
An Efficient and Effective Algorithm for
Density Biased Sampling

Alexandros Nanopoulos
Dept. of Informatics
Aristotle University

Thessaloniki, Greece

alex@delab.csd.auth.gr

Yannis Theodoridis
Dept. of Informatics
University of Piraeus

Piraeus, Greece

ytheod@unipi.gr

Yannis Manolopoulos
Dept. of Informatics
Aristotle University

Thessaloniki, Greece

manolopo@delab.csd.auth.gr

ABSTRACT
In this paper we describe a new density-biased sampling al-
gorithm. It exploits spatial indexes and the local density
information they preserve, to provide improved quality of
sampling result and fast access to elements of the dataset.
It attains improved sampling quality, with respect to fac-
tors like skew, noise or dimensionality. Moreover, it has the
advantage of efficiently handling dynamic updates, and it
requires low execution times. The performance of the pro-
posed method is examined experimentally. The comparative
results illustrate its superiority over existing methods.

Keywords
Clustering, Density bias, Sampling, Spatial indexes

1. INTRODUCTION
Sampling is a data reduction scheme that has found broad

applications in data mining [10, 8, 21, 24, 19, 11]. For the
data mining task of clustering several algorithms capitalize
on sampling as means of improving their efficiency [6, 25, 3,
13]. They are based mainly on Uniform random sampling,
with which every point has the same probability of being
included in the sample.
An important example where Uniform sampling is not ad-

equate is the case of datasets with skewed cluster sizes. In
this case, small clusters (i.e., with a small number of points)
are possible to be missed, since points belonging to them
may not be included in the uniform sample. Density Biased
Sampling (DBS) has been proposed in [17, 9], with which
the probability that a point will be included in the sample
depends on the density of its locus. Hence, an adequate
number of points from small clusters is included in the sam-
ple, due to the increased local density within the clusters.
For instance, let two clusters depicted in Figure 1. The

rightmost consists of 50,000 points and the leftmost of 1,000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, VA, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

The density (i.e., the number of points in each cluster with
respect to its area) of the small clusters is about 2 times
higher than that of the larger cluster. By taking a Uni-
form sample of 1%, that is 510 points, only 9 points are
included from the small cluster. This number is around
the expected one, by considering that each point from the
small cluster has inclusion probability 1000/51000. When
performing DBS (using the SP algorithm that will be de-
scribed in the following), 87 points from the small cluster
are included in the sample. The small cluster, therefore,
participates with an adequate number of points in the sam-
ple. Thus, while with Uniform sampling the small cluster
can be missed (since the very few points can be overlooked
as outliers), DBS prevents this problem.

50

60

70

80

90

100

110

120

130

140

150

-20 0 20 40 60 80 100 120 140 160

Figure 1: An example of two clusters with different
number of points.

Existing DBS algorithms [17, 9] use flat files, by perform-
ing one or more database scans and developing estimators
for the approximation of local density. Spatial Database
Systems exploit access methods for efficient data organiza-
tion. Sampling from spatial indexes has been introduced by
Olken and Rotem [16]. However, they focused on Uniform
sampling, which does not consider density-bias. Spatial in-
dexes (like the R-tree [5] and variants) achieve a clustering of
objects within their nodes, which preserves the local density
information and can provide improved density approxima-
tions. Moreover, the index can comprise means for efficiently
accessing the examined points.

In this work, we are concerned with answering DBS queries
with means of spatial indexes. We describe a new algorithm,
which is able to present significant improvements in terms of
effectiveness and efficiency. The proposed method is based
on the local density information that the nodes of spatial in-
dexes preserve, and on techniques for producing the sample
according to the requirements of DBS. With this method:

• Correct clustering results are obtained with smaller
sample sizes, which is a significant advantage for re-
ducing the cost of the clustering procedure.

• The sampling quality is preserved with respect to a
variety of factors, like skew, noise and dimensionality.

• The exploitation of spatial indexes helps in avoiding
the overhead of existing methods in terms of sampling
time. Additionally, updates in the dataset are handled
locally, thus dynamic data are efficiently addressed.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 contains the outline of
the proposed approach. In Section 4, we present the pro-
posed algorithm, whereas Section 5 contains the experimen-
tal results both on sampling quality and efficiency. Finally,
Section 6 concludes this work.

