
10-1

10.1 Introduction

We are witnessing a tremendous growth in the size of the data gathered, stored, and processed by vari-
ous kinds of information systems. Therefore, no matter how big memories become, there is always the
need to store data in secondary or even tertiary storage to facilitate access. Even if the data set can fit in
main memory, there is still a need to organize data to enable efficient processing. In this chapter, we dis-
cuss the most important issues related to the design of efficient access methods (i.e., indexing schemes),
which are the fundamental tools in database systems for efficient query processing. For the rest of the
discussion, we are going to use the terms access method and index interchangeably.

Take, for example, a large data set containing information about millions of astronomical objects
(e.g., stars, planets, comets). An astronomer may require some information out of this data set. Therefore,
the most natural way to proceed is to store the data set in a database management system (DBMS) in
order to enjoy SQL-like query formulation. For example, a possible query in natural language is: “show
me all stars which are at most 1000 light-years away from the sun.” To answer such a query efficiently,
one should avoid the exhaustive examination of the whole data set. Otherwise, the execution of each
query will occupy the system for a long period of time, which is not practical and leads to performance
degradation.

For the rest of the discussion, we are mainly interested in disk-based access methods, where the data
set as well as the auxiliary data structures to facilitate access reside on magnetic disks. The challenge
in this case is to perform as few disk accesses as possible, because each random access to the disk (i.e.,
reading or writing a block) costs about 5–8 ms, which is significantly slower than processing in main
memory. Moreover, we assume that our data are represented by records of the form <a1; a2,…, am>,

10
Access Methods

10.1 Introduction .. 10-1
10.2 Underlying Principles .. 10-2

Blocks and Records • Fundamental Operations
10.3 Best Practices ...10-3

Fundamental Access Methods • Spatial Access
Methods • Managing Time-Evolving Data

10.4 Advanced Topics ... 10-12
Cache-Oblivious Access Methods and Algorithms • On-Line and
Adaptive Indexing

10.5 Research Issues .. 10-13
10.6 Summary .. 10-14
Glossary ... 10-14
Further Information ... 10-15
References .. 10-16

Apostolos N.
Papadopoulos
Aristotle University
of Thessaloniki

Kostas Tsichlas
Aristotle University
of Thessaloniki

Anastasios
Gounaris
Aristotle University
of Thessaloniki

Yannis
Manolopoulos
Aristotle University
of Thessaloniki

10-2 Technical Foundations of Data and Database Management

where each ai denotes an attribute value. Attribute values may be simple, an integer for example, or may
 correspond to more complex objects such as points in 3D space or other geometric shapes. When needed,
we are going to make clear the kind of data supported by each access method. For example, some access
methods are good in organizing unidimensional objects (e.g., price, salary, population), whereas others
have been specifically designed to handle points or rectangles in 2D or 3D space, text, DNA sequences,
time-series, to name a few.

10.2 Underlying Principles

In contrast to memory-resident data structures, handling large data collections requires the corre-
sponding access method (or at least a large part of it) to reside on secondary storage. Although flash
memories are currently widely used, the magnetic disk continues to be the predominant secondary
storage medium, used extensively by large information systems. The fundamental disk limitation is
that accessing data on a disk is hundreds of times slower than accessing it in main memory. In fact, this
limitation was the driving force underlying the development of efficient access methods trying to reduce
the impact of this limitation as much as possible. In this section, we discuss briefly some key issues in
access methods.

10.2.1 Blocks and records

The fundamental characteristic of an access method is that the data are accessed in chunks called pages
or blocks. In particular, whenever a data item x is requested, instead of fetching only x, the system reads
a whole set of data items that are located near item x. In our context, near means within the same block.
Each block can accommodate a number of data items. Usually, all blocks are of the same size B. Typical
block sizes are 4 Kb, 8 Kb, 16 Kb, or larger. Obviously, the larger the block size, the more data items can
fit in every block. Moreover, the number of items that fit in each block depends also on the size of each
data item. One of the primary concerns in the design of efficient access methods is storing data items
that are likely to be requested together in the same block (or nearby blocks). Thus, the target is to fetch
into memory more useful data by issuing only one block access. Since this is not feasible in all cases, a
more practical goal is to reduce the number of accesses (reads or writes) as much as possible.

There are two fundamental types of block accesses that are usually supported by access methods: a
random access involves fetching a randomly selected block from the disk, whereas a sequential access
just fetches the next block. Usually, a random access is more costly because of the way magnetic disks
operate. To facilitate a random access, the disk heads must be positioned right on top of the track that
contains the requested block, thus requiring a significant amount of time, called seek time. In fact, seek
time is the predominant cost of an I/O disk operation. On the other hand, a sequential access just reads
blocks one by one in a get-next fashion, thus requiring less seek time. However, to facilitate sequential
access blocks must be located in nearby positions on the disk to minimize the required seek operations.
In general, sequential access is more restrictive and easier to obtain than random access. In addition,
random access is more useful because of the flexibility offered to access any block any time.

Next, we describe briefly how records are organized inside each block. We limit our discussion for the
case where records are of fixed size denoted as R. Therefore, the maximum number of records that can
fit in a block of size B is simply ⌊B/R⌋. There are two basic alternatives we may follow to organize these
records inside the block. The first approach is to force that all free space will be placed at the end of the
block. This means that whenever we delete a record, its place will be taken by the last record in the block.
The second alternative is to use a small index in the block header recording information about which
record slot is occupied and which one is free. The second alternative avoids moving records inside the
block, but reduces the capacity of the block because of the index used. In case variable size records are
allowed, we expect that less storage will be required but processing time may increase due to some extra
bookkeeping required to locate each record.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-3Access Methods

10.2.2 Fundamental Operations

Although access methods have different capabilities depending on their design and the problem
they call to support, they all are primarily built to support a set of fundamental operations. The
most significant one is searching. In the simplest case, a search operation takes as input a value and
returns some information back to the caller. For example: “What is the perimeter of the Earth?,”
“Display the ids of the customers located in Greece,” “What is the salary of John Smith?” or “Is
Jack Sparrow one of our customers?” All these queries can be formulated as simple search opera-
tions. However, to support these queries as efficiently as possible, the corresponding access method
should provide access to the appropriate record attributes. For example, to find the perimeter of
the Earth, the access method must be searchable by the name of an astronomical object. Otherwise,
the only way to spot the answer is to resort to sequential scanning of the whole data set. Similarly,
to display the customers residing in Greece, our access method must be able to search by the name
of the country.

There are other search-oriented queries that are clearly much more complex. For example, “find the
names of the cities with a population at least 1 million and at most 5 millions.” Clearly, this query
involves searching in an interval of populations rather than focusing on a single population value. To
support such a query efficiently, the access method must be equipped with the necessary tools. Note also,
that depending on the application, searching may take other forms as well. For example, if the access
method organizes points in the 2D space, then we may search by a region asking for all points falling in
the region of interest. In any case, to facilitate efficient search, the access method must be organized in
such a way that queries can be easily handled, avoiding scanning the whole database.

