least one bucket
whose elements lie between f and y in list L.

Suppose that for step (ii) we stop the ascension of the search procedure at node u,
coming from child v and descending to child w (see Fig. 1). It is clear that between
v and w there must exist at least one separating node, call it z, otherwise we should
stop the traversal at a lower height. Let u	 and z	 be the number of leaves of the
subtrees rooted at nodes u and z and let t be the height of u. From Remark 2 and
Lemma 2, t = O(log logu	). Finally, let dB be the distance between f and y in
terms of number of buckets and let d	 be the number of leaves between rep(i) and
rep(j). Apparently, logn ≤ z	 < u	 with high probability, since at least one bucket is
between f and y. Additionally, it holds that z	 ≤ d	 ≤ u	. With respect to distance
we get that d	 = �(dB logn) with high probability, and d = �(dB logn) with high
probability by Theorem 9. As a result, d = �(d	) with high probability, meaning
that with high probability the distance measured in term of leaves of the SIST is
asymptotically equal to the real distance between f and y with respect to list L.

Since t = O(log logu	) and z	 = (u	)
δ , we conclude that (O(22t

))δ ≤ d	 ≤
O(22t

). Since the exponent δ, when considered in the double logarithmic time com-
plexity, becomes an additive term and d = �(d	) we deduce that the time complexity
in the ascent phase of step (ii) is O(log logd) with high probability. In the following,
we prove (by exploiting the probabilistic analysis in [26]) that the time complexity
of the descent phase in step (ii) is O(log logd) with high probability and the theorem
will follow.

Consider the descent phase of step (ii). During the descent the algorithm visits a
path P of t nodes with the last node being a leaf of SIST. Let v1, . . . , vt be the nodes
in the path listed in order of visit and consider a node vi arbitrarily selected in the
path. By Lemma 2, the leaves (elements) of the subtree rooted at vi are μ-random,
and let ni be their number. It is clear that for every i, ni ≥ logn. In [26, Lemma 7]
it was proven that, for the special case where δ = 1/2 there is a constant c such
that the probability that the interpolation procedure takes in vi more than p steps
is bounded from above by ( c

p
)p

√
ni . Their analysis can be immediately extended in

order to prove that for arbitrary δ there is a constant c such that the probability that
the interpolation procedure takes in vi more than p steps is bounded from above by

( c
p
)p·n1−δ

i . For p = 2c the above bound becomes ( 1
2 )2cn1−δ

i . Let q be the probability
that there is a node in P for which the interpolation takes more than 2c steps. Then, it

follows that q ≤ ∑t
i=1(

1
2 )2cn1−δ

i ≤ t ( 1
2 )2c(logn)1−δ

. Hence, for the probability q ′ that

the descent phase takes less than 2ct steps we have q ′ ≥ 1 − t ( 1
2 )2c(logn)1−δ

. Since

t = O(log logd) = O(log logn) we get that t ( 1
2 )2c(logn)1−δ → 0, as n grows, and
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thus we conclude that the descent phase in step (ii) takes 2ct = O(log logd) time
with high probability. �

In order to prove that the data structure has a small expected search time, we
introduce a combinatorial game of balls and bins with deletions (Sect. 5). To obtain
the desirable time complexities with high probability, we provide upper and lower
bounds on the number of elements in a bucket and we show that no bucket gets empty
(see Theorem 9). In particular, we show that |Bi | = �(logn) with high probability
for a bucket Bi . Plugging this into Theorem 2 and taking into account Lemma 3, we
get the main result of the paper.

Theorem 3 Let μ be a (n/(log logn)1+ε, n1−δ)-smooth density for ε > 0 and 0 <

δ < 1. Then, there exists a finger search tree on n elements that for μ-random inser-
tions and random deletions achieves a search time of: (i) O(log logd) in expectation;
(ii) O(log logd +φ(n)) with high probability. Here, φ(n) is any slowly growing func-
tion of n, and d is the distance between the finger and the search element. The space
usage of the data structure is �(n). Deletions are performed in O(1) worst-case time,
while insertions are performed in O(1) time with high probability.

4.2 Other Smooth Densities

Our analysis so far focused on the particular class of (n/(log logn)1+ε, n1−δ)-smooth
densities where ε > 0 and 0 < δ < 1. In this section, we show that we can generalize
our results to hold for the general class of (n ·g(H(n)),H−1(H(n)−1))-smooth den-
sities considered in [2], where

∑∞
i=1 g(i) = �(1), and H(n) is as defined in Sect. 2,

thus being able to achieve o(log logd) expected time complexity for several distribu-
tions.