2. RELATED WORK
Palmer and Faloutsos [17] introduced the problem of non-

uniform sampling for clusters with skew sizes, by oversam-
pling smaller clusters and under-sampling larger ones. Since
clusters are not known apriori, [17] uses an approximative
approach, by dividing the space into equally sized bins. A
hash table is allocated, and each table position p corresponds
to a group of points g, which contains all points from those
bins that are hashed in p. The number, ng, of the points
in each group g is calculated. Each point is included in
the sample using the derived groups instead of the unknown
clusters. The point-inclusion probability is inversely propor-
tional to ng (see [17]), thus points from small groups have
higher probability of being included. In [17] an efficient al-
gorithm is proposed, which calculates the ng counters and
collects the sample points in a singe database scan. Nev-
ertheless, the method of [17] is significantly affected by the
existence of noise, since it tends to over-sample the noisy
parts. For this reason, it cannot effectively distinguish be-
tween clusters with small sizes and outliers, and it misses
clusters. Therefore, it has the drawback of only partially
leading to correct clustering results (as indicated by [9] and
also verified by results in our work).
Kollios et al. in [9] consider DBS, where a given point is

included in the sample according to the local density of the
dataset. For the determination of the local density [9] uses
kernel density estimation methods. More particularly, for
a point x, f(x) denotes the density estimation function. If
f(x) > 1 (f(x) < 1), then the density at x is larger (smaller)
than the average density at the entire space. According to
this, a point x is included in the sample with probability:

P (include point x) =
b

k
fa(x) (1)

In Equation 1, b is the expected sample size, k =
∑

x
fa(x)

(used for the normalization of probability values so as to be
less or equal to one) and a is the tuning parameter.

Experimental results in [9] show that the above method
achieves improved sampling quality, compared to [17] and
Uniform sampling. Regarding efficiency, the computation of
density approximations presents a significant time overhead,
since it requires several database scans and high CPU cost.
Once the density approximations have been computed, they
can be stored and used for DBS, without the need to recom-
pute them. However, in the case of updates in the dataset,
the density approximations have to be recomputed for each
point. Density approximation in [9] is done with kernel func-
tions, which are applied over a uniform sample of points that
is taken from the dataset. Updates may require to take a
new uniform sample (since points from the previous sample
may have been removed, or new points should be inserted),
and compute the new density approximations for each point,
paying the aforementioned large cost. Since updates are not
handled locally, the efficiency of [9] in handling dynamic
data can be impacted.
Olken and Rotem [16] have proposed several algorithms

for Uniform sampling from spatial indexes. However, these
algorithms do not consider the density-bias. More partic-
ularly, the ranked-tree algorithms like the Partial Area R-
tree algorithm [16] (including the pseudo-ranked extension
of [1]), are based on the iterative location of the k-th en-
try in the tree, for a random k at each iteration, until the
sample is obtained. Evidently, ranked (and pseudo-ranked)
algorithms can only be used for Uniform sampling, since
they are based on the assumption that each index entry has
the same probability of being included in the sample. On
the other hand, the paradigm of acceptance/rejection (A/R)
sampling algorithms [15] can be extended to the case of DBS.
For comparison purposes, we have developed extensions of
the existing A/R algorithms, which consider density-bias.
Their description and performance evaluation is given else-
where [14], where it is shown that new DBS algorithm, which
is described herein, significantly outperforms the extended
A/R algorithms in terms of efficiency.
Other related work on Uniform sampling from spatial in-

dexes includes [12, 22]. Finally, [4] proposes the selection of
representative points from a dataset and the application of
clustering only on them. It describes a focusing technique
for the R-tree, which selects the medoid, that is, the most
central object of an MBR, from each leaf node. For DBS
purposes, from leaves with higher local density, more points
should be obtained than from others with lower density. In
contrast, [4] selects one point from each leaf. Moreover,
small clusters may be confined within a very small num-
ber of nodes. By using the above focusing technique, only
a small number of points will be selected from small clus-
ters (since one point is selected from each node). This is in
contrast to the objective of DBS, which oversamples small
clusters based on the increased local density, so as to include
an adequate number of points from them, reducing the prob-
ability of missing these clusters. Also, the required sample
size is a user-defined parameter, and it cannot be restricted
by the characteristics of the tree, as in the case of [4] where
it is determined by the number of leaf nodes.

