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Abstract

The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electro-
physiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional
connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means
that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions
and links, or connections, represent communication pathways between the nodes. Graph theory and theory of
complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, an-
alyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and
deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph the-

oretic approaches and tools to analyze EEG data.
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Introduction

T HE HUMAN BRAIN IS PROBABLY one of the most complex
structures in nature and unraveling its mysteries consti-
tutes maybe one of the greatest challenges faced by 21st cen-
tury science. No other brain in the known universe is capable
of generating the kind of higher and impressive conscious-
ness that is associated with human ingenuity. Toward that di-
rection, the Human Brain Project (Europe* and USA™),
which is a large 10-year scientific research project, aims ex-
actly at simulating the complete human brain to better under-
stand how it functions. To accomplish these goals, both
continental projects collect, analyze, and model consistent
recording of brain data sets and employ network science
methods supported by brain theory, since all brain networks
can be characterized by neurobiologically meaningful graph
theory metrics (Bullmore and Sporns, 2009; Joudaki et al.,
2012; Sporns, 2013).

The term brain connectivity refers to several different and
interrelated aspects of brain organization. A fundamental
distinction is between structural connectivity, functional
connectivity, and effective connectivity (Friston, 1994).
Anatomical connectivity refers to a network of physical or
structural (synaptic) connections linking sets of neurons or
neuronal elements, as well as their associated structural bio-
physical attributes encapsulated in parameters such as synap-

*www.humanbrainproject.eu
www.whitehouse.gov/infographics/brain-initiative

tic strength or effectiveness. Functional connectivity, in
contrast, is fundamentally a statistical concept. In general,
functional connectivity captures deviations from statistical
independence between distributed and often spatially remote
neuronal units. Finally, effective connectivity may be viewed
as the union of structural and functional connectivity, as it
describes networks of directional effects of one neural ele-
ment over another. In this article, we mainly focus on EEG
functional connectivity networks, because they are the
most commonly used ones.

One of the most widely used methods to measure and
record the electrical activity of the brain worldwide is the
EEG, which uses special sensors (electrodes) that are placed
in specific areas along the scalp and each one of them records
a space average of cortical source activity, as shown in
Figure la. Also, the sizes of cortical regions contributing
to each electrode depend on whether untransformed or
high resolution EEG (e.g., spline-Laplacian) is studied. The
name of each electrode (e.g., Cz, F4, and P3) is unique in
each recording and denotes its position on the scalp. These
electrodes detect tiny electrical charges that result from the
activity of the brain cells (Niedermeyer et al., 2012). The
charges are amplified and appear most of the times as a re-
cording signal that may be printed out on a paper or a com-
puter screen (Fig. 1b). Basic parameters in a recording
procedure constitute the total number of electrodes, the sam-
pling frequency (or sampling rate), and the bit resolution.
EEG recording data also include meta-data, which are
mainly markers that usually have the form, <name, value>.
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FIG. 1. (a) Electrodes that are placed 1n specific areas along the scalp. (b) Example of an electroencephalogram recording.

These markers are indicated by experts to note events of in-
terest, which could be, for example, epileptic seizures,
spikes, encephalopathies, or sleep spindles. An event of 1n-
terest can be described from one or more markers. For in-
stance, we can use two markers for an epileptic seizure,
the first to point out the start and the second to denote the
end of it (Abou-Khalil and Misulis, 2006).

EEGs present high research and clinical interest and they
are widely used both 1n health and disease, for example, 1n di-
agnosing neurological disorders (Niedermeyer et al., 2012).
This happens because measurements of brain electrical activ-
ity with EEG have long been one of the most valuable sources
of information for research and diagnosis, since they carry a
large amount of rich information and can be recorded contin-

uously and over long periods of time (Iasemidis, 2011). They
also present several advantages against other technologies
(functional magnetic resonance 1maging or magnetoencepha-
lography) such as higher temporal resolution, lower price, and
tolerance to movement. An EEG can provide information
about possible abnormal electrical activity in the brain and
in some cases the types of seizures that a person might be
going through. The word ““‘seizure’ 1s generally used to de-
scribe a temporary change in the electrical activity of the
brain (e.g., epileptic seizure) (Stump, 2008). One of the
most common EEG applications 1s to show the type and loca-
tion of the activity in the brain during a seizure. This informa-
tion can then be used for making the right diagnosis. Beside
seizures, an EEG 1s also used to evaluate people who have
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problems associated with brain functions, which might in-
clude, for example, coma, problems with memory, sleep dis-
orders, tumors, encephalopathy (a disease that causes brain
dysfunction), or weakness of specific body parts (such as
weakness caused by a stroke). An EEG can also be used to de-
termine brain death (Teplan, 2002).

In the past years, EEG data were mainly studied as signals
and several methods to analyze brain function from these re-
cordings have been proposed. They range from traditional
linear methods, such as Fourier transforms and spectral anal-
ysis (Greenfield et al., 2010), to nonlinear methods derived
from the theory of nonlinear dynamical systems, also called
chaos theory (Pritchard and Duke, 1995; Stam, 2005). In
general, chaos-based approaches outperform the traditional
linear methodologies (Rabinovich et al., 2006), which as-
sume that the signal is stationary and originates from a
low-dimensional linear system. However, in reality, this is
not always the case because a real EEG is a nonstationary
signal (Gribkov and Gribkova, 2000). Moreover, given that
EEGs are recorded continuously and many times over long
periods of time, this often leads to the production of vast
amount of data and makes the task of knowledge discovery
from them quite difficult, but at the same time challenging
as well. It is thus very important to develop new methods
to study EEG signals in different physiological and patholog-
ical states.

EEGs are spatiotemporal data; since electrodes are placc”
on specific locations on the scalp and record continuously the
electrical activity of the brain, we need new methods that
will exploit both the spatial and temporal nature of these
data. A basic precondition for the exportation of useful infor-
mation from spatiotemporal data is the purposeful represen-
tation and description of EEG data using the appropriate
techniques that maintain all the initial inforraation and foster
the application of data mining methodologies (del Mondo
et al., 2013). For these reasons, reccntly, there has been a
focus on studying EEG signals as graphs (networks) (Chris-
todoulakis et al., 2012; Dimitriadis et al., 2012; lakovidou
et al., 2013a,b; Rubinov and Sporns, 2010) and in particular,
there exists a growing interest in the theoretical aspects of
network analysis in an attempt to model (Simpson et al.,
2012; Vertes et al., 2012), describe (Rubinov and Sporns,
2010), and propose new measures (Joyce et al., 2010) for
a better understanding of complex systems, such as the
human brain.

A graph is a structure that consists of a set of vertices (or
nodes) and a set of lines called edges that connect the nodes
with each other. In case of EEG graphs, usually, each node cor-
responds to a particular electrode or pairs of electrodes and
each edge corresponds to the connectivity estimates between
different nodes (Fig. 2) (Dimitriadis et al., 2010). Generally,
the graphs that are used to model the EEG spatiotemporal
data can be divided in two categories (Brunet et al., 2011;
de Pasquale et al., 2015; Iakovidou et al., 2013b): (i) static
graphs, which represent connectivity estimates that correspond
to a person’s brain activity summarizing long recording peri-
ods (e.g., 8 sec) and (ii) time-varying graphs that represent a
time series of connectivity estimates with each connectivity
snapshot corresponding to a person’s brain activity lasting
for few milliseconds.

After having given a short overview of how EEG data can
be modeled using graphs, we further emphasize on the com-
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FIG. 2. An example of complete and undirected EEG
graph.

putational analysis as defined in graph theor . The next sec-
tion provides some basic concepts of graph theory using
mathematical descriptions with regard to EEGs. Basic EEG
Recording Properties and Construction of Brain Networks
section presents somre basic EEG recording properties and
data processing regarding EEG brain network construction.
Data Structures section describes the two main data struc-
tures that are used to represent and store EEG graph data.
The next two sections further emphasize on the computa-
tional analysis of EEG graphs, by exploring different net-
work properties and measures with regard to EEG brain
networks. Finally, this article concludes providing a Discus-
sion scction.

Basic Graph Theory Definitions and Terms

To introduce the basic concepts of graph theory, we give
both the empirical and the mathematical description of
graphs that represent brain EEG networks as they are origi-
nally defined in the literature (Cohen and Havlin, 2010; Cor-
men et al., 2009; Niedermeyer et al., 2012).