Two operations that change the contents of an access method are the insertion of new objects and
the deletion of existing ones. If the access method does not support these operations, it is characterized
as static; if both are supported, it is called dynamic; whereas if only insertions are supported, then it is
called semi-dynamic. In the static case, the access method will be built once and there is no need to sup-
port insertions/deletions. The dynamic case is the most interesting and challenging one, since most of
the real-life applications operate over data sets that change continuously, and potentially quite rapidly.
Thus, insertions and deletions must be executed as fast as possible to allow for efficient maintenance of
the access method.

In some cases, there is a need to build an access method when the corresponding data set is known
in advance. The simplest solution is to just perform many invocations of the insertion operation.
However, we can do much better because the data set is known, and therefore with appropriate pre-
processing the index may be built much faster than by using the conservative one-by-one insertion
approach. The operation of building the index taking into consideration the whole data set is called
bulk loading.

10.3 Best Practices

In this section, we study some important indexing schemes that are widely used both in academia and
industry. First, we discuss about the B-tree and hashing which are the predominant access methods
for 1D indexing. Then, we center our focus to spatial access methods and discuss the R-tree and briefly
some of its variations.

10.3.1 Fundamental access Methods

The two dominant categories of fundamental external memory indexing methods are tree-based meth-
ods and hash-based methods. For tree-based methods, the dominant example is the B-tree [5], while for
hash-based methods linear [38] and extendible [18] hashing are the most common ones. In the follow-
ing, we briefly present both methods and their variants/extensions.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-4 Technical Foundations of Data and Database Management

10.3.1.1 B-tree

The B-tree [5] is a ubiquitous data structure when it comes to external memory indexing, and it is a
generalization of balanced binary search trees. The intuition behind this generalization is that reading a
block should provide the maximum information to guide the search. The use of binary trees may result
in all nodes on a search path to reside in distinct blocks, which incurs an O(log2 n) overhead while our
goal is to impose that the number of blocks to read in order to find an element is O(logB n) (i.e., logarith-
mic with respect to the data set cardinality). The B-tree with parameters k (corresponding to the internal
node degree) and c (corresponding to leaf capacity) is defined as follows:

 1. All internal nodes v have degree d(v) such that ℓ · k ≤ d(v) ≤ u · k, where u > ℓ > 0. The only excep-
tion is the root, whose degree is lower-bounded by 2.

 2. All leaves lie at the same level; that is, the depth of all leaves is equal.
 3. All leaves l have size |l| such that ℓ′ · c ≤ |l| ≤ c, where 0 < ℓ′ < 1.

The maximum height of the tree is ⌊logℓ·k(n/ℓ′c) + 1⌋ while its minimum height is ⌈logu·k(n/c)⌉. Depending
on the satellite information of each element, the size of the pointers, as well as any other needed infor-
mation within each block, we may set accordingly constants k, c, ℓ, ℓ′, and u. Additionally, these param-
eters are also affected by the desired properties of the tree. Henceforth, for simplicity and without loss
of generality, we assume that k = c = B, u = 1, and ℓ = ℓ′ = 1/2.

In the classic B-tree, internal nodes may store elements (records) apart from pointers to children. This
results in the decrease of parameter k and thus the height of the tree is increased. In practice, and to
avoid this drawback, the B+-trees [15] are extensively used. These trees store elements only at leaves while
internal nodes store routing information related to the navigation during search within the tree. In this
way, the parameter k is increased considerably and the height of the tree is reduced.

To perform a search for an element x, the search starts from the root and moves through children
pointers to other internal nodes toward the leaves of the tree. When a leaf l is found, it is brought into
main memory and a sequential or binary search is performed to find and return the element x or to
report failure. One can also return the predecessor or the successor of the element x (which is x if it exists
in the tree), but one more I/O may be needed. To support range search queries, the B+-tree is usually
changed so that all leaves constitute a linked list. As a result, for the range query [x1, x2], first the leaf is
located that contains the successor of x1, and then a linear scan of all leaves whose value is within the
range [x1, x2] is performed with the help of the linked list of leaves. Before moving to update operations,
we first briefly discuss the rebalancing operations. The B+-tree (in fact all such trees) can be restored after
an update operation by means of splits, fusions, and shares.

A node v is split when there is no available space within the node. In this case, half the information con-
tained in v (pointers and routing information in internal nodes or elements at leaves) is transferred to a new
node v′ and thus both nodes have enough free space for future insertions. However, the father of v has its
children increased by one, which means that there may be a cascading split possibly reaching even the root.
A node v requires fusion with a sibling node v′ when the used space within v is less than 1

2 B due to a deletion.
In this case, if the combined size of v and v′ is >B, then some information is carried over from v′ to v. In this
case we have a share operation which is a terminal rebalancing operation in the sense that the number of
children of the father of v and v′ remains the same. Otherwise, all information of v is transferred to v′ and v is
deleted. The father of v′ has its children reduced by one and so there may be cascading fusions toward the root.

An insertion operation invokes a search for the proper leaf l in which the new element must be
inserted to respect the sorted order of elements in the B+-trees. If l has available space, then the new ele-
ment is inserted and the insertion terminates. If it does not have available space, then the leaf is split into
two leaves l and l′ and the new element is inserted to either l or l′, depending on its value. Then, based on
whether the father of l and l′ needs split, the process continuous until an internal node with free space
is reached or until the root is split. A deletion operation is similar with the exception that it invokes a
fusion operation for rebalancing. In Figure 10.1 an example of a B+-tree is depicted.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-5Access Methods

A variant of the B+-tree is the B*-tree [15], which balances adjacent internal nodes to keep them more
densely packed. This variant requires that l l= =′ 2

3
1
2instead of . To maintain this, instead of immedi-

ately splitting up a node when it gets full, its elements are shared with an adjacent node. As soon as the
adjacent node gets full, then the two nodes are split into three nodes.

In total, search and update operations can be carried out in O(logB n) I/Os while a range search query
can be carried out in O(logBn + (t/B)) I/Os, where t is the number of reported elements.

10.3.1.2 B-tree Variations and Extensions

There are numerous variants and extensions of B-trees, and we only report some of them. Most of these,
if not all, are quite complicated to implement and can be used in practice only in particular scenarios.
The Lazy B-tree [33] support updates with O(1) worst-case rebalancings (not counting the search cost)
by carefully scheduling these operations over the tree. The ISB-tree [33] uses interpolation search in
order to achieve a O(logB log n) expected I/Os for searching and updating, provided that the distribu-
tion of the elements belongs to a large family of distributions with particular properties. It is simple to
extend basic B+-trees to maintain a pointer to the parent of each node as well as to maintain that all
nodes at each level are connected in a doubly linked list. Applying these changes, the B+-tree can support
efficiently finger searches [11] such that the number of I/Os for searching becomes O(logBd), where d is
the number of leaves between a leaf l designated as the finger and the leaf l′ we are searching for. When
searching for nearby leaves, this is a significant improvement over searching for l′ from the root. One
can also combine B-trees with hashing [43] to speed-up operations.

