
Image indexing and retrieval using signature trees

Mario A. Nascimento a, Eleni Tousidou b, Vishal Chitkara a,
Yannis Manolopoulos b,*

a Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Canada
b Department of Informatics, Aristotle University, 54006 Thessaloniki, Greece

Received 24 October 2001; received in revised form 25 March 2002; accepted 24 April 2002

Abstract

Significant research has focused on determining efficient methodologies for effective and speedy retrieval
in large image databases. Towards that goal, the first contribution of this paper is an image abstraction
technique, called variable-bin allocation (VBA), based on signature bitstrings and a corresponding simi-
larity metric. The signature provides a compact representation of an image based on its color content and
yields better retrieval effectiveness than when using classical global color histograms (GCHs) and com-
parable to the one obtained when using color-coherence vectors (CCVs). More importantly however, the
use of VBA signatures allows savings of 75% and 87.5% in storage overhead when compared to GCHs and
CCVs, respectively. The second contribution is the improvement upon an access structure, the S-tree, ex-
ploring the concept of logical and physical pages and a specialized nearest-neighbor type of algorithm, in
order to improve retrieval speed. We compared the S-tree performance when indexing the VBA signatures
against the SR-tree indexing GCHs and CCVs, since SR-trees are arguably the most efficient access method
for high-dimensional points. Our experimental results, using a large number of images and varying several
parameters, have shown that the combination VBA/S-tree outperforms the GCH/SR-tree combination in
terms of effectiveness, access speed and size (up to 45%, 25% and 70% respectively). Due to the very high-
dimensionality of the CCVs their indexing, even using an efficient access structure, the SR-tree, did not
seem to be a feasible alternative.
� 2002 Elsevier Science B.V. All rights reserved.

www.elsevier.com/locate/datak

Data & Knowledge Engineering 43 (2002) 57–77

*Corresponding author. Tel.: +30-31-996363; fax: +30-31-996360.

E-mail addresses: mn@cs.ualberta.ca (M.A. Nascimento), eleni@delab.csd.auth.gr (E. Tousidou), chitkara@cs.ual-

berta.ca (V. Chitkara), manolopo@delab.csd.auth.gr (Y. Manolopoulos).

0169-023X/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0169-023X(02)00122-2

mail to: mn@cs.ualberta.ca


1. Introduction

The enormous growth of image archives has significantly increased the demand for research
efforts aimed at efficiently finding similar images within a large image database (e.g., [8,22]). One
popular strategy of searching for images within an image database is called query by example, in
which the query is expressed as an image template or a sketch thereof, and is commonly used to
pose queries in most content-based image retrieval (CBIR) systems, for instance, IBM’s QBIC
[15], Virage’s VIR [34], WebSEEk [27] and SIMPLIcity [35].

Typically, the CBIR system extracts visual features from a given query image, which are then
used for comparison with the features of other images stored in the database. The similarity
function is thus based on the abstracted image content rather than the image itself. The color
distribution of an image is one such feature that is extensively utilized to compute the abstracted
image content. It exhibits desired properties, such as low complexity for extraction, invariance to
scaling and rotation, and partial occlusion [25]. In fact, it is common to use a global color his-
togram (GCH) to represent the distribution of colors within an image. Assuming an n-color
model, a GCH is an n-dimensional feature vector ðh1; h2; . . . ; hnÞ, where hj represents the (usually)
normalized percentage of color pixels in an image corresponding to each color cj. In this context,
the retrieval of similar images is based on the similarity between their respective GCHs. A
common similarity metric is based on the Euclidean distance (though other distances could also be
used) between the abstracted feature vectors that represent two images, and it is defined as:

dðQ; IÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ðh
Q
j � hIjÞ

2
q

where Q and I represent the query image and one of the images in the

image set, and hQj and hIj represent the coordinate values of the feature vectors of these images
respectively. Another possibility is to take into account the so-called ‘‘cross-talk’’ between colors,
as done within IBM’s QBIC. Unlike the case above, where histogram bins are compared color-
wise, i.e., one-to-one, one can allow each bin to be compared to all others and weight the com-
parison by the relative distance between the compared colors. Unless a more sophisticated
implementation is used this similarity measure is much more expensive to compute since it re-
quires quadratic time (in the number of colors) whereas the Euclidean distance is linear. Other
approaches to abstract an image for the sake of indexing and searching will be reviewed in Section 2.

It should be noted though that, when using the GCH approach, storing n-dimensional vectors
of a color histogram for each image in the database may consume significant storage space. In
order to minimize the space requirements, we propose the use of a compact representation of these
vectors, thereby leading us to the utilization of binary signatures. An image’s signature bitstring,
hereafter referred to as signature, is an abstract representation of the color distribution of an
image by bitstrings of a predetermined size. However, it is important to note that careful use of
signatures yields not only much smaller space overhead, but also considerably higher retrieval
effectiveness. This will be discussed in Section 3.

Further to the above observation, there is the problem of searching efficiently, i.e., fast, for
images similar to a query image within a large database. Mapping color histograms onto points in
an n-dimensional space is an elegant way to solve the problem, but it has a serious drawback. It
makes the problem of searching similar images using a disk-based access structure a much harder
problem as the value of n grows (it is not unusual to use values of n in excess of 64). This renders
the use of traditional spatial access structures (e.g., the R�-tree [2]) of little use. Since we use

58 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



signatures to represent images we address the efficiency issue by proposing the use of an enhanced
signature tree (S-tree) [9,33]. As we will present in Section 4, the improved S-tree can take ad-
vantage of the concept of logical and physical pages. In addition, we propose a specialized al-
gorithm for fast nearest-neighbor queries for the S-tree.

In Section 5 we investigate thoroughly the performance of the proposed approach in terms of
both effectiveness and efficiency. The obtained results indicate the combination of image signa-
tures and the S-tree to be robust, effective and efficient.

Summarizing, the main contributions of this paper are: the proposal of a new and compact
representation of images based on their color distribution; the enhancement upon the S-tree to
process nearest-neighbors queries more efficiently; the empirical demonstration that the proposed
signatures are an effective way to represent an image and that the combination of image signatures
and the S-tree is a sound, effective and efficient solution for the problem of color-based image
retrieval.

2. Related work

In recent years, there has been considerable research published regarding CBIR systems and
techniques. In what follows, we give an overview of some representative work related to ours, i.e.,
color-oriented CBIR.

QBIC [10,15] is a classical example of a CBIR system. It performs CBIR using several per-
ceptual features, e.g., colors and spatial-relationships. The system utilizes a partition-based ap-
proach for representing color. The retrieval using color is based on the average Munsell color and
the five most dominant colors for each of these partitions, i.e., both the global and local color
histograms are analyzed for image retrieval. Since the quadratic measure of color distances is
computationally intensive, the average Munsell color is used to prefilter the candidate images. The
system also defines a quadratic metric for color similarity based on the bins in the color histo-
grams (discussed above).

