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Abstract— Recently, a number of tools for automated code 
scanning came in the limelight. Due to the significant costs 
associated with incorporating such a tool in the software 
lifecycle, it is important to know what defects are detected and 
how accurate and efficient the analysis is. We focus specifically 
on popular static analysis tools for C code defects. Existing 
benchmarks include the actual defects in open source 
programs, but they lack systematic coverage of possible code 
defects and the coding complexities in which they arise. We 
introduce a test suite implementing the discussed requirements 
for frequent defects selected from public catalogues. Four open 
source and two commercial tools are compared in terms of 
their effectiveness and efficiency of their detection capability. 
A wide range of C constructs is taken into account and 
appropriate metrics are computed, which show how the tools 
balance inherent analysis tradeoffs and efficiency. The results 
are useful for identifying the appropriate tool, in terms of cost-
effectiveness, while the proposed methodology and test suite 
may be reused. 
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I.  INTRODUCTION 

Static program analysis belongs to the class of problems 
that are undecidable [1]. In practice, it is implemented as an 
approximation of the program’s behavior that inevitably 
restricts the analysis capability in correctly detecting actual 
code defects. Important considerations are: (i) the 
programming language, (ii) the targeted defects, (iii) the 
analysis effectiveness, i.e. the proportion of detected real 
defects and (iv) the analysis efficiency that affects the 
needed computing resources for code scanning.  

A static analysis tool is adequate for a software project, if 
it is effective in capturing all defects that are critical for the 
required product quality, while it is sufficiently efficient for 
the size of the analyzed code base. Tool comparisons with 
results from real projects place an evaluation bias 
concerning the defects in the benchmark and the code 
complexity and size of the code base.   

Empirical studies with open source programs should be 
completed by evaluation results that systematically cover 
the set of code defects that are frequent in a particular 
product quality context. We focus on software security and 
reliability by providing a synthetic test suite that implements 
C code defects, which are frequently reported in public 

catalogues. Code defects are replicated in benchmark 
programs with varied analysis requirements, in order to 
study the tool effectiveness in a wide range of possible 
coding complexities. Four open source and two mainstream 
commercial static analysis tools for C are evaluated. Tool 
effectiveness is measured by metrics that uncover valuable 
information for how the tools handle the inherent analysis 
tradeoffs in approximating the programs’ behavior. A 
performance benchmark provides the basis for evaluating 
analysis efficiency, in terms of time and memory space. 

The results, when combined with a cost-efficiency model 
[21] can be used for identifying the appropriate tool for a 
software process.  

Reporting an actual flaw is not always connected to an 
analysis restriction, but it may be a decision matter of 
whether the flaw can cause problems and/or can be 
explained to the tool end-user. It is also true that vendors do 
not provide information for flaws that are ignored and 
therefore they cannot claim functionality that is transparent 
to the end-user. Our approach builds on a carefully selected 
set of flaws, in order to stimulate tool comparisons that 
address the aforementioned deficiency.  

The followed methodology can also be applied to 
different quality contexts and software domains (with other 
code defects) and in tool comparisons for other languages. 
A possible scenario could be certifying an application for 
safe execution in a particular mobile platform. Such a 
certification is a prerequisite for distributing applications 
through internet-wide markets and the process concerns the 
checking of platform-specific security requirements. 

Section II describes the selected code defects. Section III 
introduces the tools of the test drive and section IV refers to 
the proposed methodology. Detailed results are provided in 
section V and measurements for the tool effectiveness are 
shown in section VI. Analysis efficiency is examined in 
section VII. Related work is considered in section VIII and 
the paper concludes with a brief discussion on the benefits 
of the proposed test drive and the future research prospects. 

II. FREQUENT C CODE DEFECTS 

Public catalogues report many flaws that undermine the 
reliability and security of C programs. Flaws are reported in 
numerous records that sometimes overlap. Our test suite 
includes 30 distinct code defects selected from the Common 
Weakness Enumeration (CWE) catalogue [3] and the CERT 



C Secure Coding Standard [4] according to their frequency. 
We classify them into 8 broad categories that are shown in 
Table I, in order to develop a concise and comprehensive 
taxonomy of C code defects.     

Category “General” includes three types of flaws 
namely, division by zero, use of uninitialized variables and 
null pointer dereference. According to the 2009 Coverity 
Scan Open Source Report [5], the latter stands for about 
25% of all defects found in the analyzed open source 
software. In the second category we classify all flaws 
related to the manipulation of integers, including integer 
overflows, sign and truncation errors. 