There are numerous extensions of B-trees that provide additional functionalities and properties. The
weight-balanced B-tree [4] has the weight property that normal B-trees lack. For an internal node v let
w(v) be its weight, which is the number of elements stored in the subtree of v. The weight property states
that an internal node v is rebalanced only after Θ(w(v)) updates have been performed at its subtree since
the last update. This property is very important to reduce complexities when the B-tree has secondary
structures attached to internal nodes [4]. A partial persistent B-tree [7] is a B-tree that maintains its
history attaining the same complexities with normal B-trees. Efficient fully persistent B-trees have very
recently been designed [12] and allow updates in the past instances of the B-tree giving rise to different
history paths. String B-trees [19] have been designed to support efficiently search and update operations

19 32

32178 10 19 20 42 58

58

(a) (b)

19 32

8 10 17 19 42 58

58

9

10

20 32

19

8 10 17 19 58

58

9

10

20 32

20

8 10 17 20 58

58

9

10

32
(c) (d)

FIGURE 10.1 An example of update operations for the B+-tree is depicted. Internal nodes contain only routing
information. (a) An example of a B+-tree (B = 4). (b) Adding 9 and performing a split. (c) Removing 42 and perform-
ing a fusion. (d) Removing 19 and performing a share.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-6 Technical Foundations of Data and Database Management

on a set of strings (and its suffixes) in external memory. Cache-oblivious B-trees [9] have been designed
that do not need to know basic parameters of the memory hierarchy (like B) in order to attain the same
complexities as normal B-trees, which make heavy use of the knowledge of these parameters. Finally,
buffer trees [3] are B-trees that allow for efficient execution of batch updates (or queries). This is accom-
plished by lazily flushing toward the leaves all updates (or queries) in the batch. In this way, each update
can be supported in O((1/B)logM/B(n/B)) I/Os.

10.3.1.3 Hashing

Another much used technique for indexing is hashing. Hashing is faster than B-trees by sacrificing in
functionality. The functionality of hashing is limited when compared to B-trees because elements are
stored unsorted and thus there is no way to support range queries or find the successor/predecessor of an
element. In hashing, the basic idea is to map each object to a number corresponding to the location inside
an array by means of a hash function. It is not our intention to describe hash functions and thus we refer
the interested reader to [16] and the references therein for more information on practical hash functions.

The largest problem with hashing is collision resolution, which happens when two different elements
hash to the same location. The hash function hashes elements within buckets, which in this case is a
block. When the bucket becomes full, then either a new overflow bucket is introduced for the same
hashed value or a rehashing is performed. All buckets without the overflowing buckets constitute the
primary area. Two well-known techniques are linear hashing [38] and extendible hashing [18]. The
first method extends the hash-table by one when the fill factor of the hash-table (the number of elements
divided by the size of the primary area) goes over a critical value. The second one extends the primary
area as soon as an overflowing bucket is about to be constructed.

In linear hashing, data are placed in a bucket according to the last k bits or the last k + 1 bits of the
hash function value of the element. A pointer split keeps track of this boundary. The insertion of a new
element may cause the fill factor to go over the critical value, in which case the bucket on the bound-
ary corresponding to k bits is split into two buckets corresponding to k + 1 bits. The number of buckets
with k bits is decreased by one. When all buckets correspond to k + 1 bits, another expansion is initiated
constructing new buckets with k + 2 bits. Note that there is no relationship between the bucket in which
the insertion is performed and the bucket that is being split. In addition, linear hashing uses overflow
buckets although it is expected that these buckets will be just a few. The time complexity for a search and
update is O(1) expected. In Figure 10.2 an example of an insertion is depicted.

On the other hand, extendible hashing does not make use of overflow buckets. It uses a directory that
may index up to 2d buckets, where d, the number of bits, is chosen so that at most B elements exist in each
bucket. A bucket may be pointed by many such pointers from the directory since they may be indexed

Access methods 9

4 8 9 5
13

h1(x) = x mod 4

Overflow buckets

6
7

11

Split

(a) Fill factor 8 < 0.7 (b) Insert 17, fill factor 9 > 0.7

8 9 5
13

17

6
7

11

Split

4

h2(x) = x mod (2 4)

9 5
13

17

6
7

11
4 8

Split

(c) Fill factor 9 < 0.7

00 01 10 11 00 01 10 11 000 01 10 11 100

151212

FIGURE 10.2 Assuming that the critical fill factor is 0.7, then when 17 is inserted in (a), an overflow bucket is
introduced (b) since the bucket corresponding to bits 01 has no space. After the insertion, the fill factor is >0.7
and as such we construct a new hash function h2(x) and introduce a new bucket (c). h2(x) is applied to gray buckets
(3 bits) while h1(x) is applied to white buckets (2 bits) only.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-7Access Methods

by using less than d bits. An insertion either causes the directory to double or some of entries of the
directory are changed. For example, a bucket pointed by eight entries will be split and both new buckets
are pointed by four entries. In case a bucket is pointed only by one entry and needs to be split, then the
directory needs to be doubled. The advantage of extendible hashing is that it never has more than two
disk accesses for any record since there are no overflow buckets to traverse. The main problems with this
variation on hashing are total space utilization and the need for massive reorganization (of the table). In
Figure 10.3, an example of such a reorganization for an insertion is depicted.

There are many other hashing schemes with their own advantages and disadvantages. Cuckoo hash-
ing [45] is one such scheme which is very promising because of its simplicity. The basic idea is to use two
hash functions instead of only one and thus provide two possible locations in the hash-table for each
element. When a new element is inserted, it is stored in one of the two possible locations provided by
the hash functions. If both of these locations are not empty, then one of them is kicked out. This new
displaced element is put into its alternative position and the process continues until a vacant position
has been found or until many such repetitions have been performed. In the last case, the table is rebuilt
with new hash functions. Searching for an element requires inspection of just two locations in the hash-
table, which takes constant time in the worst case.

10.3.2 Spatial access Methods

The indexing schemes discussed previously support only one dimension. However, in applications such
as Geographic Information Systems (GIS), objects are associated with spatial information (e.g., latitude/
longitude coordinates). In such a case, it is important to organize the data taking into consideration the
spatial information. Although there are numerous proposals to handle spatial objects, in this chapter
we will focus on the R-tree index [24], which is one of the most successful and influential spatial access
methods, invented to organize large collections of rectangles for VLSI design.

10.3.2.1 R-tree

R-trees are hierarchical access methods based on B+-trees. They are used for the dynamic organization of
a set of d-dimensional geometric objects representing them by the minimum bounding d-dimensional
rectangles (for simplicity, MBRs in the sequel). Each node of the R-tree corresponds to the MBR that
bounds its children. The leaves of the tree contain pointers to the database objects instead of pointers

00
01
10
11

LSBs

2
16

1 5

15

21 13

10

19

2

2

2

2
7

Global depth

Local depth

12 324

Insert 20

000

LSBs

3 32 16

1 5 21 13

10

15

3

3

2

2

2
97

Global depth

Local depth

001
010
011
100
101
110
111

20124

FIGURE 10.3 An example of re-organization for extendible hashing. After the insertion of 20 the first bucket
overflows and we construct a new table of global depth 3; that is, with 23 entries. Only the overflowing bucket is split
and has local depth 3, thus needing 3 bits to navigate. The buckets that did not overflow need only 2 bits and thus
2 pointers point to them.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-8 Technical Foundations of Data and Database Management

to children nodes. The nodes are implemented as disk blocks. It must be noted that the MBRs that sur-
round different nodes may overlap each other. Besides, an MBR can be included (in the geometrical
sense) in many nodes, but it can be associated to only one of them. This means that a spatial search may
visit many nodes before confirming the existence of a given MBR. An R-tree of order (m, M) has the
following characteristics:

• Each leaf node (unless it is the root) can host up to M entries, whereas the minimum allowed
number of entries is m ≤ M/2. Each entry is of the form (mbr, oid), such that mbr is the MBR that
spatially contains the object and oid is the object’s identifier.