A similarity measure based on color moments is proposed in [30]. The authors propose a color
representation that is characterized by the first three color moments namely color average,
variance and skewness, thus yielding very low space overhead. Each of these moments is part of
an index structure and has the same units, which make them somewhat comparable to each other.
The similarity function used for retrieval is based on the weighted sum of the absolute difference
between corresponding moments of the query image and the images within the data set. A similar
approach was also proposed by Appas et al. [1], the main difference being that the image is
segmented in five overlapping cells. A superimposed 4� 4 grid was also used in [28].

Another technique for integrating color information with spatial knowledge in order to obtain
an overall impression of the image is discussed in [13]. The technique is based on using a similar
grid of cells, and the authors propose some heuristics to capture relevant colors and distinguish
among background and non-background (main object) colors.

A system for color indexing based on automated extraction of local regions is presented in [26].
The system first defines a quantized selection of colors to be indexed. Next, a binary color set for a
region is constructed based on whether the color is present or not in a region. In order to be
captured in the index by its color set, a region must meet the following two requirements: (i) there

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 59



must be at least N pixels in a region, where N is a user-defined parameter, and (ii) each color in the
region must contribute with at least a certain percentage of the total region area; this percentage is
also user-defined. Each region in the image is represented using a bounding box. The information
stored for each region includes the color set, the image identifier, the region location and the size.
The image is therefore queried, based not only on the color, but also on the spatial relationship
and composition of the color region.

In [29] the authors attempt to capture the spatial arrangement of different colors in the image,
based on using a grid of cells over the image and a variable number of histograms, depending on
the number of distinct colors present. The paper argues that on the average, an image can be
represented by a relatively low number of colors, and therefore some space can be saved when
storing the histograms. The similarity function used for retrieval is based on a weighted sum of the
distance between the obtained histograms. The experimental results have shown that such a
technique yields 55% less space overhead than conventional partition-based approaches, while still
being up to 38% more efficient in terms of image retrieval.

Pass et al. [21] describe a technique based on incorporating spatial information with the color
histogram using color-coherence vectors (CCVs). The technique classifies each pixel in a color
bucket as either coherent or incoherent, depending upon whether the pixel is a constituent of a
large similarly colored region. The argument is that the comparison of coherent and incoherent
feature vectors between two images allows for a much finer distinction of similarity than when
using color histograms. Note that using CCVs one will have two histograms for each image (one
for coherent colors and one for incoherent colors); each one as large as traditional GCH. The
authors compare their experimental results with various other techniques and show their tech-
nique to yield a significant improvement in retrieval performance.

Recent proposals include [18] and [35]. Lin proposes a method based on multi-precision sim-
ilarity. The idea is to recursively partition the image in a number of non-overlapping cells, for
which the average RBG vector is recorded. This recursive tiling takes into account spatial dis-
tribution of colors as well as it allows querying sub-images. However, there is no strong evidence
whether that method actually improves retrieval effectiveness. Finally, Wang’s SIMPLIcity uses a
wavelet-based approach to extract features, being able to segment images in real-time. Among the
many possible usable features to measure similarity, the system uses a ‘‘global’’ region-matching
scheme, which is claimed to be robust to poor segmentation. The approach underlying SIM-
PLIcity can also perform image categorization, a task which is usually not carried out in the
context of CBIR.

We conclude this section with a brief survey about how CBIR research has used access
structures. This is an important aspect as the number of images in a database may render any
retrieval approach based on linear scanning of the image (metadata) file unfeasible.

As discussed earlier, images are mapped to a high-dimensional feature space. Most of the time,
this feature space can be mapped into the Euclidean space and spatial access structures [12] can be
used. Although typical spatial access structures are not well suited for high-dimensions (e.g., R�-
trees [3]), recent proposals have been made for that case, e.g., the X-tree [3], SS-tree [36] and the
SR-tree [17] to name a few. The X-tree makes use of the concept of super-node in order to
minimize overlap between the area covered by different sub-trees; it was shown to be more efficient
than the R�-tree. Unlike the R�-tree, which uses minimum bounding boxes to represent the area
covered by a sub-tree, the SS-tree uses minimum bounding spheres and was shown to outperform

60 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



the R�-tree. We are not aware of any research comparing the X-tree to the SS-tree directly. The
SR-tree capitalizes on the fact that one can use both boxes and spheres in the internal nodes in
order to decrease overlap between the area covered by the sub-trees. It was reported to be more
efficient than both the R�-tree and the SS-tree, and has been regarded as a top performer among
access structures for high-dimensional data.

More recently, two other access structures aimed at high-dimensional data have been proposed,
the VA-file [38] and the A-tree [24]. Even though the VA-file does not qualify strictly as an access
structure, since it entails a linear scan of the file, for the sake of completeness we include it in this
discussion as well. The idea behind the VA-file is to partition the data space in cells and assign a
short binary code to each such cell. All points lying in those cells are mapped into those cell codes.
It has been reported that a linear scan of such mapped space will filter out a large portion of the
data set quickly and will deliver, even after checking the non-filtered objects, better performance
than the X-tree (it has not been compared to the SR-trees). The A-tree uses the notion of relative
approximation, i.e., objects/MBRs are represented with respect to their parents’ representation.
Due to the compactness of such a scheme, entries in a node can contain not only their own MBRs
but also an approximation of all of their children MBRs as well. This ultimately leads to speedier
access and updates. A-trees have been shown to outperform the VA-files and SR-trees.

For some cases though, it is not trivial (or even possible) to map the feature space into the
Euclidean space. For those situations the use of metric spaces is usually a good (or perhaps the
only) solution. Recent works on access structures for indexing metric spaces are the M-tree [7] and
the Slim-tree [31]. A key issue for an efficient metric tree is an accurate and computationally non-
complex distance metric. Unfortunately, it is often the case that an accurate metric is complex.
This, in turn, may render those structures CPU-bound instead of I/O-bound, as usual in this
domain.

It is also interesting to note that among the CBIR approaches reviewed above, few, QBIC [10]
being one such example, make use of disk-based access structures to speedup query processing. In
this paper we propose not only a new CBIR method (next section) but also the use of an efficient
disk-based structure, the S-tree (Section 4) as well as an specialized algorithm to support similarity
queries efficiently.

3. Variable-bin allocation––a scheme for compact image signatures

The effectiveness of a CBIR system ultimately depends on its ability to accurately identify the
relevant images. Our basic motivation is based on the observation that classical techniques based
on GCHs often offer poor performance since they treat all colors equally and take only their
distributions into account. More specifically, the relative density of a color is not taken into
account by these approaches. In fact, using a dataset of over 50,000 images 1 we have verified [5]
that each image has, on average and after a quantization to 64 colors, only about 11 colors. In
addition, most of such colors have a density of 10% or less. Hence, it is conceivable to conjecture
that a substantial cover of an image is due to many colors which individually constitute a small
portion of the whole image.

1 Obtained from a collection of image CDs from Corel Corp.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 61



On the contrary, the majority of the efforts reviewed in Section 2 have been directed towards a
representation of those colors in the color histogram that have a significant pixel dominance. Our
approach differs mainly in this regard. We actually emphasize more on the colors which are less
dominant, i.e., cover a smaller area of the image, while still not ignoring more dominant colors.