An undirected graph is a structure that consists of a set of
vertices (or nodes) and a set of lines called edges that connect
the nodes with each other. Generally, a graph is symbolized
as G=(V, E), where V is the set of vertices representing the
nodes and E is the set of edges representing the connections
between the nodes. We define as E={(i, j) | i, jeV} the sin-
gle connection between nodes i and j, and consequently, we
say that nodes i and j are neighbors.

On the other hand, a directed graph is defined as an or-
dered triple G=(V, E, f), where V is a nonempty set of ver-
tices, E is a set of edges, and f is a function that associates
each element in E with an ordered pair of vertices in V.
The ordered pairs of vertices are called directed edges,
arcs, or arrows and every edge E=(i, j) is considered to
have direction from i to j.

In EEG graphs, each node corresponds to a particular elec-
trode or pairs of electrodes and each edge corresponds to the
connectivity estimates between different nodes. Every node
is labeled differently, but not arbitrarily since it takes its
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name by the position that the electrodes have on the
scalp. All EEG graphs are undirected and complete (fully
connected), which means that every pair of distinct vertices
is connected by a unique edge (Fig. 2). Another characteristic
of EEG graphs is the fact that they are weighted (Rubinov
and Sporns, 2010).

A weighted graph is defined as a graph G=(V, E) where V
is a set of vertices and E is a set of edges between the verti-
ces, E={(u, v) | u, veV} associated with a weight function
w: E — R, where R denotes the set of all real numbers.
Most of the times, the weight w; of the edge between
nodes i and j represents the relevance of the connection
and this is true for EEG graphs, because a larger weight cor-
responds to higher reliability of a connection, as shown in
Figure 3a. Many recent studies discard link weights and cre-
ate binarized EEG graphs, where binary links denote just the
presence or absence of connections (Fig. 3b), contrary to
weighted links that contain information about connection
strengths. Binary networks are in most cases simpler to
study and have a more easily defined null model for statisti-
cal comparison. They can be used to improve visualization of
a network or extract its main structure and they also consti-
tute a preprocessing step for many data mining algorithms
(Zhou et al., 2012). On the other hand, weighted character-
ization usually focuses on somewhat different and comple-
mentary aspects of network organization (Saramaki et al.,
2007) and may be especially useful in filtering the influence
of weak and potentially nonsignificant links.

If G=(V, E) is a graph, then G, =(V|, E)) is called a sub-
graph of Gif V| & Vand E| S E, where each edge in E; is
incident with vertices in V. In case of EEG graphs, a pruned
graph of G, denoted by P(G), is a suberaph of G and can be
obtained from it by deleting the least important edges (Zhou
etal., 2012) according to a predefined procedure or threshold
(Fig. 3b). This happens because weak and nonsignificant
links may represent spuriovs connections and these links
tend to obscure the topology of strong and significant con-
nections. As a result, they are often discarded by applying
an absolute or a proportional weight threshold. Threshold
values are often arbitrarily determined, and networks should
ideally be characterized across a broad range of thresholds
(Rubinov and Sporns, 2010).

The degree k; of a node i in an undirected graph is the num-
ber of other nodes in the graph to which node i is connected (or
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equivalently the number of edges adjacent to i) and it is de-
fined as k;=N(i), where N(i) is the number of neighbors of
node i. The degree measurement has a straightforward neuro-
biological interpretation: nodes with a high degree are inter-
acting, structurally or functionally, with many other nodes in
the network. The average degree among all nodes in the net-
work gives a picture of how well connected the graph is.

The network density is defined as C= N(NLfl) where E is
the number of edges and N the total number of nodes. In a
fully connected EEG graph, the total connectivity is always
equal to 1 and the degree of every node is equal to N — 1.

A new concept for representing EEG data constitutes the
idea of multislice networks. According to this, a given tem-
poral sequence of weighted graphs (slices) corresponding to
certain time-indexed connectivity snapshots is transformed
into a single weighted graph, which contains all the slices
connected together and corresponds to a multislice network
(Fig. 4). In particular, borrowing the concept form a recent
work on time-varying graphs (Cardillo et al., 2014), which
introduced a measure that expresses the tendency of the
edges to persist over time, the following quantity is assigned
as weight to the link connecting node i over two consecutive
network slices, indexed by ¢ and 7+ 1:

N
i < Zf”r:/”z:/
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where wi; are the elements of the weighted adjacency matrix
of the time-varying graph at snapshot 7 and s' is the strength
of node i at snapshot 7. An example of a multislice graph is
depicted in Figure 4<. This particular example contains two
slices that correspond to two different time snapshots ¢ and
t+1. The red color edges are the ones that were added
according to the aforementioned procedure, to create the
multislice graph. The potential of this approach stems from
the fact that the constructed multislice network encompasses
both temporal and spatial characteristics of EEG networks.
Also, the characterization of that kind of networks, using
standard network metrics, such as those presented in Network
Properties and Network Topology and Measures sections, of-
fers new possibilities in understanding the self-organization
trends and behavior of EEGs (Tang et al., 2010). There are
other studies that also use the aforementioned approach to

FIG. 3. (a) A weighted, undi-
rected, and fully connected EEG
graph. (b) The pruned and binarized
version of (a). Color images avail-
able online at www.liebertpub.com/
brain
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FIG. 4. (a) A simple representative
example of a multislice network. (b)
The weighted adjacency matrix of

the multislice network shown in (a).
Links in red depict the weights of the
inter-slice links. Color images available
online at www.liebertpub.com/brain
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detect, for example, community organization of brain con-
nectivity over time (Bassett et al., 2011) or to evaluate dy-
namics of the cerebral networks during the execution of
the foot movement (De Vico Fallani et al., 2008a).

Basic EEG Recording Properties and Construction
of Brain Networks

As mentioned before, the electroencephalogram is a re-
cording of the electrical activity of the brain from the scalp
and its recorded waveforms reflect the cortical electrical ac-
tivity. EEG activity is quite small, so the signal intensity is
measured in microvolts and the main signal frequencies of
the human EEG waves are as follows (Kramarenko and
Tan, 2003; Nunez and Srinivasan, 2006a,b):

e Delta: Has a frequency of 3 Hz or below. It tends to be the
highest in amplitude and the one with slowest waves. Itis
normal as the dominant rhythm in infants up to 1 year and
in stages 3 and 4 of sleep. It may occur focally with sub-
cortical lesions and in general distribution with diffuse le-
sions, metabolic encephalopathy hydrocephalus, or deep
midline lesions. It is usually most prominent frontally in
adults (e.g., FIRDA—frontal intermittent rhythmic delta)
and posteriorly in children (e.g., OIRDA—occipital inter-
mittent rthythmic delta) (Brigo, 2011).

e Theta: Has a frequency of 3.5-7.5Hz and is classified as
“slow” activity. It is perfectly normal in children up to 13
years and in sleep, but abnormal in awake adults. It can be
seen as a manifestation of focal subcortical lesions. It can
also be seen in generalized distribution in diffuse disor-
ders such as metabolic encephalopathy or some instances
of hydrocephalus. This rance has been also associated
with reports of relaxed and meditative states (Cahn and
Polich, 2006).

e Alpha: Has a frequency between 7.5 and 13 Hz. It is usu-
ally best seen in the posterior regions of the head on each
side, being higher in amplitude on the dominant side. It
appears wnen closing the eyes and relaxing, and disap-
pears when opening the eyes or alerting by any mecha-
rism (*hinking, calculating). It is the major rhythm seen
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in normal relaxed adults and is present during most of
life, especially after the 13th year. Alpha can also be ab-
normal, for example, an EEG that has diffuse alpha occur-
ring in coma and is not responsive to external stimuli is
referred to as alpha “‘coma’ (Niedermeyer, 1997).

e Beta: Beta activity is ““fast” activity. It has a frequency of
14 and greater Hz (up to 28 Hz). It is usually seen on both
sides in symmetrical distribution and is most evident fron-
tally. It is accentuated by sedative-hypnotic drugs, espe-
cially the benzodiazepines and the barbiturates. It may
be absent or reduced in areas of cortical damage. It is gen-
erally regarded as a normal rhythm and is the dominant
thythm in patients who are alert or anxious, or have
their eyes open (Pfurtscheller and Lopes Da Silva, 1999).

e Gamma: Gamma waves have a frequency between 25 and
100 Hz, although 40 Hz is typical (Gold, 1999). Gamma
waves were initially ignored before the development of
digital electroencephalography as analog electroencepha-
lography is restricted to recording and measuring rhythms
that are usually less than 25 Hz (Hughes, 2008). Accord-
ing to a popular theory, gamma waves may be implicated
in creating the unity of conscious perception (the binding
problem) (Buzsaki, 2007).