• The number of entries that each internal node can store is again between m ≤ M/2 and M. Each
entry is of the form (mbr, p), where p is a pointer to a child of the node and mbr is the MBR that
spatially contains the MBRs contained in this child.

• The minimum allowed number of entries in the root node is 2.
• All leaves of the R-tree are located at the same level.

An R-tree example is shown in Figure 10.4 for the set of objects shown on the left. It is evident that MBRs R1
and R2 are disjoint, whereas R3 has an overlap with both R1 and R2. In this example we have assumed that
each node can accommodate at most three entries. In a real implementation, the capacity of each node is
determined by the block size and the size of each entry which is directly related to the number of dimensions.

The R-tree has been designed for dynamic data sets and, therefore, it supports insertions and dele-
tions. To insert a new object’s MBR, the tree is traversed top-down, and at each node a decision is made
to select a branch to follow next. This is repeated until we reach the leaf level. The decision we make at
each node is based on the criterion of area enlargement. This means that the new MBR is assigned to the
entry which requires the least area enlargement to accommodate it. Other variations of the R-tree, such
as the R*-tree [8], use different criteria to select the most convenient path from the root to the leaf level.
Upon reaching a leaf L, the new MBR is inserted, if L can accommodate it (there is at least one avail-
able slot). Otherwise, there is a node overflow and a node split occurs, meaning that a new node L′ is
reserved. Then, the old entries of L (including the new entry) are distributed to two nodes L and L′. Note
that a split at a leaf may cause consecutive splits in the upper levels. If there is a split at the root, then the
height of the tree increases by one.

The split operation must be executed carefully to maintain the good properties of the tree. The pri-
mary concern while splitting is to keep the overlap between the two nodes as low as possible. This is
because the higher the overlap, the larger the number of nodes that will be accessed during a search
operation. In the original R-tree proposal, three split policies have been studied, namely, exponential,
quadratic, and linear.

Exponential split: All possible groupings are exhaustively tested and the best one, with respect to the
minimization of the MBR enlargement, is chosen.

R2

R3

R1

R1 R2 R3

dc

e
f

a b d e f g ihc

g

ih

ba

FIGURE 10.4 R-tree example.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-9Access Methods

Quadratic split: Choose two objects as seeds for the two nodes, where these objects if put together create
as much empty space as possible. Then, until there are no remaining objects, insert the object for which
the difference of dead space if assigned to each of the two nodes is maximized in the node that requires
less enlargement of its respective MBR.

Linear split: Choose two objects as seeds for the two nodes, where these objects are as far apart as pos-
sible. Then, consider each remaining object in a random order and assign it to the node requiring the
smallest enlargement of its respective MBR.

The quadratic split policy is the best choice that balances efficiency and effectiveness and, therefore, it is
widely used in R-tree implementations.

In a deletion, an entry is removed from the leaf level of the tree, which may cause a node underflow.
In this case, re-insertion of entries is applied to reduce the space requirements of the tree. In general,
a deletion has the opposite effect than that of an insertion. In both cases, the path from the root to
the leaf level that was affected by the operation must be adjusted properly to reflect the changes per-
formed in the tree. Thus, the deletion of an entry may cause a series of deletions that propagate up
to the root of the R-tree. If the root has only one child, then it is removed and the height of the tree
decreases by one.

In the sequel, we examine briefly how search is performed in an R-tree. We will center our focus to
range queries, where the user defines a query region Q and the answer to the query contains the spatial
objects that intersect Q. For example, in Figure 10.4, the query region is shown filled, whereas the answer
to the query is composed of the objects b and e. The outline of the algorithm that processes range que-
ries in an R-tree is given in Figure 10.5. For a node entry E, E.mbr denotes the corresponding MBR and
E.p the corresponding pointer to the next level. If the node is a leaf, then E.p denotes the correspond-
ing object identifier (oid). We note that the rectangles that are found by range searching constitute the
candidates of the filtering step. The actual geometric objects intersected by the query rectangle have
to be found in a refinement step by retrieving the objects of the candidate rectangles and testing their
intersection.

10.3.2.2 r-tree Bulk Loading

Recall that bulk loading is the process of building an index by taking into consideration the data set
which is known in advance. Thus, usually this operation is applied for static data sets or when insertions
and deletions are rare. In most of the cases, when bulk loading is applied, the leaf level of the tree is cre-
ated first. Then, the upper tree levels can be built one by one until we reach the root.

The first bulk-loading algorithm for R-trees proposed in [47] first sorts the data objects by using the x
coordinate of their center. If objects are points rather than rectangles, then the x coordinate of the point
is used. By using the sorted order, the leaves may be formed by placing the first M entries in the first
leaf, until no more data are available. This way, all leaves will be 100% full, except maybe of the last leaf
which may contain less.

Algorithm RangeSearch (Node N, Region Q)
Input: root mode N, query region Q
Output: answer set A
1. if (N is not a leaf node)
2. examine each entry E of N to find those E.mbr that intersect Q
3. foreach such entry E call RangeSearch(E.ptr,Q)
4. else // N is a leaf node
5. examine all entries E and find those for which E.mbr intersects Q
6. add these entries to the answer set A
7. Endif

FIGURE 10.5 The R-tree range search algorithm.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-10 Technical Foundations of Data and Database Management

Another contribution to this problem is reported in [30]. The algorithm is similar to that of [47]
in that again a sorting is performed in order to build the leaf level of the tree. Sorting is performed
by using the Hilbert value of the data objects’ centroids. According to the performance evaluation
given in [30], this approach shows the best overall performance with respect to the cost of performing
queries.

STR (Sort-Tile-Recursive) is a bulk-loading algorithm for R-trees proposed by Leutenegger et al. [32].
Let n be a number of rectangles in 2D space. The basic idea of the method is to tile the address space
by using V vertical slices, so that each slice contains enough rectangles to create approximately n M/
nodes, where M is the R-tree node capacity. Initially, the number of leaf nodes is determined, which is
L n M V L= =/ Let . . The rectangles are sorted with respect to the x-coordinate of the centroids, and
V slices are created. Each slice contains V.M rectangles, which are consecutive in the sorted list. In each
slice, the objects are sorted by the y-coordinate of the centroids and are packed into nodes (placing M
objects in a node). Experimental evaluation performed in [32] has demonstrated that the STR method
is generally better than previously proposed bulk-loading methods. However, in some cases the Hilbert
packing approach performs marginally better.

10.3.2.3 r-tree Variations and Extensions

Several R-tree variations have been proposed in the literature to improve the performance of queries.
Here we discuss briefly three successful variations that show better performance than the original pro-
posal by Guttman. These variations differ in several aspects like the way insertions and deletions are
performed, the optimization criteria being used, the split policy applied, and the storage utilization.

The R+-tree: R+-trees were proposed as an alternative that avoids visiting multiple paths during point
location queries, aiming at the improvement of query performance [52]. Moreover, MBR overlapping
of internal modes is avoided. This is achieved by using the clipping technique. In other words, R+-trees
do not allow overlapping of MBRs at the same tree level. In turn, to achieve this, inserted objects have
to be divided in two or more MBRs, which means that a specific object’s entries may be duplicated and
redundantly stored in several nodes. Therefore, a potential limitation of R+-trees is the increased space
requirements due to redundancy.