3. DBS WITH SPATIAL INDEXES
The update operations in spatial indexes provide a clus-

tering of points within their nodes so as to maximize se-
lectivity during query processing [18, 20]. In the sequel we
focus on R-tree [5] and its variants, because they have been

broadly used and implemented in commercial and open-
source DBMSs (including Oracle, Informix and PostgreSQL).
However, an analogous methodology can be followed for
other index structures as well. For the R-tree, the clustering
of points within nodes is achieved with the split, insertion
and deletion operations, which have the objective to pre-
serve proximity between points (i.e., points which are close
are likely to be stored in the same leaf) and to minimize
dead space. This kind of clustering achieved by the R-tree
preserves the local density information within tree nodes.
For instance, Figure 2a depicts two different locations of

the space, which correspond to two clusters with different
densities. The left location has higher and the right has
lower density. In order to maximize proximity and mini-
mize dead space, assuming that no fundamental properties
(such as minimum node capacity) are violated, the points
from the left location are stored in leaf node A, whereas the
points from the right location are stored in leaf node B (in
Figure 2a nodes are represented by their Minimum Bound-
ing Rectangles (MBRs)1). Consequently, the local density of
each point is preserved within nodes A and B, since points
are enclosed in the same MBR along with other points from
their proximity. In contrast, if the R-tree did not have its
clustering properties, the points would have been stored, for
instance, in leaf nodes C and D, depicted in Figure 2b. Ev-
idently, in this case no clustering is achieved within nodes
and the local density is not preserved.

A
B C

D

(a) (b)

Figure 2: An example of storing two clusters with
different densities.

Of course, the R-tree by itself cannot result in perfect
clustering, due to its inherent restrictions (the lower/upper
limit in the node size and the splitting of a node that over-
flows into always two nodes). Nevertheless, for the purpose
of DBS we are interested in the approximation of local den-
sity. The approximation of local density is in accordance
with existing DBS methods [17, 9]. Moreover, as indicated
by experimental results in Section 5, the proposed approxi-
mation is effective and less sensitive to factors like noise and
dimensionality, compared to existing approaches.
Let L denote the set of leaf nodes of the R-tree. Since it is

desired that points belonging to the same leaf node to have
identical probability of being included in the sample [17],
we assign the same local density to all points in a leaf. Let

1In general, a cluster of points may occupy more than one
MBRs.

fj denote the fanout of a leaf node j.2 Consequently, an
approximation of a point’s local density can be determined
by the number fi of points in leaf i, divided by the volume
of i’s MBR (for the 2-d space, this corresponds to the area
of the MBR). This density value is the same for all points
of i and it is denoted as Di. Hence:

Di =
fi

Volume(MBRi)
, i ∈ L (2)

For each leaf i, its density Di is normalized by dividing
it with Dmax, where Dmax = maxi{Di|i ∈ L} (in order to
normalize the corresponding point-inclusion probability, see
Equation 3). Let di denote Di/Dmax.

3

Table 1 contains the definition of symbols used henceforth.

Symbol Definition
di normalized density of leaf i
fi fanout of node i
N number of all data points
L set of all leaf nodes
a tuning parameter for DBS
davg average value of di

s sample size

Table 1: Symbol table.

4. THE SELECTIVE PASS ALGORITHM
In this section, we present a new method for DBS from

an R-tree, called Selective Pass (SP). Let N be the total
number of points in the tree. SP considers directly the par-
titioning of the N points into the set L of leaf nodes. SP
maintains for each leaf i, its address, the di and fi values.
Let this information about leaf nodes be denoted as IL. SP
performs an examination of the members of IL. For each
entry of IL, which corresponds to a leaf i ∈ L, SP decides
whether to include a point from i into the sample according
to di. If selection is decided, then leaf i has to be fetched
from secondary storage and a point is selected at random
from i. Otherwise, the reading of i is avoided. To avoid the
rereading of leaf nodes, SP assigns to each leaf a number
t of trials (t is the same for each leaf). SP is depicted in
Figure 3.
The entries of IL are read from disk during the execution

