
Test-driving static analysis tools in search of C code vulnerabilities

George Chatzieleftheriou
Aristotle University of Thessaloniki

Department of Informatics
Thessaloniki, Greece

e-mail: gchatzie@csd.auth.gr

Panagiotis Katsaros
Aristotle University of Thessaloniki

 Department of Informatics
Thessaloniki, Greece

e-mail: katsaros@csd.auth.gr

Abstract— Recently, a number of tools for automated code
scanning came in the limelight. Due to the significant costs
associated with incorporating such a tool in the software
lifecycle, it is important to know what defects are detected and
how accurate and efficient the analysis is. We focus specifically
on popular static analysis tools for C code defects. Existing
benchmarks include the actual defects in open source
programs, but they lack systematic coverage of possible code
defects and the coding complexities in which they arise. We
introduce a test suite implementing the discussed requirements
for frequent defects selected from public catalogues. Four open
source and two commercial tools are compared in terms of
their effectiveness and efficiency of their detection capability.
A wide range of C constructs is taken into account and
appropriate metrics are computed, which show how the tools
balance inherent analysis tradeoffs and efficiency. The results
are useful for identifying the appropriate tool, in terms of cost-
effectiveness, while the proposed methodology and test suite
may be reused.

Keywords-static analysis; software security; benchmark tests

I. INTRODUCTION

Static program analysis belongs to the class of problems
that are undecidable [1]. In practice, it is implemented as an
approximation of the program’s behavior that inevitably
restricts the analysis capability in correctly detecting actual
code defects. Important considerations are: (i) the
programming language, (ii) the targeted defects, (iii) the
analysis effectiveness, i.e. the proportion of detected real
defects and (iv) the analysis efficiency that affects the
needed computing resources for code scanning.

A static analysis tool is adequate for a software project, if
it is effective in capturing all defects that are critical for the
required product quality, while it is sufficiently efficient for
the size of the analyzed code base. Tool comparisons with
results from real projects place an evaluation bias
concerning the defects in the benchmark and the code
complexity and size of the code base.

Empirical studies with open source programs should be
completed by evaluation results that systematically cover
the set of code defects that are frequent in a particular
product quality context. We focus on software security and
reliability by providing a synthetic test suite that implements
C code defects, which are frequently reported in public

catalogues. Code defects are replicated in benchmark
programs with varied analysis requirements, in order to
study the tool effectiveness in a wide range of possible
coding complexities. Four open source and two mainstream
commercial static analysis tools for C are evaluated. Tool
effectiveness is measured by metrics that uncover valuable
information for how the tools handle the inherent analysis
tradeoffs in approximating the programs’ behavior. A
performance benchmark provides the basis for evaluating
analysis efficiency, in terms of time and memory space.

The results, when combined with a cost-efficiency model
[21] can be used for identifying the appropriate tool for a
software process.

Reporting an actual flaw is not always connected to an
analysis restriction, but it may be a decision matter of
whether the flaw can cause problems and/or can be
explained to the tool end-user. It is also true that vendors do
not provide information for flaws that are ignored and
therefore they cannot claim functionality that is transparent
to the end-user. Our approach builds on a carefully selected
set of flaws, in order to stimulate tool comparisons that
address the aforementioned deficiency.

The followed methodology can also be applied to
different quality contexts and software domains (with other
code defects) and in tool comparisons for other languages.
A possible scenario could be certifying an application for
safe execution in a particular mobile platform. Such a
certification is a prerequisite for distributing applications
through internet-wide markets and the process concerns the
checking of platform-specific security requirements.

Section II describes the selected code defects. Section III
introduces the tools of the test drive and section IV refers to
the proposed methodology. Detailed results are provided in
section V and measurements for the tool effectiveness are
shown in section VI. Analysis efficiency is examined in
section VII. Related work is considered in section VIII and
the paper concludes with a brief discussion on the benefits
of the proposed test drive and the future research prospects.

II. FREQUENT C CODE DEFECTS

Public catalogues report many flaws that undermine the
reliability and security of C programs. Flaws are reported in
numerous records that sometimes overlap. Our test suite
includes 30 distinct code defects selected from the Common
Weakness Enumeration (CWE) catalogue [3] and the CERT

C Secure Coding Standard [4] according to their frequency.
We classify them into 8 broad categories that are shown in
Table I, in order to develop a concise and comprehensive
taxonomy of C code defects.