The R*-tree: R*-trees [8] were proposed in 1990 but are still very well received and widely accepted in the
literature as a prevailing performance-wise structure that is often used as a basis for performance com-
parisons. As already discussed, the R-tree is based solely on the area minimization of each MBR. On the
other hand, the R*-tree goes beyond this criterion and examines the following: (1) minimization of the
area covered by each MBR, (2) minimization of the overlap between MBRs, (3) minimization of MBR
margins (perimeters), and (4) maximization of storage utilization. The R*-tree follows an engineering
approach to and the best possible combinations of the aforementioned criteria. This approach is neces-
sary, because the criteria can become contradictory. For instance, to keep both the area and the overlap
low, the lower allowed number of entries within a node can be reduced. Therefore, storage utilization
may be impacted. Also, by minimizing the margins so as to have more quadratic shapes, the node over-
lapping may be increased.

The Hilbert R-tree: The Hilbert R-tree [31] is a hybrid structure based on the R-tree and the B+-tree.
Actually, it is a B+-tree with geometrical objects being characterized by the Hilbert value of their cen-
troid. The structure is based on the Hilbert space-filling curve. It has been shown in [42] that the Hilbert
space-filling curve preserves well the proximity of spatial objects. Entries of internal tree nodes are
augmented by the largest Hilbert value of their descendants. Therefore, an entry e of an internal node is
a triple of the form < mbr, H, p > where mbr is the MBR that encloses all the objects in the corresponding
subtree, H is the maximum Hilbert value of the subtree, and p is the pointer to the next level. Entries
in leaf nodes are exactly the same as in R-trees, R+-trees, and R*-trees and are of the form < mbr, oid >,
where mbr is the MBR of the object and oid the corresponding object identifier.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-11Access Methods

10.3.3 Managing time-Evolving Data

Time information plays a significant role in many applications. There are cases where in addition to
the data items per se, the access method must maintain information regarding the time instance that
a particular event occurred. For example, if one would like to extract statistical information regarding
the sales of a particular product during the past 5 years, the database must maintain historical informa-
tion. As another example, consider an application that tracks the motion patterns of a specific species.
To facilitate this, each location must be associated with a timestamp. Thus, by inspecting the location in
consecutive timestamps, one may reveal the motion pattern of the species. For the rest of the discussion,
we assume that time is discrete and each timestamp corresponds to a different time instance.

One of the first access methods that was extended to support time information is the B-tree and its
variations. The most important extensions are the following:

The time-split B-tree [39]: This structure is based on the write-once B-tree access method proposed in
[17], and it is used for storing multi-version data on both optical and magnetic disks. The only opera-
tions allowed are insertions and searches, whereas deletions are not supported. The lack of deletions in
conjunction with the use of two types of node splits (normal and time-based) is the main reason for the
structure’s space and time efficiency. However, only exact-match queries are supported efficiently.

The fully persistent B+-tree [36]: In contrast to the time-split B-tree, the fully persistent B+-tree supports
deletions in addition to insertions and searches. Each record is augmented by two fields tstart and tend,
where tstart is the timestamp of the insertion and tend is the timestamp when the record has been deleted,
updated, or copied to another node. This way, the whole history can be recorded and queries may involve
the past or the present status of the structure.

The multi-version B-tree [6]: This access method is asymptotically optimal and allows insertions and
deletions only at the last (current) timestamp, whereas exact-match and range queries may be issued for
the past as well. The methodology proposed in [6] may be used for other access methods, when there is
a need to transform a simple access method to a multi-version one.

There are also significant research contributions in providing time-aware spatial access methods. An
index that supported space and time is known as spatiotemporal access method. Spatiotemporal data
are characterized by changes in location or shape with respect to time. Supporting time increases the
number of query types that can be posed by users. A user may focus on a specific time instance or may
be interested in a time interval. Spatiotemporal queries that focus on a single time instance are termed
time-slice queries, whereas if they focus on a time interval, they are termed time interval queries. If
we combine these choices with spatial predicates and the ability to query the past, the present, or the
future, spatiotemporal queries can be very complex, and significant effort is required to process them.

A large number of the proposed spatiotemporal access methods are based on the well-known R-tree
structure. In the following, we discuss briefly some of them.

The 3D R-tree [54]: In this index, time is considered as just another dimension. Therefore, a rectangle
in 2D becomes a box in 3D. The 3D R-tree approach assumes that both ends of the interval [tstart, tend) of
each rectangle are known and fixed. If the end time tend is not known, this approach does not work well,
due to the use of large MBRs leading to performance degradation with respect to queries. In addition,
conceptually, time has special characteristic, i.e., it increases monotonically. This suggests the use of
more specialized access methods.

The partially persistent R-tree [34]: This index is based on the concept of partial persistency [35]. It is
assumed that in spatiotemporal applications, updates arrive in time order. Moreover, updates can be
performed only on the last recorded instance of the database, in contrast to general bitemporal data. The
partially persistent R-tree is a directed acyclic graph of nodes with a number of root nodes, where each
root is responsible for recording a subsequent part of the ephemeral R-tree evolution. Object records are

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-12 Technical Foundations of Data and Database Management

stored in the leaf nodes of the PPR-tree and maintain the evolution of the ephemeral R-tree data objects.
As in the case of the fully persistent B+-tree, each data record is augmented to include the two lifetime
fields, tstart and tend. The same applies to internal tree nodes, which maintain the evolution of the cor-
responding directory entries.

The multi-version 3D R-tree [53]: This structure has been designed to overcome the shortcomings of pre-
viously proposed techniques. It consists of two parts: a multi-version R-tree and an auxiliary 3D R-tree
built on the leaves of the former. The multi-version R-tree is an extension of the multi-version B-tree pro-
posed by Becker et al. [6]. The intuition behind the proposed access method is that time-slice queries can
be directed to the multi-version R-tree, whereas time-interval queries can be handled by the 3D R-tree.

10.4 advanced topics

In this section, we discuss some advanced topics related to indexing. In particular, we focus on three
important and challenging issues that attract research interest mainly due to their direct impact on per-
formance and because they radically change the way that typical indexing schemes work. Namely, these
topics are (1) cache-oblivious indexing, (2) on-line indexing, and (3) adaptive indexing.

10.4.1 Cache-Oblivious access Methods and algorithms

In 1999, Frigo et al. [20] introduced a new model for designing and analyzing algorithms and data
structures taking into account memory hierarchies. This is the cache-oblivious model which, as its
name implies, is oblivious to the parameters as well to some architectural characteristics of the memory
hierarchy. Data structures designed in this model do not know anything about the memory hierarchy,
but have performance which is comparable to data structures that have been designed with knowledge
of the particular memory hierarchy. In a nutshell, this is accomplished by laying out the data structure
over an array which is cache-oblivious by default. The main problem is how to design this layout and
how to maintain it when it is subjected to update operations. The main advantage of these indexing
schemes (an example is the cache oblivious B-tree [9]) is not only their simplicity and portability among
different platforms but also their innate ability to work optimally in all levels of the memory hierarchy.