of DBS, where each time only the current page of IL entries
have to remain in main memory (for reasons of fair com-
parison with other DBS algorithms). The space overhead of
IL is due to 3 · |L| numbers that have to be stored, thus it
is equal to O(|L|/B) (B is the page size). This single scan
over the entries of IL presents a very small I/O overhead,
which does not impact the performance of SP, considering
the gainings from avoiding the reading of several leaf nodes
(as it is shown in Section 5). It can be easily shown that for,
e.g., 5 dimensional data, IL occupies only 15% of the space
required by the upper levels of the index (i.e., excluding the
leaves).

2For simplicity, we assume that the internal and leaf nodes
have the same maximum fanout.
3Dmax is maintained by keeping track of the maximum
encountered density up to any time point. This maxi-
mum value is used even when the corresponding leaf has
been deleted, because still all remaining leaves have density
smaller than this maximum encountered value.

Inputs: The tuning parameter a, number of trials t, IL

Output: The density-biased sample

SP1. Start from the first entry of IL, pointing at leaf i.

SP2. Generate a random number si ∼ B(t, fi
N

· da
i).

SP3. If si > 0, then fetch i.
Select at random si points from i.

SP4. If all IL’s elements are examined, then terminate.
Else, get the next entry of IL and execute SP2.

Figure 3: The Selective Pass DBS algorithm.

Evidently, for static data the entries of IL can be obtained
during the index creation. For the case of dynamic data,
they can be easily accommodated in main memory during
updates, considering the large memory sizes today. After an
update in a leaf i (insertion/deletion of points), the calcu-
lation of the new values for fi and di is performed locally,
without affecting the corresponding values for the remaining
leaves. In ordinary R-tree implementations, fi is maintained
in i. The calculation of di requires fi and MBRi, which is
also available during the update operation at i. Therefore,
SP presents the advantage of handling dynamic updates lo-
cally (i.e., without the need to change density estimation in
the other leaves). This is in contrast to the algorithm of [9],
in which updates in the dataset require the change of density
estimation at all points of the dataset. The density approx-
imation of [9] is based on a uniform sample of β points,
that may have to be modified after the insertion/deletion
of points (due to the deletion of points from the uniform
sample or the insertion of new ones that have to be taken
into account while forming the kernel functions). Thus, the
cost of modifying density estimation for the entire dataset
is paid not only for the initial creation of the density esti-
mation function, but also during updates in the dataset.

Lemma 1. For each trial of SP, the inclusion probability
for a point x, stored in leaf i, is

P (include point x|x in leaf i) = N−1 · da
i (3)

Proof. At step SP2, the success probability is fi/N · da
i .

In case of success, a point x is selected, at step SP3, with
probability 1/fi. Hence, P (include point x|x in leaf i) =
fi/N · da

i · 1/fi = N−1 · da
i . ✷

The above lemma shows that, as required by DBS, the
point-inclusion probability for each point is biased by the
density of the group (i.e., leaf) that it belongs. Another
requirement is that the sample size is in accordance with a
user-defined parameter.

Proposition 1. Let t = M ·d−a
avg be the number of trials

assigned to each leaf node (davg is the average of di values
among all i ∈ L). Then, with the assumption that each node
is of average density, the expected sample size is equal to M .

Proof. From each leaf j, sj points are included in the sam-
ple, where sj ∼ B(t, fj/N · da

j). The expected number
of included points from j is E(sj) = t · fj/N · da

j . If s
is the sample size, then s =

∑
j∈L

sj . Hence, E(s) =

E
(∑

j∈L
sj

)
=

∑
j∈L

E(sj). By letting E(s) = M and sub-

stituting the value of E(sj), we get M =
∑

j∈L
(t ·fj/N ·da

j).