Buffer overflows are the most common and dangerous 
vulnerabilities in C programs [2]. When exploited by a 
malicious user, they can cause unpleasant consequences like 
hacking the system running the program. Direct overflows, 
off-by-one errors and unbounded copies that appear in 
categories “Arrays” and “Strings”, along with the format 
string vulnerabilities are accountable for the vast majority 
of buffer overflows. 

String truncation errors are usually introduced, when 
trying to prevent buffer overflows. Another frequent string 
manipulation problem is the null termination errors caused 
by misuse of the strings representation in C.  

 “Memory” allocation and de-allocation flaws include 
double free attempts, improperly allocated memory, 
initialization errors, memory leaks, absence of failure 
checks and access in previously freed memory. “File 
operation” problems are less frequent and cannot be easily 
exploited in attacks. We consider instances of redundant file 
closure, omission of file closure (resource leak), absence of 
failure check and access in a file that is either, previously 
closed, not opened or opened with a different mode. 

“Concurrency errors” are related to erroneous sequence 
of operations in program execution paths and include the 
notable cases of deadlocks and time-of-check-time-of-use 
(TOCTOU) errors. The latter refer to any access to a 
program resource based on a mistimed check and can be 
exploited in the so-called symlink attacks [6]. 

III. TOOLS FOR THE TEST DRIVE 

We focus on full-fledged tools with built-in analyses, 
which detect most of the mentioned flaws. The comparison 
is not limited to open source static analysis tools, because 
we were also interested to explore the differences with the 
commercial tools, in terms of the power of the implemented 
analyses. The selected open source tools include Splint, 
UNO, Cppcheck and Frama-C. The first mature commercial 
tool in our study is the Parasoft C++ Test.   

TABLE I.  FREQUENT C CODE DEFECTS 

Categories Defects Description 
General Division by zero Divide a value by zero (CWE-369) 

Null pointer dereference Dereference a pointer that is NULL (CWE-476) 
Uninitialized variables Use a variable which has not been initialized (CWE-457) 

Integers Overflow An integer is incremented in a value that is too large to store in its internal representation (CWE-190) 
Sign errors A signed primitive is used as unsigned value (CWE-195) 
Truncation errors A primitive is cast to a primitive of smaller size (CWE-197) 

Arrays Direct overflow Out-of-bounds access of an array (CWE-119) 
Off-by-one errors Use a min or max array index which is 1 more or less than the correct value (CWE-193) 
Unbounded copy Copy array without checking the size  (CWE-120) 

Strings Direct overflow Out-of-bounds access of a string (CWE-119) 
Null termination errors A string is incorrectly terminated (CWE-170) 
Off-by-one errors Use a min or max string index which is 1 more or less than the correct value (CWE-193) 
Truncation errors A string is been truncated and possible important information is lost  (CWE-222) 
Unbounded copy Copy string without checking the size  (CWE-120) 

Format string vulnerabilities Invalid format-string in printf-like functions (CWE-134) 
Memory Double free Call free() twice in the same memory address (CWE-415) 

Improper allocation Misuse of functions allocating memory dynamically 
Initialization errors Not initialize or incorrectly initialize a resource (CWE-665) 
Memory leak Not release allocated memory (CWE-401) 
Failure check Not check for failure of functions which are used for dynamic allocation of memory 
Access freed memory Access memory after it has been freed (CWE-416) 

File 
operations 

Access closed file Access a file which has been previousl 
Access in different mode Access a file in a different mode than the one it has been specified when opening the file 
Double close Close a file descriptor two times 
Resource leak Not close a file descriptor (CWE-403) 
Access without open Access a file without previous trying to open it 
Failure check Not check for failure of functions which are used for opening a file 

Concurrency 
errors 

Deadlock  
(no multithreading) 

Incorrectly manage control flow during execution (CWE-691) 

Deadlock 
(multithreading) 

Insufficient locking and unlocking of a thread (CWE-667) 

Time Of Check,  
Time Of Use  
(TOCTOU) errors 

Check the state of a resource and try to use it at a later moment based on this invalid info (CWE-367) 



We also provide results for another commercial product1, in 
order to avoid drawing conclusions that may be biased by 
the detection capabilities of a single product.   