10.4.2 On-Line and adaptive Indexing

Traditional physical indexing building follows an off-line approach to analyzing workload and creating
the data structures to enable efficient query processing. More specifically, typically, a sample workload is
analyzed with a view to selecting the indices to be built with the help of auto-tuning tools (e.g., [2,14,56]).
This is an expensive process, especially for very large databases. On-line and adaptive indexing have
introduced a paradigm shift, where indices are created on the y during query processing. In this way,
database systems avoid a complex and time-consuming process, during which there is no index sup-
port, and can adapt to dynamic workloads. We draw a distinction between on-line and adaptive index-
ing following the spirit of [28]. According to that distinction, on-line indexing monitors the workload
and creates (or drops) indices on-line during query execution (e.g., [13,40]). Adaptive indexing takes
one step further: in adaptive indexing the process of index building is blended with query execution
through extensions to the logic of the operators in the query execution plan (e.g., [23,25]). In the sequel,
we discuss briefly these two approaches which differ significantly from the typical bulk-loading process
for index building.

On-line Indexing: The paradigm of on-line indexing solutions departs from traditional schemes in that
the index tuning mechanism is always running. A notable example of such category is described in [13],
where the query engine is extended with capabilities to capture and analyze evidence information about
the potential usefulness of indices that have not been created thus far. Another interesting approach is

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-13Access Methods

soft-indices [40], which build on top of an index-tuning mechanism that continuously collects statisti-
cal information and periodically solves the NP-hard problem of index selection. Similarly to adaptive
indexing, the new decisions are enforced during query processing but without affecting the operator
implementation.

Adaptive Indexing: The most representative form of adaptive indexing is database cracking [25], which
is mostly tailored to (in-memory) column-stores [1]. Database cracking revolves around the concept
of continuous physical re-organization taking place at runtime. Such physical re-organization is auto-
mated, in the sense that does not involve human involvement, does not contain any off-line preparatory
phase, and may not build full indices. The latter means that the technique is not only adaptive but also
relies on partial indexing that is refined during workload execution in an incremental manner. To give
an example, suppose that a user submits a range query on the attribute R.A for the first time and the
range predicate is value1 < R. A < value2. According to database cracking, during execution, a copy of
R. A will be created, called the cracker column of R. A. The data in that cracker column is physically re-
organized and is split in three parts: (1)value1 ≤ R. A; (2) value1 < R. A < value2; and (3) R. A ≤ value2.
Moreover, an AVL tree, called cracker index, is created to maintain the partitioning information. This
process of physical re-organization continues with every query. Overall, each query may benefit from
the cracking imposed by previous queries and the new splits introduced may be of benefit for subse-
quent queries. In other words, the access methods are created on the y and are query-driven, so that
they eventually match the workload. Database cracking is characterized by low initialization overhead,
is continuously refined, and may well outperform techniques that build full indices, because the latter
need a very large number of queries in order to amortize the cost of full index building to be outweighed.
Cracking can be extended to support updates [26] and complex queries [27].

Nevertheless, database cracking may converge slowly and is sensitive to query pattern. Such limi-
tations are mitigated by combining traditional indexing techniques (B-trees) with database cracking,
resulting in the so-called adaptive merging [23]. The key distinction between the two approaches is that
adaptive merging relies on merging rather than on partitioning, and that adaptive merging is applicable
to disk-based data as well.

10.5 research Issues

The field of access methods continues to be one of the most important topics in database management
systems, mainly because of its direct impact on query performance. Although the field has been active
for several decades, modern applications pose novel challenges that must be addressed carefully toward
efficient processing. Here, we discuss briefly some of these challenges.

High-dimensional data: One of the most important challenges emerges when the number of attri-
butes (dimensions) increases significantly. R-trees and related indexing schemes perform quite well for
dimensionalities up to 15 or 20. Above this level, the dimensionality curse renders indexing difficult
mainly due to concentration of measure effect. Unfortunately, the cases where high dimensionalities
appear are not few. For example, in multimedia data management, images are often represented by
feature vectors, each containing hundreds of attributes. There are several proposals in the literature to
improve performance in these cases, trying to reduce the effects of dimensionality curse. For example,
the X-tree access method proposed in [10] introduces the concept of supernode and avoids node splits
if these cannot lead to a good partitioning. As another example, Vector Approximation File [55] is an
approximation method that introduces error in query processing. For static data sets, dimensionality
reduction may also be applied to first decrease the number of dimensions in order to be easier for access
methods to organize the data.

Modern hardware: Hardware is evolving, and although the magnetic disk is still the prevailing sec-
ondary storage medium, new types of media have been introduced, such as solid-state drives.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-14 Technical Foundations of Data and Database Management

Also, processors enjoy a dramatic change by the ability to include multiple cores in the same chip.
These changes in hardware bring the necessity to change the way we access and organize the data.
For example, solid-state drives do not suffer from the seek time problem and, therefore, the impact
of I/O time on the performance becomes less significant. This means that operations that are I/O-
bounded with magnetic disks may become CPU-bounded with modern hardware, due to the reduction
in I/O time. The indexing problem becomes even more challenging as new processing and storage
components like GPUs and FPGAs are being used more often. The new access methods must take into
account the specific features of new technology.

Parallelism and distribution: The simultaneous use of multiple instances of resources such as memory,
CPU, and disks brings a certain level of flexibility to query processing, but it also creates significant
challenges in terms of overall efficiency. By enabling concurrent execution of tasks, we are facing the
problem of coordinating these tasks and also the problem of determining where data reside. Therefore,
parallel and distributed access methods are needed that are able to scale well with the number of proces-
sors. In addition to scalability, these techniques must avoid bottlenecks. For example, if we simply take
an access method and place each block to a different processor, the processor that hosts the root will
become a hot spot. Although there are many significant contributions for parallel/distributed indexing
(e.g., distributed hash-tables), modern programming environments such as MapReduce on clusters or
multi-core CPUs and GPUs call for a reconsideration of some concepts to enable the maximum possible
performance gains and scalability.

On-line and adaptive indexing: On-line and adaptive indexing are technology in evolution; thus mul-
tiple aspects require further investigation. Among the most important ones, we highlight the need of
investigation of concurrency control in database cracking techniques, the most fruitful combination
of off-line, on-line, and adaptive techniques, and the application of database cracking to row stores.
Finally, as new indexing methodologies are being proposed, we need a comprehensive benchmark in
order to assess the benefits and weaknesses of each approach; a promising first step toward this direction
is the work in [29].

10.6 Summary

Access methods are necessary toward efficient query processing. The success of an access method is
characterized by its ability to organize data in such a way that locality of references is enhanced. This
means that data that are located in the same block are likely to be requested together. In this chapter,
we discussed some fundamental access methods that enjoy a wide-spread use by the community due
to their simplicity and their excellent performance. Initially, we discussed some important features of
access methods and then we described B-trees and hashing which are the prevailing indexing schemes
for 1D data and R-trees, which is the most successful family for indexing spatial and other types of mul-
tidimensional data. For R-trees we also described briefly bulk-loading techniques, which is an impor-
tant operation for index creation when the data set is available. Finally, we touched the issues of on-line
and adaptive indexing, which enjoy a growing interest due to the ability to adapt dynamically based on
query workloads. Access methods will continue to be a fundamental research topic in data manage-
ment. In the era of big data, there is a consistent need for fast data management and retrieval, and thus
indexing schemes are the most important tools in this direction.