During an EEG recording, elzctrodes are not placed arbi-
trarily on the scalp and the standardized placement of scalp
electrodes for a classical EEG recording has become com-
mon since the adoption of the 10/20 international system
(Jurcak et al., 2007). The essence of this system is the dis-
tance in percentages of the 10/20 range between Nasion-
Inion and fixed points (Fig. 5). These points are marked as
the frontal pole (Fp), central (C), parietal (P), occipital (O),
and temporal (T). The midline electrodes are marked with
a subscript z, which stands for zero. The odd numbers are
used as subscript for points over the left hemisphere and
even numbers over the right hemisphere. The names of
these electrodes also represent the labels of each node in
the corresponding brain network.

Scalp EEG recording devices use different amplifiers to
compute the voltage of each EEG channel, which take as
input the measurements of two electrodes and produce the

Cz Vertex

20%

A1 Inion

Inion

— 100%

FIG. 5. The 10/20 International system of electrode placement.
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corresponding EEG channel as the difference between the
two inputs, after it has been amplified. The choice of input
electrodes to each amplifier is known as montage and in
that case, the nodes in each EEG graph represent a pair of
electrodes. An EEG can be monitored with the following
types of montage (Aurlien et al., 2004; Lagerlunda, 2000):

e Sequential (or Bipolar) montage: Each channel (i.e.,
waveform) represents the difference between two adja-
cent electrodes. The entire montage consists of a series
of these channels, where pairs of neighboring electrodes
are subtracted from one another. Usually, the pairs are
taken in straight lines from the front to the back of the
head. For example, the channel “Fpl-F3” represents
the difference in voltage between the Fpl electrode
and the F3 electrode. The next channel in the montage,
“F3-C3,” represents the voltage difference between F3
and C3 and so on, through the entire array of electrodes.

e Referential montage: Each channel represents the differ-
ence between a certain electrode and a designated refer-
ence electrode. It is also called common reference
montage, since the reference electrode is common to
all amplifiers. There is no standard position for this refer-
ence; it is, however, at a different position than the “‘re-
cording” electrodes. Midline positions are often used
because they do not amplify the signal in one hemisphere
versus the other. Another popular reference is “‘linked
ears,” which is a physical or mathematical average of
electrodes attached to both earlobes or both mastoids.

e Average reference montage: The outputs of all of the am-
plifiers are summed and averaged, and this averaged sig-
nal is used as the comrion reference for each channel.

Scalp EEG recording
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e Laplacian montage: Each channel represents the differ-
ence between an electrode and a weighted average of
the surrounding electrodes (Nunez and Pilgreen, 1991).

Figure 6 summarizes the general procedure of EEG data
processing. As already mentioned, the electrodes that are
placed on the scalp measure and record the electrical activity
of the brain and these recordings appear as signals, as shown
in the second step of Figure 6. To convert the signals into
graph data sets, pairwise correlations between all pairs of
time series are calculated using several connectivity mea-
sures (Pereda et al., 2005), some of which are described
next. Examples of using these measures in EEG studies are
presented in Christodoulakis and colleagues (2015).

e Cross-correlation: Given two time series x(7) and y(r)
with te{1...n}, the normalized cross-correlation func-
tion between x and y as a function of lag 7, is given

n—t N \
by Cy (1) = 1 Z (W)) (@) where g, and o, are
) 1 N )

n—t Oy
=

the standard deviations of x and y, respectively. C,, is
computed for a range of values of lag 7, which depends
on the sampling frequency. Note that when the mean
value of both signals is not subtracted beforehand, the
normalized cross-variance function should instead be

n—t \ — o
as follows,: Zl (%) (ﬁ#) C,, takes values be-
t=
tween [—1,1], with 1 indicating the largest positive corre-
lation, —1 the largest negative correlation, and 0 no
correlation. For the purposes of constructing the graphs
and obtaining graph theoret'cal measures, the absolute
value of the cross-corelation is computed and the

Application of Application of

Graph Analysis Graph Analysis
Methodologies Methodologies
Directly on on Pruned and
Weighted and Binarized
Complete Graphs Graphs

Construction of Weighted
and Complete Brain Network

Pruning and
Binarization

FIG. 6. General scheme of EEG data processing. Color images available online at www .liebertpub.com/brain



correlation between the two signals can be computed as
max.|C,,|, over the desired range of t (Pereda et al., 2005).
Corrected cross-correlation: Cross-correlation often takes
its maximum at zero lag in the case of scalp EEG measure-
ments. Consistent zero-lag correlations could be due to
volume conduction effects: this is because currents from
underlying sources are conducted instantaneously through
the head volume to EEG sensors (assuming that scalp po-
tentials have no delays compared to their underlying sour-
ces [quasi-static approximation]). Thus, signals arising
from a common source will be simultaneously picked
up by different electrodes affecting a spurious zero-lag
correlation between the two electrode signals. It should
be noted, although, that zero-lag correlations could also
be due to a third common source or even true direct phys-
iological interactions. In principle, true direct interactions
between any two physiological sources will typically incur
a nonzero delay due to transmission speed, provided that
the sampling frequency is high enough to capture such de-
lays. However, consistent nonzero lag correlations are un-
likely to be due to the effects of common sources. To
measure true interactions not occurring at zero lag, we cal-
culate the odd part of cross-correlation, which is a measure
of its asymmetry, as defined in Nevado et al. (2012) by
subtracting the negative lag part of C,,(7) from its positive
lag counterpart: Cy(7)=C\(t) — Cy(—1), for >0.
Note that C,, providés a lower bound estimate of the non-
zero lag cross-correlations and is notably smaller than C,,.
Coherence: Coherency is the equivalent of cross-
correlation in the frequency domain. It measures the linear
correlation between two signals x and y as a function of the
frequency f. It is defined as the cross-spectral density be-
tween x and y normalized by the autospectral densities
. . N Sulf)
of x a.[ld e F\\(f) = m
spectral density and S, and §,, are the autospectral densi-
ties of x and y, respectively (Pereda et al., 2005). Coher-
ency is a complex number, as the cross-spectral density
is complex, whereas the autospectral density function is
real. Therefore, in many cases, coherence (or the squared
coherence), which is defined as the magnitude of coher-
ency (or its square), is employed as a measure of cor-
relation in the frequency domain, that is Ky (f)=
(S ()]

(S (D[S (D]
mated by using standard power spectral density estimation
methods (such as the Welch method), by dividing the EEG
signals into segments of equal length and averaging the in-
dividual spectral estimates. In the above equation, <.> de-
notes the average over all segments (Pereda et al., 2005).
The value of «,,(f) ranges between 0 and I, with 1 indi-
cating perfect linear correlation and 0 no correlation be-
tween x and y at frequency f.

Imaginary coherence: Nolte and colleagues (2004) ob-
served that the imaginary part of coherency is insensitive
to volume conduction, while the real part is strongly af-
fected. This is due to the fact that signals arising from
the same electrical source in the brain, under the quasi-
static approximation, will be volume conducted to any
two recording locations with no time delay, thus influenc-
ing only the real part of the cross-spectrum. Hence, imag-
inary coherence is defined as the imaginary part of

, where S, is the cross-

For finite data sets, coherency is esti-
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coherency: IC,, (f) =Imag(I",(f)). As in the case of co-
herence, the maximum absolute value in each frequency
band quantifies the correlation between the two signals
in that band.

e Phase lag index (PLI): It is defined as a measure of asym-
metry of the phase difference distribution between two
signals (Stam et al., 2011). The instantaneous phases
are obtained by first band-pass filtering the signals in the
frequency bands of interest and then using the Hilbert
transform to obtain the phase of the analytic signal.
Phase differences (4¢) between a given pair of chan-
nels were wrapped in the interval, t<Ap<m: PLI,, =
[(sen(Ag(t)))|, where A is the instantaneous phase dif-
ference between x and y. PLI ranges between 0 and 1, with
0 indicating no correlation and 1 maximal correlation.

o Weighted phase lag index (WPLI): Vinck and colleagues
(2011) argued that PLI's sensitivity to noise and volume
conduction is hindered by the discontinuity of the mea-
sure, which is caused by small perturbations turning
phase lags into leads and vice versa. To overcome this
problem, they defined the WPLI, which modifies PLI
by weighting the contribution of observed phase leads
and lags by the magnitude of the imagine ry component of

’(Imug (S'“»(f) )) ‘ _

‘(Imugs“.(f»‘ -

>’. Similar to PLI, WPLI ranges

the cross-spectrum as follows: WPLI=

‘( ‘Ir 1ag(5'w (f) ) « sgn(Imag (S“»(f:))

‘(Imug (Sn»(f) )) }
between 0 and 1, with 0 indicating no correlation and 1 in-
dicating maximal correlation.