As it is proved in [2], this class of smooth densities defines a natural hierarchy in
the sense that the class of (n · g(H(n)),H−1(H(n) − 1))-smooth densities contains
the class of (n · g(F (n)),F−1(F (n) − 1))-smooth densities as long as H(n), F(n),
and H(n)/F (n) are non-decreasing functions. Moreover, if H(n) is also o(logn) but
not O(1), then any member of this class is not zero on an interval [2].

We first observe that the results of Lemma 4 and Corollary 1 carry over to the
general class of (n · g(H(n)),H−1(H(n) − 1))-smooth densities. In particular, by
working as previously in the proof of Lemma 4 but for this general class of input
distributions, we get that the total number of indivisible subintervals is

h∏
i=0

f1(ni) =
h∏

i=0

ni · g(
H(ni)

)

The total number of bits needed to represent all these indivisible subintervals is at
most

log

(
h∏

i=0

ni · g(
H(ni)

)) =
h∑

i=0

log
(
ni · g(

H(ni)
))

< logn

h∑
i=0

g
(
H(ni)

) = O(logn)

where the last equality follows from the fact that
∑h

i=0 g(H(ni)) <
∑∞

i=1 g(i) =
�(1), because H(ni+1) = H(H−1(H(ni)−1)) = H(ni)−1. Hence, we have proved
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that Lemma 4 carries over to the general class of smooth densities, and consequently
the same applies for Corollary 1. We record this fact in the next lemma.

Lemma 5 Let the elements in our data structure belong to [a, b] ⊂ R and are
drawn according to an (f1, f2)-smooth input distribution μ, where f1(n) = I (n) =
n · g(H(n)) and f2(n) = n/R(n) = H−1(H(n) − 1)), where

∑∞
i=1 g(i) = �(1),

H(n) : N → R
+
0 is non-decreasing, invertible, with a second derivative less than or

equal to zero, o(logn) and not O(1), and H−1(i) �= 0 for 1 ≤ i ≤ H(n) − 1. Con-
sider an arbitrary truncated element x̃ ∈ [a, b] encoded with up to |̃x| = O(logn)

bits. Then, during each update operation: (a) the expected chain length of x̃ ∈ [a, b]
is O(1); (b) the chain length of x̃ ∈ [a, b] is O(φ(n)) with high probability, for any
function φ(n) slowly growing with respect to n.

By examining the proof of Theorem 2, we can see that the specific choice of the
class of smooth densities comes into play when analyzing steps (ii) and (iv) of the
search procedure in T . Step (iv) concerns the location of the search element y in L,
whose time is dominated by the length of the chain of ỹ and is given by Lemma 5.
Hence, to provide a search time bound for the aforementioned general class of smooth
densities, it remains to provide a bound for step (ii).

Let t denote the time complexity of step (ii). We can generalize the proof of
Theorem 2 by applying the following argument: let h(z) be the height of z and
h(u) be the height of u. Let z	 be the number of leaves in the subtree rooted at
z and let u	 be the number of leaves in the subtree rooted at u. Then, the follow-
ing hold: (a) t = �(h(u)); (b) d	 = �(d) with high probability; (c) z	 ≤ d	 ≤ u	

⇒ h(z) ≤ H(d	) ≤ h(u); and (d) h(u) = h(z) + 1. From (a) and (d) we get that
t = O(h(z)), and from (b) and (c) we get t = O(H(d)). The above discussion estab-
lishes the following theorem.

Theorem 4 Let μ be a (n · g(H(n)),H−1(H(n) − 1))-smooth density, where∑∞
i=1 g(i) = �(1), H(n) : N → R

+
0 is non-decreasing, invertible, with a second

derivative less than or equal to zero, o(logn) and not O(1), and H−1(i) �= 0 for
1 ≤ i ≤ H(n) − 1. Then, there exists a finger search tree on n elements that for μ-
random insertions and random deletions achieves a search time of: (i) �(H(d)) in
expectation; (ii) �(H(d) + φ(n)) with high probability. Here, φ(n) is any slowly
growing function of n, and d is the distance between the finger and the search ele-
ment. The space usage of the data structure is �(n). Deletions are performed in O(1)

worst-case time, while insertions are performed in O(1) time with high probability.

For example, the density μ[0,1](x) = − lnx is (n/(log∗ n)1+ε, log2 n)-smooth,
and for this density R(n) = n/ log2 n. This means that the height of the tree with
n elements is H(n) = �(log∗ n) and the method of [2] gives an expected search
time complexity of �(log∗ n). However, by applying Theorem 4, we can reduce the
expected time complexity for the search operation to �(log∗ d), or to �(log∗ d +
φ(n)) with high probability.