Glossary

B-tree: A tree-based index that allows queries, insertions, and deletions in logarithmic time.
Bulk loading: The insertion of a known before-hand sequence of objects into a set of objects.
Cache-oblivious model: A model that supports the design of algorithms and data structures for mem-

ory hierarchies without knowing its defining parameters.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-15Access Methods

Cuckoo hashing: Hashing that uses two hash functions to guarantee worst-case O(1) accesses per
search.

Database cracking: A form of continuous physical re-organization taking place at runtime.
Disk access: Reading (writing) a block from (to) the disk.
Disk-based access method: An access method that is designed specifically to support access for disk-

resident data.
Disk head: The electronic component of the disk responsible for reading and writing data from and to

the magnetic surface.
Dynamic access method: An access method that allows insertions, deletions, and updates in the stored

data set.
Extendible hashing: A hashing method that doubles the index size to avoid overflowing.
Fixed-size record: A record with a predetermined length which never changes.
Hashing: An index method that uses address arithmetic to locate elements.
Linear hashing: A hashing method that extends the main index by one each time the fill factor is

surpassed.
Multi-version data: Data augmented by information about the time of their insertion, deletion, or

update.
Node split: The operation that takes place when a node overflows, i.e., there is no room to accommodate

a new entry.
On-line indexing: An indexing scheme where the index tuning mechanism is always running.
R-tree: A hierarchical access method that manages multidimensional objects.
Random access: The operation of fetching into main memory a randomly selected block from disk or

other media.
Re-insertion: The operation of re-inserting some elements in a block. Elements are first removed from

the block and then inserted again in the usual manner.
Semi-dynamic access method: An access method that supports queries and insertions of new items; it

does not support deletions.
Seek time: Time required for the disk heads to move to the appropriate track.
Solid-state drive: A data storage device that uses integrated circuits solely to store data persistently.
Spatiotemporal data: Data containing both spatial and temporal information.
Static access method: An access method that does not support insertions, deletions, and updates.
Supernode: A tree node with a capacity which is a multiple of the capacity of a regular node.
Time-slice query: A query posed on a specific timestamp.
Time-interval query: A query that refers to a time interval defined by two timestamps.
Variable-size record: A record whose length may change due to to changes in the size of individual

attributes.

Further Information

There is a plethora of resources that the interested reader may consult to grasp a better understanding
of the topic. Since access methods are related to physical database design, the book of Lightstone et al.
[37] may be of interest to the reader. For a thorough discussion of B-trees and related issues, we recom-
mend the article of Graefe in [22]. Also, almost every database-oriented textbook contains one or more
chapters devoted to indexing. For example, Chapters 8–11 of [46] cover indexing issues in detail, in
particular B-trees and hashing, in a very nice way.

For a detailed discussion of spatial access methods, the reader is referred to two books from Samet,
[50] and [51]. In [50] the reader will find an in-depth examination of indexing schemes that are based
on space portioning (e.g., linear quadtrees). Also, in [51], in addition to the very detailed study of spatial
access methods, the author presents metric access methods, where objects reside in a metric space rather
than in a vector space. For a thorough discussion of the R-tree family, the reader is referred to the book

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-16 Technical Foundations of Data and Database Management

of Manolopoulos et al. [41]. We also mention a useful survey paper of Gaede and Günther [21], which
covers indexing schemes that organize multidimensional data.

In many applications, time information is considered very important and thus it should be recorded.
For example, in a fleet management application, we must know the location of each vehicle and the asso-
ciated timestamp. There are many approaches to incorporate time information into an index. Some of
them were briefly discussed in Section 10.3.3. The reader who wants to cover this issue more thoroughly
may consult other more specialized resources such as the survey of Salzberg and Tsotras [49] as well as
the article of Nguyen-Dinh et al. [44]. In addition to the indexing schemes designed to support historical
queries, some access methods support future queries. Obviously, to answer a query involving the near
future, some information about the velocities of moving objects is required. The paper by Šaltenis et al.
[48] describes such an index.

The previous resources cover more or less established techniques. For modern research issues in the
area, the best sources are the proceedings of leading database conferences and journals. In particular,
the proceedings of the major database conferences ACM SIGMOD/PODS, VLDB, IEEE ICDE, EDBT/
ICDT, ACM CIKM, and SSDBM contain many papers related to access methods and indexing. Also,
we recommend the journals ACM Transactions on Database Systems, IEEE Transactions on Knowledge
and Data Engineering, The VLDB Journal, and Information Systems where, in most cases, the published
articles are enhanced versions of the corresponding conference papers.

references

 1. DJ. Abadi, PA. Boncz, and S. Harizopoulos. Column oriented database systems. PVLDB, 2(2):1664–
1665, 2009.

 2. S. Agrawal, S. Chaudhuri, L. Kollár, AP. Marathe, VR. Narasayya, and M. Syamala. Database
tuning advisor for Microsoft SQL server 2005. In Proceedings of VLDB, Toronto, ON, Canada,
pp. 1110–1121, 2004.

 3. L. Arge. The buffer tree: A technique for designing batched external data structures. Algorithmica,
37(1):1–24, 2003.

 4. L. Arge and JS. Vitter. Optimal external memory interval management. SIAM Journal on Computing,
32(6):1488–1508, 2003.

 5. R. Bayer and EM. McCreight. Organization and maintenance of large ordered indices. Acta
Informatica, 1:173–189, 1972.

 6. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. On optimal multiversion access struc-
tures. In Proceedings of the 3rd International Symposium on Advances in Spatial Databases, Singapore,
pp. 123–141, 1993.

 7. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal multiver-
sion b-tree. The VLDB Journal, 5(4):264–275, 1996.

 8. N. Beckmann, H-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In Proceedings of ACM SIGMOD, Atlantic City, NJ, pp. 322–331, 1990.

 9. MA. Bender, ED. Demaine, and M. Farach-Colton. Cache-oblivious b-trees. SIAM Journal on
Computing, 35(2):341–358, 2005.

 10. S. Berchtold, DA. Keim, and H-P. Kriegel. The x-tree: An index structure for high-dimensional data.
In Proceedings of VLDB, Bombay, India, pp. 28–39, 1996.

 11. GS. Brodal, G. Lagogiannis, C. Makris, A. Tsakalidis, and K. Tsichlas. Optimal finger search trees in
the pointer machine. Journal of Computer and System Sciences, 67(2):381–418, 2003.

 12. GS. Brodal, K. Tsakalidis, S. Sioutas, and K. Tsichlas. Fully persistent b-trees. In SODA, pp. 602–614,
2012. Available at http://siam.omnibooksonline.com/2012SODA/data/papers/498.pdf (accessed on
April 15, 2013).

 13. N. Bruno and S. Chaudhuri. An online approach to physical design tuning. In ICDE, Orlando, FL,
pp. 826–835, 2007.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

http://siam.omnibooksonline.com/

10-17Access Methods

 14. S. Chaudhuri and VR. Narasayya. Self-tuning database systems: A decade of progress. In Proceedings
of VLDB, Vienna, Austria, pp. 3–14, 2007.