By assuming each node to have the average density, we get
M = t · da

avg

∑
j∈L

(fj/N) = t · da
avg. Solving for t, the

required equality follows. ✷

5. PERFORMANCE EVALUATION
To evaluate the performance of the proposed method, we

conducted a series of experiments. For comparison, we ex-
amine the algorithms of [9] and [17], which are referred as
Biased Sampling (BS) and Grid Biased Sampling (GBS) re-
spectively (according to the notation in [9]). We also ex-
amine Uniform sampling (US), following the algorithm of
[23].
We consider both effectiveness and efficiency. Effective-

ness is examined by measuring the quality of sampling with
respect to clustering result, along the lines of [17, 9]. We
examine the impact of skew in cluster sizes, noise and di-
mensionality on sampling quality. Efficiency is examined by
measuring the execution time with respect to sample size
and scalability to the database size.

5.1 Experimental Configuration
We implemented SP in C, the code for BS was provided

by the authors of [9] and the code for GBS is available4. All
experiments were conducted on a Pentium III server at 800
MHz.
The quality of a sample is measured with respect to the

number of correctly found clusters. For reasons of fair com-
parison with prior work, clustering is performed with the
CURE algorithm [6]. In order to better control the data
characteristics, we used synthetic data. We generated syn-
thetic d-dimensional datasets having k clusters andN points.
For each cluster, its center point and radius is specified, and
the points belonging to it are generated by following inde-
pendent normal distributions. We add a specified percent-
age of noise points (with respect to the number of points
belonging to clusters), that follow uniform distribution all
over the space of the dataset. The number, NC , of correctly
found clusters is calculated by comparing the distances of
the centers derived from the clustering algorithm with the
actual ones and using a threshold for determining correct-
ness (see [17] for more details).
We tune the a parameter of BS according to the indi-

cations in [9]. For datasets containing noise, a was set to
1; in contrast, when no noise exists, a can be set to -0.5
so as to identify very small clusters. For SP, we adopt the
same setting for the a parameter. For GBS we used the
IRBS variant, according to the results of [17]. The default
number of kernels for BS was set to 1000 [9]. The default
available memory size for the hash table of GBS [17] and
for the buffer space used by SP was set to the 30% of the
dataset size. We used the R∗-tree [2] variant and the default
page size was set to 4 K.

5.2 Results on sampling quality

Clusters with skew sizes
We measured NC (the number of correctly found clusters)
for the case of datasets which contain clusters with skewed

4at www.cs.cmu.edu/People/crpalmer/dbs-current.tar.gz

sizes. We used 3-dimensional synthetic datasets, which con-
tained 9 clusters (we also examined cases with larger num-
ber of clusters, which produced qualitatively similar results
that are omitted for brevity). One cluster contained 50,000
points and the remaining ones had 500 points (100 times
less). Additionally, 10% noise was added. Also, the number
of kernels for BS was set to 3,000 (since the default value
of 1,000 produced worst results). The results with respect
to the sample size (given as percentage of dataset size) are
depicted in Table 2.

Alg. Sample size
0.5% 1% 1.5% 2% 3% 4%

SP 9 9 9 9 9 9
BS 3 6 8 9 9 9
GBS 2 2 3 6 7 7
US 3 4 5 7 8 9

Table 2: NC w.r.t. sample size for the case of clus-
ters with various sizes.

BS managed to find the correct clusters earlier than US
and it found more correct clusters in the cases where both
did not correctly found all clusters. US found the correct
clusters only for sample size 4% and larger. GBS did not
produce correct results, because it is impacted by the skew in
cluster sizes and the presence of noise in the dataset. Thus,
it could not effectively distinguish between noise and cluster
points. SP clearly outperforms all other algorithms, even at
lower sample sizes. Hence, the proposed approach can guar-
antee correct clustering results with much smaller sample
sizes. This is very important, since smaller sample sizes can
achieve a significant reduction in clustering execution times.

Noise percentage
To examine the impact of noise, we used analogous datasets
to the ones of the previous experiment. We set the sample
size to 2% of the dataset size and we varied the amount
of added noise. The results are depicted in Table 3, with
respect to the amount of noise (given as a percentage).

Alg. Noise Perc.
0% 10% 20% 30% 40% 60% 80%

SP 9 9 9 9 9 9 8
BS 9 9 9 9 9 8 7
GBS 9 8 8 7 5 3 3
US 9 9 7 5 4 4 3

Table 3: NC w.r.t. noise percentage.

As expected, the effect of noise is significantly noticeable
in the cases of US and GBS. They achieve correct results
only when no noise exists (for GBS), or for very small per-
centage (10% for US). SP clearly presents the best perfor-
mance. It correctly finds all clusters in all cases with noise
less than 80%, and only at 80% they miss one cluster. BS,
for very large noise, is affected at a less high value. It starts
missing one cluster at 60%, and then, at 80%, two clus-
ters. BS uses approximation with a kernel function, which
is based on a uniform sample of β points [9]. As the noise
percentage increases, the larger becomes the probability that
noisy points to be included in the uniform sample used by
the kernel function (a case analogous to US). Noisy points

in the uniform sample are included at the expense of not
including points from clusters, thus preventing the weight
increase around the locus of the latter points. For SP, the
approximation is not based on a uniform sample. Noisy
points affect only the approximation at the leaf at which
they are included (i.e., local effect). This effect can be fur-
ther reduced by considering heuristics that try to isolate
noisy points within leaf nodes. For instance, the density of
a leaf node can be determined by forming a core of the most
central points (closest to the center of node). We address
the examination of such heuristics as further work.

Dimensionality
Next, we considered the impact of dimensionality5. Noise
was set to 25% and the sample size was 2%. The results are
depicted in Table 4.
Clearly, GBS and US do not produce correct clustering

results. GBS is mainly affected by the existence of noise.
Although one can expect Uniform sampling to be effective
for high dimensional data that follow uniform distribution
(based on examples from statistic literature), in the exam-
ined case it is impacted by the skew in the cluster sizes and
the existence of noise.

Alg. Dimensionality
5 8 10 12 15

SP 9 9 9 9 8
BS 9 9 8 8 8
GBS 7 6 5 5 5
US 7 6 5 4 4

Table 4: NC w.r.t. dimensionality.

In contrast, SP finds the correct results in all cases with
dimensionality less than 15 and only in the latter case it
starts missing a cluster. We note here that high dimension-
ality results into a skew in the densities of the R-tree leaf
nodes, where very few nodes have very large density. For
this reason we use for normalization the 95 percent density
value instead of the maximum value, to address the above
situation. BS also finds the correct clusters for lower di-
mensions, but it is impacted at a less high dimensionality
(at 10). Evidently, due to the high dimensionality, the skew
in cluster sizes and the noise, BS will require larger sample
sizes in order to obtain the correct clustering in these cases;
thus burdening the cost of the clustering procedure. There-
fore, the proposed approach presents the advantage of being
less affected by high dimensionality and producing correct
clustering results with smaller sample sizes.

5.3 Results on efficiency
This section reports the experimental results on efficiency.

The previous results on quality indicate that US and GBS
produce samples that only partially (in limited cases) lead
to correct clustering results. For this reason, following the
approach of [9], we do not report results on their execution
times.
The proposed approach mainly focuses on the exploita-

tion of indexed datasets. This is analogous to the approach

5It has to be noticed that, by using CURE, we focus on
full-dimensional clustering. For the particularities of very
high dimensional spaces, specialized algorithms have been
proposed [7].

of [15] for Uniform sampling from datasets for which a B+-
tree index is already build6. Based on the above, for rea-
sons of fair comparison, we consider an optimization for BS
by pre-computing the density estimations and storing them
so as to avoid their recalculation during the application of
DBS. Evidently, the latter approach is restricted to static
data (i.e., it cannot be used when dynamic updates occur),
and also it presents a significant space overhead (O(N/B))
in order to store the density estimations.
Figure 4a illustrates the results with respect to the dataset

size. As shown, BS is clearly outperformed by SP in all
cases. BS has to perform one scan over the entire dataset,
so as to examine all points in order to decide their inclusion
in the sample. In addition one scan over the pre-stored
estimations (one for each point in the dataset) is required
to compute parameter k (which cannot be pre-computed
because it depends on a that is a user-defined parameter –
see Equation 1). In contrast, SP performs a selective pass,
which avoids the reading of leaves that will not contribute
to the sample. Moreover, it has to be noticed that density
information for SP is maintained in IL only for leaves instead
of each single point (i.e., |L| << N); thus it requires much
less retrieval cost.
Finally, we tested the impact of dimensionality on SP and

BS. Figure 4b depicts the execution times with respect to
the number of dimensions (the sample size was 2%). As
previously, SP clearly presents the best performance in all
cases.

6. CONCLUSIONS
We considered the problem of Density Biased Sampling

(DBS) from spatial indexes. Instead of performing DBS over
flat files, we exploit the clustering properties of spatial in-
dexes to provide density biased samples of improved quality
and with low execution time for the sampling procedure.
We described SP, a novel DBS algorithm. Its main char-

acteristic is the avoidance of reading nodes that will not
contribute to the final sample. Compared to BS, a prior
DBS algorithm, SP presents the advantage that updates in
the dataset are handled locally, without requiring the re-
scanning of the entire dataset and recomputing all density
approximations. We showed that SP produces samples ac-
cording to the requirements of DBS.
By using synthetic and real data, the quality of sampling

result produced by SP was compared against that of existing
algorithms (BS, GBS and US). Our experiments considered
a variety of factors, i.e., datasets containing clusters with
various sizes, noise and dimensionality. The results show
that SP provides correct results, in contrast to US and GBS,
which produce correct results only in limited cases. Also, we
verified the conclusions of [9], stating that BS attains signif-
icantly better samples than US and GBS in terms of quality.
However, our results indicate that SP clearly compares fa-
vorably to BS. SP is not based on a uniform sample like
BS, which bases its approximation on a kernel function that
is used with the points in this uniform sample. In SP, the
contents of the index nodes can produce improved density
approximation based on the local information within nodes.

6Otherwise, single-pass algorithms [23] may be the preferred
option for Uniform sampling, since the building of the B+-
tree will require at least one database pass in addition to
the time for the sampling itself.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 300 400 500

tim
e
 (

se
c)

number of points (x 1000)

SP
BS

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15

tim
e
 (

se
c)

dimensionality

SP
BS

(b)

Figure 4: Comparison of SP and BS.

Also, we examined experimentally the sampling time. We
considered data for which an index is build. Thus, for fair
comparison, we developed an optimized form of BS, which
uses pre-computed density approximations. The experimen-
tal results show that SP clearly performs better than BS,
since BS has to examine each point in the dataset, in ad-
dition to the examination of the entire collection of pre-
computed density approximations. In contrast, the selective
pass of SP avoids reading those that will not contribute to
the sample.
Finally, we argue that the proposed approach is easily ex-

tendible to the task of outlier detection using samples [9],
since in this case sampling with probability inversely pro-
portional to density is required. We address this issue as
future work.

7. ACKNOWLEDGEMENTS
We would like to thank Prof. Kollios for providing source

code for BS.

8. REFERENCES
[1] G. Antoshenkov: “Random Sampling from

Pseudo-Ranked B+ Trees”. Proc. Int. Conf. on Very
Large Databases (VLDB’92), pp.375-382, 1992.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger:
“The R*-Tree: An Efficient and Robust Access
Method for Points and Rectangles”. Proc. ACM Int.
Conf. on Management of Data (SIGMOD’90), pp.
322-331, 1990.

[3] M. Breunig, H.-P. Kriegel, P. Kroger, J. Sander:
“Data Bubbles: Quality Preserving Performance
Boosting for Hierarchical Clustering”. Proc. ACM Int.
Conf. on Management of Data (SIGMOD’01),
pp.79-90, 2001.

[4] M. Ester, H.-P. Kriegel, X. Xu: “Knowledge Discovery
in Large Spatial Databases: Focusing Techniques for
Efficient Class Identification”. Proc. Int. Symp. on
Large Spatial Databases (SSD’95), pp. 67-82, 1995.

[5] A. Guttman: “R-trees: a Dynamic Index Structure for
Spatial Searching”. Proc. ACM Int. Conf. on
Management of Data (SIGMOD’84), pp.47-57, 1984.

[6] S. Guha, R. Rastogi, K. Shim: “CURE: an Efficient
Clustering Algorithm for Large Databases”. Proc.
ACM Int. Conf. on Management of Data
(SIGMOD’98), pp.73-84, 1998.