In order to use signatures for image abstraction, we have designed the following scheme:

• Each image in the database is quantized into a fixed number of n colors, c1; c2; . . . ; cn, to elim-
inate the effect of small variations within images and also to avoid using a large file due to the
high resolution representation [20]. The quantization is done using ImageMagick’s color quan-
tization algorithm, 2 which has the goal of ‘‘minimizing the numerical discrepancies between
the original colors and quantized colors’’.

• Each color cj is then represented by a bitstring of length t, i.e., bj1b
j
2 . . . b

j
t , for 16 j6 n. Each bit

is characterized by a range, referred to as the bit-range, which depicts the frequency of pixels of
jth color in the image within a specific range (e.g., the jth color appears in the image with a fre-
quency within a certain percentage range). Hence, an image comprising of n colors would then
be represented by the bitstring: S ¼ b11b

1
2 . . . b

1
t b

2
1b

2
2 . . . b

2
t . . . b

n
1b

n
2 . . . b

n
t where, bji represents the

ith bit relative to the color element cj. For simplicity, we refer to the substring bj1b
j
2 . . . b

j
t as

Bj, hence, the signature of an image I can also be denoted as: SI ¼ B1
IB

2
I . . .B

n
I .

The key point then becomes how to set the bits bji . Bit-ranges could be equal or varying, i.e.,
they could represent equal or different range lengths, respectively. Our first attempt [19] to ac-
complish that was by assigning equal bit-ranges to all bits within each Bj. In such a case each color
cj has its bits set according to the following condition:

bji ¼
1 if i ¼ dhj � te
0 otherwise

�

where hj is an element of the feature vector that represents the GCH as discussed in Section 1.
As an example, consider image A in Fig. 1 having n ¼ 3 colors, and for simplicity, assume that

ðc1; c2; c3Þ¼ (black, grey, white). The normalized color densities can then be represented by the
vector (h1; h2; h3Þ ¼ ð0:18, 0.06, 0.76), where each hj represents the percentage of appearence of
color cj in image A. Next, assume that the color distribution is discretized into t ¼ 10 bits of equal
bit-ranges. Hence, b1 would accommodate a color appearence (pixel-wise) from 1% to 10%, and
b2 would accommodate from 11% to 20% and so on. Therefore, image A can then be represented
by the following signature SA ¼ 0100000000 1000000000 0000000100.

2
http://www.imagemagick.org/www/quantize.html

Fig. 1. Sample image set.

62 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77

http://www.imagemagick.org/www/quantize.html


However, as argued earlier, we have observed that less dominant colors comprise a significant
part of an image. This led us to modify the signatures in order to emphasize colors with smaller
densities by developing the variable-bin allocation (VBA) scheme, which is presented next.

VBA is based on varying the bit-ranges of the bits representing the color densities. The design
of VBA is based on our belief that distances due to less dominant colors are important for an
efficient retrieval. Therefore, the generated signature lays a greater emphasis on the distance
between the less dominant colors than on more dominant ones. The experiments performed on
VBA, assuming a color distribution discretized into t ¼ 10 bits, were based on b1 and b2 having
bit-ranges equal to 3, b3 having bit-range equal to 4, b4 and b5 having bit-ranges equal to 5, bits b6
through b9 having bit-ranges equal to 10, and, finally, bit b10 having a bit-range equal to 40. For
instance, if a color covers between 4% and 6% of an image, then the bit corresponding to b2 is set
and all other bits remain unset. Similarly, if a given color is not present in the image then none of
the bits corresponding to it are set at all. Note that, while on the one hand there is a fine bit-wise
granularity for colors covering a small portion of the image (and most do, as argued above), a
color covering between 61% and 100% of an image will, on the other hand, have a single bit set.
This is due to the fact that an image rarely has more than half of itself covered by a single color. In
other words, we enhance the granularity of colors with smaller distributions, without completely
ignoring those with a large presence. In fact, our experience when completely ignoring largely
dominating colors has shown a decrease in retrieval accuracy [5]. For the sake of illustration, the
VBA signatures for all images in Fig. 1 are shown in Table 1. We remark that the obtained
signature is a compact, yet effective, representation of the color content of an image. Furthermore
we argue that the VBA is not another representation for the distribution of colors within an image
(e.g., CCV or color moments) but rather a discretized (i.e., alternative) representation for GCHs.
Hence, quantization (or compression) schemes that could be applied to a GCH, could also be
likely applied to the VBA bitstring. In other words, a VBA signature carries approximately the
same amount of information and yields the same flexibility a GCH does. Finally, as we shall see
later in this paper, this representation allows effective retrieval as well.

Table 1

Detailed signatures of the images in Fig. 1 using VBA

Color/set of bits Color density (%) Color signatures

c1=B1
A 18 0 0 0 0 1 0 0 0 0 0

c2=B2
A 6 0 1 0 0 0 0 0 0 0 0

c3=B3
A 76 0 0 0 0 0 0 0 0 0 1

c1=B1
B 24 0 0 0 0 0 1 0 0 0 0

c2=B2
B 6 0 1 0 0 0 0 0 0 0 0

c3=B3
B 70 0 0 0 0 0 0 0 0 0 1

c1=B1
C 24 0 0 0 0 0 1 0 0 0 0

c2=B2
C 12 0 0 0 1 0 0 0 0 0 0

c3=B3
C 64 0 0 0 0 0 0 0 0 0 1

c1=B1
D 24 0 0 0 0 0 1 0 0 0 0

c2=B2
D 12 0 0 0 1 0 0 0 0 0 0

c3=B3
D 64 0 0 0 0 0 0 0 0 0 1

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 63



It is clear that at most a single bit is set within each set Bj of bits. Hence, one could simply
record the position of this single bit within Bj which is set, instead of recording the whole 10-bit
signature for Bj. If each set Bj of t bits, only dlog2 te bits are needed to encode the position of the
set bit (if any). Thus, for t ¼ 10, the VBA approach would require a mere 4 bits to encode each
color. As a comparison, let us assume that the storage of a real number requires f bytes. Storing a
GCH of an image comprising of n colors, would require ðn� f Þ bytes. Indeed, by using n ¼ 64,
f ¼ 2 and t ¼ 10, the VBA approach would require only 32 bytes compared to the 128 bytes
required by the GCH, a substantial savings of 75% in storage space.

The savings are even more respectable when compared to other well known approaches, e.g.,
the CCV presented in [21]. A CCV is in fact a pair of global histograms, one for coherent colors,
and another one for incoherent colors, hence it is twice as large as a GCH. This means that by
using a VBA signature we obtain 87.5% savings over the space required by CCVs.

If we assume that an image’s address in disk consumes 8 bytes, then using 4MB of main memory
one would be able to ‘‘index’’ and search a mid-size image database of roughly 100,000 images.
After an initial linear scan on the signature file to load the signatures onto memory, all queries
could be processed I/O free. Perhaps, more importantly, one would be able to do so avoiding the
overhead of maintaining a disk-based access structure. This is an important result as it allows to
easily perform speedy searches for images in many application domains, e.g., digital libraries.
However, such an approach would not scale for very large image databases, say millions of images.
For that purpose we propose the use of the S-tree, which we discuss in details in the next section.