Category “General” includes three types of flaws
namely, division by zero, use of uninitialized variables and
null pointer dereference. According to the 2009 Coverity
Scan Open Source Report [5], the latter stands for about
25% of all defects found in the analyzed open source
software. In the second category we classify all flaws
related to the manipulation of integers, including integer
overflows, sign and truncation errors.

Buffer overflows are the most common and dangerous
vulnerabilities in C programs [2]. When exploited by a
malicious user, they can cause unpleasant consequences like
hacking the system running the program. Direct overflows,
off-by-one errors and unbounded copies that appear in
categories “Arrays” and “Strings”, along with the format
string vulnerabilities are accountable for the vast majority
of buffer overflows.

String truncation errors are usually introduced, when
trying to prevent buffer overflows. Another frequent string
manipulation problem is the null termination errors caused
by misuse of the strings representation in C.

 “Memory” allocation and de-allocation flaws include
double free attempts, improperly allocated memory,
initialization errors, memory leaks, absence of failure
checks and access in previously freed memory. “File
operation” problems are less frequent and cannot be easily
exploited in attacks. We consider instances of redundant file
closure, omission of file closure (resource leak), absence of
failure check and access in a file that is either, previously
closed, not opened or opened with a different mode.

“Concurrency errors” are related to erroneous sequence
of operations in program execution paths and include the
notable cases of deadlocks and time-of-check-time-of-use
(TOCTOU) errors. The latter refer to any access to a
program resource based on a mistimed check and can be
exploited in the so-called symlink attacks [6].

III. TOOLS FOR THE TEST DRIVE

We focus on full-fledged tools with built-in analyses,
which detect most of the mentioned flaws. The comparison
is not limited to open source static analysis tools, because
we were also interested to explore the differences with the
commercial tools, in terms of the power of the implemented
analyses. The selected open source tools include Splint,
UNO, Cppcheck and Frama-C. The first mature commercial
tool in our study is the Parasoft C++ Test.

TABLE I. FREQUENT C CODE DEFECTS

Categories Defects Description
General Division by zero Divide a value by zero (CWE-369)

Null pointer dereference Dereference a pointer that is NULL (CWE-476)
Uninitialized variables Use a variable which has not been initialized (CWE-457)

Integers Overflow An integer is incremented in a value that is too large to store in its internal representation (CWE-190)
Sign errors A signed primitive is used as unsigned value (CWE-195)
Truncation errors A primitive is cast to a primitive of smaller size (CWE-197)

Arrays Direct overflow Out-of-bounds access of an array (CWE-119)
Off-by-one errors Use a min or max array index which is 1 more or less than the correct value (CWE-193)
Unbounded copy Copy array without checking the size (CWE-120)

Strings Direct overflow Out-of-bounds access of a string (CWE-119)
Null termination errors A string is incorrectly terminated (CWE-170)
Off-by-one errors Use a min or max string index which is 1 more or less than the correct value (CWE-193)
Truncation errors A string is been truncated and possible important information is lost (CWE-222)
Unbounded copy Copy string without checking the size (CWE-120)

Format string vulnerabilities Invalid format-string in printf-like functions (CWE-134)
Memory Double free Call free() twice in the same memory address (CWE-415)

Improper allocation Misuse of functions allocating memory dynamically
Initialization errors Not initialize or incorrectly initialize a resource (CWE-665)
Memory leak Not release allocated memory (CWE-401)
Failure check Not check for failure of functions which are used for dynamic allocation of memory
Access freed memory Access memory after it has been freed (CWE-416)

File
operations

Access closed file Access a file which has been previousl
Access in different mode Access a file in a different mode than the one it has been specified when opening the file
Double close Close a file descriptor two times
Resource leak Not close a file descriptor (CWE-403)
Access without open Access a file without previous trying to open it
Failure check Not check for failure of functions which are used for opening a file

Concurrency
errors

Deadlock
(no multithreading)

Incorrectly manage control flow during execution (CWE-691)

Deadlock
(multithreading)

Insufficient locking and unlocking of a thread (CWE-667)

Time Of Check,
Time Of Use
(TOCTOU) errors

Check the state of a resource and try to use it at a later moment based on this invalid info (CWE-367)

We also provide results for another commercial product1, in
order to avoid drawing conclusions that may be biased by
the detection capabilities of a single product.

