
Modeling Data Flow Execution

in a Parallel Environment

Georgia Kougka1, Anastasios Gounaris1, and Ulf Leser2

1 Department of Informatics
Aristotle University of Thessaloniki, Greece

{georkoug,gounaria}@csd.auth.gr
2 Institute for Computer Science

Humboldt-Universität zu Berlin, Germany
leser@informatik.hu-berlin.de

Abstract. Although the modern data flows are executed in parallel and
distributed environments, e.g. on a multi-core machine or on the cloud,
current cost models, e.g., those considered by state-of-the-art data flow
optimization techniques, do not accurately reflect the response time of
real data flow execution in these execution environments. This is mainly
due to the fact that the impact of parallelism, and more specifically,
the impact of concurrent task execution on the running time is not ade-
quately modeled. In this work, we propose a cost modeling solution that
aims to accurately reflect the response time of a data flow that is exe-
cuted in parallel. We focus on the single multi-core machine environment
provided by modern business intelligence tools, such as Pentaho Kettle,
but our approach can be extended to massively parallel and distributed
settings. The distinctive features of our proposal is that we model both
time overlaps and the impact of concurrency on task running times in a
combined manner; the latter is appropriately quantified and its signifi-
cance is exemplified.

1 Introduction

Nowadays, data flows constitute an integral part of data analysis. The modern
data flows are complex and executed in parallel systems, such as multi-core
machines or clusters employing a wide range of diverse platforms platforms like
Pentaho Kettle3, Spark4 and Stratosphere5 to name a few. These platforms
operate in a manner that involves significant time overlapping and interplay
between the constituent tasks in a flow. However, there are no cost models that
provide analytic formulas for estimating the response time (wallclock time) of a
flow in such platforms. Cost models, apart from being useful in their own right,
are encapsulated in cost-based optimizers; currently, cost-based optimization
solutions for task ordering in data flows employ simple cost models that may

3 http://community.pentaho.com/projects/data-integration
4 http://spark.apache.org/
5 http://stratosphere.eu/

not capture the flow execution running time accurately, as shown in this work.
This results in an execution cost computation that may deviate from the real
execution time, and the corresponding optimizations may not be reflected on
response time.

Typically, cost models rely on the existence of appropriate metadata regard-
ing each task, which are combined using simple algebraic formulas with the sum
and max operations. Most often, task metadata consider the cost of each task,
which is commensurate with the task running time if executed in a stand-alone
manner. The main challenges in devising a cost model for running time that is
appropriate for modern data flow execution stem from the following factors: (i)
many tasks are executed in parallel employing all three main forms of paral-
lelism, namely, partitioned, pipelined and independent, and the resulting time
overlaps, which entail that certain task executions do not contribute to the over-
all running time, need to be reflected in the cost model; and (ii) computation
resources are shared among multiple tasks, and the concurrent execution of tasks
using the same resource pool impacts on their execution costs.

In this work, we focus on devising a cost model that can be used to estimate
the response time, when the dataflows are executed in parallel and distributed
execution environments. To this end, we extend existing cost modeling tech-
niques that tend to consider time overlapping (e.g., [11, 4, 18, 1, 2, 16]) but not
the interplay between task costs. In order to achieve this, we propose a solution
in which the cost of each task is weighted according to the number of concurrent
tasks taking into account constraints of execution machines, such as capacity in
terms of number of cores. More specifically, we initially focus on a single multi-
core machine environment, such as Pentaho Data Integration (PDI, aka Kettle),
and the contribution is as follows:

1. We explain and provide experimental evidence on why the existing cost
models provide estimates that widely deviate from the real execution time
of modern workflows.

2. We propose a model that not only considers overlapping task executions but
also quantifies the correlation between task costs due to concurrent allocation
to the same processing unit. The model is execution engine software- and
data flow type-independent.

3. We show how our model applies to example flows in PDI, where inaccuracies
of up to 50% are observed if the impact of concurrency is not considered.

In the remainder of this section we provide background on flow paralleliza-
tion, the assumptions regarding the execution environment that we consider and
a discussion about the inadequacy of cost models employed in data flow opti-
mization. We continue the discussion of related work in Sec. 2. In Sec. 3 we
introduce the notation. Our modeling proposal is presented in detail in Sec. 4
and we conclude in Sec. 5.

Fig. 1. A data flow graph before and after partitioned parallelism; circles with the
same color correspond to partitioned instances of the same flow task.

1.1 Parallelizing Data Flows

The parallel execution of a data flow exploits three types of parallelism, namely
inter-operator, intra-operator and independent parallelism. Here, we use the
terms task, activity and operator interchangeably. These types of paralleliza-
tion are well-known in query optimization [6], and used to decrease the response
time of a data flow execution.

The intra-operation parallelism considers the parallelization of a single task
of a data flow. This type of parallelization is defined by the instantiation of a
logical task as a set of multiple physical instances, each operating on a different
portion of data, i.e. each task can be executed by several processors and data
is partitioned. An example of partitioned parallelism is depicted in Figure 1.
There is a set of different methods of partitioning, such as round-robin and
hash-partitioning. In this work, we assume that the degree of intra-operation
parallelism is fixed; e.g., in Figure 1, the degree for the green task is set to 3.

The independent parallelism is achieved when the tasks of the same data
flow may be executed in parallel because there are no dependency constraints
or communication between them. An example is the two branches at the right
part of the flow in Figure 1(left).

The pipeline parallelism takes place when multiple tasks are executed in par-
allel with a producer-consumer link and each producer sends part of its output,
which is a collection of records, as soon as this output is produced without wait-
ing the processing of its input to complete and, therefore, the whole output to
be produced.

In this work, we present a cost model for data flow execution plans that
accurately estimates the response time considering the pipeline parallelism and
independent types of parallelism, which are relevant to a single machine Kettle
execution. However, it is straightforward to extend our work to cover partitioned
parallelism as well, as briefly discussed in Sec. 4.

1.2 Assumptions regarding a single multi-core machine execution

environment

Our main assumptions are summarized as follows:

– Data flows utilize all the available machine cores. The number of cores de-
pends on the execution machine.

– The execution machine is exclusively dedicated to the data flow execution.
I.e., we assume that an execution machine executes only one data flow and
the execution of the next flow can be started only after the completion of
the previous flow. So, the available machine executes tasks and stores data
for a single data flow at a time.

– Multiple tasks of a data flow are executed simultaneously. Each task spawns
a separate thread, running on a core decided by the underlying operating
system scheduler. Obviously, if two task threads share the same core, they
are executed concurrently but not simultaneously.

– The execution engine exploits pipeline and independent parallelism to the
largest possible extent; i.e., the default engine configuration regarding task
execution operates in a mode, according to which flow tasks are aggressively
scheduled as soon as their input data is available.

The assumptions above hold also for massive parallel settings. The main dif-
ference is that, in massive parallelism settings, partitioned parallelism typically
applies.

1.3 Motivation for devising a new cost model

A main application of cost models is in cost-based optimization. One of forms of
data flow optimization that has been largely explored in the data management
literature is task re-ordering. Taking this type of optimization as case study, we
can observe from the survey in [9] that the corresponding techniques target one
of the following optimization objectives:

1. Sum Cost Metric of the Full plan (SCM-F): minimize the sum of the task
and communication costs of a data flow [7, 13, 20, 10, 15, 8, 16].

2. Sum Cost Metric of the Critical Path (SCM-CP): minimize the sum of the
task and communication costs along the flow’s critical path [1, 2].

3. Bottleneck : minimize the highest task cost [18, 1, 2, 16].
4. Throughput : maximize the throughput (number of records processed per time

unit) [5].

The first three metrics and the associated cost models can capture the re-
sponse time under specific assumptions only. The response time represents the
wall-clock time from the beginning until the end of the flow execution. SCM-F
defines the response time when the tasks of a data flow are executed sequentially;
for example when all tasks are blocking. Another case is when tasks are pipelined
but are executed on the same CPU core (processor). In that case, the SCM-F

may serve as a good approximation of the response time. SCM-CP reflects the
response time when the data flow branches are executed independently and the
tasks of each branch are executed sequentially. Finally, bottleneck represents the
response time when all the tasks of the flow are executed in a pipelined manner
and each task is executed on a different processor assuming enough cores are
available.

So, why do we need another cost model? PDI, Flink, Spark and similar
environments aggressively employ pipeline parallelism potentially on multiple
processors. Consequently, the SCM-F and SCM-CP cost metrics do not corre-
spond to the response time of the flow execution. Bottleneck cost metric is not
appropriate either. This is because there are pipelined tasks that are executed
on the same processor, but also there are tasks that are blocking, e.g., sort. So,
for estimating response time, we need to employ a cost metric that explicitly
considers parallelism and the corresponding overlaps in task execution. A cost
model that computes this cost metric is therefore needed.

Furthermore, a more accurate cost model for describing the response time is
significant in its own right even when not used to drive optimizations. It allows
us to better understand the flow execution and provides better insights into the
details involved. Moreover, as will be shown in the subsequent section, merely
considering time overlaps does not suffice, because the task costs are correlated
during concurrent task execution.

2 Other Related Work

The main limitation of existing cost models is that, even if they consider over-
lapped execution, they assume that the cost of each task remains fixed indepen-
dently of whether other tasks are executing concurrently sharing CPU, memory
and other resources. Examples that fall in this category are the work in [11],
which targets a cloud environment for scientific workflow execution, and in [4].
The cost model in the latter considers that the flow is represented by a graph
with multiple branches (or paths), where the tasks in each path are executed se-
quentially and multiple branches are executed in parallel. In constrast, we cover
more generic cases.

Additionally, several proposals based on the traditional cost models have
been presented in order to capture the execution of MapReduce jobs. For exam-
ple, a performance model that estimates the job completion time is presented
for ARIA Framework in [19]; this solution accounts for the fact that the map
and reduce phases are executed sequentially employing partitioned parallelism
but do not take into account the effect of allocation of multiple map/reduce
tasks on the same core. The same rationale is also adapted by cost models in-
troduced in proposals, such as [21] and [17]. Nevertheless, an interesting feature
of these models is that they model the real-world phenomenon of imbalanced
task partition running times. In the MapReduce setting, the authors in [14] pro-
pose the Produce-Transporter-Consumer model to define the parallel execution
of MapReduce tasks. The key idea is to provide a cost model that describes the

tradeoffs of four factors (namely, map and reduce waves, output compression of
map tasks and copy speed during data shuffling) considering any overlaps. As
previously, the impact of concurrency is neglected. Other works for MapReduce,
such as [3], suffer from the same limitations.

3 Preliminaries

A data flow is represented as a Directed Acyclic Graph (DAG), where each vertex
corresponds to a task of the flow and the edges between vertices represent the
communication among tasks (intermediate data shipping among tasks). In data
flows, the exchange of data between tasks is explicitly represented through edges.
We assume that the data flows can have multiple sources and multiple sinks.
A source of a data flow corresponds to a task with no incoming edges, while
a sink corresponds to a task with no outgoing edges. The main notation and
assumptions are as follows:

Let G = (V,E) be a Directed Acyclic Graph (DAG), where V = v1, v2, ..., vn
denotes the vertices of the graph (data flow tasks) and E represents the edges
(flow of data among the tasks); n is the total number of vertices. Each vertex
corresponds to a data flow task and is responsible for one or both of the following:
(i) reading or storing data, and (ii) manipulating data. The tasks of a data flow
may be complex data analysis tasks, but may also execute traditional relational
operations, such as union and join. Each edge equals to an ordered pair (vj , vk),
which means that task vj sends data to task vk.

Each data flow is characterized by the following metadata:

– Cost (ci), which applies to each task. The ci corresponds to the cost for
processing all the input records that the vi task receives taking into consid-
eration the required CPU cycles and disk I/Os. In distributed systems, the
cost of network traffic needs to be considered as well, and may be the most
important factor. An essentially similar consideration is ci to denote the cost
per single input record; in that case the selectivity information of all tasks
is needed in order to derive the task cost for its entire input.

– Communication Cost (cci→j), which may apply to edges. The communi-
cation cost of data shipping between the vi and vj depends on either the
forward local pipelined data transfer between tasks or the data shuffling
between parallel instances of the same data flow. It does not include any
communication-related cost included in ci; it includes only the cost that is
dependent on both vi and vj rather than only on vi.

– Parallelism Type of Task (pti), which describes the type of parallelism of
a task i, when the task is executed. More specifically, the parallelism type
characterizes if a data flow task is executed in a pipelined, denoted as p or
no pipelined manner (blocking task), denoted as np. A blocking task requires
all the tuples of the input data in order to start producing results; i.e., the
parallelism type of a task reflects the way a task process the input data and
produces its output.

4 Our cost model

First, we describe the main formula template of our model, then we explain how
it applies to a single-machine setting and finally, we generalize to distributed
settings.

4.1 A Generalized Cost Model for Response Time

We define the following cost model for estimating the response time:

Response Time (RT) =
∑

ziw
cci +

∑
zijw

cccci→j (1)

where variable zi = {0, 1} is binary and defined as 1 only for tasks that deter-
mine the RT. The ci factor denotes the cost of the i

th task, where i = {1, . . . , n}.
The wc and wcc weights cover a set of different factors that are responsible for
the increase/decrease of RT during the task execution and communication be-
tween two tasks (data shipping), respectively. The z variables capture the time
overlapping of different tasks, whereas wc and wcc quantify the impact of the
execution of one task on all the other tasks that are concurrently executed, i.e.,
they capture the correlation between the execution of multiple concurrent tasks.

In general, the weights aim to abstract the impact of multi-threading in a
single metric. Multi-threading may lead to performance overhead due to several
factors, such as the context switching between threads, as the flow tasks are
executed concurrently and need to switch from one thread to another multiple
times. An additional factor for response time increase is due to the locks that
temporarily restrict tasks sharing memory to write to the same memory loca-
tion. Finally, the most significant factor in the terms of affecting the response
time is the contention that captures the interference of the multiple interactions
of each data flow task with memory and disk. Specifically, when there are mul-
tiple requests to memory, this may result in exceeding memory bandwidth and
consequently, to RT increase. Finally, allocating and scheduling threads incurs
some overhead, which, however, is negligible in most cases.

Nevertheless, multi-threading execution leads to execution cost improvement
because of the parallel task execution. So, we may observe RT minimization,
when all or more of the available cores are exploited by the data flow tasks and
one copy of data is used by multiple threads at the same time. Also, the delays
occurred by transferring data from memory and disk are overlapped by the task
execution, when the number of tasks is higher than the available execution units.

The cost model in Eq. (1) generalizes the traditional ones. For example, based
on the proposed formula, if we consider wc and wcc set to 1 and that all the tasks
have zi = 1, then the cost model actually corresponds to SCM-F and defines
the RT under the specific assumptions discussed previously. If only the tasks
that belong to the critical path have zi = 1, then the cost model corresponds
to SCM-CP. Similarly, if we want to consider the bottleneck cost metric, we set
zi = 1 for the most expensive task and zi = 0 for all the other tasks.

4.2 Models without considering the communication cost

Firstly, we examine simple flows and we gradually extend our observations to
larger and more complicated ones. In all cases, given that we target single-
machine environments, it is reasonable to consider that the communication cost
cci→j is set to 0.

A linear flow with a single pipelined segment of n tasks

A pipeline segment is defined by a sequence of n tasks in a chain, where the first
task is a child of either a source or a blocking task, and the last task is either a
sink or a blocking task; additionally, the tasks in between are all of p type. Also,
pipeline segments do not overlap with regards to the vertices they cover.The
key point of our approach is to account for the fact that there is non-negligible
interference between tasks, captured by the variable α. Let us suppose that our
machine has m cores. In the case where n ≤ m, each task thread can execute
on a separate core exclusively. The cost model that estimates the response time
(RT) of a data flow execution is defined as follows, which aims to capture the
fact that the running times of tasks overlap. So, we set (i) zi = 0 for all tasks,
apart from the task with the maximum cost, for which z is set to 1, since it
determines the RT ; and (ii) wc = α:

Response Time (RT) = αmax{c1, ..., cn} (2)

Let us consider now the case where n > m and the task threads need to share
the available cores in order to be executed. In this case, each core may execute
more than one task and the RT is determined by all the flow tasks, so zi = 1 for
all the flow tasks. An exception is when there is a single task with cost higher
than the sum of all the other costs (similarly to the modeling in [19]):

Response Time (RT) = αmax{max{c1, .., cn},

∑
{c1, ..., cn}

m
} (3)

In Eq. (3), wc equals either to α, as in Eq. (2), or to α/m.