A static analysis is sound, when it doesn’t miss any flaws. 
It can be more or less precise to the extent that avoids 
reporting spurious errors, but by no means can be 
simultaneously sound and complete. In general, the more 
precise an analysis is the higher its computational demands 
are and the incurred cost affects its scalability. Common 
characteristics that result in more precise analyses include: 
path sensitivity, context sensitivity and alias analysis. A 
path-sensitive analysis excludes infeasible paths. Context 
sensitivity means that when a function call is processed, the 
calling context is taken into account. Alias (also called 
pointer or points-to) analysis computes the entities, where 
the variables point to. The aforementioned characteristics 
are not independent. A “sufficiently precise” alias analysis 
rests on a comprehensive path-sensitive and context-
sensitive analysis and vice versa [14].  

Splint [7] is a lightweight tool for checking large 
programs. It comes with an annotation language that allows 
to define attributes for program objects and to set range of 
values to program variables. However, it is not possible to 
access control-flow and dataflow information like in UNO 
[8], which in this way supports the development of truly 
new analyses. UNO’s built-in analyses search for three 
common C code defects: uninitialized variables, null-pointer 
dereference and out-of-bound array indexing. 

Cppcheck [9] can analyze thousands of lines with 
precision that can be tuned. Frama-C [10] provides static 
analyses embedded into a value analysis framework, which 
is based on abstract interpretation [11]. It implements a 
plug-in architecture over a kernel that controls the whole 
analysis, while the tool can be configured to different 
sensitivity levels. Custom plug-ins and user-defined 
properties written in a behavioral specification language 
extend the tool’s functionality. 

In Parasoft C++ Test [12], apart from the sensitivity 
level, the user can also select the flaws to be checked. The 
tool provides a GUI for expressing patterns of code defects, 
thus extending the set of flaws that are detected. 

For all tools, we assess the effectiveness of their built-in 
analyses in the default sensitivity configuration. 

IV. BENCHMARKING METHODOLOGY AND TEST SUITE 

Our benchmarking methodology is now presented, in 
terms of the set research goals. 
 For each tool, we identify the defects it can detect. 

Code defects that cannot be detected are reported, but 
they are not taken into account in measuring the tools’ 
effectiveness. Different forms of a single defect are 
examined. For example, a TOCTOU error may occur 
with different pairs of C functions (notable cases are 

                                                           
1 The license terms for the second commercial tool do not allow revealing 
the product name, as opposed to the license terms of Parasoft C++ Test. 

the access()-fopen() and lstat()-remove() 
pairs). The selected defects are therefore represented in 
the benchmark by more than 30 test cases. No 
difference was encountered in the tools response 
across the different forms of the tested flaws.  

 The tools sensitivity is systematically assessed with a 
wide range of C constructs and different conditions of 
language semantics, under which the defects may 
arise.  
For each defect, 15 programs require some sort of path 
sensitive analysis, 7 programs are used for testing 
context sensitivity and 2 require an alias analysis. 
All programs have a line with the tested flaw 
commented as /*ERROR*/ and another line 
commented as /*SAFE*/ that checks the tool 
capability to avoid reporting spurious errors, termed as 
false positives (FP). If a truly ERROR line is ignored, a 
false negative (FN) case is encountered. FPs appeared 
due to lack of path-sensitivity, whereas FNs due to 
absence of context-sensitivity or alias analysis. Fig. 1 
shows a null-pointer dereference sample program. Our 
benchmarking test suite includes more than 700 
programs like the one shown in the figure, where each 
of them consists from 10 to 100 lines of code.     

  

 

Figure 1.  An example program from our test suite 

 
 Provide a detailed qualitative characterization of the 

tools’ analysis sensitivity.  
This result improves the user’s awareness, for when to 
expect a FP or if he can trust a tool that it will not miss 
an actual flaw. Having observed a consistent tool 
sensitivity behavior across the different defects, we 
report the FPs and FNs for the different C constructs, 
for a code defect that can be detected by all tools.  

 Provide a thorough quantitative characterization of 
the tools’ analysis effectiveness.  
Five metrics are used that account for the total number 
of FPs and FNs encountered over the code defects that 
each tool can detect. These metrics highlight how the 
tools balance inherent tradeoffs in analysis 



effectiveness, like whether emphasis is given on 
detecting as many flaws as possible or if the tool better 
suits for detecting actual flaws. 