A static analysis is sound, when it doesn’t miss any flaws.
It can be more or less precise to the extent that avoids
reporting spurious errors, but by no means can be
simultaneously sound and complete. In general, the more
precise an analysis is the higher its computational demands
are and the incurred cost affects its scalability. Common
characteristics that result in more precise analyses include:
path sensitivity, context sensitivity and alias analysis. A
path-sensitive analysis excludes infeasible paths. Context
sensitivity means that when a function call is processed, the
calling context is taken into account. Alias (also called
pointer or points-to) analysis computes the entities, where
the variables point to. The aforementioned characteristics
are not independent. A “sufficiently precise” alias analysis
rests on a comprehensive path-sensitive and context-
sensitive analysis and vice versa [14].

Splint [7] is a lightweight tool for checking large
programs. It comes with an annotation language that allows
to define attributes for program objects and to set range of
values to program variables. However, it is not possible to
access control-flow and dataflow information like in UNO
[8], which in this way supports the development of truly
new analyses. UNO’s built-in analyses search for three
common C code defects: uninitialized variables, null-pointer
dereference and out-of-bound array indexing.

Cppcheck [9] can analyze thousands of lines with
precision that can be tuned. Frama-C [10] provides static
analyses embedded into a value analysis framework, which
is based on abstract interpretation [11]. It implements a
plug-in architecture over a kernel that controls the whole
analysis, while the tool can be configured to different
sensitivity levels. Custom plug-ins and user-defined
properties written in a behavioral specification language
extend the tool’s functionality.

In Parasoft C++ Test [12], apart from the sensitivity
level, the user can also select the flaws to be checked. The
tool provides a GUI for expressing patterns of code defects,
thus extending the set of flaws that are detected.

For all tools, we assess the effectiveness of their built-in
analyses in the default sensitivity configuration.

IV. BENCHMARKING METHODOLOGY AND TEST SUITE

Our benchmarking methodology is now presented, in
terms of the set research goals.
 For each tool, we identify the defects it can detect.

Code defects that cannot be detected are reported, but
they are not taken into account in measuring the tools’
effectiveness. Different forms of a single defect are
examined. For example, a TOCTOU error may occur
with different pairs of C functions (notable cases are

1 The license terms for the second commercial tool do not allow revealing
the product name, as opposed to the license terms of Parasoft C++ Test.

the access()-fopen() and lstat()-remove()
pairs). The selected defects are therefore represented in
the benchmark by more than 30 test cases. No
difference was encountered in the tools response
across the different forms of the tested flaws.

 The tools sensitivity is systematically assessed with a
wide range of C constructs and different conditions of
language semantics, under which the defects may
arise.
For each defect, 15 programs require some sort of path
sensitive analysis, 7 programs are used for testing
context sensitivity and 2 require an alias analysis.
All programs have a line with the tested flaw
commented as /*ERROR*/ and another line
commented as /*SAFE*/ that checks the tool
capability to avoid reporting spurious errors, termed as
false positives (FP). If a truly ERROR line is ignored, a
false negative (FN) case is encountered. FPs appeared
due to lack of path-sensitivity, whereas FNs due to
absence of context-sensitivity or alias analysis. Fig. 1
shows a null-pointer dereference sample program. Our
benchmarking test suite includes more than 700
programs like the one shown in the figure, where each
of them consists from 10 to 100 lines of code.

Figure 1. An example program from our test suite

 Provide a detailed qualitative characterization of the

tools’ analysis sensitivity.
This result improves the user’s awareness, for when to
expect a FP or if he can trust a tool that it will not miss
an actual flaw. Having observed a consistent tool
sensitivity behavior across the different defects, we
report the FPs and FNs for the different C constructs,
for a code defect that can be detected by all tools.