Experiments in PDI

In the following, we present a set of experiments that we conducted in order to
understand the role of α in RT estimation. We consider synthetic flows in PDI
with n = 1, . . . , 26 tasks and an additional source task. The input ranges from
2.4M to 21.8M records. Two machines are used, with (i) a 4-core/4-thread i5 pro-
cessor; and (ii) a 4-core/8-thread i7 processor, respectively. Finally, the task types
are two, either homogenous or heterogeneous. In the former case, all tasks have
the same cost (denoted as equal). In the latter case (denoted asmixed), half of the
tasks have the same cost as in the equal case, and the other tasks have another
cost, which is lower by an order of magnitude. All the tasks apply filters to the
input data, but these filters are not selective in the sense that they produce the
same data that they receive. The data input is according to the TPC-DI Bench-
mark[12] and we consider records taken from the implementation in http://www.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0

50

100

150

200

250

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
mixed-estimate
equal-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

1

1.1

1.2

1.3

1.4

1.5
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

50

100

150

200

250

300

350

400

450

500

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
mixed-estimate
equal-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

1

1.1

1.2

1.3

1.4

1.5
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0

500

1000

1500

2000

2500

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
equal-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5
equal
mixed

Fig. 2. Response Time (RT) and the α factor of linear flows with same and different
task costs for n ∈ [1, 25] executed by the 4-core/4-thread i5 machine for 2.4(top),
4.8(middle) and 21.8M(bottom) input records.

essi.upc.edu/dtim/blog/post/tpc-di-etls-using-pdi-aka-kettle. Each
experiment run was repeated 5 times and the median times are reported; in all
experiments the standard deviation was negligible.

The left column of Figures 2 and 3 shows how the response time of the two
different types of data flows evolves as the number of tasks, and consequently the
number of execution threads, increases. It also shows what the cost model esti-
mates would be if no weights were considered. The main observation is twofold.
First, the response time, as expected from Eqs. (2) and (3), stays approximately
stable when n ≤ m, and then, grows linearly when n > m. This behavior does
not change with the increase in the data size. Second, estimates with no weights

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

0

50

100

150

200

250

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
mixed-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

50

100

150

200

250

300

350

400

450

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
mixed-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26

total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
equal
mixed

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

200

400

600

800

1000

1200

1400

1600

1800

2000

re
sp

o
n

se
 t

im
e

(s
ec

o
n

d
s)

equal-real
mixed-real
equal-estimate
mixed-estimate

0 2 4 6 8 10 12 14 16 18 20 22 24 26
total number of available task execution threads (n)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
equal
mixed

Fig. 3. Response Time (RT) and the α factor of linear flows with same and different
task costs for n ∈ [1, 25] executed by the 4-core/8-thread i7 machine for 2.4(top),
4.8(middle) and 21.8M(bottom) input records.

can underestimate the running time by up to 50%, whereas there are also cases
when they overestimate the running times by a smaller factor (approx. 5%).
More importantly, the main inaccuracies are observed in the mixed-cost case,
which is more common in practice.

The α factor is shown in the right column of Figures 2 and 3. Values both
lower and higher than 1 are observed. Although α captures the combination
of overhead and improvement causes described in the previous section, the im-
portance of each cause varies. In values greater than 1, resource contention is
dominating; whereas, in values lower than 1, the fact that waits for resources
are hidden outweighs any overheads. The main observations are as follows: (i)

2.4 million records 4.8 million records 21.8 million records

4cores-4threads 4cores-8threads 4cores-4threads 4cores-8threads 4cores-4threads 4cores-8threads

n 2 paths 1 path 2 path 1 path 2 paths 1 path 2 paths 1 path 2 paths 1 path 2 path 1 path

2 38.5 38.1 35.1 35.6 78 78 69 71 346 356 315 317

4 42 39.4 42.1 41.9 84 83 82 82 369 374 370 377

6 59.3 56.3 56 56.1 118 118 109 109 530 533 497 499

8 78 78 67 67 155 154 134 132 694 677 606 594

10 96 96 83 82 192 189 166 164 851 837 735 727

12 115 115 99 98 229 226 197 196 1040 991 879 916

14 134 131 115 114 265 262 229 228 1210 1151 1006 1019

16 153 152 131 129 304 305 260 256 1382 1311 1146 1152

18 164 170 145 145 327 323 287 289 1486 1493 1296 1299

20 187 186 160 162 380 370 323 318 1720 1662 1454 1437

Table 1. Comparison of running times between flows with the same number of tasks
but a) with 2 independent and b) a single segment (in seconds).

the α factor varies significantly for the same dataset when the number of tasks
is modified; (ii) α can be of significant magnitude corresponding to more than
50% increase in the task costs; (iii) for flows that consist of up to 4 tasks with
equal cost, the α factor continuously grows (i.e., contention is dominating) and
then, when the number of tasks further increases, the behavior differs between
cases; and (iv) for data flows with different task costs and n > m, the α factor
increases sharply for flows with up to 7-9 tasks depending on the input data size.

A linear flow with multiple independent pipelined segments

In Table 1, we show the running times of flows with the same number of tasks
when all tasks belong to a single pipelined segment and when there are two
segments belonging to two different paths originating from the same source. We
can observe that the running times are similar. From this observation, we can
draw the conclusion that the magnitude of the weights (i.e., the wc and the
corresponding α factors) depend on the number of concurrent tasks and need
not be segment-specific; that is, it is safely to assume that all concurrent tasks
share the same factors.

Estimating the response time of a flow: the complete case

In the previous sections, we showed how we can estimate the response time
of a single pipelined segment in data flows. Now, we leverage our proposal to
more generic data flows with multiple pipeline segments, in order to estimate the
response time of flows that consist of multiple pipeline segments. To this end,
we employ a simple list scheduling simulator. The steps of this methodology are
described, as follows:

1. Receive as input the flow DAG, the cost (ci) of all the tasks of a dataflow,
the number of available cores, and the α factors.

2. Isolate all the single-pipeline segments of the flow with the help of the par-
allelism type task metadata.

3. Split the input in blocks of a fixed size B.
4. Create a copy for the first block for each task directly connected to a source

and insert it in a FCFS (First Come First Serve) queue.
5. Schedule blocks arbitrarily to cores until there are no blocks in the queue

under the condition that a task can process at most one block at time at
any core:

sourc

e

t1 t2

source

t4

t5 t6

pt1= p pt2= p

pt5=p pt6=p

pt4= p FCFS at

Time 4.75

t1
b3

t5
b3

t3
b2

t2
b2

t6
b2

t1
b4

t5
b4

t3
b3

Core1

t1
b1

t2
b1

t1
b2

t3
b1 t1

b3
t3

b2
t6

b2
t5

b4
t7

b2
t2

b3
t3

b5 t3
b6

t6
b4

t7
b4

t4
b1

Core2

t5
b1

t6
b1

t5
b2

t7
b1 t5

b3
t2

b2
t1

b4
t3

b3
t3

b4
t6

b3
t7

b3 t2
b4

t3
b7

t3

pt3= np

t7

pt7= p

t3
b8

1 2.25 4.75 18.25

Fig. 4. Example of running a generic flow on 2 cores; the dotted borders denote pipeline
segments.

(a) when a block finishes its execution, re-insert it in the queue annotated
by the subsequent tasks in the DAG;

(b) if the task is a child of a source, insert its next block in the queue ;
(c) if a blocking task has received its entire input, start scheduling the cor-

responding blocks for the segment initiating from this task.

6. The response time is defined by the longest sequence of block allocations to
a core.

In Figure 4, we present an example with a flow running on 2 cores, where all
task costs per block are 1, each task receives as input 4 blocks and emits 4 other
processed blocks except t3, which outputs a single block. The α factor is 1, when
there are up to two concurrent tasks, and 1.25 otherwise. Concurrent tasks are
those for which there is at least 1 block either in the queue or being executed.
In this example, the running time is when the work on the first is completed.

4.3 Considering communication costs

We need to consider communication only in settings where multiple machines
are employed. Broadly, we can distinguish among the following three cases:

1. On each sender, there is a single thread for computation and transmission.
In this case, both zi and zi,j in Eq. (1) are 1 to denote that computation
and transmission occur sequentially.

2. On each sender, there is a separate thread for data transmission, regardless
of the number of outgoing edges. In this case, depending on which type of
cost dominates, only one of zi and zi,j is set to 1, since computation and
transmission overlap in time.

3. On each sender or receiver, there is a separate thread for each edge. If all
edges share the same network, then we can follow the same approach as in
the case of multiple pipelined tasks sharing a single core.

The first two cases assume a push based data communication model, whereas
the third one applies to both push and pull models.

4.4 Considering partitioned parallelism

Paritioned flows running on multiple machines can be covered by our model as
well. More specifically, we can model and estimate the DAG flow instance on each
machnine independently using the same approach, and then take the maximum
running time as the final one. The factors may differ between partitioned tasks.
Finally, if a DAG instance does not start its execution immediately, we need
to add the time to receive its first input (which kicks-off its execution) to its
estimated running time.

5 Conclusions and Future Work

In this work, we show that up to date the existing cost models do not estimate
accurately the response time of real data flow execution, which heavily depends
on parallelism. We propose a model that considers the time overlaps during
the task execution, while it is capable of quantifying the impact of concurrent
task execution. The latter is an aspect largely overlooked to date and may lead
to significant inaccuracies if neglected, e.g., we provided simple examples of
deviations up to 50%.

Our work can be extended in several ways. Applying the proposed model
relies on the existence of accurate weight information; deriving efficient ways
to approximate the weights before flow execution is an open issue. More thor-
ough validating experiments (e.g., using the complete TPC-DI benchmark) are
required. Also, instead of using a list scheduler simulation, one could develop
analytic cost models that directly estimate the response time. Another direction
for future work is to make a deep dive into the low-level resource utilization
and wait measurements to establish the detailed cause of contention. Finally,
there is a lack of flow cost-based optimization techniques that directly target
the minimization of response time as modeled in this work.

References

1. Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filtering
streaming applications with communication costs. In SPAA, pages 19–28, 2009.

2. Kunal Agrawal, Anne Benoit, Fanny Dufossé, and Yves Robert. Mapping filtering
streaming applications. Algorithmica, 62(1-2):258–308, 2012.

3. Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan
Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. Hybrid paralleliza-
tion strategies for large-scale machine learning in systemml. Proc. VLDB Endow.,
7(7):553–564, 2014.

4. Artem M. Chirkin, A. S. Z. Belloum, Sergey V. Kovalchuk, and Marc X. Makkes.
Execution time estimation for workflow scheduling. WORKS ’14, pages 1–10, 2014.

5. Amol Deshpande and Lisa Hellerstein. Parallel pipelined filter ordering with prece-
dence constraints. ACM Transactions on Algorithms, 8(4):41:1–41:38, 2012.

6. David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Commun. ACM, 35(6), 1992.

7. F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and
K. Tzoumas. Opening the black boxes in data flow optimization. PVLDB,
5(11):1256–1267, 2012.

8. Georgia Kougka and Anastasios Gounaris. Optimization of data-intensive flows:
Is it needed? is it solved? In Proc.DOLAP, pages 95–98, 2014.

9. Georgia Kougka, Anastasios Gounaris, and Alkis Simitsis. The many faces of
data-centric workflow optimization: A survey. CoRR, abs/1701.07723, 2017.

10. Nitin Kumar and P. Sreenivasa Kumar. An efficient heuristic for logical optimiza-
tion of etl workflows. In BIRTE, pages 68–83, 2010.

11. Ilia Pietri, Gideon Juve, Ewa Deelman, and Rizos Sakellariou. A performance
model to estimate execution time of scientific workflows on the cloud. WORKS
’14, pages 11–19. IEEE Press, 2014.

12. Meikel Poess, Tilmann Rabl, and Brian Caufield. TPC-DI: the first industry bench-
mark for data integration. PVLDB, 7(13):1367–1378, 2014.

13. Astrid Rheinlnder, Arvid Heise, Fabian Hueske, Ulf Leser, and Felix Naumann.
Sofa: An extensible logical optimizer for udf-heavy data flows. Information Sys-

tems, 52:96 – 125, 2015.
14. Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen Wang. Mrtuner:

A toolkit to enable holistic optimization for mapreduce jobs. Proc. VLDB Endow.,
7(13):1319–1330, August 2014.

15. A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-space optimization of ETL
workflows. IEEE Trans. Knowl. Data Eng., 17(10):1404–1419, 2005.

16. Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, and Malú Castellanos. Opti-
mizing ETL workflows for fault-tolerance. In ICDE, pages 385–396, 2010.

17. R. Singhal and A. Verma. Predicting job completion time in heterogeneous mapre-
duce environments. In IEEE IPDPSW, pages 17–27, 2016.

18. U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query optimization over
web services. In Proc.PVLDB, pages 355–366, 2006.

19. Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Aria: Automatic
resource inference and allocation for mapreduce environments. ICAC ’11, pages
235–244. ACM, 2011.

20. Ramana Yerneni, Chen Li, Jeffrey D. Ullman, and Hector Garcia-Molina. Opti-
mizing large join queries in mediation systems. In ICDT, pages 348–364, 1999.

21. Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Performance modeling
of mapreduce jobs in heterogeneous cloud environments. CLOUD ’13, pages 839–
846, 2013.