After the network construction, there are two options: ei-
ther apply a thresholding scheme to binarize and prune the
graphs, for the purpose of processing the binarized data
with graph analysis methodologies, or apply graph analysis
techniques d:cectly on weighted and fully connected graphs.
The majority of the proposed methods follow the first op-
tion as binary networks are simpler and easier to study.
However, some algorithms for studying weighted EEG net-
works have also been proposed recently (Iakovidou et al.,
2013a, 2015).

The most common data structures that are used to make
EEG network computer readable are adjacency matrices
and adjacency lists. The following section provides a short
mathematical description of these data structures:

Data Structures

The two main data structures that are used to represent and
store EEG graph data are described below:
The adjacency matrix, also known as connectivity matrix,
of an undirected, unweighted, and labeled graph G=(V, E)
ap ... dyp
consists of an nxn matrix A=a; or A=| . 1 |,
Ay N
where 7 is the total number of nodes and a;;=1 if (i, j) €
V, which practically means that nodes a; and g; are connected
and a;=0 otherwise. As mentioned before, EEG graphs are
weighted and fully connected, so in that case, a;;=w;; and
a;=0. The zeros along the diagonals imply that a node is
not connected to itself. Generally, the adjacency matrices
of undirected graphs are symmetric because a;=a; and
they require a memory space of @(|V|?), which is best suited
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for dense graphs. The graph density shows how sparse or
dense a graph is according to the number of connections
per node set and it is defined as D= % for undirected
graphs. For all-against-all symmetric matrices, only the
upper or the lower triangular part of the matrix is necessary
and requires O(|V]) amount of memory to be allocated. Fig-
ure 7 depicts an example of a weighted, symmetric, and
square adjacency matrix of a brain network such that
depicted in Figure la. In case of fully connected graphs
where all nodes are connected with each other, adjacency
matrices are highly suggested.

To reduce memory allocation by half for large-scale data,
a symmetric 2D matrix A can be stored as a 1D matrix B,

where Ali, ] :B[@ +j} if the first element is a;, like,

. . i(i+1 N

for example, in Matlab platform, or A[i, ] :B[¥ +j} i

if the first element is agq like in the majority of programming

languages. In both cases, matrix B hosts the lower part of ma-

trix A. If, for example, A is a 3 X3 matrix starting from ele-
aip dpp di3

menta;;,A=| a1 ax» ay; |,then matrix Bis defined as
asy  dzp  dss

B(: {Cl] 1, d21, A2, A3, d32, Cl33}. The 1D array will be of size

nn £ 1 “including the diagonal.

%)n the contrary, sparse graphs, for example, pruned EEG
graphs, are better represented by an adjacency list. Given a
graph G=(V, E), its adjacency list consists of an array Adj
of |E| elements where for each ec E, Adj(0, ¢)=ie V. Adja-

cency lists require a memory space of @(|V|+|E|).

Network Properties

Exploring different network properties can provide valu-
able insight into the internal function of brain networks
and provide a better understanding of the human brain. In
the following, we give a short description of the main prop-
erties that are commonly analyzed in networks, including
brain networks as well.

In graph theory, an isomorphism of graphs G and H is a
bijection between the vertex sets of G and H, f: V(G) —
V(H), such that any two vertices u# and v of G are adjacent
in G if and only if f{) and f(v) are adjacent in H. An example
of isomorphic graphs is depicted in Figure 8. In case of EEG
graphs, there is no question of isomorphism, because as men-
tioned above, each node takes its name by the specific and
unchangeable positions that the electrodes have on the scalp.

A walk is a pass through a specific sequence of nodes (v,
Vo, vuny VL) such that (V], Vz), (Vz, V3), cees (VL, 1» VL) C E. Ina
walk, it is possible for a node or an edge to appear more than
once. If an edge does not appear two or more times, the walk
is called a trail, and if a node does not appear two or more
times, the walk is called a path. A cycle is a walk (v,
Vo, ..., vz) Where v;=v; with no other nodes repeated ¢nd
L >3, such that the last node is the same as the first one. A
graph is called cyclic if it contains a cycle and in any other
case, it is called acyclic. An undirected graph is called con-
nected if there is a path from any node to any other node in
the graph.

The shortest (or geodesic) path length, d; ;, between a pair
of nodes, i and j, is the minimum number of edges that has to

0 FIG. 7. Representation of the
weighted, symmetric, and square
adjacency matrix of a brain network

{04 with 18 nodes. Color images avail-

able online at www.liebertpub.com/
brain
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21(0) b=i(1)
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5 f(5) e=i(4)
. : a=i6) h=i(7)

FIG. 8. Example of isomorphism between two simple
graphs.

be traversed to get from node i to j. Then, the characteristic
(or average) path length is defined as the average shortest
path length over all pairs of nodes in the network. This mea-
sure also provides an indication of how well integrated the
graph is and it is calculated as L= L) Y dij,
"iEN jEN. it
where N denotes the set of all nodes in the graph and # is
the total number of such nodes. The most common algo-
rithms for calculating the shortest paths are Dijkstra’s greedy
algorithm (Dijkstra, 1959) and Floyd’s dynamic algorithm
(Floyd, 1962). Dijkstra’s algorithm has running time com-
plexity O(N?), where N is the number of vertices and returns
the shortest path between a source vertex i and all other ver-
tices in the network. Floyd’s algorithm has running time
complexity O(N?) and requires an all-against-all matrix
that contains the distances of every node in the network to
every other node in the network.

The efficiency of a path between two vertices (local effi-
ciency) (De Vico Fallani et al., 2010) is defined as the inverse
of the shortest distance between the vertices. When such a
path does not exist, the efficiency is zero. Global efficiency
(Latora and Marchiori, 200") is the average efficiency over
all pairs of nodes and is a measure of how efficiently the in-
formation is exchanged across the whole network. The effi-
ciency of a network can be used to quantify small world
behavior in networks, which is described later on in the doc-

n
ument, and it is defined as follows: E = m >y d; L
"iEN jEN. it

The clustering coefficient is the measurement that shows
the tendency of a graph to be divided into clusters. A cluster
is a subset of vertices that contains lots of edges connecting
these vertices to each other. Consequently, this measurement
identifies groups of nodes that are largely connected with
other nodes in the same group, but have a much smaller num-
ber of connections to nodes outside their group. Formally,
the clustering coefficient (or local clustering coefficient)
(Watts and Strogatz, 1998) of a node i is C;= ﬁ
where k; is the degree of node i and ¢; denotes the number
of edges between neighbors of i. Then the global clustering
coefficient C of the network is defined as the mean clustering
coefficient among all nodes: C= % Y Ci.

ieN
Network small-worldness

A network is called small world when it is highly clustered
(large C), while at the same time it has a small characteristic
path length (L) (Watts and Strogatz, 1998). The network
small-worldness (Humphries and Gurney, 2008) measures
how close to being small-world a network is. Formally, it is de-

C/Cr . .
fined as S= 7 Ld,:d’ where C and L are the clustering coefficient
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and the characteristic path length of the network, while C,,,q and
Liang are those of a random network of the same size, respec-
tively. Values S >> 1 indicate that the network is small-world.
Some studies provide evidence for the existence of functional
networks in the human brain, exhibiting small-world attributes
(Bassett et al., 2006; Sporns and Honey, 2006). All the afore-
mentioned properties can be computed for both binary and
weighted EEG networks (Rubinov and Sporns, 2010).