Once the signatures for each image in the data set are precomputed and stored into the data-
base, the retrieval procedure can take place. To assess the similarity between two images, Q and
I, we will use a metric akin to the L2 Euclidean distance, defined as follows:

dðQ; IÞ ¼
Xn

j¼1

½posðBj
QÞ � posðBj

IÞ

2

where posðBk
RÞ gives the position of the set bit within the bitstring Bk for image R. For instance,

using image A in Fig. 1 and its VBA signature, we have posðB1
AÞ ¼ 5, posðB2

AÞ ¼ 2 and
posðB3

AÞ ¼ 10. We have shown in [5] that this metric is more robust than its L1 counterpart.
At this point it is worthwhile to single out the most important disadvantage of using only the

color distribution as a basis to abstract an image. It is not unreasonable to argue that images C
and D (Fig. 1) are not similar. Even though they do have the same color distributions, the colors
have very different spatial distribution, which is not captured when only the quantitative color
density is used, in fact, dðC;DÞ ¼ 0. However, this is not a problem due to our abstraction scheme
nor to our metric, but due to the use of only frequency-oriented color distributions. The same
observation is true for other methods for image abstraction, notably the well-known and widely
used GCHs.

4. S-tree––an access structure for signatures

So far, the most common use of signatures was to index text or to indicate the presence or
absence of individuals in sets [14,16]. For example, when used in object-oriented databases they
would represent the existence of the different items that constitute the set-valued attribute of an

64 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



object. Each element of a specific set was encoded by using a hashing function into a signature of
length F and weight, i.e., number of set bits, m. The object’s signature was generated by applying
the superimposed coding technique on all element signatures, i.e., all positions were superimposed
by a bit-wise OR-operation to generate the set’s signature.

As described in the previous section, in the context of image retrieval, signatures can also be
used to represent the frequency of a specific color appearing in a given image. Each color uses t
bits, where each bit depicts a range of frequencies for the specific color. A signature position is set
only when the represented color exists in the image within the corresponding frequency range.
However, unlike to the case of set-valued attributes, image signatures will be constructed by
concatenating, and not superimposing, their color signatures.

A collection of signatures comprises a signature file, which presents low space overhead and
reduced update costs [4,11]. Trying to improve the performance of signature files and avoid the
sequential scanning that they introduce, a number of tree- and hash-based signature organizations
have been designed. Such an approach is the S-tree, which is a height balanced dynamic structure
[9] (similarly to a Bþ-tree [6]).

Each node of an S-tree contains a number of pairs hs; pi, where s is a signature and p is a pointer
to a child node. The S-tree is defined by two integer parameters: M and m. The root can ac-
commodate at least two and at most M pairs, whereas all other nodes can accommodate at least m
and at most M pairs. Unlike Bþ-trees where m ¼ M=2, here it holds that: 16m6M=2. Thus, the
tree height for n signatures is at most: h ¼ dlogm n� 1e. Signatures in internal nodes are formed by
superimposing the signatures of their children nodes. In our context, the leaves of the S-tree will
contain image signatures, along with a unique identifier for those images.

At this point it should be clear that none of the spatially oriented access methods (i.e., SR-trees,
VA-file or A-trees) could be used to index the VBA signatures. Therefore, a specialized access
method, such as the S-tree is required. In the following, we will show how the S-tree can be used as
an efficient and effective tool to store and search for the aforementioned image signatures.

4.1. Using the S-tree in image retrieval

During the insertion of a new object in an S-tree, the leaf in which its signature will be stored is
selected by traversing the tree in a top–down order and by choosing the most appropriate node at
each level according to a distance criterion. When the appropriate leaf is reached, it is possible
that it is already full, i.e., it contains M entries, and therefore it will have to be split. A new node
will be created and the M þ 1 entries will be distributed between the two nodes, also in an ap-
propriate way. When inserting an object or when splitting a node, the aim is to cluster the stored
objects so that a well defined distance metric is minimized. As a consequence, the number of paths
that will have to be traversed during searches is minimized as well.

The original S-tree [9] tried to minimize the node weight during insertions or node splits in
order to render the inclusion query more efficient. However, for the current application, when
deciding to store image signatures, the weight alone is not sufficient. Due to the way that the
similarity distance is defined, the focus should be on the specific positions of the bits set in a
signature and not only on their quantity.

Therefore, it is reasonable to expect that the dominant factor is the similarity distance: the
smaller the distance between two images, the more similar are the images themselves. After

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 65



experimenting (a) with the original distance function measuring the weight increase, and (b) with
the function d (defined in Section 3), it was obvious that the efficiency of the similarity search was
drastically improved when the latter was applied.

For example (Table 2), if image A were to be stored either with image B or C, the weight
increase equally in both cases, namely by 1 unit. On the other hand, the distance function d would
yield different results, 1 in the first case and 4 in the second. This is due to the fact that that image
A is more similar to image B than to image C, hence it should be clustered with the former and not
the latter.

4.2. Quadratic split and logical pages

Studying the performance of the S-tree [9,32,33] it has been observed that due to the super-
imposition technique along the tree levels, nodes near the root tend to contain heavy signatures
(i.e., with many 1’s) and, thus, they present low selectivity. In [32,33] several methods for the S-
tree construction were introduced in order to address the problem and improve its search effi-
ciency.

The original splitting algorithm of linear complexity can be viewed as consisting of two phases,
the seed selection phase and the signature distribution phase [9]. During the first phase, the two
most distant signatures with respect to a given distance are selected to play the role of seeds upon
which the two new nodes will grow. When the seeds are chosen, the rest of the signatures are
distributed to the two nodes according again to the same distance function.

Trying to reduce the low selectivity problem, a number of improved split methods of quadratic
and cubic complexity are introduced in [33] which perform up to 5–10 times better when used in
partial match queries. In this paper we adopt one of these methods, namely the quadratic split,
since it offers good balance between an efficient search performance and node split (i.e., update)
complexity. In particular, after choosing the two seeds as the most distant ones with respect to
function d, we search for the entry with the maximum difference of the same function in the two
nodes and insert it in the closer one. Here, it should be mentioned that only when a split occurs at
the leaf level we make use of the actual distance d. In the upper levels, due to the superimposition,
the actual distance cannot be applied and it is therefore substituted by the minDist function, a
similar function which will be described in more detail in the next section.