 Provide a thorough quantitative characterization of
the tools’ analysis effectiveness.
Five metrics are used that account for the total number
of FPs and FNs encountered over the code defects that
each tool can detect. These metrics highlight how the
tools balance inherent tradeoffs in analysis

effectiveness, like whether emphasis is given on
detecting as many flaws as possible or if the tool better
suits for detecting actual flaws.

 Provide results for the tools’ analysis efficiency in
terms of time and memory space.
Aggregate metrics that reflect all types of analysis
sensitivity provide results for the computational cost
when analyzing programs of different lengths. Our
efficiency benchmark includes test cases that impose
the same analysis demands across the different
program lengths and along the code of each program.
The three sensitivity types account the same in the
reported metrics and therefore cannot be representative
of the tools’ efficiency in all possible analysis contexts
(a program may need any combination of analysis
sensitivities). However, these metrics indicate relative
differences in how the tools balance their effectiveness
with the price paid in efficiency.

V. TEST DRIVING ANALYSIS SENSITIVITY

Table II shows the results for the tools capability to detect
the code defects of our test suite. We use the convention
“Com. Tool B” for the commercial product that we do not
name. Splint, Frama-C and Com. B detected all instances of
uninitialized variables, while UNO and Parasoft C++ Test
caught only particular instances. A frequent error, the null
pointer dereference, was not detected by UNO and
Cppcheck, while Splint ignored the division-by-zero cases.

Regarding integer flaws, Com. B detected truncation and
sign errors, while the latter were also detected by Splint and
C++ Test. Integer overflows were not caught by any tool.

Overflows in arrays and strings were found by all tools
except Splint. Unbounded copies could be detected only for
strings and Cppcheck caught all of them. Splint, Parasoft
C++ Test and Com. B caught only specific instances, but
these tools were those that successfully identified the format
string vulnerabilities.

Regarding memory errors, most tools detected the double
free cases, but memory leaks were caught only by Cppcheck
and partially by Splint. The latter was the only tool that
identified a form of initialization error with malloc().
Improper memory allocation was not detected by any tool,
while access to previously freed memory and absence of
memory allocation check were found by most tools.

Four tools detected some file operation errors, but UNO
and Frama-C ignored all of them. In the category of
concurrency errors with no multithreading, deadlocks were
invisible for all tools and TOCTOU errors were caught only
by the commercial products. In multi-threading programs,
Parasoft C++ Test was the only tool that detected deadlocks.

A detailed characterization of the tools’ analysis
sensitivity is provided in Table III. Splint recognized
infeasible paths only in programs with an unconditional
change in the control flow (goto, return and exit()
function). UNO extends path-sensitivity to the simple if-

else and for loop statements and when the control flow
depends on some #define preprocessor macro.

Cppcheck avoided FPs only in simple or complex if-
else blocks and in programs with the #define macro.
Frama-C and Parasoft C++ Test yielded only one FP, which
in the first case concerns the analysis of a switch
statement and in the second case a complex if-else
statement. Com. B detected all infeasible paths, apart from
paths in programs with while or for loops.

The open source tools showed a lack of context
sensitivity yielding FNs in all tested function call contexts.
With the commercial tools, all flaws were detected,
irrespective of the calling context. For Cppcheck, FNs also
appeared in programs that required an alias analysis. UNO
failed when the alias analysis concerned casting
assignments, but the other tools detected all flaws.

VI. TOOL EFFECTIVENESS

Tool effectiveness for the considered defects was
quantified by classifying every commented line either as
true positive, true negative, FP or FN. The number of cases
for every possible result determined five metrics: accuracy,
precision, recall, specificity and F-measure.

Accuracy is the ratio of correct classifications over the
number of observations. Fig. 2 shows that Frama-C,
Parasoft C++ Test and Com. B achieved the best scores,
around 0.85. For UNO, the accuracy score was 0.72, while
for Cppcheck and Splint was respectively 0.64 and 0.56.

Precision is the ratio of the number of true positives over
the number of reported errors. An ideal tool (score 1.0)
would report only true code defects. The best tools in the
test drive were Frama-C with 0.93, Com. B with 0.88 and
Parasoft C++ Test with 0.81. All other tools exhibited lower
precision, with Splint having the lowest score (0.5).