Network motifs have been identified as patterns of inter-
connections appearing in significantly higher number than
in randomized networks, in a given ensemble of anatomical
or functional connectivity graphs (Milo et al., 2002). Given a
graph G, a motif is a small connected subgraph G’ of graph
G. In many studies, detecting and enumerating motifs in
brain networks require a predetermined motif repertoire
and the proposed approaches can operate only with prede-
fined number of motifs of small size (consisting of few
nodes) (De Vico Fallani et al, 2007, 2008b; Sporns and Kot-
ter, 2004). However, new methods have been proposed lately
that detect intelligently, size-free network motifs instead of
exhaustively enumerating the number of occurrences of
each subnetwork of a given size k (Iakovidou et al., 2013a,b).

A clique in an undirected graph G is a subgraph G’, which
is complete. The size of a clique comes from the number of
vertices it contains. A maximal clique is a clique that cannot
be extended by including one additional adjacent vertex, that
is, a clique that does not exist exclusively within the vertex
set of a larger clique. A maximum clique is a clique of the
largest possible size in a given graph. The clique problem re-
fers to the problem of finding the largest clique in any graph
G. This problem is NP-complete (Garey and Johnson, 1979)
and as such, many consider that it is unlikely that an efficient
algorithm for finding the largest clique of a graph exists. A
very famous method to find maximal cliques in a graph is
the so-called Bron-Kerbosch algorithm (Bron and Kerbosch,
1973). Detection and analysis of these structures have many
practical applications, for example, use of cliques to extend
the concept of motif (Wang et al., 2012) and also to measure
the cognitive activity with applications in the clinical diagno-
sis of cognitive impairments (Vijayalakshmi et al., 2015b).

In graph theory, a tree is an undirected graph in which any
two vertices are connected by exactly one path; in other
words, tree is called any connected graph that does not con-
tain cycles. A spanning tree of a graph G is a subgraph G’ that
connects all the vertices together and contains no cycles. A
minimum spanning tree (MST) is a spanning tree of a con-
nected, undirected graph that connects all the vertices together
with the minimal total weighting for its edges. MSTs are gain-
ing ground lately in the study of EEG brain networks since
they can be directly applied to weighted EEG graphs and prac-
tically produce thresholded subgraphs that can be studied
more easily and produce useful results, for example, to detect
network changes in patients, but they also help to increase
comparability between studies (Tewarie et al., 2014, 2015).
Kruskal’s (Kruskal, 1956) and Prim’s (Prim, 1957) algorithms
are the most popular ones to detect an MST in connected,
weighted, and undirected graphs.

Network Topology and Measures

This section shows how nodes can be ranked or sorted
according to their properties, depending on the question
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asked. In brain networks, it is important, for example, to de-
tect central nodes or intermediate nodes that affect the topol-
ogy of the network, in order, for example, to study brain
diseases such as Alzheimer (Engels et al., 2015) and epilepsy
(Christodoulakis et al., 2012).

Scale-free networks occur in many areas of science and
engineering, including, for example, the topology of the
World Wide Web (www). In www, the nodes are individ-
ual web pages and represent publications, while the links are
hyperlinks, or peer-reviewed scientific literature and denote
citations. Recently, it has been proved that many brain net-
works present scale-free properties as well (Eguiluz et al.,
2005; Lee et al., 2010; Stam and de Bruin, 2004; Van de
Ville et al., 2010). A scale-free network is a connected graph
with the property that the number of links k originating from
a given node exhibits a power law distribution P(k)~k 7,
where 7 denotes the degree exponent. A scale-free network
can be constructed by progressively adding nodes to an
existing network and introducing links to existing nodes with
preferential attachment so that the probability of linking to a
given node i is proportional to the number of existing links &;
that the node has. Thus, the connectivity of one node i to any
other node ;j should follow the rule P(links_to_node_i)~ Zkk

J

i
Degree centrality

Degree centrality shows that an important node is in-
volved in a large number of interactions. For a node i, the de-
gree centrality is calculated as C,(i)=k(i), as already
described in Basic Graph Theory Definitions and Terms sec-
tion. Nodes with very high degree centrality are czlled hubs
and represent important brain regions that of en interact with
many other regions and also facilitate functional integration,
and generally play a key role in network resilience to insult
(Rubinov and Sporns, 2010; van den Heuvel and Sporns,
2013). Scale-free networks tend to contain hubs and the re-
moval of such central nodes has great impact on the topology
of the network (van Straaten and Stam, 2013). Another mea-
sure that is valid for weighted graphs only is the node
strength s(/), which is defined as the sum of weights of the
links connected to the node i (Barrat et al., 2004).

Many measures of centrality are based on the idea that
central nodes participate in many short paths within a net-
work and consequently act as important controls of informa-
tion flow (Freeman, 1979). For instance, closeness centrality
indicates important nodes that can communicate quickly
with other nodes of the network, or in other words, the effi-
ciency of a node in spreading information to all other nodes
of the network. Let G=(V, E) be an undirected graph. Then,
the closeness centrality of a node i is defined as Cgj,;) =

M% where dist(i, j) denotes the distance or else, the
Zrcv dist(i. )
shortest path p between the nodes i and j.

A related and often more sensitive measure is betweenness
centrality (Freeman, 1979) C,(i) of a node i, which measures
how many geodesic paths between any pair of nodes pass
through i. It is a measure of the importance of a node, be-
cause the higher the betweenness centrality, the shortest
paths will need to be rerouted in case of damage to that
node. Formally, C;,(i):m y ”i}‘;i”

JKEN.j#k
is the number of shortest paths between j and k and n; (i)
is the number of such paths that pass through node i. Then,

., where n;;
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betweenness centralization (de Nooy et al., 2011) is a mea-
sure that summarizes the variation in betweenness centrality
in the network. It is defined as the ratio of the variation in be-
tweenness centrality among all nodes in the network to the
maximum such variation in any network of the same size.
The calculation of betweenness centrality has been made sig-
nificantly more efficient with the recent development of
faster algorithms (Brandes, 2001; Kintali, 2008).

Eigenvector centrality

Eigenvector centrality generally ranks higher the nodes
that are connected to important neighbors (Batool and
Niazi, 2014). Consequently, a node has high value of eigen-
vector centrality either if it is connected to many other nodes
or if it is connected to others that themselves have high ei-
genvector centrality. Let G=(V, E) be an undirected graph
and A the adjacency matrix of network G. The eigenvector
centrality is the eigenvector Cg;, of the largest eigenvalue
/max 10 absolute value such that 2C.;, =AC,;,. Formally, if
A is the adjacency matrix of a network G with V(G)=
vy, ..., v, and p(A)=max|/|, then the eigenvector centrality
Ceiv(v;) of the node v; is given by the ith coordinate x; of a
normalized eigenvector that satisfies the condition Ax=
p(A)x.

Eccentricity centrality

Eccentricity centrality is the measure that shows how eas-
ily accessible a node is from other nodes. Let G=(V, E) be an
undirected graph. The eccentiicity centrality is calculated as
Cooe = m where dist(i, j) is the shortest path between
nodes i and j. The eccentricity C,.. of a vertex V'is the great-
est distance between v and any other vertex (Batool and
Niazi, 2014).

Subgraph centrality

Subgraph centrality (Estrada and Rodriguez-Velazquez,
2005) is a new centrality measure that characterizes the par-
ticipation of each node in all subgraphs in a network. Smaller
subgraphs are given more weight than larger ones, which
makes this measure appropriate for characterizing network
motifs. The subgraph centrality can be obtained mathemati-
cally from the spectra of the adjacency matrix of the network.
This measure is better able to discriminate the nodes of a net-
work than alternate measures such as degree, closeness, be-
tweenness, and eigenvector centralities. Let G=(V, E) be
an undirected graph and A the adjacency matrix of network
G. The number of closed walks of length & starting and end-
ing on node i in the network is given by the local spectral mo-
ments, which are simply defined as the ith diagonal entry of
the kth power of the adjacency matrix A. Consequently, the
subgraph centrality of a node i is calculated as Ci,(i)=
$ 0,

k!
k=0

Matching index

Matching index is the measure that shows how similar two
nodes are within the network, by computing the amount of
overlap in the connection patterns of any two nodes in the
network. Two vertices that are functionally similar do not
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always have to be connected. The matching index M;; mea-
sures the similarity of two nodes and is based on the num-
ber of common neighbors shared by nodes i and j. It is

applied to binary networks only and it is calculated as M =
Zcom1110n,neighb01's
Ztotul,number,of,neighbors'

It is very often the case that studies of a particular brain
network involve the analysis of functional brain network to-
pology and the comparison of several centrality measures
(Fraschini et al., 2015). Further measurements and their
applications to the study of brain connectivity in general
can be found in Rubinov and Sporns (2010). Also, the major-
ity of these measures, for both binary and weighted net-
works, have been implemented in the brain connectivity
Matlab toolbox, which is available online (www.brain-
connectivity-toolbox.net). Finally, tools that have imple-
mented functionality for exploring the different types of
centralities in brain networks and complex networks in gen-
eral are presented in Baur and colleagues (2002), de Nooy and
colleagues (2011), and De Vico Fallani and colleagues (2014).