Note that there are smooth densities that do not belong to the aforementioned
hierarchy [2]. These concern the two extreme cases of H(n), H(1) = �(1) and
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H(n) = �(logn), for which the corresponding distributions may be zero in an in-
terval. The former case is the class of (n,1)-smooth densities, which is equivalent
to the class of bounded densities, and for which our approach clearly achieves an
expected �(1) search time. The latter case is the class of (n · g(�(logn)),�(n))-
smooth densities that contains all densities, and for which our approach achieves an
expected �(logn) search time. That is, for these two extreme cases our approach
achieves the same results as the method in [2].

4.3 Worst-Case Guarantees

The data structure for the predecessor problem presented here provides bounds with
high probability when certain assumptions hold, the strictest being the assumption
that the elements are generated by the same smooth distribution. If this assumption
does not hold, then our structure fails to provide any guarantees. In order to alle-
viate this problem, we follow the standard approach of maintaining two data struc-
tures back-to-back. We employ a data structure W for the predecessor problem that
guarantees worst-case time bounds, while the T structure guarantees expected time
complexities. Structure W can be any worst-case constant update finger search data
structure, e.g., like the ones in [7] or [4].

The structure T is attached a flag active denoting whether this structure is valid
subject to searches and updates, or invalid. Thus, when active is TRUE both structures
T and W maintain the same set of elements. Update operations are performed on
both structures in worst-case constant time, since T is valid as long as there are no
sequences of empty buckets as shown below. Predecessor queries are performed in
alternating steps between W and T and the structure that first concludes the query
returns the answer. When active is FALSE, then only W is valid and it is the only
structure that serves queries and updates while the new T structure is constructed
incrementally according to Theorem 1.

Initially or at the end of every reconstruction, T is valid (active is set to TRUE).
T becomes invalid in two different cases:

1. When the size of any bucket during update operations is not in the range
[ 1
c

lnn, c lnn], for some appropriately chosen constant c > 2 defined by the quan-
tity κ(t) in the proof of Theorem 8. This may be the result of a concept drift (i.e.,
a change in the distribution generating the data) or simply an unfortunate (with
very small probability) sequence of update operations. This criterion is applied to
OLD-MAIN and to MAIN as well, provided that MAIN is in the phase of pro-
cessing the updates in Q. We signal this event by setting active to FALSE.

2. When the search in the SIST takes a lot of time. This can happen when the distri-
bution is not (n/(log logn)1+ε, n1−δ)-smooth. We signal this event, setting active
to FALSE, when in a constant-size sequence of search operations it is the case that
W always concludes first.

By making use of the results in [4] and using Theorem 3 to implement T , the
above discussion provides the final result of this paper which is summarized in the
following theorem.
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Theorem 5 Let μ be a (n/(log logn)1+ε, n1−δ)-smooth density for ε > 0 and 0 <

δ < 1. Then, there exists a finger search tree on n elements that for μ-random inser-
tions and random deletions achieves a search time of: (i) O(log logd) in expectation;

(ii) O(log logd + φ(n)) with high probability; (iii) O(

√
logd

log logd
) in the worst-case.

Here, φ(n) is any slowly growing function of n, and d is the distance between the
finger and the search element. The space usage of the data structure is �(n) and the
worst-case update time is O(1).

The same reasoning can also be applied to the general class of (n · g(H(n)),

H−1(H(n) − 1))-smooth distributions (Sect. 4.2), in which case T is implemented
using Theorem 4. In this case, the worst-case bounds stated in Theorem 5 re-
main unaffected, and only the search time becomes �(H(d)) in expectation and
�(H(d) + φ(n)) with high probability.

5 A Combinatorial Game of Balls and Bins with Deletions

In this section we describe a balls and bins random process that models each update
operation in the structure T presented in Sect. 3. Consider the structure T immedi-
ately after the latest reconstruction. It contains the set S0 of n elements (we shall use
n for notational simplicity) which are drawn randomly according to the distribution
μ(·) from the interval [a, b]. The next reconstruction is performed after rn update
operations on T , where r is a constant. Each update operation is either a uniformly at
random deletion of an existing element from T , or a μ-random insertion of a new el-
ement from [a, b] into T . To model the update operations as a balls and bins random
process, we do the following.

We represent each selected element from [a, b] as a ball. We partition the inter-
val [a, b] into ρ = n

lnn
parts [rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ · · · ∪ (rep(ρ − 1),

rep(ρ)], where rep(0) = a, rep(ρ) = b, and ∀i = 1, . . . , ρ − 1, the elements rep(i) ∈
[a, b] are those defined in Sect. 3. We represent each of these ρ parts as a distinct bin.