Recall or true positive rate, is the ratio of the number of
true positives over the number of actual errors. An ideal
tool (score 1.0) would have detected all existing errors. The
best tools in the test drive were Parasoft C++ Test with 0.9
and Com. B with 0.82. Apart from Cppcheck that has fallen
short with 0.5, all other tools achieved a score around 0.7.

Specificity is also called true negative rate and is the ratio
of the number of true negatives over the sum of true
negatives and false positives. The top score 1.0 corresponds
to the absence of FPs. In the test drive, the highest score was
0.95 by Frama-C. Com. B was ranked second with 0.9.
Parasoft C++ Test, UNO and Cppcheck scored in the level
of 0.8 and Splint remained behind with 0.5.

The F-measure provides an aggregate measure
(harmonic mean) for precision and recall, two metrics that
possess an intrinsic tradeoff. The two commercial tools
were ranked first with a score around 0.85 that places them
closer to the ideal tool. Fig. 3 shows how the tools balance
the tradeoff between precision and recall. Frama-C achieved
a slightly lower F-measure, but with more emphasis in
detecting the true defects. The F-measure score for UNO

TABLE II. TOOLS CAPABILITY TO DETECT THE C CODE DEFECTS OF THE TEST SUITE

Categories Problems Splint UNO Cppcheck Frama-
C

C++
Test

Com.
B

General Division by zero
Null pointer dereference

Uninitialized
variables

Integers
Strings
Arrays

Pointers
Integers Overflow

Sign errors
Truncation errors

Arrays Direct overflow
Off-by-one errors
Unbounded copy

Strings Direct overflow
Null termination errors

Off-by-one errors
Truncation errors

Unbounded
copy

strcpy
strcat
gets

sprintf
strncpy
strncat
fgets

snprintf
Format string vulnerabilities

Memory Double free
Improper allocation

Initialization
errors

malloc
realloc

Memory
leak

malloc
calloc
realloc

Failure check
Access freed memory

File
operations

Access closed file
Access in different mode

Double close
Resource leak

Access without open
Failure check

Concurrency
errors

Deadlock
(no multithreading)

Deadlock (multithreading)
Time Of Check, Time Of

Use
(TOCTOU) errors

TABLE III. ANALYSIS SENSITIVITY OF THE TESTED TOOLS IN THEIR DEFAULT CONFIGURATION

Analysis Language constructs Splint UNO Cppcheck Frama-C C++ Test Com. B

Path
Sensitivity

Simple if-else
statement

FP

Complex if-else
statement

FP FP FP

Typical for loop FP FP

Complex for loop
with break command

FP FP FP

While loop with
continue command

FP FP FP

FP

Do-while loop with
continue command

FP FP FP

FP

Switch statement FP FP FP FP

Goto statement FP

For loop with arrays FP FP FP

FP

For loop with
pointer arithmetic

FP FP FP

FP

Conditional operator FP FP FP

Return statement FP

Exit function FP

Define constant FP

Enumeration FP FP FP

Context
sensitivity

Simple function calls FN FN FN FN

Static variables FN FN FN FN

Global variables FN FN FN FN

Function pointers FN FN FN FN

Structs FN FN FN FN

Unions FN FN FN FN

Typedef FN FN FN FN

Alias
analysis

Direct assignments FN

Casting assignments FN FN

Figure 2. Tool effectiveness on the considered C code defects

Figure 3. How the tools balance the tradeoff between precision and recall

Figure 4. Average time for three analysis cases: path-sensitive, context-
sensitive and alias analysis

was 0.7 and for all other tools less than 0.6.

VII. ANALYSIS EFFICIENCY

Tool effectiveness is just the one side of the coin, since a
relatively high F-measure comes with a price in analysis
efficiency.

We measured the demands in time and memory space for
a series of program analyses that could be accomplished on
our experimental platform in reasonable time. The
experiments took place on a 1.7GHz machine with 2GB of
RAM and the length of the benchmark programs varied
between 1000 and 7000 lines of code. The used programs
were generated according to the methodological
considerations of section IV, meaning that for each program
size three test cases with different analysis sensitivity
requirements are considered, namely path sensitivity,
context-sensitivity and alias analysis.