 15. D. Comer. Ubiquitous b-tree. ACM Computing Surveys, 11(2):121–137, 1979.
 16. M. Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithme-

tic without primes. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer
Science, STACS’96, Grenoble, France, pp. 569–580, 1996.

 17. MC. Easton. Key-sequence data sets on indelible storage. IBM Journal of Research and Development,
30(3):230–241, 1986.

 18. R. Fagin, J. Nievergelt, N. Pippenger, and HR. Strong. Extendible hashing: A fast access method for
dynamic files. ACM Transactions on Database System, 4(3):315–344, 1979.

 19. P. Ferragina and R. Grossi. The string b-tree: A new data structure for string search in external
memory and its applications. Journal of the ACM, 46(2):236–280, 1999.

 20. M. Frigo, CE. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In IEEE
FOCS, New York, pp. 285–298, 1999.

 21. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys, 30(2):170–
231, 1998.

 22. G. Graefe. Modern b-tree techniques. Foundations and Trends in Databases, 3(4):203–402, 2011.
 23. G. Graefe and HA. Kuno. Self-selecting, self-tuning, incrementally optimized indexes. In EDBT,

Lausanne, Switzerland, pp. 371–381, 2010.
 24. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of ACM

SIGMOD, Boston, MA, pp. 47–57, 1984.
 25. S. Idreos, ML. Kersten, and S. Manegold. Database cracking. In CIDR, Asilomar, CA, pp. 68–78,

2007.
 26. S. Idreos, ML. Kersten, and S. Manegold. Updating a cracked database. In Proceedings of ACM

SIGMOD, Beijing, China, pp. 413–424, 2007.
 27. S. Idreos, ML. Kersten, and S. Manegold. Self-organizing tuple reconstruction in column-stores. In

Proceedings of ACM SIGMOD, Providence, RI, pp. 297–308, 2009.
 28. S. Idreos, S. Manegold, and G. Graefe. Adaptive indexing in modern database kernels. In EDBT,

Berlin, Germany, pp. 566–569, 2012.
 29. I. Jimenez, J. LeFevre, N. Polyzotis, H. Sanchez, and K. Schnaitter. Benchmarking online index-

tuning algorithms. IEEE Data Engineering Bulletin, 34(4):28–35, 2011.
 30. I. Kamel and C. Faloutsos. On packing r-trees. In CIKM, Washington, DC, pp. 490–499, 1993.
 31. I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In Proceedings of VLDB,

Santiago, Chile, pp. 500–509, 1994.
 32. I. Kamel and C. Faloutsos. Str: A simple and efficient algorithm for r-tree packing. In ICDE, Sydney,

New South Wales, Australia, pp. 497–506, 1999.
 33. A. Kaporis, C. Makris, G. Mavritsakis, S. Sioutas, A. Tsakalidis, K. Tsichlas, and C. Zaroliagis. Isb-

tree: A new indexing scheme with efficient expected behaviour. Journal of Discrete Algorithms,
8(4):373–387, 2010.

 34. G. Kollios, VJ. Tsotras, D. Gunopoulos, A. Delis, and M. Hadjieleftheriou. Indexing animated objects
using spatiotemporal access methods. IEEE Transactions on Knowledge and Data Engineering,
13(5):441–448, 2001.

 35. A. Kumar, VJ. Tsotras, and C. Faloutsos. Designing access methods for bitemporal databases. IEEE
Transactions on Knowledge and Data Engineering, 10(1):1–20, 1998.

 36. S. Lanka and E. Mays. Fully persistent b+-trees. In Proceedings of ACM SIGMOD, Denver, CO,
pp. 426–435, 1991.

 37. SS. Lightstone, TJ. Teorey, and T. Nadeau. Physical Database Design: The Database Professional’s
Guide to Exploiting Indexes, Views, Storage, and More. Morgan Kaufmann, San Fransisco, CA, 2007.

 38. W. Litwin. Linear hashing: A new tool for file and table addressing. In Proceedings of VLDB, VLDB‘80,
Montreal, Quebec, Canada, pp. 212–223, 1980.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

10-18 Technical Foundations of Data and Database Management

 39. D. Lomet and B. Salzberg. Access methods for multiversion data. In Proceedings of ACM SIGMOD,
Portland, OR, pp. 315–324, 1989.

 40. M. Lühring, K-U. Sattler, K. Schmidt, and E. Schallehn. Autonomous management of soft indexes.
In ICDE Workshops, Istanbul, Turkey, pp. 450–458, 2007.

 41. Y. Manolopoulos, A. Nanopoulos, AN. Papadopoulos, and Y. Theodoridis. R-Trees: Theory and
Applications. Springer-Verlag, New York, 2005.

 42. B. Moon, HV. Jagadish, C. Faloutsos, and JH. Saltz. Analysis of the clustering properties of the hil-
bert space-filling curve. IEEE Transactions on Knowledge and Data Engineering, 13(1):124–141,
2001.

 43. MK. Nguyen, C. Basca, and A. Bernstein. B+hash tree: Optimizing query execution times for on-
disk semantic web data structures. In Proceedings of the 6th International Workshop on Scalable
Semantic Web Knowledge Base Systems, SSWS’10, Shanghai, China, pp. 96–111, 2010.

 44. LV. Nguyen-Dinh, WG. Aref, and MF. Mokbel. Spatiotemporal access methods: Part2 (2003–2010).
IEEE Data Engineering Bulletin, 33(2):46–55, 2010.

 45. R. Pagh and FF. Rodler. Cuckoo hashing. In Proceedings of the 9th Annual European Symposium on
Algorithms, ESA‘01, Berlin, Germany, pp. 121–133, 2001.

 46. R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill, Boston, MA, 2002.
 47. N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packed r-trees. In

Proceedings of ACM SIGMOD, Austin, TX, pp. 17–31, 1985.
 48. S. Šaltenis, CS. Jensen, ST. Leutenegger, and MA. Lopez. Indexing the positions of continuously

moving objects. In Proceedings of ACM SIGMOD, Dallas, TX, pp. 331–342, 2000.
 49. B. Salzberg and VJ. Tsotras. Comparison of access methods for time-evolving data. ACM Computing

Surveys, 31(2):158–221, 1999.
 50. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.
 51. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San

Francisco, CA, 2005.
 52. T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for multi-dimensional

objects. In Proceedings of VLDB, Brighton, U.K., pp. 507–518, 1987.
 53. Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access method for timestamp and interval

queries. In Proceedings of VLDB, Rome, Italy, pp. 431–440, 2001.
 54. Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatiotemporal indexing for large multimedia appli-

cations. In Proceedings of 3rd IEEE International Conference on Multimedia Computing and Systems,
Hiroshima, Japan, pp. 441–448, 1996.

 55. R. Weber, H-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-
search methods in high-dimensional spaces. In Proceedings of VLDB, New York, pp. 194–205, 1998.

 56. DC. Zilio, J. Rao, S. Lightstone, GM. Lohman, AJ. Storm, C. Garcia-Aranello, and S. Fadden. Db2
design advisor: Integrated automatic physical database design. In Proceedings of VLDB, Toronto,
Ontario, Canada, pp. 1087–1097, 2004.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

Y
an

ni
s

M
an

ol
op

ou
lo

s]
 a

t 1
5:

54
 1

7
Ju

ly
 2

01
4