Table 2

Calculation of function (image distance) d

Image Signatures

A 0000100000 0100000000 0000000001

B 0000010000 0100000000 0000000001

C 0000010000 0001000000 0000000001

(A _ B) 0000110000 0100000000 0000000001

(A _ C) 0000110000 0101000000 0000000001

dðA;BÞ ¼ ð6� 5Þ2 þ ð2� 2Þ2 þ ð10� 10Þ2 ¼ 1

dðA;CÞ ¼ ð6� 5Þ2 þ ð4� 2Þ2 þ ð10� 10Þ2 ¼ 5

66 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



Moreover, based on results obtained in [32], a different structure for the tree leaves is also
adopted. In the latter work, the performance of various structures was tested where the super-
imposed signatures stored above the leaf level were produced by a smaller number of signatures
and not by the total number that exist in a leaf. The aim was to decrease the weight of the sig-
natures that are stored in internal nodes and, consequently, increase their selectivity. The best
approach was based on the use of logical pages, i.e., a number of independent logical pages were
stored into a physical one. The number of logical pages per physical one is a parameter that can be
tuned in order to achieve the required performance and trade off between space overhead and
retrieval cost. Our experiments have shown the implemented S-tree, besides being dynamic as
originally proposed, is also fairly efficient in terms of construction time (query time will be dis-
cussed in details in Section 5.3). For instance, when inserting 50,000 signatures (the largest dataset
used in our experiments), the S-tree was built in approximately 90 s (<2 ms/insertion). 3 Natu-
rally, this figure depends on several parameters, e.g., cardinality of the data set (the smaller the
faster) and physical page sizes, and since the aim of this paper is not to propose an enhancement
for the S-tree (this issue was addressed in [33]) we do not investigate this further.

For example, in Fig. 2, image signatures will keep being inserted in an empty physical page until
the first logical page is filled. If yet another signature is to be inserted in the same logical page, an
overflow will occur. Then, following the quadratic split method the logical page will be split and
one more logical page will be created. As illustrated in this example, each logical page produces its
own superimposed signature which is stored in its parent node, ensuring this way its independence
from the physical page.

4.3. Nearest-neighbor searching in S-trees

A popular query when data is represented by signatures is the partial match query, i.e., a subset
or superset query that searches for all objects containing certain attributes. In such a case, the S-
tree is traversed as follows. We descend the tree down to the leaf level following all paths where

3 On a PIII 500 MHz dual processor machine with a 7200 RPM IDE disk running Linux 2.4.5.

Fig. 2. An S-tree containing logical pages at the leaf level.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 67



the stored signature evaluates the containment predicate with regard to the query signature. At
the leaf level, all signatures satisfying the user query lead to the desired objects after discarding
false-drops. In case of an unsuccessful path, searching may stop early at some level above the leaf
level. However, in the present context the interest is in the nearest neighbor, or else, similarity
query, i.e., to retrieve the k most similar images to a given one.

In order to execute efficiently a similarity query in an S-tree, we have to embed drastic changes
not only in the insert but also in the search procedure. More specifically, the methodology de-
scribed in [23] is adopted, as a generalization of the nearest-neighbor query to the k-nearest
neighbors. This time, the adopted similarity function is function d defined earlier.

While descending the tree though, a minimum distance also needs to be calculated in the in-
ternal nodes in order to make a first estimation of the images that are stored in the respective
subtree. In particular, this second distance, called minDist, is related to an optimistic distance that
can be calculated given a subtree signature, i.e., a signature in an internal node. The goal is to
estimate which subtree can have an image closest to the query image. The procedure works as
follows. For each color substring, we choose the bit which is physically closer to the bit set in the
query image. The subtree signature which yields the minimum sum of distances is chosen as the
best candidate.

Therefore, minDist can be defined as

minDistðQ; SÞ ¼
Xn

j¼1

½posðBj
QÞ � optPosðBj

SÞ

2

where optPosðBk
SÞ gives the position of the physically closer set bit within the bitstring Bk of the

superimposed signature S.
The example in Table 3, shows how the minDist distance is calculated. For example, for the

first color, we consider that the closest image, with respect to that color, has an ‘1’ in the fifth bit
and not in the sixth one and so forth. Thus, if we were interested in finding out the minDist of
query Q to the node S1 containing the signatures for images A and B, the respective minDist of
signature S1 from query Q would be 17. However, if we were interested in finding out the minDist
of query Q from the node S2 containing the signatures of images C and D, the respective minDist
of signature S2 from query Q would be 8.

In the case of the single nearest-neighbor query, when examining closer the search procedure,
the tree is searched in a depth first search (similar results are obtained if a breadth first search is
adopted). Whenever an internal node is reached, we compute the optimal distance minDist, i.e.,
the smallest possible distance that seems to exist in the respective subtree, and all children be-

Table 3

Calculation of minDist function

Color 1 Color 2 Color 3

S1 0000110000 0100000000 0000000001

S2 0000010000 0001000000 0000000001

Q 0001000000 0000010000 0000000001

minDistðQ; S1Þ ð4� 5Þ2 þ ð6� 2Þ2 þ ð10� 10Þ2 ¼ 17

minDistðQ; S2Þ ð4� 6Þ2 þ ð6� 4Þ2 þ ð10� 10Þ2 ¼ 8

68 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



longing to this node are inserted in a buffer queue sorted on this calculated distance in order to be
searched. However, upon reaching a leaf, not minDist but the actual distance d is calculated. If the
latter value is smaller than the one calculated so far, then it is introduced as the new minimum
distance. This minimum distance is used in pruning subtrees, which correspond to a higher op-
timal distance (more details and explanations can be found in [23]).

To generalize this query to the k-nearest-neighbors query, a descending heap of size k is used in
order to store the k most similar images to the queried image found so far, along with a buffer that
stores the nodes that still have to be searched. While descending the tree, when visiting an internal
node its children are stored as previously into the second buffer based on the respective minDist.
There is a slight difference in this case though at the leaf level. Upon reaching a leaf, as previously
not the optimal but the actual distance d is calculated and, in case it is smaller than the kth
distance found so far, it is inserted in the heap containing the k smaller calculated distances and it
is stored in the appropriate position. In addition, the distance that is used to prune subtrees which
represent a higher optimal distance is the greatest value stored in the heap. Evidently, the buffer is
initialized containing a relatively very large value in all k positions.

5. Experimental results

In order to evaluate the effectiveness and efficiency when using the proposed image signatures
and the S-tree we realized a large number of experiments using real image sets. A set of 50,000
images (merged from two commercially available collections: PrintArtist Platinum (nearly 20,000
images) by Sierra Home and some Master Photos 50,000––Premium Photo Collection (about
30,000 images) by COREL, was divided in five sets of 10; 000; 20; 000; . . . 50; 000 images––here-
after referred to as the S10k; S20k; . . . ; S50k respectively––and those were used as the image
database. Fifteen query images were obtained from yet another collection of images (Gallery
Magic 65,000 by COREL) to diminish the probability of biasing the results obtained. Each query
image is a constituent of a subset determined (also a priori) of similar images 4 in order to allow us
to assess retrieval accuracy objectively. The images in each of these subsets tend to resemble each
other based on the color distribution and also the image semantics (all subsets can be seen at:
http://www.cs.ualberta.ca/�mn/CBIRone/). The color constituents were normalized to a
64 color representation using the RGB color model. Note that since all investigated approaches
depend on normalized color histograms image sizes are of no concern. Finally, a web-based
prototype of an image retrieval engine using the contributed approaches discussed in this paper
can be found at http://db.cs.ualberta.ca/BSIm.