 Provide results for the tools’ analysis efficiency in 
terms of time and memory space.     
Aggregate metrics that reflect all types of analysis 
sensitivity provide results for the computational cost 
when analyzing programs of different lengths. Our 
efficiency benchmark includes test cases that impose 
the same analysis demands across the different 
program lengths and along the code of each program. 
The three sensitivity types account the same in the 
reported metrics and therefore cannot be representative 
of the tools’ efficiency in all possible analysis contexts 
(a program may need any combination of analysis 
sensitivities). However, these metrics indicate relative 
differences in how the tools balance their effectiveness 
with the price paid in efficiency. 

V. TEST DRIVING ANALYSIS SENSITIVITY 

Table II shows the results for the tools capability to detect 
the code defects of our test suite. We use the convention 
“Com. Tool B” for the commercial product that we do not 
name. Splint, Frama-C and Com. B detected all instances of 
uninitialized variables, while UNO and Parasoft C++ Test 
caught only particular instances. A frequent error, the null 
pointer dereference, was not detected by UNO and 
Cppcheck, while Splint ignored the division-by-zero cases. 

Regarding integer flaws, Com. B detected truncation and 
sign errors, while the latter were also detected by Splint and 
C++ Test. Integer overflows were not caught by any tool. 

Overflows in arrays and strings were found by all tools 
except Splint. Unbounded copies could be detected only for 
strings and Cppcheck caught all of them. Splint, Parasoft 
C++ Test and Com. B caught only specific instances, but 
these tools were those that successfully identified the format 
string vulnerabilities. 

Regarding memory errors, most tools detected the double 
free cases, but memory leaks were caught only by Cppcheck 
and partially by Splint. The latter was the only tool that 
identified a form of initialization error with malloc(). 
Improper memory allocation was not detected by any tool, 
while access to previously freed memory and absence of 
memory allocation check were found by most tools. 

Four tools detected some file operation errors, but UNO 
and Frama-C ignored all of them. In the category of 
concurrency errors with no multithreading, deadlocks were 
invisible for all tools and TOCTOU errors were caught only 
by the commercial products. In multi-threading programs, 
Parasoft C++ Test was the only tool that detected deadlocks. 

A detailed characterization of the tools’ analysis 
sensitivity is provided in Table III. Splint recognized 
infeasible paths only in programs with an unconditional 
change in the control flow (goto, return and exit() 
function). UNO extends path-sensitivity to the simple if-

else and for loop statements and when the control flow 
depends on some #define preprocessor macro. 

Cppcheck avoided FPs only in simple or complex if-
else blocks and in programs with the #define macro. 
Frama-C and Parasoft C++ Test yielded only one FP, which 
in the first case concerns the analysis of a switch 
statement and in the second case a complex if-else 
statement. Com. B detected all infeasible paths, apart from 
paths in programs with while or for loops. 

The open source tools showed a lack of context 
sensitivity yielding FNs in all tested function call contexts. 
With the commercial tools, all flaws were detected, 
irrespective of the calling context. For Cppcheck, FNs also 
appeared in programs that required an alias analysis. UNO 
failed when the alias analysis concerned casting 
assignments, but the other tools detected all flaws. 

VI. TOOL EFFECTIVENESS 

Tool effectiveness for the considered defects was 
quantified by classifying every commented line either as 
true positive, true negative, FP or FN. The number of cases 
for every possible result determined five metrics: accuracy, 
precision, recall, specificity and F-measure. 

Accuracy is the ratio of correct classifications over the 
number of observations. Fig. 2 shows that Frama-C, 
Parasoft C++ Test and Com. B achieved the best scores, 
around 0.85. For UNO, the accuracy score was 0.72, while 
for Cppcheck and Splint was respectively 0.64 and 0.56. 

Precision is the ratio of the number of true positives over 
the number of reported errors. An ideal tool (score 1.0) 
would report only true code defects. The best tools in the 
test drive were Frama-C with 0.93, Com. B with 0.88 and 
Parasoft C++ Test with 0.81. All other tools exhibited lower 
precision, with Splint having the lowest score (0.5). 

Recall or true positive rate, is the ratio of the number of 
true positives over the number of actual errors. An ideal 
tool (score 1.0) would have detected all existing errors. The 
best tools in the test drive were Parasoft C++ Test with 0.9 
and Com. B with 0.82. Apart from Cppcheck that has fallen 
short with 0.5, all other tools achieved a score around 0.7. 

