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Abstract

In this paper we present a performance comparison of access methods for time-evolving regional data.

Initially, we briefly review four temporal extensions of the Linear Region Quadtree: the Time-Split Linear

Quadtree, the Multiversion Linear Quadtree, the Multiversion Access Structure for Evolving Raster Images

and Overlapping Linear Quadtrees. These methods comprise a family of specialized access methods that

can efficiently store and manipulate consecutive raster images. A new simpler implementation solution that

provides efficient support for spatio-temporal queries referring to the past through these methods, is
suggested. An extensive experimental space and time performance comparison of all the above access

methods follows. The comparison is made under a common and flexible benchmarking environment in

order to choose the best technique depending on the application and on the image characteristics. These

experimental results show that in most cases the Overlapping Linear Quadtrees method is the best choice.
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1. Introduction

In spatio-temporal databases (STDBs) special techniques should be developed for the efficient
storage and access of spatial objects, their geometric representations, trajectories and other time-
varying characteristics [20]. Existing spatial access methods can not handle continuously changing
data. The reason is that the continuous change of the location and shape of spatial objects with
time, implies that the spatial index has to be continuously updated. This is clearly an undesired
solution since time-evolving spatial data may be updated very frequently resulting in serious
performance overhead, whereas the support of historical queries will be impossible.

Up until now, a number of spatio-temporal access methods (STAMs) have been proposed for
STDBs. These methods fall into two general classes: Quadtree-based and R-tree-based access
methods. The Quadtree-based methods enhance previous methods based on Linear Quadtrees
[4,13] by embedding additional structuring. In particular, the Quadtree-based approaches either
use overlapping to represent successive database states (Overlapping Linear Quadtrees [22]), or
conceptually couple time intervals with information about spatial subregions in each tree node by
adopting ideas from specific transaction-time access methods (Multiversion Linear Quadtree [21]).

The R-tree-based approaches for indexing spatio-temporal data either treat time as just another
spatial dimension (3D R-tree [26] and 2+ 3 R-tree [12]), or accommodate time by maintaining a
time-indexed collection of R-trees (MR-tree and RT-tree [28], HR-trees [11], HR+ trees [18] and
MV3R-tree [19]). Generally speaking, STDBs cannot be viewed as spatial databases (SDBs) with
time as an extra dimension, because time behaves differently from other dimensions in most
applications. Therefore, it is not efficient to implement such an approach by simply adapting
methods for high-dimensional SDBs. There is also a small number of R-tree-based proposals
aiming at indexing moving points and trajectories [15]. This class of access structures usually
stores current location and some additional information (such as speed and direction) to predict
future object locations.

The present paper considers access methods for time-evolving regional data, that is regional data
that are stored in raster format (raster images). These images can be represented with Quadtrees
and, thus, in the sequel we focus in Quadtree-based STAMs. The R-tree-based STAMs are not
suitable for representing raster images, whereas in cases where a lot of empty space exists in the
MBRs, the index ability in decreased when pruning space and objects in top-bottom traversals. In
this paper, we deal with four Quadtree-based STAMs: the Time-Split Linear Quadtree, the
Multiversion Linear Quadtree, the Multiversion Access Structure for Evolving Raster Images and
Overlapping Linear Quadtrees. These methods comprise a family of specialized access methods
that can efficiently store and manipulate consecutive raster images. More specifically, the con-
tribution of this research is twofold:

• the first contribution is a new simple method that delivers the most satisfactory trade-off be-
tween space and access time than other similar existing methods, in case spatial queries refer
to past states. This is achieved through the use of four ‘‘horizontal’’ pointers in the leaves of
the STAMs.

• the second contribution is the exhaustive performance comparison of the four access methods,
under a common platform. This way, the comparison is fair for all methods, so that it can be
safely concluded which is the best one.
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In order to evaluate such STAMs, extensive experimentation using benchmark data is required.
Sequences of evolving synthetic raster images with real-world semantics were generated by the G-
TERD method [24], which is a benchmarking tool for access methods for time-evolving regional
data. It is important to highlight that by using the G-TERD benchmark tool, the experiments are
reproducible and the results hold not only for a specific environment but in more general settings
as well. Thus future researchers are able to reproduce the conditions and confirm the results [29].

The rest of the paper is organized as follows. The next section provides background infor-
mation on regional data and surveys various transaction-time proposals that are directly related
to this study. Section 3, presents an overview of Time-Split Linear Quadtree, Multiversion Linear
Quadtree, Multiversion Access Structure for Evolving Raster Images and Overlapping Linear
Quadtrees, whereas Section 4 studies spatio-temporal query processing with regards to the
investigated access methods. Section 5 contains an extensive experimental performance compar-
ison, regarding space requirements, data redundancy, index building cost, buffering cost, query
time response and several other important parameters that characterize the performance of the
four STAMs. Finally, Section 6 discusses the experimental results, whereas Section 7 summarizes
the contributions and makes suggestions for further research.
2. Related work

2.1. Indexing regional data

In the sequel we assume a two-dimensional space, although the presented methods can be easily
extended into higher dimensions in most cases. We also assume that a raster image is represented
as a 2n � 2n array of pixels, where n is a positive integer. If the pixel colors are black and white
only, the image is said to be binary, where 1 stands for black and 0 for white color.