We only report results when using VBA with t ¼ 10 since our experience (reported in [5,19])
using smaller and larger values for t indicated a degradation in the retrieval effectiveness. Ex-
periments using signatures where all bits had the same bit-ranges (also reported in [5,19]) showed
that allocation was just as effective as the traditional GCH. Even though one could argue that
such an approach would still be much more compact than GCH we decided to focus on the VBA

4 At this point it is noteworthy pointing out that, to the best of our knowledge, there is no standard benchmark

collection for effectiveness evaluations of different CBIR approaches, thus the ad hoc nature of our evaluation method.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 69

http://www.cs.ualberta.ca/~mn/CBIRone/
http://db.cs.ualberta.ca/BSIm


scheme which is equally compact and yields better retrieval. Results using the GCH and CCV [21]
were also generated to serve as a benchmark to our proposal’s effectiveness. One should note that,
in what follows, the CCV is a 128-dimensional feature vector by construction. It represents an
image quantized in 64 colors, as both GCH and VBA do. In other words, all approaches carry the
same amount of information, but represented in different ways.

The results presented next are divided in two parts. In the first, retrieval effectiveness is mea-
sured through the use of precision vs. recall curves [37], which are traditionally used in the in-
formation retrieval literature. At that point the indexing structure is irrelevant. Next we present
results related to efficiency of retrieval. As such we report figures for storage overhead and query
processing time. Given that our similarity metrics are quite simple we consider query processing
an I/O bound process and therefore we use the number of I/Os required as a measure of query
processing time. In particular, we measure the number of leaf nodes accessed in order to avoid any
side-effects from caching of internal nodes. In the latter part we investigate the influence of several
parameters as well.

At this point one could argue why have we compared the S-tree indexing VBA signatures to the
SR-tree indexing GCHs, instead of comparing it to the A-tree (or VA-file) indexing GCHs. The
reason is twofold. Firstly, the SR-tree has been successfully used as a benchmark in recent re-
searches, thus likely facilitating an (indirect) comparison to our approach as well. Secondly, and
more importantly, our main goal is not to advocate the S-tree as the best access structure for high-
dimensional points in general. Rather, as we have argued before, we use it as the only access
structure known to us capable of indexing bitstrings (e.g., VBA image signatures). Thus, when
comparing VBA using S-trees against GCHs using SR-trees, we aim to show that the former is
also scalable, as well as more efficient and more effective than the latter. Future research should be
aimed at comparing S-trees indexing VBA signatures against A-trees indexing CCVs (or GCHs) in
order to assess how those two approaches would compare in terms of efficiency.

5.1. Retrieval effectiveness

Fig. 3 shows the precision and recall yielded by the use of GCH, CCV and VBA using 30,000
images. Note that at this point the performance of the underlying index is irrelevant.

To show the competitiveness of VBA for different sizes of the dataset, Fig. 4 shows the pre-
cision values obtained for all five sets at 20% recall (e.g., assuming that most users will look only
at the first few matches returned). As one can see, for all approaches, precision decreases steadily
with the increase in the dataset size, which is a reasonable result. Due to limited space we do not
show similar figures for other values of recall, but we have observed that the quantitative behavior
does not change as much. Overall we have found that with respect to retrieval accuracy, VBA and
CCV have similar performance, even though VBA does not take into account spatial location of
colors as CCV does (hence CCV’s larger space overhead, as we discuss next). Nonetheless, it is
clear that both outperform GCHs.

5.2. Storage overhead

We investigated the space requirements of our approach with respect to two variables: disk
page size (4, 8 and 16 KB) and the size of the image set. We compared the size of the SR-tree

70 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



indexing GCHs and CCVs (denoted by SR-GCH and SR-CCV, respectively) to the size of the
S-tree indexing VBA signatures using logical pages of approximately 600 and 800 bytes (denoted
S-tree6 and S-tree8 respectively). The S-tree used in our experiments indexes the full (bitstring)
signature instead of the compressed (4 bits/color) version. Note that this will only affect the size of
the resulting S-tree not its effectiveness nor efficiency. As we shall see shortly even using this
uncompressed bitstring, the S-tree is a compact access structure, hence we chose to avoid the
overhead, though minimal, of uncompressing the signatures in order to calculate the signatures
distances as explained earlier.

At this point it is important to recall that an image’s CCV is twice as large (in terms of di-
mension) than its GCH. This is so, because, for each color, it records the ratio of coherent and
incoherent pixels. As such one should expect the SR-tree indexing CCVs to be at least twice as
large as an SR-tree indexing GCHs for the same dataset. This also has direct implication on the
SR-tree’s fan-out factor, yielding a tall and narrow tree (instead of a shallow and wide one). This

Fig. 3. Precision and recall for dataset size of 30,000 images.

Fig. 4. Precision at 20% recall for all dataset sizes.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 71



is clear from Fig. 5. This figure was obtained using 30,000 images and it indicates that, while the
SR-tree takes advantage of larger page sizes (which increase its nodes’ fan-out), it is still over two
times larger than the S-tree8 for a page size of 16 KB. More importantly however, it shows clearly
that the SR-tree is not able to help CCV’s very high-dimensionality, and therefore it results in a
very large indexing file. Indeed, we did not use a page size of 4 K for the SR-tree/CCV combi-
nation because it did not seem to be a practical choice.

In order to evaluate the effect of the size of the image set on the access structures, we kept the
page size fixed at 8 KB, and indexed all image sets (S10k through S50k). Fig. 6 shows that the SR-
tree grows much faster than the S-tree. While the S-trees do grow with the enlargement of the
image sets, the curve is not nearly as steep. At its most compact configuration (10 KB), the SR-
tree/GCH was almost three times as big as the S-tree8. Again, the SR-tree/CCV combination
grows extremely fast with the increase of the dataset size, and further values were not computed.

Fig. 5. Index (or file) size for different page sizes.

Fig. 6. Index (or file) size for all dataset sizes.

72 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



We thus conclude that storage-wise the S-trees are more efficient than the SR-tree indexing
GCH. Due to the very high-dimensionality of the CCVs their indexing, even using an efficient
access structure, in this case the SR-tree, did not seem to be a feasible alternative.

5.3. Retrieval efficiency

We have observed thus far that the VBA approach is comparable to CCV’s in terms of retrieval
effectiveness. Both VBA and CCV offer better performance than the GCH. In terms of size, S-
trees indexing VBA signature are by far more compact than SR-trees indexing GCHs, which in
turn are less than half the size of SR-trees indexing CCVs. In this section we compare the per-
formance of the SR-tree/GCH, SR-tree/CCV and S-tree/VBA combined approaches. We inves-
tigated the query processing time required by all approaches using the number of leaf nodes
accessed, and three variables: disk page size, the size of the image set and number of similar
matches returned.

Fig. 7 shows how each investigated combination behaves when the page size changes. The
number of indexed images was kept constant at 30,000 and the number of matches returned
(nearest neighbors) was set to 20. Clearly the SR-tree/CCV is the slowest combination of all
tested, while the SR-tree6/VBA was the fastest. All combinations seemed to be equally affected
(positively) by the increase in the page size. While the S-tree8 seemed to be slightly faster than the
SR-tree8/GCH, the S-tree6 was, in average, 20% faster than the latter.

We can see the effect of the number of indexed images in Fig. 8. For these experiments, the page
size was constant, 8 KB, and again, the number of similar images returned was set to 20. The
results seem to indicate that the number of I/Os by the SR-tree/GCH curve grows slightly faster
with the data set size than the combination using S-trees. The gain from using the S-tree8 (which is
slower than the S-tree6) ranged in the neighborhood of 15%. Again, the SR-tree/CCV is not only
the worse combination at the outset, but it becomes slower faster (in fact, it was not used for large
datasets).

All combinations but the SR-tree/CCV seemed to be equally affected when the number of best
matches returned varied, as one can verify in Fig. 9. Clearly, the SR-tree/CCV combination is not

Fig. 7. Query time (# I/Os) for different page sizes.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 73



practical when compared to the other ones. The S-tree6/VBA combination offered consistently the
best performance, while the S-tree8/VBA performed slightly better than the SR-tree/GCH.

6. Conclusions

We offer two main contributions in this paper: (i) a new and effective way to represent an
image’s color distribution via signatures (called VBA) along with a metric to compute similarities
between images; and (ii) an efficient method (the S-tree) to index such image signatures, and its
corresponding algorithm for nearest-neighbor (similarity) queries.

While the use of VBA signature yields retrieval accuracy comparable to CCVs and much better
than GCHs, our experimental results have shown that the combination CCV/SR-tree is not a
practical one due to the large space overhead imposed by the CCVs. Our proposed VBA/S-tree
combination outperforms consistently the GCH/SR-tree combination for all different page sizes,

Fig. 8. Query time (# I/Os) for all image set sizes.

Fig. 9. Query time (# I/Os) for different answer sizes.

74 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77



dataset sizes and answer sizes we investigated. Therefore we claim the VBA/S-tree combination to
be a robust, effective and efficient approach to the CBIR problem, in particular for the case when
one is primarily interested in the images’ color distribution.

A few issues remain open for future research. One is determining the number of images where a
simple linear scan of the signature file would be more efficient than using an indexing structure.
Even though an index does speed up query processing for large datasets, it also imposes some
overhead which may not pay off for smaller datasets. Another one is investigating how the VBA/
S-tree combination would fare against the GCH or CCV/A-tree combination. Another possibility,
would be investigating how a metric access structure, e.g., the M-tree [7] would perform when
indexing the VBA signatures. An interesting issue would be whether the M-tree can improve the
traversal in upper levels in the tree since it would not suffer from the signature overlap problem
the S-tree may potentially develop. Finally, we also want to investigate how to extend the S-tree to
be used within a cluster of networked workstations so that query processing time can be further
reduced under the presence of very large image datasets.

Acknowledgements

We gratefully acknowledge the use of the SR-tree source code provided by N. Katayama and
S. Satoh. Comments by anonymous reviewers helped us improve the paper’s presentation. We
would also like to thank R.O. Stehling for organizing the dataset which was used for evaluating
the proposed retrieval methods. M.A. Nascimento was partially supported by a Research Grant
from NSERC, Canada. Y. Manolopoulos’ work was performed while at the Computer Science
Department of the University of Cyprus. V. Chitkara is currently with IBM Toronto Laboratory.

References

[1] A.R. Appas et al., Image indexing using composite regional color channels features. In: Proc. SPIE––Storage and

Retrieval for Image and Video Databases VII, vol. 3656 (1999) 492–500.

[2] N. Beckmann et al., The R�-tree: an efficient and robust access method for points and rectangles. In: Proc. ACM

SIGMOD’90 Conf. 1990, 322–331.

[3] S. Berchtold, D.A. Keim, H.-P. Kriegel, The X-tree: an index structure for high dimensional data, in: Proc. 22nd

Intl. Conf. on Very Large Data Bases, 1996, pp. 28–39.

[4] S. Christodoulakis, C. Faloutsos, Signature files: an access method for documents and its analytical performance

evaluation, ACM Transactions on Office Information Systems 2 (4) (1984) 267–288.

[5] V. Chitkara, Color-based image retrieval using compact binary signatures. Master’s thesis, Dept. of Computing

Science, University of Alberta, 2001. Available from <ftp://ftp.cs.ualberta.ca/pub/TechReports/2001/TR01-08/

TR01-08.ps.gz>.

[6] D. Comer, The ubiquitous B-tree, ACM Computing Surveys 11 (2) (1979) 121–137.

[7] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in: Proc.

23rd Intl. Conf. on Very Large Data Bases, 1997, pp. 426–435.

[8] A. del Bimbo, Visual Information Retrieval, Morgan Kaufmann, Los Altos, CA, 1999.

[9] U. Deppisch, S-tree: a dynamic balanced signature index for office retrieval, in: Proc. 9th ACM SIGIR Conf., 1986,

pp. 77–87.

[10] M. Flickner et al., Query by image and video content: The QBIC system, IEEE Computer (1995) 23–32.

[11] C. Faloutsos, Signature files, in: W.B. Frakes, R. Baeza-Yates (Eds.), Information Retrieval: Data Structures and

Algorithms, Prentice Hall, Englewood Cliffs, NJ, 1992.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 75

ftp://ftp.cs.ualberta.ca/pub/TechReports/2001/TR01-08/TR01-08.ps.gz
ftp://ftp.cs.ualberta.ca/pub/TechReports/2001/TR01-08/TR01-08.ps.gz


[12] V. Gaede, O. Guenther, Multidimensional access methods, ACM Computing Surveys 30 (2) (1998) 170–231.

[13] W. Hsu, T.S. Chua, H.K. Pung, An integrated color-spatial approach to content-based image retrieval, in: Proc.

3rd ACM Multimedia Conf., 1995, pp. 305–313.

[14] S. Helmer, G. Moerkotte, Evaluation of main memory join algorithms for joins with set comparison join

predicates, in: Proc. 23rd Intl. Conf. on Very Large Data Bases, 1997, pp. 386–395.

[15] IBM. IBM’s Query by Image Content. Available from <http://wwwqbic.almaden.ibm.com/>.

[16] Y. Ishikawa, H. Kitagawa, N. Ohbo, Evaluation of signature files as set access facilities in oodbs, in: Proc. ACM

SIGMOD’93 Conf., 1993, pp. 247–256.

[17] N. Katayama, S. Satoh, The SR-tree: an index structure for high-dimensional nearest neighbor queries, in: Proc.

ACM SIGMOD’97 Conf., 1997, pp. 369–380.

[18] S. Lin, An extendible hashing structure for image similarity searches, Master’s thesis, Dept. of Computing Science,

University of Alberta, 2000. Available from <ftp://ftp.cs.ualberta.ca/pub/TechReports/2000/TR00-06/TR00-

06.ps.gz>.

[19] M.A. Nascimento, V. Chitkara, Color-based image retrieval using binary signatures, in: Proc. 2002 ACM Symp.

Appl. Comput., 2002, pp. 687–692.

[20] D.-S. Park et al., Image indexing using weighted color histogram, in: Proc. 10th Conf. on Image Analysis and

Processing, 1999.