Discussion and Conclusions

The first very important conclusion is that graph theory
and theory of networks constitute a very useful tool for the
study of EEG brain networks and generally for large-scale
brain networks as well. The reason for this is that, these the-
ories provide powerful realistic ways to model and describe
complex brain networks, but also a large and continuously
increasing number of robust measures to study topological
and dynamical properties of these networks. As already men-
tioned, EEGs are spatiotemporal data and graph theory al-
lows us to explore both the spatial and temporal nature of
these data and helps us to better understand the correlations
between network structure and the processes that are taking
place in these networks through time.

However, there are some methodological issues that have
to be considered during the study of EEG signals as graphs.
For example, it is well established that both volume conduc-
tion (Blum and Rutkove, 2007) and the choice of recording
reference (montage) affect the connectivity measures
obtained from scalp EEGs, in the time and frequency do-
mains (Christodoulakis et al., 2015). Although a number of
measures have been proposed aiming to reduce this influence
(Guevara et al., 2005; Nunez et al., 1999; Peraza et al., 2012;
Thatcher, 2012) (some of them were presented in Basic EEG
Recording Properties and Construction of Brain Networks
section), the optimal way to convert all EEGs, both in health
and disease, into graph datasets has not been clear yet. Also,
anyone who studies EEG data must know that these data are
typically contaminated with artifacts (e.g., by eye move-
ments) (Nolan et al., 2010). The effect of artifacts can be at-
tenuated by deleting, for example, data with amplitudes over
a certain value. For this reason, researchers usually apply in-
dependent component analysis (Hyvarinen and Oja, 2000)
to separate EEG data into neural activity and artifact, and
once identified, artifactual components can be deleted from
the data.

Another point is the somewhat arbitrary threshold that has
to be set sometimes to convert a weighted functional connec-
tivity network into an unweighted (binarized) graph. The
choice of the threshold remains arbitrary and studying a
whole range of thresholds may raise statistical problems be-
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cause of the large number of tests to be done (Stam and Reij-
neveld, 2007). A further problem that may occur when
converting matrices of correlations to binarized graphs,
depending of course from the thresholding methodology
that is used, is the fact that some of the nodes may become
disconnected from the network. This fact will bring difficul-
ties in the calculation of clustering coefficients and path
lengths, but the use of global and local efficiency measures
might provide a solution in that case (Newman, 2003). How-
ever, if someone chooses to use the MST for pruning the
graph, then no such matter will occur since the MST con-
nects all the vertices of the graph. Another remark is that
functional connectivity networks would be better to be stud-
ied as weighted graphs, to take into account the full informa-
tion that is available from them, but until this time, only few
methodologies are available for weighted graphs. Future
studies could gain by a careful consideration of all the
graph measures that are currently available and the new mea-
sures that are continually developed.

Another subject that presents high interest is the frequent
subgraph mining methodologies (Jiang et al., 2013; V:jaya-
lakshmi et al., 2015a) that rely on graph structure to discover
features that better discriminate between different groups of
graphs (Craddock et al., 2015; Iakovidou et al., 2013b;
Thoma et al., 2010). The discovery of group-consistent con-
nected subgraphs, which are also called motifs, can be used ei-
ther to characterize a particular brain state or a brain state with
respect to a reference state, and the functional role of these
subgraphs can be directly deduced due to the topographic con-
figuration of the included nodes. The majority of the existing
methodologies suffer from need of enumerating all the possi-
ble subnetworks of a certain size and hence its use is feasible
only in the case of moderate-sized sets of graphs and for
detecting motifs of small size (Kashani et al., 2009; Schmidt
et al., 2012). However, new methods that intelligently detect
size-free network motifs instead of exhaustively enumerating
the number of occurrences of each subnetwork of a given size
k have also been proposed (lakovidou et al., 2013a,b). All
these studies have been made for binary graphs, although in
the future, the full exploitation of connectivity weights
(Jiang et al., 2010; Yang et al., 2012) should be considered,
to avoid any arbitrariness induced by the binarization step
and also enhance the quality of the obtained results.

Acknowledgment

The author would like to thank the State Scholarships
Foundation of Greece for financing this work.

Author Disclosure Statement

No competing financial interests exist.

References

Abou-Khalil B, Misulis K. 2006. Atlas of EEG & Seizure Semiol-
ogy. Amsterdam, The Netherlands: Butterworth-Heinemann,
Elsevier.

Aurlien H, Gjerde I, Aarseth J, Eldoen G, Karlsen B, Skeidsvoll
H, Gilhus N. 2004. EEG background activity described by a
large computerized database. Clin Neurophysiol 115:665-673.

Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. 2004.
The architecture of complex weighted networks. Proc Natl
Acad Sci U S A 101:3747-3752.



GRAPH THEORY AT THE SERVICE OF EEGs

Bassett D, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E.
2006. Adaptive reconfiguration of fractal small-world human
brain functional networks. Proc Natl Acad Sci U S A 103:
19518-19523.

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM,
Grafton ST. 2011. Dynamic reconfiguration of human brain
networks during learning. Proc Natl Acad Sci U S A 108:
7641-7646.

Batool K, Niazi M. 2014. Towards a methodology for validation
of centrality measures in complex networks. PLoS One 9:
€98379.

Baur M, Benkert M, Brandes U, Cornelsen S, Gaertler M, Kopf
B, et al. Visone—Software for Visual Social Network Analysis.
In Proceedings of the 9th International Symposium on Graph
Drawing, vol. 2265, London, United Kingdom, 2002, p. 463.

Blum A, Rutkove S. 2007. Clinical Neurophysiology Primer.
New York: Humana Press, Springer.

Brandes U. 2001. A faster algorithm for betweenness centrality.
J Math Sociol 25:163-177.

Brigo F. 2011. Intermittent rhythmic delta activity patterns. Epi-
lepsy Behav 20:254-256.

Bron C, Kerbosch J. 1973. Algorithm 457: finding all cliques of
an undirected graph. Commun ACM 16:575-577.

Brunet D, Murray M, Michel C. 2011. Spatiotemporal analysis
of multichannel EEG: CARTOOL. Comput Intell Neurosci
2011:813870.

Bullmore E, Sporns O. 2009. Complex brain networks: graph
theoretical analysis of structural and functional systems.
Nat Rev Neurosci 10:186-198.

Buzsaki G. 2007. Rhythms of the Brain. Oxford, UK: Oxford
University Press.

Cahn B, Polich J. 2006. Meditation states and traits: EEG, ERP,
and neuroimaging studies. Psychol Bull 132:180-211.

Cardillo A, Petri G, Nicosia V, Sinatra R, Gomez-Gardenes J, Latora
V. 2014. Evolutionary dynamics of time-resolved social interac-
tions. Phys Rev E Stat Nonlin Soft Matter Phys 90:052825.

Christodoulakis M, Anastasiadou M, Papacostas S, Papathana-
siou E, Mitsis G. Investigation of Network Brain Dynamics
from EEG Measurements in Patients with Epilepsy Using
Graph-Theoretic Approaches. In Proceedings of the 12th
IEEE International Conference on Bioinformatics and Bioen-
ginecring (BIBE), Larnaca, Cyprus, 2012, p. 303.

Christodoulzkis M, Hadjipapas A, Papathanasiou E, Anastasia-
dou M, Papacostas S, Mitsis G. 2015. On the effect of vol-
ume conduction on graph theoretic measures of brain
networks in epilepsy. In: Sakkalis V (ed.) Modern Electro-
encephalographic Assessment Techniques, vol. 91; p. 103.
New York, NY: Springer.