During each of the rn insertion/deletion operations in T , a μ-random ball
x ∈ [a, b] is inserted in (deleted from) the i-th bin Bi iff rep(i − 1) < x ≤ rep(i),
i = 2, . . . , ρ, otherwise x is inserted in (deleted from) B1.

5.1 Almost Uniform Bins

Our aim is to prove that with high probability the maximum load of any bin is
O(lnn), and that no bin remains empty as n → ∞. If we knew the distribu-
tion μ(·), then we could partition the interval [a, b] into ρ = n

lnn
distinct bins

(parts), [repμ(0), repμ(1)] ∪ (repμ(1), repμ(2)] ∪ · · · ∪ (repμ(ρ − 1), repμ(ρ)], with
repμ(0) = a and repμ(ρ) = b, such that a μ-random ball x would be equally likely to
belong into any of the ρ corresponding bins. In other words, since these ρ bins have
equal probability to receive ball x, we have that ∀x ∈ [a, b] it holds:

Pr
[
x ∈ (

repμ(i − 1), repμ(i)
]] =

∫ repμ(i)

repμ(i−1)

μ(t) dt = 1

ρ
= lnn

n
,

i = 1, . . . , ρ = n

lnn
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Fig. 2 Plot of an unknown probability density μ(x), x ∈ [a, b]. The upper graphic represents the uniform
bins defined by: repμ(0), repμ(1), . . . , repμ(ρ). The lower graphic represents the almost uniform bins
defined by: rep(0), rep(1), . . . , rep(ρ)

Remark 3 The above expression implies that the unknown sequence repμ(0), . . . ,

repμ(ρ) makes the event “insert (delete) a μ-random (random) element x into (from)
the structure” equivalent to the event “throw (delete) a ball uniformly at random into
(from) one of ρ distinct bins”. Such a uniform distribution of balls into bins is well
understood and it is folklore to find conditions such that no bin remains empty and
no bin gets more than O(lnn) balls.

Unfortunately, the probability density μ(·) is unknown. Consequently, our
goal is to approximate the unknown sequence repμ(0), . . . , repμ(ρ) with a se-
quence rep(0), . . . , rep(ρ), that is, to partition the interval [a, b] into ρ parts
[rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ · · · ∪ (rep(ρ − 1), rep(ρ)], aiming to prove that
each bin (part) will have the element property:

Pr
[
x ∈ (

rep(i − 1), rep(i)
]]′ =

∫ rep(i)

rep(i−1)

μ(t) dt = �

(
1

ρ

)
= �

(
lnn

n

)
,

i = 1, . . . , ρ

Remark 4 The sequence rep(0), . . . , rep(ρ) makes the event “insert (delete) a μ-
random (random) element x into (from) the structure” equivalent to the event “throw
(delete) a ball almost uniformly at random into one of ρ distinct bins”. This fact
will become the cornerstone in our subsequent proof that no bin remains empty and
almost no bin gets more than �(lnn) balls.

An illustration of Remarks 3 and 4 is given in Fig. 2.
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The basic insight of our approach is illustrated by the following random game.
Consider the part of the horizontal axis spanned by [a, b], which will be referred to
as the [a, b] axis. Suppose that only a wise man knows the positions on the [a, b]
axis of the sequence repμ(0), . . . , repμ(ρ), referred to as the red dots. Next, perform
n independent insertions of μ-random elements from [a, b] (this is the role of the
set S0). In each insertion of an element x, we add a blue dot in its position on the
[a, b] axis. At the end of this random game we have a total of n blue dots in this
axis. Now, the wise man reveals the red dots on the [a, b] axis, i.e., the sequence
repμ(0), . . . , repμ(ρ). If we start counting the blue dots between any two consecutive
red dots repμ(i − 1) and repμ(i), we almost always find that there are lnn + o(1)

blue dots. This is because the number X
μ
i of μ-random elements (blue dots) selected

from [a, b] that belong in (repμ(i − 1), repμ(i)], i = 1, . . . , ρ, is a Binomial ran-

dom variable, X
μ
i ∼ B(n, 1

ρ
= lnn

n
), which is sharply concentrated to its expectation

E[Xμ
i ] = lnn.

The above discussion suggests the following procedure for constructing the se-
quence rep(0), . . . , rep(ρ). Partition the sequence of n blue dots on the [a, b] axis
into ρ = n

lnn
parts, each of size lnn. Set rep(0) = a, rep(ρ) = b, and set as rep(i) the

i · lnn-th blue dot, i = 1, . . . , ρ − 1. Call this procedure Red-Dots.

Remark 5 The above intuitive argument does not imply that limn→∞ rep(i) =
repμ(i), ∀i = 0, . . . , ρ. Clearly, since repμ(i), i = 0, . . . , ρ, is a real number, the
probability that at least one blue dot hits an invisible red dot is insignificant. The
above argument stresses on the crucial fact that the probability measure enclosed
in the random interval (rep(i − 1), rep(i)], i = 1, . . . , ρ, must be of order �( 1

ρ
) =

�( lnn
n

), regardless of the particular distribution density μ(·).

Theorem 6 Let rep(0), rep(1), . . . , rep(ρ) be the output of procedure Red-Dots,
and let pi(n) = ∫ rep(i)

rep(i−1) μ(t) dt . Then:

Pr

[
∃i ∈ {1, . . . , ρ} : pi(n) �= �

(
1

ρ

)
= �

(
lnn

n

)]
→ 0

Proof Let α(n) = lnn/n. Without loss of generality, we compute the probability that
a block of lnn = α(n)n consecutive blue dots is spread into a sub-interval (part) of
the [a, b] axis of probability measure q(n). This probability equals

(
n

α(n)n

)
q(n)α(n)n

(
1 − q(n)

)(1−α(n))n ∼
[(

q(n)

α(n)

)α(n)(1 − q(n)

1 − α(n)

)1−α(n)]n

(17)

where the expression on the right is asymptotically equal to the expression on the left
if we use Stirling’s approximation n! ∼ ( n

e
)n

√
2πn and ignore inverse polynomial

multiplicative terms. Expression (17) is a convex function of two variables (q(n) and
α(n)) and achieves its maximum when q(n) = α(n). Hence, the expression vanishes
exponentially with n, when either q(n) = o(α(n)) or q(n) = ω(α(n)). There are ρ =
n

lnn
blocks of lnn consecutive blue dots. Applying the first moment method, we get
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that the probability that at least one block has its lnn blue dots spread into a sub-
interval of [a, b] axis of measure q(n) is at most

n

lnn
·
[(

q(n)

α(n)

)α(n)(1 − q(n)

1 − α(n)

)1−α(n)]n

→ 0 (18)

as n approaches infinity. We conclude that it is very unlikely that the probability
measure pi(n) of each part (rep(i −1), rep(i)], i = 1, . . . , ρ, defined by the sequence
rep(0), rep(1), . . . , rep(ρ), will be different from �(1/ρ) = �(lnn/n). �

The above discussion and Theorem 6 imply the following.

Corollary 2 If n elements are μ-randomly selected from [a, b], and the se-
quence rep(0), . . . , rep(ρ) from those elements is produced by procedure Red-
Dots, then this sequence partitions the interval [a, b] into ρ distinct bins (parts)
[rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ · · · ∪ (rep(ρ − 1), rep(ρ)] such that a ball
x ∈ [a, b] can be thrown (deleted) independently of any other ball in [a, b] into
(from) any of the bins with probability pi(n) = Pr[x ∈ (rep(i − 1), rep(i)]] = ci lnn

n
,

where i = 1, . . . , ρ and ci is a positive constant.

Definition 3 Let c = mini{ci} and C = maxi{ci}, i = 1, . . . , ρ, where ci = npi(n)
lnn

.

5.2 Randomness Invariance

In this section, we study the randomness properties in each of the rn subsequent
insertion/deletion operations on the structure T (r is a constant).

Observe that before the process of rn insertions/deletions starts, each bin Bi (i.e.,
part (rep(i −1), rep(i)]) contains exactly lnn balls (blue dots on the [a, b] axis) of the
n initial balls of the set S0. For convenience, we analyze a slightly different process
of the subsequent rn insertions/deletions. Delete all elements (balls) of S0 except for
the representatives rep(0), rep(1), . . . , rep(ρ) of the ρ bins. Then, insert μ-randomly
n/c (see Definition 3) new elements (balls) and subsequently start performing the rn

insertions/deletions. Since the n/c new balls are thrown μ-randomly into the ρ bins
[rep(0), rep(1)]∪ (rep(1), rep(2)]∪ · · ·∪ (rep(ρ −1), rep(ρ)], by Corollary 2 the ini-
tial number of balls into Bi is a Binomial random variable that obeys B(n/c,pi(n)),
i = 1, . . . , ρ, instead of being fixed to the value lnn. Clearly, if we prove that for this
process no bin remains empty and does not contain more than O(lnn) balls, then this
also holds for the initial process.

