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Abstract. In this paper we show how we can utilize a database buffer,
when the underlying dataspace is organized by means of a spatial da-
ta structure and particularly R-trees. In such a case the Least Recently
Used (LRU) page replacement policy is not powerful enough to guar-
antee efficiency, because it does not take into consideration important
parameters of the structure, such as the portion (area) of the dataspace
that each page occupies. Of course, the time period passed since the last
reference of a page is still an important factor. Therefore, we combine
several factors, in order to derive a more powerful caching algorithm.
Experiments based on real and synthetic datasets, show that the new
replacement algorithm performs better than LRU in many cases and
also supports tuning.

1 Introduction

Spatial data management is an active area of research over the past ten years
[Guti94, Laur92, Same90]. The basic direction we could follow i order to im-
prove the efficiency of a Spatial DBMS, involves the design of robust spatial data
structures and algorithms, aiming at efficiently satisfying user requests (inserts,
deletes, updates and queries). Among these structures we highlight: the quadtree
family [Same90], the Cell-tree [Gunt89], the LSD-tree [Henr89], the R-tree [Gut-
t84], packed R-trees [Rous85, Kame93], Rt -tree [Sell87], the R*-tree [Beck90],
and the Hilbert R-tree [Kame94].

Another direction involves the improvement of query processing with addi-
tional helpful techniques. One such technique is buffering. The use of buffers is
obligatory in a DBMS [Effe84, O’Neil93], since the performance improvements
can be substantial, if we keep resident frequently requested pages.

There are two basic factors that affect the performance of a buffer cache.
First, the allocation of buffer pages to individual transactions must guarantee
reasonable response times and second, the page replacement policy must be
efficient and effective. In this paper we focus on the second factor only. One page
replacement algorithm that is widely acceptable is the LRU (Least Recently
Used) policy. If there is no empty buffer slot and a new page nust be retrieved,
a page already into the buffer must be replaced (victim page). The LRU policy
replaces the page that has not been referenced for the longest time period.

Although the LRU policy has been proven a very successful method for cache
manipulation [Effe84], modifications such as the LRU-K policy [O’Neil93] and



2Q policy [John94] perform better in a database environment. In this paper
we focus on spatial database systems that organize the dataspace by means of
a spatial data structure (i.e. R-trees). We show that taking into consideration
criteria such as the area occupied by each page, a more sophisticated and tunable
cache maintenance algorithm can be derived.

A new page replacement algorithm, LRD-Manhattan, is proposed. Each
page into the buffer is considered as a point in the 2-dimensional Euclidean space.
The first dimension is the reference density of the page [Effe84] and the second is
the area of the page’s MBR. When a victim must be chosen, we choose the page
that has the minimum distance from the coordinate’s system origin. This page
is selected by means of the Manhattan (city block) metric. Experiments based
on real and synthetic datasets, show that this can improve the cache utilization.

We consider the original R-tree [Gutt84] as the underlying data structure.
However, the method is applicable to any R-tree variant or any other spatial
data structure. Also, although the discussion is based on the 2-d space, the
generalization to spaces with higher dimensionality is straightforward.

The rest of the paper is organized as follows. In Section 2 we give the ap-
propriate background on R-trees and distance metrics. In Section 3 we present
the motivation behind the proposed method and we describe the method m de-
tail. Section 4 contains the experimental results and performance comparisons.
Finally, n Section 5 we conclude the paper and give some directions for future
research in the area.

2 Background

2.1 R-trees

The R-tree [Gutt84] is a hierarchical, height balanced data structure (all leaf
nodes appear at the same level), designed for use in secondary storage, and it is
a generalization of the B-tree for multidimensional spaces. For clarity and sim-
plicity purposes we focus on 2-d space. A sample dataspace with a corresponding
R-tree is presented in Figure 1 below. The structure handles objects by means of
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Fig. 1. R-tree example.
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their conservative approximation. The most simple conservative approximation
of an object’s shape is the Minimum Bounding Rectangle (MBR). Each node of
the tree corresponds to exactly one disk page. Internal nodes contain entries of
the form (R, child-ptr), where R is the MBR that encloses all the MBRs of its



descendants and child-ptr is the pointer to the specific child node. Leaf nodes
contain entries of the form (R,object-ptr) where R is the MBR of the object and
object-pir is the pointer to the objects detailed description. Since MBRs of mnter-
nal nodes are allowed to overlap, we may have to follow multiple paths from root
to leaves when answering a range query. This inefficiency triggered the design of
the RF -tree [Sell87] which does not permit overlapping MBRs of internal nodes
and performs better especially for small range queries.

One of the most important factors that affects the overall structure perfor-
mance is the node split strategy used. In [Gutt84] three split policies are reported,
namely exponential, quadratic and linear split policies. However, more sophisti-
cated policies that reduce the overlap of MBRs are reported in [Beck90] and
[Kame94] that lead to R*-trees and Hilbert R-trees respectively. These two struc-
tures are the most robust and efficient, to the best of the authors’ knowledge.
In this paper, we base our work on the original R-tree structure [Gutt84] for
simplicity and because we want to give emphasis not on the underlying spatial
data structure but on the technique to reduce the processing cost.

Finally, we note that some R-tree variants have been reported to support a
static or a nearly static database. If the objects composing the dataspace are
known in advance, we can apply several packing techniques, [Rous85, Kame93]
with respect to the spatial proximity of the objects, m order to design a more
efficient data structure.

2.2 Distance Metrics

Assume that the dataspace is the unit square and that we have two points p and
q with coordinates (p;,py) and (¢, , q,) respectively. In many applications (GIS,
LIS, etc) it is required to have a measure such as to identify how far a point is
located with respect to a reference point. The most common metric is the L
metric, which is defined as:

Lo, ) = /14 — pol¥ + gy — py ¥

Setting & = 2 we get the Euclidean metric Ly and setting £ = 1 we get the
Manhattan (city block) metric L;.

The applicability of a distance metric depends heavily on the kind of ap-
plication. For example, measuring distances in a city, the Manhattan metric is
more appropriate, since in order to travel from one place to another, we use the
paths between building walls. On the other hand, if we need to know the closest
forest to a lake, the Euclidean distance is more appropriate. For the rest of the
paper we consider only the Manhattan metric. We justify its usefulness in the
next section, where we present the new global page replacement algorithm.



3 The LRD-Manhattan Replacement Policy

3.1 Motivation

Assume we have a set O of spatial objects in the 2d space, organized in a R-
tree. Assume also that a set Q of queries must be processed. If the queries are
executed sequentially, then the processing of each query ¢; corresponds to a
depth first search (DFS) traversal of a portion of the structure. In such a case
we have a priori knowledge of the access patterns and we can take advantage
of this. Indeed, in [Chan92] a hint passing algorithm is presented that utilizes
the access pattern knowledge very well. The buffer pages are labeled as useful
and useless with respect to the time of the next reference. However, in multi-user
environments such a hint passing algorithm can not be applied. The reason is that
when many users are querying the database concurrently, such a characterization
of the buffer pages is difficult. Moreover, a useful page for a query ¢; may be
useless for another query ¢; and therefore, the pages present in the buffer may
not follow a DFS traversal of the R-tree. Also, during the processing of other
complex queries, such as spatial join queries, the DFS approach is not followed.
Instead, the addresses of the related pages are first obtained, the join graph is
constructed and finally the access path is derived. What we need is more general
criteria for characterizing a page useful or useless and more sophisticated “hints”,
in order to ¢ject a page from the buffer pool.

3.2 The Algorithm

The basic idea behind the proposed replacement algorithm is to select as the
victim page, the page that has the minimum probability of reference. We assign
to each buffer resident page p; a reference probability Prob; that serves as a pri-
ority measure. When the buffer is full, the page with the minimum value of Prob;
is ejected from the buffer. The Prob; probabilities are derived by combining two
different values:

— the probability of reference due to buffer usage PRDB;, and
— the probability of reference due to data structure characteristics, PRDS;.

The value PRB; can be derived using the concept of reference density of
a page p; [Effe84]. Assume that a page p; is just brought into the buffer. We
store the reference nmumber for the page entrance, Flirsi_Reference;, and the
number of references, Total_Re ferences;, of the page. Let Current_Re ference
denotes the current reference number. This number is increased with every page
reference. The reference density RD; for the page p; is calculated as follows:

Total_References;

" Current_Reference — First_Reference;

RD;

Clearly 0 < RD; < 1 and we can interpreted RD; as the reference probability
for page p;. In fact, the page replacement algorithm LRD (Least Reference



Density) [Effe84] ¢jects from the buffer the page with the minimum value of RD;.
Therefore, setting PRB; = LRD; we have defined the probability of reference
due to buffer usage.

Let us know define the probability of reference due to data structure char-
acteristics, PRDS;. Each R-tree page (node) can be characterized by the area
that occupies due to its MBR. The area of the MBR is highly related to the
probability that this page will be fetched during the processing of a range query
[Kame93, Page93]. Assume that range queries are generated wniformly over the
dataspace, with respect to the query window centroid. For point queries (degen-
erated range queries) the probability that an R-tree page will be fetched is simply
the area of the page MBR (the dataspace is assumed to be the unit square). For
general range queries, the probability that a page will be fetched is the area of
the page MBR augmented by the z and y extends of the query window [Kame93,
Page93]. However, the extends of range queries posed by users are arbitrary in
general. Therefore, we assume that the fetching probability is given by just the
area of the page (ignoring the extends of range queries). Thus, we can define the
reference probability of a page p; due to the data structures characteristics as
PRDS; = area;, where area; is the area of the page’s MBR.

Each buffer page p; is assigned the two values PRRB; and PRDS; where clear-
ly 0 < PEB; <1land 0 < PRDS; < 1. The next step mvolves the assignment
of a value to every Prob;, given the values PRB; and PRDS;. We can use the
following function:

PRB; + PRDS;

2 ?
Assume now, that a page fault has occurred and a new page must be retrieved
mto the buffer. If the buffer is full, a victim must be chosen. We calculate the
Prob; values for every buffer page p; and we select to replace the page with

Prob; =

0 < Prob; <1

the minimum value of Prob;. Each page p; can be viewed as a point in the 2-d
space (unit square) with coordinates PRB; (z-axis coordinate) and PRDS; (y-
axis coordinate). Clearly, the selected victim page will have the smaller value for
PRB; + PRDS; and therefore, the smaller Manhattan distance with respect to
the origin of the coordinate system. In Figure 2, we present an example. Also,
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Fig. 2. Example of selecting a victim page from a 5 page buffer.

with respect to the least recently used criterion, we apply the above calculations
only to a portion of the buffer pages. Therefore, we consider the F'least recently
used buffer pages (F' is a parameter) and among them we select the victim ac-
cording to the minimum value of Prob;. The whole algorithm is described below:



Algorithm LRD-Manhattan
begin
if (a page fault occurs) and (buffer full)
then
isolate the F' least recently used pages.
for each page p; calculate PRB; and PRDS;.
set Prob; = w.
from the F' pages select pyictim With the minimum value of Prob;.
read the new page ppe, into the buffer.
endif
end
We note that the value PRDS; for each page p;, needs only to be calculated
once, when the page is fetched mto the buffer. On the other hand the value
PRB; must be calculated every time a victim is selected.

4 Experimental Results

4.1 Preliminaries

We implemented the R-tree data structure with the quadratic split policy, and
the page replacement policies LRU, LRD and LRD-Manhattan, in the C pro-
gramming language under UNIX. The simulation experiments were performed
on DEC 3000 and SUN SPARC workstations. The page size was set to 2048 bytes
(2Kbytes). The dataspace dimensions were set to the unit square [0,1)x[0,1) and
all benchmark datasets were normalized to fall inside the dataspace area. The
different datasets used throughout the evaluation of the methods are presented
in Figure 3. The first dataset contains real-life objects describing the roads of
Long Beach (TIGER project) as MBRs. The second dataset is synthetic and
contains uniformly distributed rectangles in the 2-d space. The maximum z and
y extends of the objects were set to 0.01. In order to test the new algorithm under

(a) Long Beach (b) Uniform Rectangles

Fig. 3. Data sets used throughout the experimentation.

different access patterns, we used two query sets. The first set contains uniform
generated range queries with respect to the query window centroid, whereas the
second contains zipfian (80-20) range queries with respect to the query window



centroid. The zipfian queries were produced by means of the following formula
[Gray94], applied to both the z and y coordinates of the query window centroid:

_in(h)
skew_value = E - RT=G-%)

where R is a random number between 0 and 1, E is the dataspace extend (z or
y accordingly) and h is the skewness factor. In order to produce a 80-20 zipfian
query distribution, & was set to 0.8. We used small range queries with maximum
window 0.01 x 0.01, and large range queries with maximum window 0.1 x 0.1.
A very important factor that affects the performance of an R-tree mdex is the
height of the tree. Query processing performance is very sensitive to the height
of the tree, since it is related to the number of disk accesses. It is reported in
the literature [Lin94] that R-trees performance deteriorates for dimensionalities
over 20. In the experiments performed we used 2Kbytes pages. Assuming that
each nmumber or pointer occupies 4 bytes of storage, for 2-d space we can achieve
a maximum fanout of 100. On the other hand, for 20-d space the maximum
fanout drops to 12. We used both values in order to observe the performance of
the proposed algorithm. It is also assumed that there are 20 users posing queries
concurrently. We simulated the concurrent processing of queries as follows:

— 20 reference strings (one for each user) were generated,
— the reference strings were merged into one, taking one page reference from
each user in a ronnd-robin manner.

4.2 Performance Comparisons

We use the number of page faults occurred during the processing of all queries, in
order to compare the various replacement policies. The buffer initially was empty.
In Figure 4 we present the relative performance of the policies with respect to
the buffer size (in pages). Let PFrry, PFrrp and PFLrD - Manhattan denote
the number of page faults for each policy. The relative performance of LRD and
LRD-Manhattan with respect to LRU is measured as follows:

PFrrp PFLrRD—Mann
PFLRT] X 100, RPLRD—Manhattan = PFL}:; attan % 100

RPrrp =

Graphs (a), (b), (¢) and (d) show the results when the dataspace is composed
of the Long Beach dataset and when the distribution of the queries is uniform.
Graphs (e) and (f) show the results when the data objects are uniformly dis-
tributed synthetic rectangles, whereas the queries are skewly (80-20) distributed
over the dataspace. The size of the buffer ranges between 10 and 100 pages. The
R-tree index maximum fanout was set to 12 (small) and 100 (large). We note
that we performed our experiments setting the parameter [ to %, where N is
the number of buffer space in pages.



4.3 Interpretation of Results

By studying Figure 4, some very interesting observations can be derived. For
uniform range queries the new algorithm outperforms both LRU and LRD.
The performance improvements over the LRU reach 20%. However, in graph
(b) we observe that LRD-Manhattan performs poorly when the buffer space
ranges between 30 and 50 pages. In this range, LRU outperforms LRD and
LRD-Manhattan. For buffer space grater than 60 pages, the proposed algo-
rithm is consistently better. When the buffer space ranges between 30 and 50
pages, each query possesses about 2 pages (since there are 20 users executing
queries concurrently). In a situation like this LRU performs better. We per-
formed experiments setting the number of users to 10 and the same peak was
observed, but the mefficiency range was between 10 and 30 pages (again about
2 pages per query). The fact is that 2 pages is a very limited buffer space, in
order to begin the processing of a query. Moreover, the buffer allocator would
never permit the processing of a query with such limited buffer space. There-
fore, we believe that this partial inefficiency of the proposed algorithm would
cause no serious performance deterioration in a real environment. In the case
of zipfian distribution of the queries, LRD is the best choice since the access
patterns are quite steady. The performance of LRD-Manhattan s very close
to that of LRU. In conclusion, the experimental results show that the proposed
algorithm is generally promising. However, more careful tuning is required, in
order to achieve even better performance in all query distributions.

5 Conclusions

In this paper we studied the concept of page replacement in spatial data struc-
tures and particularly in R-trees. The buffering techniques are well studied in
the literature and several approaches have been followed i order to increase
the performance. A new global page replacement algorithm, LRD-Manhattan,
is mtroduced and compared to LRU and LRD. Experimental results based on
real-life and synthetic datasets show that the new algorithm outperforms LRU
and LRD in many cases. However, when queries follow a highly skew distribu-
tion (zipfian 80-20) the best choice is LRD. Based on these results, we conclude
that further research in the area is required in order to derive more powerful
replacement techniques. Future research may include:

— Modification of the proposed algorithm in order to take into consideration
other useful criteria such as the reference frequency of each buffer page.
Therefore, each page could be considered as a point in n-d space, where n is
the number of parameters used to describe a single page.

— Tuning the algorithm with respect to the parameter F' (the number of least
recently used buffer pages).

— Modification of the Prob; values in order to obtain a more general and
tunable function. For example, we could assign Prob; = %
where @ and b are tunable constants.

— Consideration of other spatial data structures.



— Modification of LRU-K and 2-Q algorithms in order to obtain more powerful
techniques suitable for spatial databases.
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Fig. 4. Experimental results.