[21] G. Pass, R. Zabih, J. Miller, Comparing images using color coherence vectors, in: Proc. 4th ACM Multimedia

Conf., 1996, pp. 65–73.

[22] Y. Rui, T.S. Huang, S.-F. Chang, Image retrieval: Past, present, and future, J. Visual Commun. Image Represent.

10 (1) (1999) 39–62.

[23] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor queries, in: Proc. ACM SIGMOD’95 Conf., 1995, pp.

71–79.

[24] Y. Sakurai et al., The A-tree: An index structure for high-dimensional spaces using relative approximation, in:

Proc. 26th Intl. Conf. Very Large Data Bases, 2000, pp. 516–526.

[25] M.J. Swain, D.H. Ballard, Color indexing, Comput. Vis. (1991) 11–32.

[26] J.R. Smith, S.-F. Chang, Tools and techniques for color image retrieval, in: Proc. SPIE Storage and Retrieval for

Image and Video Database IV, 1995, pp. 40–50.

[27] J.R. Smith, S.-F. Chang, Visually searching the web for content. IEEE Multimedia 4 (3) (1997) 12-20 Available

from <http://www.ctr.columbia.edu/webseek>.

[28] E. Di Sciascio, G. Mingolla, M. Mongiello, Content-based image retrieval over the web using query by sketch and

relevance feedback, in: Proc. 4th Conf. Visual Inform. Syst., 1999, pp. 123–130.

[29] R.O. Stehling, M.A. Nascimento, A.X. Falcao, On ‘shapes’ of colors for content-based image retrieval, in: Proc.

Workshop on Multimedia Information Retrieval, 2000, pp. 171–174.

[30] M. Stricker, M. Orengo, Similarity of color images, in: Proc. SPIE-Storage and Retrieval for Image and Video

Databases III, 1995, pp. 40–50.

[31] C. Traina et al., Slim-trees: High performance metric trees minimizing overlap between nodes, in: Proc. 7th EDBT

Conf., 1999, pp. 51–65.

[32] E. Tousidou, P. Bozanis, Y. Manolopoulos, Efficient handling of signature files used for objects with set-valued

attributes, Information Systems 27 (2) (2002) 93–121.

[33] E. Tousidou, A. Nanopoulos, Y. Manolopoulos, Improved methods for signature-tree construction, Comput. J.

43 (4) (2000) 301–314.

[34] Virage. VIR image engine. Available from <http://www.virage.com/products/vir-irw.html>.

[35] J.Z. Wang, SIMPLIcity: a region-based image retrieval system for picture libraries and biomedical image

databases. In Proc. 8th ACM Multimedia Conf, 483-484, 2000. Available from <http://wang.ist.psu.edu/

cgi-bin/zwang/regionsearch_show.cgi>.

[36] D.A. White, R. Jain, Similarity indexing with the SS-tree, in: Proc. 12th IEEE Intl. Conf. Data Eng., 1996, pp. 516–523.

[37] I.H. Witten, A. Moffat, T.C. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images,

Morgan Kaufmann, 1999.

[38] R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in

high-dimensional spaces, in: Proc. 24th Intl. Conf. Very Large Data Bases, 1998, pp. 194–205.

76 M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77

http://wwwqbic.almaden.ibm.com/
ftp://ftp.cs.ualberta.ca/pub/TechReports/2000/TR00-06/TR00-06.ps.gz
ftp://ftp.cs.ualberta.ca/pub/TechReports/2000/TR00-06/TR00-06.ps.gz
http://www.ctr.columbia.edu/webseek
http://www.virage.com/products/vir-irw.html
http://wang.ist.psu.edu/cgi-bin/zwang/regionsearch_show.cgi


Mario Nascimento obtained his Ph.D. degree in Computer Science at Southern Methodist University’s School
of Engineering in 1996. Between 1989 and 1999 he was a researcher with the Brazilian Agency for Agricultural
Research (Information Technology Center) and, between 1997 and 1999, he was also associated with the
Institute of Computing of the State University of Campinas (Brazil). Since then he has been with the
Department of Computing Science of the University of Alberta. He has published over forty papers in
international conferences, journals and workshops. Dr. Nascimento has also served as program or organi-
zation committee member of several conferences and as Program Co-chair for the ACM Multimedia 2001
Workshop on Multimedia Information Retrieval, and for the 6th Intl. Data Engineering and Application
Symposium. He is also currently serving as member of the ACM SIGMOD Digital Symposium Collection
(DiSC) Editorial Board. His main research interests lie in the area of content-based image retrieval and access
structures for Databases. He is a member of ACM, SIGMOD, SIGIR, and IEEE Computer Society. Further
information can be found at http://www.cs.ualberta.ca/~mn.

Eleni Tousidou received her B.Sc. and Ph.D. degrees from the Department of Informatics of the Aristotle
University of Thessaloniki in 1996 and 2002, respectively. She has been a visitor at the University of Alberta at
Edmonton during summer 2001. Her research interests include query processing and access methods in object-
oriented databases and spatial databases, and complex object handling in multimedia databases.

Vishal Chitkara earned a B.Eng. degree in Computer Technology from MIET, India in 1997 and a M.Sc.
degree from the University of Alberta in 2001. He is currently within the Websphere project at IBM Toronto
Labs. More and current information can be found at: http://www.cs.ualberta.ca/~chitkara.

Yannis Manolopoulos was born in Thessaloniki, Greece in 1957. He received a B. Eng., 1981 in Electrical
Engineering and a Ph.D., 1986 in Computer Engineering both from the Aristotle University of Thessaloniki.
Currently, he is Professor at the Department of Informatics of the latter university. He has been with the
Department of Computer Science of the University of Toronto, the Department of Computer Science of the
University of Maryland at College Park and the University of Cyprus. He has published over 100 papers in
refereed scientific journals and conference proceedings. He is co-author of a book on ’’Advanced Database
Indexing’’ by Kluwer. He is also author of two textbooks on Data Structures and File Structures, which are
recommended in the vast majority of the computer science/engineering departments in Greece. He served/
serves as PC Co-chair of the 8th National Computer Conference, 2001, the 6th ADBIS Conference, 2002 and
the 8th SSTD Symposium, 2003. Also, currently he is Vice-chairman of the Greek Computer Society. His
research interests include access methods and query processing for databases, data mining, and performance
evaluation of storage subsystems. Further information can be found at http://delab.csd.auth.gr.

M.A. Nascimento et al. / Data & Knowledge Engineering 43 (2002) 57–77 77

http://www.cs.ualberta.ca/tilde;mn
http://www.cs.ualberta.ca/tilde;chitkara
http://delab.csd.auth.gr

	Image indexing and retrieval using signature trees
	Introduction
	Related work
	Variable-bin allocation--a scheme for compact image signatures
	S-tree--an access structure for signatures
	Using the S-tree in image retrieval
	Quadratic split and logical pages
	Nearest-neighbor searching in S-trees

	Experimental results
	Retrieval effectiveness
	Storage overhead
	Retrieval efficiency

	Conclusions
	Acknowledgements
	References