Fig. 4 shows the average analysis time for all tools except
Com. B that was not possible to run on the same operating
system. Parasoft C++ Test and Frama-C that exhibited high
precision are on average more than three or respectively
seven times slower than UNO and other tools in programs
with 7000 lines. It is also noteworthy that this gap increases
rapidly for programs with more than 5000 lines.

Fig. 5 shows the average peak memory usage for the
same static analysis tasks. UNO and Cppcheck scale
smoothly for programs with up to 7000 lines, in contrast to
Splint that exhibited a greedy demand for memory in
programs with more than 3000 lines. Frama-C and Parasoft
C++ Test, which implement comparatively more effective
analyses, incur constantly increasing memory costs with
increasing program sizes, but Frama-C scales slightly better.

VIII. RELATED WORK

In [15], Wilander and Kamkar examined publicly available
code scanners for their ability to detect buffer overflows and
format string vulnerabilities. The scanning capability of
some of the tools is restricted to a form of lexical analysis
and the study was limited to a relatively small number of
programs written for the mentioned code vulnerabilities.

Figure 5. Average of peak memory usage in three cases: path-sensitive,
context-sensitive and alias analysis

Zitser et al. [16] proposed 14 model programs that
simulate an equivalent number of reported real-world
vulnerabilities found in open-source software. Our approach
differs in terms of the underlying methodological
considerations of section IV and in the criteria used for the
code defects covered by the test suite.

Kratkiewicz and Lippmann [17] developed 291 small C
programs to test the error detection capabilities of five static
analysis tools. In that study only buffer overflows are
considered. It is also worth to note that the results in [16]
and [17] include only one commercial tool, thus failing to
provide a spherical view of the analysis characteristics
encountered in mature commercial products.

Newsham and Chess [18] propose a prototype benchmark
for code analyzers of C and Java programs. Their approach
seems to be promising, because they try to combine
artificially created test cases with test cases from real-world
applications. There is no comparison based on metrics like
in our case, which would provide a quantitative
characterization of the tools’ effectiveness and efficiency.

One of the most interesting related works is the so-called
BegBunch by Cifuentes et al. [19]. BegBunch is a static
analysis test suite divided in two sub-sections, where
accuracy or scalability of static analysis tools can be
studied. The two sub-suites are independent from each
other, as opposed to our benchmark, where the analysis
efficiency benchmark was derived from the test cases used
for studying the tools’ effectiveness. BugBench uses
synthetic test cases taken from other projects, like SAMATE
[13] and does not utilize information and data reported in
public catalogues.

Finally, Schmeelk [20] has recently introduced the design
of a repository, in order to integrate benchmarks with
publicly available fault taxonomies like the CWE. He also
pinpoints the need for a unified benchmarking framework.

IX. CONCLUSIONS

Static analysis can improve the reliability of C programs,
only if it is really effective for the code defects that usually
arise in a project, at an affordable cost. The effectiveness of

a tool encompasses quantitative evidence for the tradeoff
between precision and efficiency and qualitative evidence
for the analysis sensitivity with respect to the language
constructs. We introduced a methodology for test driving
static analysis tools and a test suite implementing code
defects that in public catalogues are reported with
comparatively high frequency. The test suite is available
online at http://mathind.csd.auth.gr/static_
analysis_test_suite together with the benchmark
for evaluating analysis efficiency.

The results from test driving four open-source and two
commercial tools showed that only one open-source tool
competes the commercial products, in terms of precision,
but at a very high cost in efficiency. We provided a detailed
report on the tools analysis sensitivity with respect to most
C language constructs.

Further development of test driving static analysis tools
can be directed towards studying their effectiveness with
“weighted” metrics, where the weights will depend on
statistics for the distribution of code defects in software
projects (or catalogues).

A tool’s adequacy for a software process is also affected
by its extensibility perspectives and the ease of use, but
eventually the best solution in terms of cost-effectiveness
depends on the monetary cost.

Acknowledgments
This work was performed in the framework of the TRACER
project, which is partly funded by the Hellenic General
Secretariat of Research and Technology (09ΣΥΝ-72-942).

REFERENCES

[1] W. Landi. “Undecidability of static analysis”. ACM Letters on

Programming Languages and Systems, 1 (4): 323-337,
December 1992.