Specificity is also called true negative rate and is the ratio 
of the number of true negatives over the sum of true 
negatives and false positives. The top score 1.0 corresponds 
to the absence of FPs. In the test drive, the highest score was 
0.95 by Frama-C. Com. B was ranked second with 0.9. 
Parasoft C++ Test, UNO and Cppcheck scored in the level 
of 0.8 and Splint remained behind with 0.5. 

The F-measure provides an aggregate measure 
(harmonic mean) for precision and recall, two metrics that 
possess an intrinsic tradeoff. The two commercial tools 
were ranked first with a score around 0.85 that places them 
closer to the ideal tool. Fig. 3 shows how the tools balance 
the tradeoff between precision and recall. Frama-C achieved 
a slightly lower F-measure, but with more emphasis in 
detecting the true defects. The F-measure score for UNO 



TABLE II.  TOOLS CAPABILITY TO DETECT THE C CODE DEFECTS OF THE TEST SUITE 
 

Categories Problems Splint UNO Cppcheck Frama-
C 

C++ 
Test 

Com. 
B 

General Division by zero   
Null pointer dereference   

Uninitialized 
variables 

Integers   
Strings   
Arrays   

Pointers   
Integers Overflow   

Sign errors   
Truncation errors   

Arrays Direct overflow   
Off-by-one errors   
Unbounded copy       

Strings Direct overflow   
Null termination errors   

Off-by-one errors   
Truncation errors   

Unbounded 
copy 

strcpy   
strcat   
gets   

sprintf       
strncpy   
strncat   
fgets   

snprintf   
Format string vulnerabilities   

Memory Double free   
Improper allocation   

Initialization 
errors 

malloc   
realloc   

Memory 
leak 

malloc   
calloc   
realloc   

Failure check   
Access freed memory   

File 
operations 

Access closed file   
Access in different mode   

Double close   
Resource leak       

Access without open   
Failure check   

Concurrency 
errors 

Deadlock  
(no multithreading)       

Deadlock (multithreading)   
Time Of Check, Time Of 

Use  
(TOCTOU) errors 

      



TABLE III.  ANALYSIS SENSITIVITY OF THE TESTED TOOLS IN THEIR DEFAULT CONFIGURATION 

Analysis Language constructs Splint UNO Cppcheck Frama-C C++ Test Com. B 

Path 
Sensitivity 

Simple if-else 
statement 

FP 
  

Complex if-else 
statement 

FP FP FP 
 

Typical for loop FP FP 
  

Complex for loop 
with break command 

FP FP FP 
  

While loop with 
continue command 

FP FP FP 
 

FP 

Do-while loop with 
continue command 

FP FP FP 
 

FP 

Switch statement FP FP FP FP 
  

Goto statement FP 
  

For loop with arrays FP FP FP 
 

FP 

For loop with 
pointer arithmetic 

FP FP FP 
 

FP 

Conditional operator FP FP FP 
  

Return statement FP 
  

Exit function FP 
  

Define constant FP 
  

Enumeration FP FP FP 
  

Context 
sensitivity 

Simple function calls FN FN FN FN 
  

Static variables FN FN FN FN 
  

Global variables FN FN FN FN 
  

Function pointers FN FN FN FN 
  

Structs FN FN FN FN 
  

Unions FN FN FN FN 
  

Typedef FN FN FN FN 
  

Alias 
analysis 

Direct assignments FN 
  

Casting assignments FN FN 
  

 

 

Figure 2.  Tool effectiveness on the considered C code defects 

 

Figure 3.  How the tools balance the tradeoff between precision and recall 



 

Figure 4.  Average time for three analysis cases: path-sensitive, context-
sensitive and alias analysis 

was 0.7 and for all other tools less than 0.6. 

VII. ANALYSIS EFFICIENCY 

Tool effectiveness is just the one side of the coin, since a 
relatively high F-measure comes with a price in analysis 
efficiency.  

We measured the demands in time and memory space for 
a series of program analyses that could be accomplished on 
our experimental platform in reasonable time. The 
experiments took place on a 1.7GHz machine with 2GB of 
RAM and the length of the benchmark programs varied 
between 1000 and 7000 lines of code. The used programs 
were generated according to the methodological 
considerations of section IV, meaning that for each program 
size three test cases with different analysis sensitivity 
requirements are considered, namely path sensitivity, 
context-sensitivity and alias analysis. 