[7] A. Hinneburg, D. Keim: “Optimal Grid-Clustering:
Towards Breaking the Curse of Dimensionality in
High-Dimensional Clustering”. Proc. Int. Conf. on
Very Large Databases (VLDB’99), pp.506-517, 1999.

[8] G. John, P. Langley: “Static Versus Dynamic
Sampling for Data Mining”. Proc. Int. Conf. on
Knowledge Discovery and Data Mining (KDD’96),
pp.367-370, 1996.

[9] G. Kollios, D. Gunopoulos, N. Koudas, S. Berchtold:
“Efficient Biased Sampling for Approximate
Clustering and Outlier Detection in Large Datasets”.
IEEE Trans. on Knowledge and Data Engineering
(TKDE), to appear, 2002.

[10] J. Kivinen, H. Mannila: “The Power of Sampling in
Knowledge Discovery”. Proc. ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS’94), pp.77-85, 1994.

[11] S. Lee, D. Cheung, B. Kao: “Is Sampling Useful in
Data Mining? A Case in the Maintenance of
Discovered Association Rules”. Data Mining and
Knowledge Discovery, Vol. 2, No. 3, 233-262, 1998.

[12] C. Lang, A. Singh: “Modeling High-Dimensional
Index Structures using Sampling”. Proc. ACM Int.
Conf. on Management of Data (SIGMOD’01), pp.
389-400, 2001.

[13] A. Nanopoulos, Y. Theodoridis, Y. Manolopoulos:
“C2P: Clustering based on Closest Pairs”. Proc. Int.
Conference on Very Large Databases (VLDB’01),
pp.331-340, 2001.

[14] A. Nanopoulos, Y. Theodoridis, Y. Manolopoulos:
“Density Biased Sampling with Spatial Indexes”.
Tech. Report, available at
www-de.csd.auth.gr/dbs.pdf, 2002.

[15] F. Olken, D. Rotem: “Random Sampling from
B+-Trees”. Proc. Int. Conference on Very Large
Databases (VLDB’89), pp.269-277, 1989.

[16] F. Olken, D. Rotem: “Sampling from Spatial

Databases”. Proc. IEEE Int. Conf. on Data
Engineering (ICDE’93), pp.199-208, 1993.

[17] C. Palmer, C. Faloutsos: “Density Biased Sampling:
an Improved Method for Data Mining and
Clustering”. Proc. ACM Int. Conf. on Management of
Data (SIGMOD’00), pp.82-92, 2000.

[18] B.-U. Pagel, H.-W. Six, H. Toben, P. Widmayer:
“Towards an Analysis of Range Query Performance in
Spatial Data Structures”. Proc. ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS’93), pp.214-221, 1993.

[19] T. Reinartz: “Similarity-Driven Sampling for Data
Mining”. Proc. European Symposium on Principles of
Data Mining and Knowledge Discovery (PKDD’98),
pp.423-431, 1998.

[20] Y. Theodoridis, T. Sellis: “A Model for the Prediction
of R-tree Performance”. Proc. ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS’96), pp.161-171, 1996.

[21] H. Toivonen: “Sampling Large Databases for
Association Rules”. Proc. Int. Conf. on Very Large
Databases (VLDB’96), pp.134-145, 1996.

[22] M. Vassilakopoulos, Y. Manolopoulos: “On Sampling
Regional Data”. Data Knowledge Engineering (DKE),
Vol. 22 No. 3, pp. 309-318, 1997.

[23] J. S. Vitter: “Random Sampling with a Reservoir”.
ACM Transactions on Mathematical Software, Vol.11,
No.1, 37-57, 1985.

[24] M. Zaki, S. Parthasarathy, W. Li, M. Ogihara:
“Evaluation of Sampling for Data Mining of
Association Rules”. Proc. Workshop on Research
Issues in Data Engineering (RIDE’97), 1997.

[25] S. Zhou, A. Zhou, J. Cao, J. Wen, Y. Fan, Y. Hu:
“Combining Sampling Technique with DBSCAN
Algorithm for Clustering Large Spatial Databases”.
Proc. Pacific-Asia Conf. on Knowledge Discovery and
Data Mining (PAKDD’00), pp.169-172, 2000.