2.1.1. Region Quadtree
The term Quadtree describes a class of hierarchical spatial access methods based on the prin-

ciple of recursive space decomposition. The simpler example of a Quadtree representation of data
corresponds to the representation of two-dimensional binary raster images. It is called region
Quadtree and is based on the successive image decomposition into four disjoint quadrants of
2n�1 � 2n�1 pixels. If a part is not entirely black or white, then it is recursively subdivided into four
sub-quadrants, until each sub-quadrant is unicolor. Fig. 1b depicts an example of a region
Quadtree, which represents the 23 � 23 binary image of Fig. 1a.

The root of the tree of Fig. 1b corresponds to the entire image array. Each child of a node
represents a quadrant of the region corresponding to that node. The children, from left to right,
correspond to the northwest (NW), northeast (NE), southwest (SW) and southeast (SE) quad-
rants. Leaves correspond to those quadblocks for which no further subdivision is necessary. Non-
leaf nodes are said to be gray because their quadblocks contain both black and white pixels.

2.1.2. Linear Region Quadtree
The region Quadtree is a main memory structure. However, non-volatile storage should be used

to store data in large database applications. In such cases, information about the black leaves can



Fig. 1. (a) A 23 · 23 raster image array of black and white pixels and its corresponding (b) region Quadtree and

(c) Linear region Quadtree.
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be inserted into a Bþ-tree, thus producing a pointer-less version of the Quadtree. The latter
method is called Linear Region Quadtree (Linear Quadtree in the sequel). Each black Quadtree
leaf is represented by a pair of numbers hC; Li. The first number C, the locational code, is a base-4
number of n digits (qn�1; qn�2; . . . ; q0) with values 0, 1, 2 or 3, which correspond to the NW, NE,
SW and SE quadrants, respectively. Each one of the n digits is a code that supports the Quadtree
traversal along a path from its root to the appropriate leaf. The second number L of the pair hC;Li
is the Quadtree level where the black node is located (the Quadtree root resides at level n, the
pixels at level 0). If a black Quadtree node resides on level i, where nP iP 0, then the first n� i
digits determine the path from the root to this node and the last i digits are 0�s (‘‘don�t care’’).

This linear representation of the Quadtree, is called FD (Fixed length––Depth) linear imple-
mentation. Two other linear implementations are met in the literature: Fixed Length (FL) and
Variable Length (VL) (see [14] for details). As justified in [22], the FD linear implementation was
the most appropriate choice for this study.

Fig. 1c presents a Linear Quadtree which corresponds to the Quadtree of Fig. 1b and the binary
raster image array of Fig. 1a. For simplicity, only the FD locational codes (quadcodes in the
sequel) of the black leaves appear in the Linear Quadtree, whereas their level is not shown. For
example, node 7 (16) of the Quadtree is represented by the pair of numbers h033; 0i (h330; 1i). The
033 (330) corresponds to the NW, SE and SE (SE, SE and ‘‘don�t care’’ for the last digit)
directions followed to reach this node from the root.

2.2. Indexing transaction-time data

Two concepts of time are usually considered in TDBs, valid and transaction time. According to
Jensen et al. [5], valid time is the time during which a fact is true (valid) in the real world.
Transaction time is the time during which a fact is stored in the database. In terms of data
modeling, these two temporal aspects are orthogonal in that each could be recorded indepen-
dently. Each one of them usually comprises of a start time-point and an end time-point or,
equivalently, a semi-closed interval ½StartTime;EndTimeÞ. Depending on which concept(s) of time is
(are) considered, a TDB is characterized as transaction time, valid-time or bi-temporal. A survey on
access methods used in TDBs can be found in [16]. The most cited temporal access methods that
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support efficient indexing on transaction time are the following. The Time-Split B-tree (TSBT, [8])
indexes record versions in two dimensions; one dimension for the conventional record key and the
other one the corresponding timestamp. The Multiversion B-tree (MVBT, [1]) indexes the evo-
lution of one-dimensional data in transaction-time databases. The Multiversion Access Structure
(MVAS, [27]) is similar to the MVBT. However, it demands smaller space requirements by using
better policies for splits and merges. Overlapping Bþ-trees (OBþ trees, [10,17]) transform the
‘‘ephemeral’’ Bþ-tree into a partially persistent [3] structure, by storing common sub-trees of
successive versions of Bþ-trees only once, in order to avoid the registration of identical (redun-
dant) data. The Quadtree-based spatio-temporal extensions of these access methods are the main
subject of this research.
3. Access methods for time-evolving regional data

3.1. Framework and assumptions

We assume that a sequence of evolving raster images is stored in the database. