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10.1 Introduction

We are witnessing a tremendous growth in the size of the data gathered, stored, and processed by vari-
ous kinds of information systems. Therefore, no matter how big memories become, there is always the 
need to store data in secondary or even tertiary storage to facilitate access. Even if the data set can fit in 
main memory, there is still a need to organize data to enable efficient processing. In this chapter, we dis-
cuss the most important issues related to the design of efficient access methods (i.e., indexing schemes), 
which are the fundamental tools in database systems for efficient query processing. For the rest of the 
discussion, we are going to use the terms access method and index interchangeably.

Take, for example, a large data set containing information about millions of astronomical objects 
(e.g., stars, planets, comets). An astronomer may require some information out of this data set. Therefore, 
the most natural way to proceed is to store the data set in a database management system (DBMS) in 
order to enjoy SQL-like query formulation. For example, a possible query in natural language is: “show 
me all stars which are at most 1000 light-years away from the sun.” To answer such a query efficiently, 
one should avoid the exhaustive examination of the whole data set. Otherwise, the execution of each 
query will occupy the system for a long period of time, which is not practical and leads to performance 
degradation.

For the rest of the discussion, we are mainly interested in disk-based access methods, where the data 
set as well as the auxiliary data structures to facilitate access reside on magnetic disks. The challenge 
in this case is to perform as few disk accesses as possible, because each random access to the disk (i.e., 
reading or writing a block) costs about 5–8 ms, which is significantly slower than processing in main 
memory. Moreover, we assume that our data are represented by records of the form <a1; a2,…, am>, 
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10-2 Technical Foundations of Data and Database Management

where each ai denotes an attribute value. Attribute values may be simple, an integer for example, or may 
 correspond to more complex objects such as points in 3D space or other geometric shapes. When needed, 
we are going to make clear the kind of data supported by each access method. For example, some access 
methods are good in organizing unidimensional objects (e.g., price, salary, population), whereas others 
have been specifically designed to handle points or rectangles in 2D or 3D space, text, DNA sequences, 
time-series, to name a few.

10.2 Underlying Principles

In contrast to memory-resident data structures, handling large data collections requires the corre-
sponding access method (or at least a large part of it) to reside on secondary storage. Although flash 
memories are currently widely used, the magnetic disk continues to be the predominant secondary 
storage medium, used extensively by large information systems. The fundamental disk limitation is 
that accessing data on a disk is hundreds of times slower than accessing it in main memory. In fact, this 
limitation was the driving force underlying the development of efficient access methods trying to reduce 
the impact of this limitation as much as possible. In this section, we discuss briefly some key issues in 
access methods.

10.2.1 Blocks and records

The fundamental characteristic of an access method is that the data are accessed in chunks called pages 
or blocks. In particular, whenever a data item x is requested, instead of fetching only x, the system reads 
a whole set of data items that are located near item x. In our context, near means within the same block. 
Each block can accommodate a number of data items. Usually, all blocks are of the same size B. Typical 
block sizes are 4 Kb, 8 Kb, 16 Kb, or larger. Obviously, the larger the block size, the more data items can 
fit in every block. Moreover, the number of items that fit in each block depends also on the size of each 
data item. One of the primary concerns in the design of efficient access methods is storing data items 
that are likely to be requested together in the same block (or nearby blocks). Thus, the target is to fetch 
into memory more useful data by issuing only one block access. Since this is not feasible in all cases, a 
more practical goal is to reduce the number of accesses (reads or writes) as much as possible.

There are two fundamental types of block accesses that are usually supported by access methods: a 
random access involves fetching a randomly selected block from the disk, whereas a sequential access 
just fetches the next block. Usually, a random access is more costly because of the way magnetic disks 
operate. To facilitate a random access, the disk heads must be positioned right on top of the track that 
contains the requested block, thus requiring a significant amount of time, called seek time. In fact, seek 
time is the predominant cost of an I/O disk operation. On the other hand, a sequential access just reads 
blocks one by one in a get-next fashion, thus requiring less seek time. However, to facilitate sequential 
access blocks must be located in nearby positions on the disk to minimize the required seek operations. 
In general, sequential access is more restrictive and easier to obtain than random access. In addition, 
random access is more useful because of the flexibility offered to access any block any time.

Next, we describe briefly how records are organized inside each block. We limit our discussion for the 
case where records are of fixed size denoted as R. Therefore, the maximum number of records that can 
fit in a block of size B is simply ⌊B/R⌋. There are two basic alternatives we may follow to organize these 
records inside the block. The first approach is to force that all free space will be placed at the end of the 
block. This means that whenever we delete a record, its place will be taken by the last record in the block. 
The second alternative is to use a small index in the block header recording information about which 
record slot is occupied and which one is free. The second alternative avoids moving records inside the 
block, but reduces the capacity of the block because of the index used. In case variable size records are 
allowed, we expect that less storage will be required but processing time may increase due to some extra 
bookkeeping required to locate each record.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

Y
an

ni
s 

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7 
Ju

ly
 2

01
4 



10-3Access Methods

10.2.2 Fundamental Operations

Although access methods have different capabilities depending on their design and the problem 
they call to support, they all are primarily built to support a set of fundamental operations. The 
most significant one is searching. In the simplest case, a search operation takes as input a value and 
returns some information back to the caller. For example: “What is the perimeter of the Earth?,” 
“Display the ids of the customers located in Greece,” “What is the salary of John Smith?” or “Is 
Jack Sparrow one of our customers?” All these queries can be formulated as simple search opera-
tions. However, to support these queries as efficiently as possible, the corresponding access method 
should provide access to the appropriate record attributes. For example, to find the perimeter of 
the Earth, the access method must be searchable by the name of an astronomical object. Otherwise, 
the only way to spot the answer is to resort to sequential scanning of the whole data set. Similarly, 
to display the customers residing in Greece, our access method must be able to search by the name 
of the country.

There are other search-oriented queries that are clearly much more complex. For example, “find the 
names of the cities with a population at least 1 million and at most 5 millions.” Clearly, this query 
involves searching in an interval of populations rather than focusing on a single population value. To 
support such a query efficiently, the access method must be equipped with the necessary tools. Note also, 
that depending on the application, searching may take other forms as well. For example, if the access 
method organizes points in the 2D space, then we may search by a region asking for all points falling in 
the region of interest. In any case, to facilitate efficient search, the access method must be organized in 
such a way that queries can be easily handled, avoiding scanning the whole database.

Two operations that change the contents of an access method are the insertion of new objects and 
the deletion of existing ones. If the access method does not support these operations, it is characterized 
as static; if both are supported, it is called dynamic; whereas if only insertions are supported, then it is 
called semi-dynamic. In the static case, the access method will be built once and there is no need to sup-
port insertions/deletions. The dynamic case is the most interesting and challenging one, since most of 
the real-life applications operate over data sets that change continuously, and potentially quite rapidly. 
Thus, insertions and deletions must be executed as fast as possible to allow for efficient maintenance of 
the access method.

In some cases, there is a need to build an access method when the corresponding data set is known 
in advance. The simplest solution is to just perform many invocations of the insertion operation. 
However, we can do much better because the data set is known, and therefore with appropriate pre-
processing the index may be built much faster than by using the conservative one-by-one insertion 
approach. The operation of building the index taking into consideration the whole data set is called 
bulk loading.

10.3 Best Practices

In this section, we study some important indexing schemes that are widely used both in academia and 
industry. First, we discuss about the B-tree and hashing which are the predominant access methods 
for 1D indexing. Then, we center our focus to spatial access methods and discuss the R-tree and briefly 
some of its variations.

10.3.1 Fundamental access Methods

The two dominant categories of fundamental external memory indexing methods are tree-based meth-
ods and hash-based methods. For tree-based methods, the dominant example is the B-tree [5], while for 
hash-based methods linear [38] and extendible [18] hashing are the most common ones. In the follow-
ing, we briefly present both methods and their variants/extensions.
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10-4 Technical Foundations of Data and Database Management

10.3.1.1 B-tree

The B-tree [5] is a ubiquitous data structure when it comes to external memory indexing, and it is a 
generalization of balanced binary search trees. The intuition behind this generalization is that reading a 
block should provide the maximum information to guide the search. The use of binary trees may result 
in all nodes on a search path to reside in distinct blocks, which incurs an O(log2 n) overhead while our 
goal is to impose that the number of blocks to read in order to find an element is O(logB n) (i.e., logarith-
mic with respect to the data set cardinality). The B-tree with parameters k (corresponding to the internal 
node degree) and c (corresponding to leaf capacity) is defined as follows:

 1. All internal nodes v have degree d(v) such that ℓ · k ≤ d(v) ≤ u · k, where u > ℓ > 0. The only excep-
tion is the root, whose degree is lower-bounded by 2.

 2. All leaves lie at the same level; that is, the depth of all leaves is equal.
 3. All leaves l have size |l| such that ℓ′ · c ≤ |l| ≤ c, where 0 < ℓ′ < 1.

The maximum height of the tree is ⌊logℓ·k(n/ℓ′c) + 1⌋ while its minimum height is ⌈logu·k(n/c)⌉. Depending 
on the satellite information of each element, the size of the pointers, as well as any other needed infor-
mation within each block, we may set accordingly constants k, c, ℓ, ℓ′, and u. Additionally, these param-
eters are also affected by the desired properties of the tree. Henceforth, for simplicity and without loss 
of generality, we assume that k = c = B, u = 1, and ℓ = ℓ′ = 1/2.

In the classic B-tree, internal nodes may store elements (records) apart from pointers to children. This 
results in the decrease of parameter k and thus the height of the tree is increased. In practice, and to 
avoid this drawback, the B+-trees [15] are extensively used. These trees store elements only at leaves while 
internal nodes store routing information related to the navigation during search within the tree. In this 
way, the parameter k is increased considerably and the height of the tree is reduced.

To perform a search for an element x, the search starts from the root and moves through children 
pointers to other internal nodes toward the leaves of the tree. When a leaf l is found, it is brought into 
main memory and a sequential or binary search is performed to find and return the element x or to 
report failure. One can also return the predecessor or the successor of the element x (which is x if it exists 
in the tree), but one more I/O may be needed. To support range search queries, the B+-tree is usually 
changed so that all leaves constitute a linked list. As a result, for the range query [x1, x2], first the leaf is 
located that contains the successor of x1, and then a linear scan of all leaves whose value is within the 
range [x1, x2] is performed with the help of the linked list of leaves. Before moving to update operations, 
we first briefly discuss the rebalancing operations. The B+-tree (in fact all such trees) can be restored after 
an update operation by means of splits, fusions, and shares.

A node v is split when there is no available space within the node. In this case, half the information con-
tained in v (pointers and routing information in internal nodes or elements at leaves) is transferred to a new 
node v′ and thus both nodes have enough free space for future insertions. However, the father of v has its 
children increased by one, which means that there may be a cascading split possibly reaching even the root. 
A node v requires fusion with a sibling node v′ when the used space within v is less than 1

2 B due to a deletion. 
In this case, if the combined size of v and v′ is >B, then some information is carried over from v′ to v. In this 
case we have a share operation which is a terminal rebalancing operation in the sense that the number of 
children of the father of v and v′ remains the same. Otherwise, all information of v is transferred to v′ and v is 
deleted. The father of v′ has its children reduced by one and so there may be cascading fusions toward the root.

An insertion operation invokes a search for the proper leaf l in which the new element must be 
inserted to respect the sorted order of elements in the B+-trees. If l has available space, then the new ele-
ment is inserted and the insertion terminates. If it does not have available space, then the leaf is split into 
two leaves l and l′ and the new element is inserted to either l or l′, depending on its value. Then, based on 
whether the father of l and l′ needs split, the process continuous until an internal node with free space 
is reached or until the root is split. A deletion operation is similar with the exception that it invokes a 
fusion operation for rebalancing. In Figure 10.1 an example of a B+-tree is depicted.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

Y
an

ni
s 

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7 
Ju

ly
 2

01
4 



10-5Access Methods

A variant of the B+-tree is the B*-tree [15], which balances adjacent internal nodes to keep them more 
densely packed. This variant requires that l l= =′ 2

3
1
2instead of . To maintain this, instead of immedi-

ately splitting up a node when it gets full, its elements are shared with an adjacent node. As soon as the 
adjacent node gets full, then the two nodes are split into three nodes.

In total, search and update operations can be carried out in O(logB n) I/Os while a range search query 
can be carried out in O(logBn + (t/B)) I/Os, where t is the number of reported elements.

10.3.1.2 B-tree Variations and Extensions

There are numerous variants and extensions of B-trees, and we only report some of them. Most of these, 
if not all, are quite complicated to implement and can be used in practice only in particular scenarios. 
The Lazy B-tree [33] support updates with O(1) worst-case rebalancings (not counting the search cost) 
by carefully scheduling these operations over the tree. The ISB-tree [33] uses interpolation search in 
order to achieve a O(logB log n) expected I/Os for searching and updating, provided that the distribu-
tion of the elements belongs to a large family of distributions with particular properties. It is simple to 
extend basic B+-trees to maintain a pointer to the parent of each node as well as to maintain that all 
nodes at each level are connected in a doubly linked list. Applying these changes, the B+-tree can support 
efficiently finger searches [11] such that the number of I/Os for searching becomes O(logBd), where d is 
the number of leaves between a leaf l designated as the finger and the leaf l′ we are searching for. When 
searching for nearby leaves, this is a significant improvement over searching for l′ from the root. One 
can also combine B-trees with hashing [43] to speed-up operations.

There are numerous extensions of B-trees that provide additional functionalities and properties. The 
weight-balanced B-tree [4] has the weight property that normal B-trees lack. For an internal node v let 
w(v) be its weight, which is the number of elements stored in the subtree of v. The weight property states 
that an internal node v is rebalanced only after Θ(w(v)) updates have been performed at its subtree since 
the last update. This property is very important to reduce complexities when the B-tree has secondary 
structures attached to internal nodes [4]. A partial persistent B-tree [7] is a B-tree that maintains its 
history attaining the same complexities with normal B-trees. Efficient fully persistent B-trees have very 
recently been designed [12] and allow updates in the past instances of the B-tree giving rise to different 
history paths. String B-trees [19] have been designed to support efficiently search and update operations 
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FIGURE 10.1 An example of update operations for the B+-tree is depicted. Internal nodes contain only routing 
information. (a) An example of a B+-tree (B = 4). (b) Adding 9 and performing a split. (c) Removing 42 and perform-
ing a fusion. (d) Removing 19 and performing a share.
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10-6 Technical Foundations of Data and Database Management

on a set of strings (and its suffixes) in external memory. Cache-oblivious B-trees [9] have been designed 
that do not need to know basic parameters of the memory hierarchy (like B) in order to attain the same 
complexities as normal B-trees, which make heavy use of the knowledge of these parameters. Finally, 
buffer trees [3] are B-trees that allow for efficient execution of batch updates (or queries). This is accom-
plished by lazily flushing toward the leaves all updates (or queries) in the batch. In this way, each update 
can be supported in O((1/B)logM/B(n/B)) I/Os.

10.3.1.3 Hashing

Another much used technique for indexing is hashing. Hashing is faster than B-trees by sacrificing in 
functionality. The functionality of hashing is limited when compared to B-trees because elements are 
stored unsorted and thus there is no way to support range queries or find the successor/predecessor of an 
element. In hashing, the basic idea is to map each object to a number corresponding to the location inside 
an array by means of a hash function. It is not our intention to describe hash functions and thus we refer 
the interested reader to [16] and the references therein for more information on practical hash functions.

The largest problem with hashing is collision resolution, which happens when two different elements 
hash to the same location. The hash function hashes elements within buckets, which in this case is a 
block. When the bucket becomes full, then either a new overflow bucket is introduced for the same 
hashed value or a rehashing is performed. All buckets without the overflowing buckets constitute the 
primary area. Two well-known techniques are linear hashing [38] and extendible hashing [18]. The 
first method extends the hash-table by one when the fill factor of the hash-table (the number of elements 
divided by the size of the primary area) goes over a critical value. The second one extends the primary 
area as soon as an overflowing bucket is about to be constructed.

In linear hashing, data are placed in a bucket according to the last k bits or the last k + 1 bits of the 
hash function value of the element. A pointer split keeps track of this boundary. The insertion of a new 
element may cause the fill factor to go over the critical value, in which case the bucket on the bound-
ary corresponding to k bits is split into two buckets corresponding to k + 1 bits. The number of buckets 
with k bits is decreased by one. When all buckets correspond to k + 1 bits, another expansion is initiated 
constructing new buckets with k + 2 bits. Note that there is no relationship between the bucket in which 
the insertion is performed and the bucket that is being split. In addition, linear hashing uses overflow 
buckets although it is expected that these buckets will be just a few. The time complexity for a search and 
update is O(1) expected. In Figure 10.2 an example of an insertion is depicted.

On the other hand, extendible hashing does not make use of overflow buckets. It uses a directory that 
may index up to 2d buckets, where d, the number of bits, is chosen so that at most B elements exist in each 
bucket. A bucket may be pointed by many such pointers from the directory since they may be indexed 

Access methods 9

4 8 9 5
13

h1(x) = x mod 4

Overflow buckets

6
7

11

Split

(a) Fill factor 8 < 0.7 (b) Insert 17, fill factor 9 > 0.7

8 9 5
13

17

6
7

11

Split

4

h2(x) = x mod (2  4)

9 5
13

17

6
7

11
4 8

Split

(c) Fill factor 9 < 0.7

00 01 10 11 00 01 10 11 000 01 10 11 100

151212

FIGURE 10.2 Assuming that the critical fill factor is 0.7, then when 17 is inserted in (a), an overflow bucket is 
introduced (b) since the bucket corresponding to bits 01 has no space. After the insertion, the fill factor is >0.7 
and as such we construct a new hash function h2(x) and introduce a new bucket (c). h2(x) is applied to gray buckets 
(3 bits) while h1(x) is applied to white buckets (2 bits) only.
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10-7Access Methods

by using less than d bits. An insertion either causes the directory to double or some of entries of the 
directory are changed. For example, a bucket pointed by eight entries will be split and both new buckets 
are pointed by four entries. In case a bucket is pointed only by one entry and needs to be split, then the 
directory needs to be doubled. The advantage of extendible hashing is that it never has more than two 
disk accesses for any record since there are no overflow buckets to traverse. The main problems with this 
variation on hashing are total space utilization and the need for massive reorganization (of the table). In 
Figure 10.3, an example of such a reorganization for an insertion is depicted.

There are many other hashing schemes with their own advantages and disadvantages. Cuckoo hash-
ing [45] is one such scheme which is very promising because of its simplicity. The basic idea is to use two 
hash functions instead of only one and thus provide two possible locations in the hash-table for each 
element. When a new element is inserted, it is stored in one of the two possible locations provided by 
the hash functions. If both of these locations are not empty, then one of them is kicked out. This new 
displaced element is put into its alternative position and the process continues until a vacant position 
has been found or until many such repetitions have been performed. In the last case, the table is rebuilt 
with new hash functions. Searching for an element requires inspection of just two locations in the hash-
table, which takes constant time in the worst case.

10.3.2 Spatial access Methods

The indexing schemes discussed previously support only one dimension. However, in applications such 
as Geographic Information Systems (GIS), objects are associated with spatial information (e.g., latitude/
longitude coordinates). In such a case, it is important to organize the data taking into consideration the 
spatial information. Although there are numerous proposals to handle spatial objects, in this chapter 
we will focus on the R-tree index [24], which is one of the most successful and influential spatial access 
methods, invented to organize large collections of rectangles for VLSI design.

10.3.2.1 R-tree

R-trees are hierarchical access methods based on B+-trees. They are used for the dynamic organization of 
a set of d-dimensional geometric objects representing them by the minimum bounding d-dimensional 
rectangles (for simplicity, MBRs in the sequel). Each node of the R-tree corresponds to the MBR that 
bounds its children. The leaves of the tree contain pointers to the database objects instead of pointers 
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FIGURE 10.3 An example of re-organization for extendible hashing. After the insertion of 20 the first bucket 
overflows and we construct a new table of global depth 3; that is, with 23 entries. Only the overflowing bucket is split 
and has local depth 3, thus needing 3 bits to navigate. The buckets that did not overflow need only 2 bits and thus 
2 pointers point to them.
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10-8 Technical Foundations of Data and Database Management

to children nodes. The nodes are implemented as disk blocks. It must be noted that the MBRs that sur-
round different nodes may overlap each other. Besides, an MBR can be included (in the geometrical 
sense) in many nodes, but it can be associated to only one of them. This means that a spatial search may 
visit many nodes before confirming the existence of a given MBR. An R-tree of order (m, M) has the 
following characteristics:

• Each leaf node (unless it is the root) can host up to M entries, whereas the minimum allowed 
number of entries is m ≤ M/2. Each entry is of the form (mbr, oid), such that mbr is the MBR that 
spatially contains the object and oid is the object’s identifier.

• The number of entries that each internal node can store is again between m ≤ M/2 and M. Each 
entry is of the form (mbr, p), where p is a pointer to a child of the node and mbr is the MBR that 
spatially contains the MBRs contained in this child.

• The minimum allowed number of entries in the root node is 2.
• All leaves of the R-tree are located at the same level.

An R-tree example is shown in Figure 10.4 for the set of objects shown on the left. It is evident that MBRs R1 
and R2 are disjoint, whereas R3 has an overlap with both R1 and R2. In this example we have assumed that 
each node can accommodate at most three entries. In a real implementation, the capacity of each node is 
determined by the block size and the size of each entry which is directly related to the number of dimensions.

The R-tree has been designed for dynamic data sets and, therefore, it supports insertions and dele-
tions. To insert a new object’s MBR, the tree is traversed top-down, and at each node a decision is made 
to select a branch to follow next. This is repeated until we reach the leaf level. The decision we make at 
each node is based on the criterion of area enlargement. This means that the new MBR is assigned to the 
entry which requires the least area enlargement to accommodate it. Other variations of the R-tree, such 
as the R*-tree [8], use different criteria to select the most convenient path from the root to the leaf level. 
Upon reaching a leaf L, the new MBR is inserted, if L can accommodate it (there is at least one avail-
able slot). Otherwise, there is a node overflow and a node split occurs, meaning that a new node L′ is 
reserved. Then, the old entries of L (including the new entry) are distributed to two nodes L and L′. Note 
that a split at a leaf may cause consecutive splits in the upper levels. If there is a split at the root, then the 
height of the tree increases by one.

The split operation must be executed carefully to maintain the good properties of the tree. The pri-
mary concern while splitting is to keep the overlap between the two nodes as low as possible. This is 
because the higher the overlap, the larger the number of nodes that will be accessed during a search 
operation. In the original R-tree proposal, three split policies have been studied, namely, exponential, 
quadratic, and linear.

Exponential split: All possible groupings are exhaustively tested and the best one, with respect to the 
minimization of the MBR enlargement, is chosen.

R2

R3

R1

R1 R2 R3

dc

e
f

a b d e f g ihc

g

ih

ba

FIGURE 10.4 R-tree example.
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10-9Access Methods

Quadratic split: Choose two objects as seeds for the two nodes, where these objects if put together create 
as much empty space as possible. Then, until there are no remaining objects, insert the object for which 
the difference of dead space if assigned to each of the two nodes is maximized in the node that requires 
less enlargement of its respective MBR.

Linear split: Choose two objects as seeds for the two nodes, where these objects are as far apart as pos-
sible. Then, consider each remaining object in a random order and assign it to the node requiring the 
smallest enlargement of its respective MBR.

The quadratic split policy is the best choice that balances efficiency and effectiveness and, therefore, it is 
widely used in R-tree implementations.

In a deletion, an entry is removed from the leaf level of the tree, which may cause a node underflow. 
In this case, re-insertion of entries is applied to reduce the space requirements of the tree. In general, 
a deletion has the opposite effect than that of an insertion. In both cases, the path from the root to 
the leaf level that was affected by the operation must be adjusted properly to reflect the changes per-
formed in the tree. Thus, the deletion of an entry may cause a series of deletions that propagate up 
to the root of the R-tree. If the root has only one child, then it is removed and the height of the tree 
decreases by one.

In the sequel, we examine briefly how search is performed in an R-tree. We will center our focus to 
range queries, where the user defines a query region Q and the answer to the query contains the spatial 
objects that intersect Q. For example, in Figure 10.4, the query region is shown filled, whereas the answer 
to the query is composed of the objects b and e. The outline of the algorithm that processes range que-
ries in an R-tree is given in Figure 10.5. For a node entry E, E.mbr denotes the corresponding MBR and 
E.p the corresponding pointer to the next level. If the node is a leaf, then E.p denotes the correspond-
ing object identifier (oid). We note that the rectangles that are found by range searching constitute the 
candidates of the filtering step. The actual geometric objects intersected by the query rectangle have 
to be found in a refinement step by retrieving the objects of the candidate rectangles and testing their 
intersection.

10.3.2.2 r-tree Bulk Loading

Recall that bulk loading is the process of building an index by taking into consideration the data set 
which is known in advance. Thus, usually this operation is applied for static data sets or when insertions 
and deletions are rare. In most of the cases, when bulk loading is applied, the leaf level of the tree is cre-
ated first. Then, the upper tree levels can be built one by one until we reach the root.

The first bulk-loading algorithm for R-trees proposed in [47] first sorts the data objects by using the x 
coordinate of their center. If objects are points rather than rectangles, then the x coordinate of the point 
is used. By using the sorted order, the leaves may be formed by placing the first M entries in the first 
leaf, until no more data are available. This way, all leaves will be 100% full, except maybe of the last leaf 
which may contain less.

Algorithm RangeSearch (Node N, Region Q)
Input: root mode N, query region Q
Output: answer set A
1. if (N is not a leaf node)
2. examine each entry E of N to find those E.mbr that intersect Q
3. foreach such entry E call RangeSearch(E.ptr,Q)
4. else // N is a leaf node
5. examine all entries E and find those for which E.mbr intersects Q
6. add these entries to the answer set A
7. Endif

FIGURE 10.5 The R-tree range search algorithm.
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10-10 Technical Foundations of Data and Database Management

Another contribution to this problem is reported in [30]. The algorithm is similar to that of [47] 
in that again a sorting is performed in order to build the leaf level of the tree. Sorting is performed 
by using the Hilbert value of the data objects’ centroids. According to the performance evaluation 
given in [30], this approach shows the best overall performance with respect to the cost of performing 
queries.

STR (Sort-Tile-Recursive) is a bulk-loading algorithm for R-trees proposed by Leutenegger et al. [32]. 
Let n be a number of rectangles in 2D space. The basic idea of the method is to tile the address space 
by using V vertical slices, so that each slice contains enough rectangles to create approximately n M/  
nodes, where M is the R-tree node capacity. Initially, the number of leaf nodes is determined, which is 
L n M V L=   =/  Let . . The rectangles are sorted with respect to the x-coordinate of the centroids, and 
V slices are created. Each slice contains V.M rectangles, which are consecutive in the sorted list. In each 
slice, the objects are sorted by the y-coordinate of the centroids and are packed into nodes (placing M 
objects in a node). Experimental evaluation performed in [32] has demonstrated that the STR method 
is generally better than previously proposed bulk-loading methods. However, in some cases the Hilbert 
packing approach performs marginally better.

10.3.2.3 r-tree Variations and Extensions

Several R-tree variations have been proposed in the literature to improve the performance of queries. 
Here we discuss briefly three successful variations that show better performance than the original pro-
posal by Guttman. These variations differ in several aspects like the way insertions and deletions are 
performed, the optimization criteria being used, the split policy applied, and the storage utilization.

The R+-tree: R+-trees were proposed as an alternative that avoids visiting multiple paths during point 
location queries, aiming at the improvement of query performance [52]. Moreover, MBR overlapping 
of internal modes is avoided. This is achieved by using the clipping technique. In other words, R+-trees 
do not allow overlapping of MBRs at the same tree level. In turn, to achieve this, inserted objects have 
to be divided in two or more MBRs, which means that a specific object’s entries may be duplicated and 
redundantly stored in several nodes. Therefore, a potential limitation of R+-trees is the increased space 
requirements due to redundancy.

The R*-tree: R*-trees [8] were proposed in 1990 but are still very well received and widely accepted in the 
literature as a prevailing performance-wise structure that is often used as a basis for performance com-
parisons. As already discussed, the R-tree is based solely on the area minimization of each MBR. On the 
other hand, the R*-tree goes beyond this criterion and examines the following: (1) minimization of the 
area covered by each MBR, (2) minimization of the overlap between MBRs, (3) minimization of MBR 
margins (perimeters), and (4) maximization of storage utilization. The R*-tree follows an engineering 
approach to and the best possible combinations of the aforementioned criteria. This approach is neces-
sary, because the criteria can become contradictory. For instance, to keep both the area and the overlap 
low, the lower allowed number of entries within a node can be reduced. Therefore, storage utilization 
may be impacted. Also, by minimizing the margins so as to have more quadratic shapes, the node over-
lapping may be increased.

The Hilbert R-tree: The Hilbert R-tree [31] is a hybrid structure based on the R-tree and the B+-tree. 
Actually, it is a B+-tree with geometrical objects being characterized by the Hilbert value of their cen-
troid. The structure is based on the Hilbert space-filling curve. It has been shown in [42] that the Hilbert 
space-filling curve preserves well the proximity of spatial objects. Entries of internal tree nodes are 
augmented by the largest Hilbert value of their descendants. Therefore, an entry e of an internal node is 
a triple of the form < mbr, H, p > where mbr is the MBR that encloses all the objects in the corresponding 
subtree, H is the maximum Hilbert value of the subtree, and p is the pointer to the next level. Entries 
in leaf nodes are exactly the same as in R-trees, R+-trees, and R*-trees and are of the form < mbr, oid >, 
where mbr is the MBR of the object and oid the corresponding object identifier.
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10-11Access Methods

10.3.3 Managing time-Evolving Data

Time information plays a significant role in many applications. There are cases where in addition to 
the data items per se, the access method must maintain information regarding the time instance that 
a particular event occurred. For example, if one would like to extract statistical information regarding 
the sales of a particular product during the past 5 years, the database must maintain historical informa-
tion. As another example, consider an application that tracks the motion patterns of a specific species. 
To facilitate this, each location must be associated with a timestamp. Thus, by inspecting the location in 
consecutive timestamps, one may reveal the motion pattern of the species. For the rest of the discussion, 
we assume that time is discrete and each timestamp corresponds to a different time instance.

One of the first access methods that was extended to support time information is the B-tree and its 
variations. The most important extensions are the following:

The time-split B-tree [39]: This structure is based on the write-once B-tree access method proposed in 
[17], and it is used for storing multi-version data on both optical and magnetic disks. The only opera-
tions allowed are insertions and searches, whereas deletions are not supported. The lack of deletions in 
conjunction with the use of two types of node splits (normal and time-based) is the main reason for the 
structure’s space and time efficiency. However, only exact-match queries are supported efficiently.

The fully persistent B+-tree [36]: In contrast to the time-split B-tree, the fully persistent B+-tree supports 
deletions in addition to insertions and searches. Each record is augmented by two fields tstart and tend, 
where tstart is the timestamp of the insertion and tend is the timestamp when the record has been deleted, 
updated, or copied to another node. This way, the whole history can be recorded and queries may involve 
the past or the present status of the structure.

The multi-version B-tree [6]: This access method is asymptotically optimal and allows insertions and 
deletions only at the last (current) timestamp, whereas exact-match and range queries may be issued for 
the past as well. The methodology proposed in [6] may be used for other access methods, when there is 
a need to transform a simple access method to a multi-version one.

There are also significant research contributions in providing time-aware spatial access methods. An 
index that supported space and time is known as spatiotemporal access method. Spatiotemporal data 
are characterized by changes in location or shape with respect to time. Supporting time increases the 
number of query types that can be posed by users. A user may focus on a specific time instance or may 
be interested in a time interval. Spatiotemporal queries that focus on a single time instance are termed 
time-slice queries, whereas if they focus on a time interval, they are termed time interval queries. If 
we combine these choices with spatial predicates and the ability to query the past, the present, or the 
future, spatiotemporal queries can be very complex, and significant effort is required to process them.

A large number of the proposed spatiotemporal access methods are based on the well-known R-tree 
structure. In the following, we discuss briefly some of them.

The 3D R-tree [54]: In this index, time is considered as just another dimension. Therefore, a rectangle 
in 2D becomes a box in 3D. The 3D R-tree approach assumes that both ends of the interval [tstart, tend) of 
each rectangle are known and fixed. If the end time tend is not known, this approach does not work well, 
due to the use of large MBRs leading to performance degradation with respect to queries. In addition, 
conceptually, time has special characteristic, i.e., it increases monotonically. This suggests the use of 
more specialized access methods.

The partially persistent R-tree [34]: This index is based on the concept of partial persistency [35]. It is 
assumed that in spatiotemporal applications, updates arrive in time order. Moreover, updates can be 
performed only on the last recorded instance of the database, in contrast to general bitemporal data. The 
partially persistent R-tree is a directed acyclic graph of nodes with a number of root nodes, where each 
root is responsible for recording a subsequent part of the ephemeral R-tree evolution. Object records are 
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10-12 Technical Foundations of Data and Database Management

stored in the leaf nodes of the PPR-tree and maintain the evolution of the ephemeral R-tree data objects. 
As in the case of the fully persistent B+-tree, each data record is augmented to include the two lifetime 
fields, tstart and tend. The same applies to internal tree nodes, which maintain the evolution of the cor-
responding directory entries.

The multi-version 3D R-tree [53]: This structure has been designed to overcome the shortcomings of pre-
viously proposed techniques. It consists of two parts: a multi-version R-tree and an auxiliary 3D R-tree 
built on the leaves of the former. The multi-version R-tree is an extension of the multi-version B-tree pro-
posed by Becker et al. [6]. The intuition behind the proposed access method is that time-slice queries can 
be directed to the multi-version R-tree, whereas time-interval queries can be handled by the 3D R-tree.

10.4 advanced topics

In this section, we discuss some advanced topics related to indexing. In particular, we focus on three 
important and challenging issues that attract research interest mainly due to their direct impact on per-
formance and because they radically change the way that typical indexing schemes work. Namely, these 
topics are (1) cache-oblivious indexing, (2) on-line indexing, and (3) adaptive indexing.

10.4.1 Cache-Oblivious access Methods and algorithms

In 1999, Frigo et al. [20] introduced a new model for designing and analyzing algorithms and data 
structures taking into account memory hierarchies. This is the cache-oblivious model which, as its 
name implies, is oblivious to the parameters as well to some architectural characteristics of the memory 
hierarchy. Data structures designed in this model do not know anything about the memory hierarchy, 
but have performance which is comparable to data structures that have been designed with knowledge 
of the particular memory hierarchy. In a nutshell, this is accomplished by laying out the data structure 
over an array which is cache-oblivious by default. The main problem is how to design this layout and 
how to maintain it when it is subjected to update operations. The main advantage of these indexing 
schemes (an example is the cache oblivious B-tree [9]) is not only their simplicity and portability among 
different platforms but also their innate ability to work optimally in all levels of the memory hierarchy.

10.4.2 On-Line and adaptive Indexing

Traditional physical indexing building follows an off-line approach to analyzing workload and  creating 
the data structures to enable efficient query processing. More specifically, typically, a sample workload is 
analyzed with a view to selecting the indices to be built with the help of auto-tuning tools (e.g., [2,14,56]). 
This is an expensive process, especially for very large databases. On-line and adaptive indexing have 
introduced a paradigm shift, where indices are created on the y during query processing. In this way, 
database systems avoid a complex and time-consuming process, during which there is no index sup-
port, and can adapt to dynamic workloads. We draw a distinction between on-line and adaptive index-
ing following the spirit of [28]. According to that distinction, on-line indexing monitors the workload 
and creates (or drops) indices on-line during query execution (e.g., [13,40]). Adaptive indexing takes 
one step further: in adaptive indexing the process of index building is blended with query execution 
through extensions to the logic of the operators in the query execution plan (e.g., [23,25]). In the sequel, 
we discuss briefly these two approaches which differ significantly from the typical bulk-loading process 
for index building.

On-line Indexing: The paradigm of on-line indexing solutions departs from traditional schemes in that 
the index tuning mechanism is always running. A notable example of such category is described in [13], 
where the query engine is extended with capabilities to capture and analyze evidence information about 
the potential usefulness of indices that have not been created thus far. Another interesting approach is 
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10-13Access Methods

soft-indices [40], which build on top of an index-tuning mechanism that continuously collects statisti-
cal information and periodically solves the NP-hard problem of index selection. Similarly to adaptive 
indexing, the new decisions are enforced during query processing but without affecting the operator 
implementation.

Adaptive Indexing: The most representative form of adaptive indexing is database cracking [25], which 
is mostly tailored to (in-memory) column-stores [1]. Database cracking revolves around the concept 
of continuous physical re-organization taking place at runtime. Such physical re-organization is auto-
mated, in the sense that does not involve human involvement, does not contain any off-line preparatory 
phase, and may not build full indices. The latter means that the technique is not only adaptive but also 
relies on partial indexing that is refined during workload execution in an incremental manner. To give 
an example, suppose that a user submits a range query on the attribute R.A for the first time and the 
range predicate is value1 < R. A < value2. According to database cracking, during execution, a copy of 
R. A will be created, called the cracker column of R. A. The data in that cracker column is physically re-
organized and is split in three parts: (1)value1 ≤ R. A; (2) value1 < R. A < value2; and (3) R. A ≤ value2. 
Moreover, an AVL tree, called cracker index, is created to maintain the partitioning information. This 
process of physical re-organization continues with every query. Overall, each query may benefit from 
the cracking imposed by previous queries and the new splits introduced may be of benefit for subse-
quent queries. In other words, the access methods are created on the y and are query-driven, so that 
they eventually match the workload. Database cracking is characterized by low initialization overhead, 
is continuously refined, and may well outperform techniques that build full indices, because the latter 
need a very large number of queries in order to amortize the cost of full index building to be outweighed. 
Cracking can be extended to support updates [26] and complex queries [27].

Nevertheless, database cracking may converge slowly and is sensitive to query pattern. Such limi-
tations are mitigated by combining traditional indexing techniques (B-trees) with database cracking, 
resulting in the so-called adaptive merging [23]. The key distinction between the two approaches is that 
adaptive merging relies on merging rather than on partitioning, and that adaptive merging is applicable 
to disk-based data as well.

10.5 research Issues

The field of access methods continues to be one of the most important topics in database management 
systems, mainly because of its direct impact on query performance. Although the field has been active 
for several decades, modern applications pose novel challenges that must be addressed carefully toward 
efficient processing. Here, we discuss briefly some of these challenges.

High-dimensional data: One of the most important challenges emerges when the number of attri-
butes (dimensions) increases significantly. R-trees and related indexing schemes perform quite well for 
dimensionalities up to 15 or 20. Above this level, the dimensionality curse renders indexing difficult 
mainly due to concentration of measure effect. Unfortunately, the cases where high dimensionalities 
appear are not few. For example, in multimedia data management, images are often represented by 
feature vectors, each containing hundreds of attributes. There are several proposals in the literature to 
improve performance in these cases, trying to reduce the effects of dimensionality curse. For example, 
the X-tree access method proposed in [10] introduces the concept of supernode and avoids node splits 
if these cannot lead to a good partitioning. As another example, Vector Approximation File [55] is an 
approximation method that introduces error in query processing. For static data sets, dimensionality 
reduction may also be applied to first decrease the number of dimensions in order to be easier for access 
methods to organize the data.

Modern hardware: Hardware is evolving, and although the magnetic disk is still the prevailing sec-
ondary storage medium, new types of media have been introduced, such as solid-state drives. 

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

Y
an

ni
s 

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7 
Ju

ly
 2

01
4 



10-14 Technical Foundations of Data and Database Management

Also,  processors enjoy a dramatic change by the ability to include multiple cores in the same chip. 
These changes in hardware bring the necessity to change the way we access and organize the data. 
For example, solid-state drives do not suffer from the seek time problem and, therefore, the impact 
of I/O time on the performance becomes less significant. This means that operations that are I/O-
bounded with magnetic disks may become CPU-bounded with modern hardware, due to the reduction 
in I/O  time. The indexing problem becomes even more challenging as new processing and storage 
components like GPUs and FPGAs are being used more often. The new access methods must take into 
account the specific features of new technology.

Parallelism and distribution: The simultaneous use of multiple instances of resources such as memory, 
CPU, and disks brings a certain level of flexibility to query processing, but it also creates significant 
challenges in terms of overall efficiency. By enabling concurrent execution of tasks, we are facing the 
problem of coordinating these tasks and also the problem of determining where data reside. Therefore, 
parallel and distributed access methods are needed that are able to scale well with the number of proces-
sors. In addition to scalability, these techniques must avoid bottlenecks. For example, if we simply take 
an access method and place each block to a different processor, the processor that hosts the root will 
become a hot spot. Although there are many significant contributions for parallel/distributed indexing 
(e.g., distributed hash-tables), modern programming environments such as MapReduce on clusters or 
multi-core CPUs and GPUs call for a reconsideration of some concepts to enable the maximum possible 
performance gains and scalability.

On-line and adaptive indexing: On-line and adaptive indexing are technology in evolution; thus mul-
tiple aspects require further investigation. Among the most important ones, we highlight the need of 
investigation of concurrency control in database cracking techniques, the most fruitful combination 
of off-line, on-line, and adaptive techniques, and the application of database cracking to row stores. 
Finally, as new indexing methodologies are being proposed, we need a comprehensive benchmark in 
order to assess the benefits and weaknesses of each approach; a promising first step toward this direction 
is the work in [29].

10.6 Summary

Access methods are necessary toward efficient query processing. The success of an access method is 
characterized by its ability to organize data in such a way that locality of references is enhanced. This 
means that data that are located in the same block are likely to be requested together. In this chapter, 
we discussed some fundamental access methods that enjoy a wide-spread use by the community due 
to their simplicity and their excellent performance. Initially, we discussed some important features of 
access methods and then we described B-trees and hashing which are the prevailing indexing schemes 
for 1D data and R-trees, which is the most successful family for indexing spatial and other types of mul-
tidimensional data. For R-trees we also described briefly bulk-loading techniques, which is an impor-
tant operation for index creation when the data set is available. Finally, we touched the issues of on-line 
and adaptive indexing, which enjoy a growing interest due to the ability to adapt dynamically based on 
query workloads. Access methods will continue to be a fundamental research topic in data manage-
ment. In the era of big data, there is a consistent need for fast data management and retrieval, and thus 
indexing schemes are the most important tools in this direction.

Glossary

B-tree: A tree-based index that allows queries, insertions, and deletions in logarithmic time.
Bulk loading: The insertion of a known before-hand sequence of objects into a set of objects.
Cache-oblivious model: A model that supports the design of algorithms and data structures for mem-

ory hierarchies without knowing its defining parameters.
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10-15Access Methods

Cuckoo hashing: Hashing that uses two hash functions to guarantee worst-case O(1) accesses per 
search.

Database cracking: A form of continuous physical re-organization taking place at runtime.
Disk access: Reading (writing) a block from (to) the disk.
Disk-based access method: An access method that is designed specifically to support access for disk-

resident data.
Disk head: The electronic component of the disk responsible for reading and writing data from and to 

the magnetic surface.
Dynamic access method: An access method that allows insertions, deletions, and updates in the stored 

data set.
Extendible hashing: A hashing method that doubles the index size to avoid overflowing.
Fixed-size record: A record with a predetermined length which never changes.
Hashing: An index method that uses address arithmetic to locate elements.
Linear hashing: A hashing method that extends the main index by one each time the fill factor is 

surpassed.
Multi-version data: Data augmented by information about the time of their insertion, deletion, or 

update.
Node split: The operation that takes place when a node overflows, i.e., there is no room to accommodate 

a new entry.
On-line indexing: An indexing scheme where the index tuning mechanism is always running.
R-tree: A hierarchical access method that manages multidimensional objects.
Random access: The operation of fetching into main memory a randomly selected block from disk or 

other media.
Re-insertion: The operation of re-inserting some elements in a block. Elements are first removed from 

the block and then inserted again in the usual manner.
Semi-dynamic access method: An access method that supports queries and insertions of new items; it 

does not support deletions.
Seek time: Time required for the disk heads to move to the appropriate track.
Solid-state drive: A data storage device that uses integrated circuits solely to store data persistently.
Spatiotemporal data: Data containing both spatial and temporal information.
Static access method: An access method that does not support insertions, deletions, and updates.
Supernode: A tree node with a capacity which is a multiple of the capacity of a regular node.
Time-slice query: A query posed on a specific timestamp.
Time-interval query: A query that refers to a time interval defined by two timestamps.
Variable-size record: A record whose length may change due to to changes in the size of individual 

attributes.

Further Information

There is a plethora of resources that the interested reader may consult to grasp a better understanding 
of the topic. Since access methods are related to physical database design, the book of Lightstone et al. 
[37] may be of interest to the reader. For a thorough discussion of B-trees and related issues, we recom-
mend the article of Graefe in [22]. Also, almost every database-oriented textbook contains one or more 
chapters devoted to indexing. For example, Chapters 8–11 of [46] cover indexing issues in detail, in 
particular B-trees and hashing, in a very nice way.

For a detailed discussion of spatial access methods, the reader is referred to two books from Samet, 
[50] and [51]. In [50] the reader will find an in-depth examination of indexing schemes that are based 
on space portioning (e.g., linear quadtrees). Also, in [51], in addition to the very detailed study of spatial 
access methods, the author presents metric access methods, where objects reside in a metric space rather 
than in a vector space. For a thorough discussion of the R-tree family, the reader is referred to the book 
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10-16 Technical Foundations of Data and Database Management

of Manolopoulos et al. [41]. We also mention a useful survey paper of Gaede and Günther [21], which 
covers indexing schemes that organize multidimensional data.

In many applications, time information is considered very important and thus it should be recorded. 
For example, in a fleet management application, we must know the location of each vehicle and the asso-
ciated timestamp. There are many approaches to incorporate time information into an index. Some of 
them were briefly discussed in Section 10.3.3. The reader who wants to cover this issue more thoroughly 
may consult other more specialized resources such as the survey of Salzberg and Tsotras [49] as well as 
the article of Nguyen-Dinh et al. [44]. In addition to the indexing schemes designed to support historical 
queries, some access methods support future queries. Obviously, to answer a query involving the near 
future, some information about the velocities of moving objects is required. The paper by Šaltenis et al. 
[48] describes such an index.

The previous resources cover more or less established techniques. For modern research issues in the 
area, the best sources are the proceedings of leading database conferences and journals. In particular, 
the proceedings of the major database conferences ACM SIGMOD/PODS, VLDB, IEEE ICDE, EDBT/
ICDT, ACM CIKM, and SSDBM contain many papers related to access methods and indexing. Also, 
we recommend the journals ACM Transactions on Database Systems, IEEE Transactions on Knowledge 
and Data Engineering, The VLDB Journal, and Information Systems where, in most cases, the published 
articles are enhanced versions of the corresponding conference papers.
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