[2] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
“Buffer overflows: Attacks and defenses for vulnerability of
the decade”. In Proc. Of DARPA Information Survivability
Conf. and Exposition, 2000, pp. 119-129.

[3] CWE list (1.10). Available: http://cwe.mitre.org/data/publish
ed/cwe_v1.10.pdf

[4] R. C. Seacord. The CERT C Security Coding Standard, 1st
Ed., Addison-Wesley Professional, 2009

[5] Coverity Scan Open Source Report, Available: http://scan.
coverity.com/report/Coverity_White_PaperScan_Open_Sourc
e_Report_2009.pdf

[6] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison
and J. West. “Model checking an entire Linux distribution for

security violations”. In Proc. of the 21st Annu. Computer
Security Applications Conf., Washington, DC, 2005, pp. 13-
22.

[7] D. Evans and D. Larochelle. “Improving security using
extensible lightweight static analysis”. IEEE Software, 19 (1):
42-51, January 2002.

[8] G. Holzmann. “UNO: Static source code checking for user-
defined properties”. In 6th World Conf. on Integrated Design
and Process Technology (IDPT ’02), Pasadena, CA, USA,
2002.

[9] Frama-C. Available: http://frama-c.com/
[10] Cppcheck – A Tool for static C/C++ static code analysis.

Available: http://sourceforge.net/apps/mediawiki/cppcheck
[11] P. Cousot, P. and R. Cousot. “Abstract interpretation: a

unified lattice model for static analysis of programs by
construction or approximation of fixpoints”. In Proc. of the 4th
ACM SIGACT-SIGPLAN Symp. on Principles of Program-
ming Languages (POPL ’77). ACM, New York, NY, 1977,
pp. 238-252.

[12] Parasoft C++ Test, Available: http://www.parasoft.com/
[13] NIST. Samate - software assurance metrics and tool

evaluation. Available: http://samate.nist.gov.
[14] M. Bravenboer and Y. Smaragdakis. “Strictly declarative

specification of sophisticated points-to analyses”. In Proc. Of
24th ACM SIGPLAN Conf. on Object oriented programming
systems languages and applications (OOPSLA ’09). ACM,
New York, NY, USA, 2009, pp. 243-262.

[15] J. Wilander and M. Kamkar. “A comparison of publicly
available tools for static intrusion prevention”. In Proc. Of 7th
Nordic Workshop on Secure IT Systems, November 2002, pp.
68-64.

[16] M. Zitser, R. Lippmann, and T. Leek. “Testing static analysis
tools using exploitable buffer overflows from open source
code”. In Proc. of the 12th ACM SIGSOFT Int. Symp. on
Foundations of software engineering (SIGSOFT ’04/FSE-12).
ACM, New York, NY, USA, 2004, pp. 97-106.

[17] K. Kratkiewicz and R. Lippmann. “Using a diagnostic corpus
of C programs to evaluate buffer overflow detection by static
analysis tools”. In Proc. Of Workshop on the Evaluation of
Software Defect Detection Tools (BUGS’05), June 2005.

[18] T. Newsham and B. Chess. “ABM: A Prototype for
Benchmarking Source Code Analyzers”. In Proc. of the
Workshop on Software Security Assurance Tools, Techniques,
and Metrics (SSATTM ’05). Long Beach, California, 2005.

[19] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E.
Mealy, M. Mounteney, and B. Scholz. “Begbunch:
benchmarking for C bug detection tools”. In Proc. of the 2nd
Int. Workshop on Defects in Large Software Systems
(DEFECTS ’09), New York, NY, USA, 2009, pp. 16-20.

[20] S. Schmeelk. “Towards a unified fault-detection benchmark”.
In Proc. of the 9th ACM SIGPANT-SIGSOFT workshop on
Program analysis for software tool and engineering (PASTE
’10). ACM, New York, NY, USA, 2010, pp. 61-64.

[21] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M.
Schwalb. “An Evaluation of Two Bug Pattern Tools for
Java”. In Proc. of Int. Conf. on Software Testing, Verification,
and Validation (ICST ’08), 2008, pp. 248-257.