Cohen R, Havlin S. 2010. Complex Networks: Structure, Robustness
and Function. Cambridge, UK: Cambridge University Press.
Cormen T, Leiserson C, Rivest R, Stein C. 2009. Introduction to

Algorithms, 3rd ed. Cambridge, MA: MIT Press.

Craddock R, Tungaraza R, Milham M. 2015. Connectomics and
new approaches for analyzing human brain functional con-
nectivity. Gigascience 4:13.

De Nooy W, Mrvar A, Batagelj V. 2011. Exploratory Social Net-
work Analysis with Pajek. Cambridge, UK: Cambridge Uni-
versity Press.

De Pasquale F, Della Penna S, Sporns O, Romani G, Corbetta M.
2015. A dynamic core network and global efficiency in the
resting human brain. Cereb Cortex 25:1-19.

De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG,
Tocci A, et al. 2008a. Cortical network dynamics during foot
movements. Neuroinformatics 6:23-34.

13

De Vico Fallani F, da Fontoura Costa L, Rodriguez F, Astolfi L,
Vecchiato G, Toppi J, et al. 2010. A graph-theoretical ap-
proach in brain functional networks. Possible implications
in EEG studies. Nonlinear Biomed Phys 4(Suppl 1):S8.

De Vico Fallani F, Richiardi J, Chavez M, Achard S. 2014.
Graph analysis of functional brain networks: practical issues
in translational neuroscience. Philos Trans R Soc Lond B
Biol Sci 369:20130521.

De Vico Fallani V, Astolfi L, Cincotti F, Mattia D, Marciani M,
Salinari S, et al. 2007. Cortical functional connectivity net-
works in normal and spinal cord injured patients: evaluation
by graph analysis. Hum Brain Mapp 28:1334-1346.

De Vico Fallani V, Latora V, Astolfi L, Cincotti F, Mattia D,
Marciani M, et al. 2008b. Persistent patterns of interconnec-
tion in time-varying cortical networks estimated from high-
resolution EEG recordings in humans during a simple motor
act. J Phys A Math Theor 41:224014.

Del Mondo G, Rodrguez M, Claramunt C, Bravo L, Thibaud R.
2013. Modeling consistency of spatio-temporal graphs. Data
Knowl! Eng 84:59-80.

Dijkstra E. 1959. A note on two problems in connection with
graphs. Numer Math 1:269-271.

Dimitriadis S, Laskaris N, Tsirka V, Vourkas M, Micheloyannis
S.2012. An EEG study of brain connectivity dynamics at the
resting state. Nonlinear Dynamics Psychol Life Sci 16:
5-22.

Dimitriadis S, Laskaris N, Tsirka V, Vourkas M, Micheloyannis S,
Fotopoulos S. 2010. Tracking brain dynamics via time-
dependent network analy:is. J Neurosci Methods 193:145-155.

Eguiluz V, Chialvo D, Cecchi G, Baliki M, Apkarian V. 2005.
Scale-free brain functional networks. Phys Rev Lett 94:
018102.

Engels M, Stam C, van der Flier W, Scheltens P, de Waal H, van
Straaten E. 2015. Declining functional connectivity and
changing hub locations in Alzheimer’s disease: an EEG
study. BMC Neurol 15:145-152.

Estrada E, Rodriguez-Velazquez J. 2005. Subgraph centrality in
complex networks. Phys Rev E Stat Nonlin Soft Matter Phys
71:¢98379.

Floyd R. 1962. Algorithm 97: shortest path. Commun ACM 5:345.

Fraschini M, Hillebrand A, Demuru M, Didaci L, Marcialis G.
2015. An EEG-based biometric system using eigenvector
centrality in resting state brain networks. IEEE Signal Proc
Lett 22:186-195.

Freeman L. 1979. Centrality in social networks conceptual clar-
ification. Soc Netw 1:215-239.

Friston KJ. 1994. Functional and effective connectivity in neuro-
imaging: a synthesis. Hum Brain Mapp 2:56-78.

Garey M, Johnson D. 1979. Computers and Intractibility: A
Guide to the Theory of NP-Completeness. New York, NY:
W. H. Freeman.

Gold 1. 1999. Does 40-hz oscillation play a role in visual con-
sciousness? Conscious Cogn 8:186-195.

Greenfield L, Geyer J, Carney P. 2010. Reading EEGs: A Practical
Approach. Baltimore, MD: Lippincorr Williams & Wilkins.
Gribkov D, Gribkova V. 2000. Learning dynamics from non-
stationary time series: analysis of electroencephalograms.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

61:6538-6545.

Guevara R, Luis J, Velazquez P, Nenadovic V, Wennberg R,
Senjanovi G, et al. 2005. Phase synchronization measure-
ments using electroencephalographic recordings: what can
we really say about neuronal synchrony? Neuroinformatics
3:301-314.




14

Hughes J. 2008. Gamma, fast, and ultrafast waves of the brain:
their relationships with epilepsy and behavior. Epilepsy
Behav 13:25-31.

Humphries M, Gurney K. 2008. Network small-world-ness’: a
quantitative method for determining canonical network
equivalence. PLoS One 3:¢0002051.

Hyvarinen A, Oja E. 2000. Independent component analysis: al-
gorithms and applications. Neural Netw 13:411430.

lakovidou N, Christodoulakis M, Papathanasiou E, Papacostas
S, Mitsis G. Introducing Weighted Approaches to Study Net-
work Brain Dynamics from EEG Epilepsy Measurements:
The EigenBrain Algorithm. In Proceedings of the 15th
IEEE International Conference on Bioinformatics and Bioen-
gineering (BIBE), Belgrade, Serbia, 2015, p. 1.

lakovidou N, Dimitriadis S, Laskaris N, Tsichlas K. Querying
Functional Brain Connectomics to Discover Consistent Sub-
graph Patterns. In Proceedings of the 13th IEEE International
Conference on Bioinformatics and Bioengineering (BIBE),
Chania, Greece, 2013a, p. 1.

lakovidou N, Dimitriadis S, Laskaris N, Tsichlas K, Manolopou-
los Y. 2013b. On the discovery of group-consistent graph
substructure patterns from brain networks. J] Neurosci Meth-
ods 213:204-213.

lasemidis L. 2011. Seizure prediction and its applications. Neu-
rosurg Clin N Am 22:489-506.

Jiang C, Coenen F, Zito M. Frequent Sub-graph Mining on Edge
Weighted Graphs. In Proceedings of the 12th International
Conference on Data Warehousing and Knowledge Discov-
ery, Bilbao, Spain, 2010, p. 77.

Jiang C, Coenen F, Zito M. 2013. A survey of frequent subgraph
mining algorithms. Knowl Eng Rev 28:75-105.

Joudaki A, Salehi N, Jalili M, Knyazeva MG. 2012. EEG-based
functional brain networks: does the network size matter?
PLoS One, 7:¢35673.

Joyce K, Laurienti P, Burdett~ J, Hayasaka S. 2010. A new mea-
sure of centrality for brain networks. PLoS One, 5:¢12200.

Jurcak V, Tsuzuki D, Dan I. 2007. 10/20, 10/10, and 10/5 sys-
tems revisited: their validity es relative head-surface-based
positioning systems. Neuroimage 34:1600-1611.

Kashani R, Ahrabian Z, Elahi H, Nowzari-Dalini E, Saberi A,
Asadi E, et al. 2009. Kavosh: a new algorithm for {inding net-
work motifs. BMC Bioinformatics 10:318.

Kintaii S. 2008. Betweenness centrality: algorithms and lower
bounds. arXiv:0809.1906 [cs.DS].

Kramarenko A, Tan U. 2003. Effects of high-frequency electro-
magnetic fields on human EEG: a brain mapping study. Int J
Neurosci 113:1007-1019.

Kruskal J. 1956. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proc Am Math Soc 7:
48-50.

Lagerlunda T. 2000. Manipulating the magic of digital EEG:
montage reformatting and filtering. Am J Electroneurodiagn
Technol 40:121-136.

Latora V, Marchiori M. 2001. Efficient behavior of small-world
networks. Phys Rev Lett 87:198701.