Definition 4 Let the random variable M(j) denote the number of balls existing in
structure T at the end of the j -th insertion/deletion operation, j = 0, . . . , rn. Initially,
M(0) = n/c.

The next useful lemma allows us to keep track of the statistics of an arbitrary bin.

Lemma 6 Suppose that at the end of j -th insertion/deletion operation there exist
M(j) distinct balls that are μ-randomly distributed into the ρ distinct bins. Then,
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after the (j + 1)-th insertion/deletion operation the M(j + 1) distinct balls are also
μ-randomly distributed into the ρ distinct bins.

Proof We use induction on j . The lemma trivially holds for j = 0. That is, indepen-
dently (by Corollary 2) each ball x ∈ [a, b] of the initial M(0) = n/c balls belongs
into Bi with probability pi(n) = ci/ρ = ci lnn/n, i = 1, . . . , ρ. Suppose that it holds
for the M(j) balls when j = k. That is, each ball x, of the M(k) existing balls, be-
longs into Bi with probability pi(n), i = 1, . . . , ρ. We prove the lemma for j = k +1.

If the (k + 1)-th operation is insertion then the current number of balls is
M(k + 1) = M(k) + 1. By Corollary 2, the new inserted ball x′ belongs into
Bi independently with probability pi(n), i = 1, . . . , ρ. For the same reason, each
ball x, of the M(k) old balls, belongs into Bi independently with probability pi(n),
i = 1, . . . , ρ. We conclude that at the end of the (k + 1)-th operation, each ball x of
the total M(k + 1) = M(k) + 1 balls belongs into Bi independently with probability
pi(n).

If the (k + 1)-th operation is deletion then the current number of balls is
M(k + 1) = M(k) − 1. Due to Corollary 2, each ball x, of the M(k) − 1 remain-
ing balls, belongs into Bi independently with probability pi(n), i = 1, . . . , ρ.

We conclude that at the end of the (k + 1)-th operation, each ball x of the current
M(k+1) balls, belongs into Bi independently with probability pi(n), i = 1, . . . , ρ. �

An immediate consequence of Lemma 6 is the following lemma.

Lemma 7 Let the random variable Yi(j) with (i, j) ∈ {1, . . . , ρ} × {0, . . . , rn} de-
note the number of balls that the i-th bin contains at the end of the j -th operation.
Then, Yi(j) ∼ B(M(j),pi(n)).

5.3 Dynamics of M(j)

We want to study the dynamics of the current number of balls M(j) existing in
the structure T at the end of j -th operation, j = 0, . . . , rn; that is, we wish to ap-
proximate this number with high probability, for each insertion/deletion operation
j = 0, . . . , rn. In each operation, a ball is either inserted with probability p > 1/2, or
is deleted with probability 1 − p. M(j) is a discrete random variable which has the
nice property of sharp concentration to its expected value, i.e., it has small deviation
from its mean compared to the total number of operations.

In the following, instead of working with the actual values of j and M(j), we
shall use their scaled (divided by n) values t and m(t), resp., that is, t = j

n
, m(t) =

M(tn)
n

, with range (t,m(t)) ∈ [0, r] × [1,m(r)]. The following theorem provides an
estimation on m(t).

Theorem 7 For each operation 0 ≤ t ≤ r , the scaled number of balls that are dis-
tributed into the n

ln(n)
bins at the end of the t-th operation equals m(t) = (2p − 1)t +

o(1), with high probability.

Proof Let the random variable γ +tn, γ + ∈ [0,1], denote the current fraction of in-
sertion operations among the currently performed tn operations, and let γ −tn denote
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the remaining fraction of deletion operations. Clearly, γ + + γ − = 1. The number
M(j) = M(tn) of balls that are distributed into the bins at the end of j -th operation
equals the number γ +tn of insertions minus the number γ −tn of deletions. Con-
sequently, M(j) = M(tn) = (γ + − γ −)tn = (γ + − (1 − γ +))tn = (2γ + − 1)tn.
Therefore, M(tn) depends solely on the random variable γ +tn. Since in each of the
tn operations a ball is inserted with probability p, the random variable γ +tn of cur-
rently inserted balls obeys the binomial B(tn,p) distribution. As a result, the random
variable γ +tn is sharply concentrated to its expected value ptn. That is, γ +tn → ptn

with high probability, as n → ∞. Equivalently, γ + → p with high probability, as
n → ∞. �

Remark 6 Observe that for p > 1/2, m(t) is an increasing positive function of the
scaled number t of operations, that is, ∀t ≥ 0, M(tn) = m(t)n ≥ M(0) = m(0)n =
n/c.