Fig. 4 shows the average analysis time for all tools except 
Com. B that was not possible to run on the same operating 
system. Parasoft C++ Test and Frama-C that exhibited high 
precision are on average more than three or respectively 
seven times slower than UNO and other tools in programs 
with 7000 lines. It is also noteworthy that this gap increases 
rapidly for programs with more than 5000 lines. 

Fig. 5 shows the average peak memory usage for the 
same static analysis tasks. UNO and Cppcheck scale 
smoothly for programs with up to 7000 lines, in contrast to 
Splint that exhibited a greedy demand for memory in 
programs with more than 3000 lines. Frama-C and Parasoft 
C++ Test, which implement comparatively more effective 
analyses, incur constantly increasing memory costs with 
increasing program sizes, but Frama-C scales slightly better. 

VIII. RELATED WORK 

In [15], Wilander and Kamkar examined publicly available 
code scanners for their ability to detect buffer overflows and 
format string vulnerabilities. The scanning capability of 
some of the tools is restricted to a form of lexical analysis 
and the study was limited to a relatively small number of 
programs written for the mentioned code vulnerabilities. 

 

Figure 5.  Average of peak memory usage in three cases: path-sensitive, 
context-sensitive and alias analysis 

Zitser et al. [16] proposed 14 model programs that 
simulate an equivalent number of reported real-world 
vulnerabilities found in open-source software. Our approach 
differs in terms of the underlying methodological 
considerations of section IV and in the criteria used for the 
code defects covered by the test suite.  

Kratkiewicz and Lippmann [17] developed 291 small C 
programs to test the error detection capabilities of five static 
analysis tools. In that study only buffer overflows are 
considered. It is also worth to note that the results in [16] 
and [17] include only one commercial tool, thus failing to 
provide a spherical view of the analysis characteristics 
encountered in mature commercial products. 

Newsham and Chess [18] propose a prototype benchmark 
for code analyzers of C and Java programs. Their approach 
seems to be promising, because they try to combine 
artificially created test cases with test cases from real-world 
applications. There is no comparison based on metrics like 
in our case, which would provide a quantitative 
characterization of the tools’ effectiveness and efficiency.   

One of the most interesting related works is the so-called 
BegBunch by Cifuentes et al. [19]. BegBunch is a static 
analysis test suite divided in two sub-sections, where 
accuracy or scalability of static analysis tools can be 
studied. The two sub-suites are independent from each 
other, as opposed to our benchmark, where the analysis 
efficiency benchmark was derived from the test cases used 
for studying the tools’ effectiveness. BugBench uses 
synthetic test cases taken from other projects, like SAMATE 
[13] and does not utilize information and data reported in 
public catalogues. 

Finally, Schmeelk [20] has recently introduced the design 
of a repository, in order to integrate benchmarks with 
publicly available fault taxonomies like the CWE. He also 
pinpoints the need for a unified benchmarking framework. 

IX. CONCLUSIONS 

Static analysis can improve the reliability of C programs, 
only if it is really effective for the code defects that usually 
arise in a project, at an affordable cost. The effectiveness of 



a tool encompasses quantitative evidence for the tradeoff 
between precision and efficiency and qualitative evidence 
for the analysis sensitivity with respect to the language 
constructs. We introduced a methodology for test driving 
static analysis tools and a test suite implementing code 
defects that in public catalogues are reported with 
comparatively high frequency. The test suite is available 
online at http://mathind.csd.auth.gr/static_ 
analysis_test_suite together with the benchmark 
for evaluating analysis efficiency. 

The results from test driving four open-source and two 
commercial tools showed that only one open-source tool 
competes the commercial products, in terms of precision, 
but at a very high cost in efficiency. We provided a detailed 
report on the tools analysis sensitivity with respect to most 
C language constructs. 

Further development of test driving static analysis tools 
can be directed towards studying their effectiveness with 
“weighted” metrics, where the weights will depend on 
statistics for the distribution of code defects in software 
projects (or catalogues). 

A tool’s adequacy for a software process is also affected 
by its extensibility perspectives and the ease of use, but 
eventually the best solution in terms of cost-effectiveness 
depends on the monetary cost. 
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