Lee U, Oh G, Kim S, Noh G, Choi B, Mashour G. 2010. Brain
networks maintain a scale-free organization across con-
sciousness, anesthesia, and recovery: evidence for adaptive
reconfiguration. Anesthesiology 113:1081-1091.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon
U. 2002. Network motifs: simple building blocks of complex
networks. Science 298:824-827.

Nevado A, Hadjipapas A, Kinsey K, Moratti S, Barnes G, Holli-
day I, Green G. 2012. Estimation of functional connectivity

IAKOVIDOU

from electromagnetic signals and the amount of empirical
data required. Neurosci Lett 513:57-61.

Newman M. 2003. The structure and function of complex net-
works. STAM Rev 45:167256.

Niedermeyer E. 1997. Alpha rhythms as physiological and ab-
normal phenomena. Int J Psychophysiol 26:31-49.

Niedermeyer E, Lopes da Silva F. 2012. Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields,
5th ed. Baltimore, MD: Lippincott Williams & Wilkins.

Nolan H, Whelan R, Reilly R. 2010. FASTER: fully automated
statistical thresholding for EEG artifact rejection. J Neurosci
Methods 192:152162.

Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. 2004.
Identifying true brain interaction from EEG data using the imag-
inary part of coherency. Clin Neurophysiol 115:2292-2307.

Nunez P, Pilgreen K. 1991. The spline-laplacian in clinical neu-
rophysiology: a method to improve EEG spatial resolution.
Clin Neurophysiol 8:397-413.

Nunez P, Silberstein R, Shi Z, Carpenter M, Srinivasan R, Tucker
D, etal. 1999. EEG coherency II: experimental comparisons of
multiple measures. Clin Neurophysiol 110:469-483.

Nunez P, Srinivasan R. 2006a. Electric Fields of the Brain: The
Neurophysics of EEG. Oxford, UK: Oxford University Press.

Nunez P, Srinivasan R. 2006b. A theoretical basis for standing
and traveling brain waves measured with human EEG with
implications for an integrated consciousness. Clin Neurophy-
siol 117:2424-2435.

Peraza L, Asghar A, Green G, Halliday D. 2012. Phase synchro-
nization measurements using electroencephalographic record-
ings: what can we really say about neuronal synchrony? J
Neurosci Methods 207:189-199.

Pereda E, Quiroga R, Bhattacharya J. 2005. Nonlinear multivariate
analysis of neurophysiological signals. Prog Neurobiol 77:1-37.

Pfurtscheller G, Lopes Da Silva F. 1999. Event-related EEG/
MEG synchronization and desynchronization: basic princi-
ples. Clin Neurophysiol 110:1842-1857.

Prim R. 1957. Shortest connection networks and some general-
izations. Bell Syst Tech J 36:1389-1401.

Pritchard W, Duke D. 1995. Measuring ‘‘chaos’ in the brain: a
tutorial review of EEG dimension estimation. Brain Cogn
27:353-397.

Rabinovich M, Varona P, Selverston A, Abarbanel H. 2006.
Dynamical principles in neuroscience. Rev Mod Phys 78:
1213-1265.

Rubinov M, Sporns O. 2010. Complex network measures of
brain connectivity: uses and interpretations. Neuroimage 52:
1059-1069.

Saramaki J, Kivela M, Onnela J, Kaski K, Kertesz J. 2007. General-
izations of the clustering coefficient to weighted complex net-
works. Phys Rev E Stat Nonlin Soft Matter Phys 75:027105.

Schmidt C, Weiss T, Komusiewicz C, Witte H, Leistritz L. 2012.
An analytical approach to network motif detection in samples
of networks with pairwise different vertex labels. Comput
Math Methods Med 2012:910380.

Simpson S, Moussa M, Laurienti P. 2012. An exponential ran-
dom graph modeling approach to creating group-based repre-
sentative whole-brain connectivity networks. Neuroimage
60:1117-1126.

Sporns O. 2013. Making sense of brain network data. Nat Meth-
ods 10:491-493.

Sporns O, Honey C. 2006. Small worlds inside big brains. Proc
Natl Acad Sci U S A 51:19219-19220.

Sporns O, Kotter R. 2004. Motifs in brain networks. PLoS Biol
2:e360.




GRAPH THEORY AT THE SERVICE OF EEGs

Stam C. 2005. Nonlinear dynamical analysis of EEG and MEG: re-
view of an emerging field. Clin Neurophysiol 116:2266-2301.

Stam C, de Bruin E. 2004. Scale-free dynamics of global func-
tional connectivity in the human brain. Hum Brain Mapp 22:
97-109.

Stam C, Nolte G, Daffertshofer A. 2011. Phase lag index: assess-
ment of functional connectivity from multi channel EEG and
MEG with diminished bias from common sources. Hum
Brain Mapp 28:1548-1565.

Stam C, Reijneveld J. 2007. Graph theoretical analysis of com-
plex networks in the brain. Nonlinear Biomed Phys 1:3.
Stump E. 2008. The seizures no one wants to talk about. Neurol

Now 4:23-26.

Tang J, Scellato S, Musolesi M, Mascolo C, Latora V. 2010.
Small-world behavior in time-varying graphs. Phys Rev E
Stat Nonlin Soft Matter Phys 81(Pt 2):055101.

Teplan M. 2002. Fundamentals of EEG measurement. Meas Sci
Rev 2:1-11.

Tewarie P, Hillebrand A, Schoonheim M, van Dijk B, Geurts J,
Barkhof F, et al. 2014. Functional brain network analysis
using minimum spanning trees in multiple sclerosis: an
MEG source-space study. Neuroimage 88:308-318.

Tewarie P, van Dellen E, Hillebrand A, Stam C. 2015. The min-
imum spanning tree: an unbiased method for brain network
analysis. Neuroimage 104:177-188.

Thatcher R. 2012. Coherence, phase differences, phase shift and
phase lock in EEG/ERP analyses. Dev Neuropsychol 37:
476-496.

Thoma M, Cheng H, Gretton A, Han J, Kriegel H, Smola A, et el.
2010. Discriminative frequent subgraph mining with opti-
mality guarantees. Stat Anal Data Min 3:10084.

Van de Ville D, Britz J, Michel C. 2010. EEG microstate se-
quences in healthy humans at rest revezl scale-free dynamics.
Proc Natl Acad Sci U S A 107:18179-18184.

van den Heuvel M, Sporns O. 2013. Network hubs in the human
brain. Trends Cogn Sci 17:683-696.

van Straaten E, Stam C. 2013. Structure out of chaos: functional
brain network analysis with EEG, MEG, and functional MRI.
Eur Neuropsychopharmacol 23:7-18.

15

Vertes P, Alexander-Bloch A, Gogtay N, Giedd JN, Rapoport
JL, Bullmore E. 2012. Simple models of human brain
functional networks. Proc Natl Acad Sci U S A 109:
5868-5873.

Vijayalakshmi R, Nandagopal D, Dasari N, Cocks B, Dahal N,
Thilaga M. 2015a. Minimum connected component—a
novel approach to detection of cognitive load induced
changes in functional brain networks. Neurocomputing 170:
15-31.

Vijayalakshmi R, Nandagopal D, Thilaga M, Cocks B. 2015b.
Characterisation of cognitive activity using minimum con-
nected component. Neural Inf Process 9492:531-539.

Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pen-
nartz C. 2011. An improved index of phase-synchronization
for electrophysiological data in the presence of volume-
conduction, noise and sample-size bias. Neuroimage 55:
1548-1565.

Wang Z, Liu J, Zhong N, Qin Y, Zhou H, Yang J, Li K. 2012. A
naive hypergraph model of brain networks. Brain Inform
7670:119-129.

Watts D, Strogatz S. 1998. Collective dynamics of ‘small-world’
networks. Nature 393:440-442.

Yang J, Su W, Li S, Dalkilic M. WIGM: Discovery of Subgraph
Patterns in a Large Weighted Graph. In Proceedings of the
12th SIAM International Conference on Data Mining, Cali-
fornia, USA, 2( 12, p. 1083.

Zhou F, Mahler S, Toivonen H. 2012. Simplification of networks
by edge pruning. Lect Notes Comput Sci 7250:179-198.

Address correspondence to:

Nantia D. lakovidou

Data Engineering Laboratory
Department of Informatics
Aristotle University of Thessaloniki
Thessaloniki 54124

Greece

E-mail: niakovid@csd.auth.gr