Remark 6 implies that if no bin remains empty before the process of rn operations
starts, since for p > 1/2 the balls accumulate as the process evolve, then no bin will
remain empty in each subsequent operation. This is important on proving part (i) of
Theorem 8.

5.4 Statistics of the Bins

In this section, we prove that before the first operation, and for all subsequent op-
erations, with high probability, no bin remains empty. Furthermore, we prove that
during each step the maximum load of any bin is �(ln(n)) with high probability. For
the analysis below we make use of the Lambert function LW(x), which is the analytic
at zero solution with respect to y of the equation: yey = x (see [10]). Recall also that
during each operation j = 0, . . . , rn with probability p > 1/2 we insert a μ-random
ball x ∈ [a, b], and with probability 1 − p we delete an existing ball from the current
M(j) balls that are stored in the structure T .

Theorem 8

(i) For each operation 0 ≤ t ≤ r , let the random variable X(t) denote the current
number of empty bins. If p > 1/2, then for each operation t , E[X(t)] → 0.

(ii) At the end of operation t , let the random variable Zκ(t) denote the number of
bins with load at least κ ln(n), where κ = κ(t) satisfies κ ≥ (−Cm(t) + 2)/

(C · LW(−Cm(t)−2
Cm(t)e

)) = O(1), and C is the positive constant defined in Defini-
tion 3. If p > 1/2, then for each operation t , E[Zκ(t)] → 0.

Proof (i) Recall the definitions of the positive constants c and C (Definition 3, at the
end of Sect. 5.1). From Lemmata 6 and 7, ∀i = 1, . . . , ρ = n

ln(n)
, it holds:

Pr
[
Yi(t) = 0

] ≤
(

1 − c
ln(n)

n

)m(t)n

∼ e−cm(t) ln(n) = 1

ncm(t)
(19)
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From (19), by linearity of expectation, we obtain:

E
[
X(t) | m(t)

] ≤
ρ∑

i=1

Pr
[
Yi(t) = 0

] ≤ n

ln(n)
· 1

ncm(t)
(20)

From Theorem 7 and Remark 6 it holds:

∀t ≥ 0,
1

ncm(t)
≤ 1

ncm(0)
= 1

n

This inequality implies that in order to show for each operation t that the expected
number E[X(t) | m(t)] of empty bins vanishes, it suffices to show that before the
process starts, the expected number E[X(0) | m(0)] of empty bins vanishes. In this
line of thought, from Theorem 7, (20) becomes,

E
[
X(0) | m(0)

] ≤ n

ln(n)
· 1

ncm(0)
= n

ln(n)
· 1

n
= 1

ln(n)
→ 0

Finally, from Markov’s inequality, we obtain

Pr
[
X(t) > 0 | m(t)

] ≤ E
[
X(t) | m(t)

] ≤ E
[
X(0) | m(0)

] → 0

(ii) At the end of t-th operation, with high probability m(t)n balls are dis-
tributed amongst the ρ distinct bins. By Lemma 7, an arbitrary Bi contains Yi(t) =
�(m(t) ln(n)) balls in expectation, i = 1, . . . , ρ. Let Bi′ be one of the bins that attains
the maximum probability pi′(n) = C lnn

n
to receive a ball per insertion operation.

To prove that the expected number E[Zκ(t) | m(t)] of bins containing more than
κ ln(n) balls converges to 0, it suffices to prove that for all i = 1, . . . , ρ, the prob-
ability of any Bi to contain Yi(t) ≥ κ ln(n) > m(t) ln(n) is exponentially small, for
κ ≥ − Cm(t)−2

C·LW(− Cm(t)−2
Cm(t)e

)
. It suffices to prove this for Bi′ which is the most likely to re-

ceive balls. To this end,

Pr
[
Yi′(t) ≥ κ ln(n) | m(t)

] =
m(t)n∑

j=κ ln(n)

Pr
[
Yi′(t) = j | m(t)

]
(21)

From Lemma 7, Yi′(t) is a Binomial random variable. Introducing the deviation func-
tion δ = δ(n) with range in (0,1), we get:

Pr
[
Yi′(t) = δm(t)n | m(t)n

] =
(

m(t)n

δm(t)n

)(
C

ln(n)

n

)δm(t)n(
1 − C

ln(n)

n

)(1−δ)m(t)n

Applying Stirling’s approximation: n! ∼ √
2πne−nnn and ignoring inverse polyno-

mial multiplicative terms we obtain:

Pr
[
Yi′(t) = δm(t)n | m(t)n

] ∼
[(

C
ln(n)

δn

)δ(
n − C ln(n)

(1 − δ)n

)(1−δ)]m(t)n

Since we want to study the deviation κ ln(n) of Yi′(t) from its expected value
m(t)C ln(n) we set the function δ = δ(n) = κC ln(n)

m(t)n
. In this way, we have that
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Pr
[
Yi′(t) = δm(t)n | m(t)n

]
= Pr

[
Yi′(t) = κ ln(n) | m(t)n

]

∼
[(

m(t)

κ

) κC ln(n)
m(t)n

(
n − C ln(n)

n − κC ln(n)/m(t)

)m(t)n−κC ln(n)
m(t)n

]m(t)n

∼
(

m(t)

κ

)κC ln(n)

e(κ−m(t))C ln(n)e
ln2(n)

n
C(κ−κ2/m(t))

∼
((

m(t)

κ

)κC

eC(κ−m(t))

)ln(n)

Therefore, for κ > Cm(t), and by noticing that the probability density function of
Yi′(t) has a unique maximum at the point E[Yi′(t) | m(t)] = m(t)C ln(n) and is
strictly decreasing for all points greater than m(t)C ln(n), (21) becomes:

Pr
[
Yi′(t) ≥ κ ln(n) | m(t)

] =
m(t)n∑

j=κ ln(n)

Pr
[
Yi′(t) = j | m(t)

]

≤ m(t)n ·
((

m(t)

κ

)κC

eC(κ−m(t))

)ln(n)

= m(t)

((
m(t)

κ

)κC

e(C(κ−m(t))+1)

)ln(n)

Since there are n
ln(n)

bins, by linearity of expectation and by applying Markov’s in-
equality, we conclude that the number Zκ(t) of bins with load at least κ ln(n), van-
ishes with high probability:

Pr
[
Zκ(t) > 0 | m(t)

] ≤ E
[
Zκ(t) | m(t)

]

≤
ρ∑

i=1

Pr
[
Yi(t) ≥ κ ln(n) | m(t)

]

≤ n

ln(n)
Pr

[
Yi′(t) ≥ κ ln(n) | m(t)

]

≤ n

ln(n)
m(t)

((
m(t)

κ

)κC

e(C(κ−m(t))+1)

)ln(n)

= m(t)

ln(n)

((
m(t)

κ

)κC

e(C(κ−m(t))+2)

)ln(n)

From the above inequality, in order to have Pr[Zκ(t) > 0 | m(t)] ≤ E[Zκ(t) |
m(t)] → 0 it suffices to solve with respect to κ the following inequality:

(
m(t)

κ

)κC

e(C(κ−m(t))+2) ≤ 1 ⇐⇒ κ ≥ − Cm(t) − 2

C · LW(−Cm(t)−2
Cm(t)e

) �

The part (ii) in the proof of Theorem 8 can be straightforwardly adapted to show
that with high probability no bin receives o(logn) balls. This remark along with The-
orem 8 establish the following result.



284 Algorithmica (2013) 66:249–286

Theorem 9 Consider the aforementioned random process of n balls and n/ lnn bins
modeling the update operations in our data structure T , and where during each oper-
ation j = 0, . . . , rn (r constant) with probability p > 1/2 a μ-random ball x ∈ [a, b]
is inserted into an appropriate bin of T and with probability 1 − p an existing ball is
deleted (uniformly at random) from the current number of M(j) balls that are stored
in T . Then, with high probability, there is no sequence of empty bins and each bin
receives �(logn) balls.

6 Conclusions

In this paper we presented a new finger search tree with O(1) update time and lin-
ear space that supports finger searching queries in O(log logd) expected time, or in
O(log logd + φ(n)) time with high probability, where φ(n) is any slowly growing
function of n. The insertions of elements in our finger search tree are considered μ-
random, where μ is (n/(log logn)1+ε, n1−δ)-smooth, and the deletions are random.
In general, we can support O(1) update time and expected search time of O(H(d)),
or search time of O(H(d)+φ(n)) with high probability, for μ-random insertions and
random deletions, where μ is (n · g(H(n)),H−1(H(n) − 1))-smooth, g is a function
satisfying

∑∞
i=1 g(i) = �(1), and H(n) is non-decreasing and o(logn). For several

other restricted smooth densities, we can also achieve o(log logd) expected search
time, or o(log logd) + O(φ(n)) search time with high probability. Our result is an
improvement over the general searching problem considered in [2], since we can
achieve better search bounds with high probability.

Since the techniques of Sect. 5 can reduce an arbitrary unknown distribution to
an almost uniform distribution, it would be interesting to establish high probability
search bounds for even larger classes than smooth distributions.
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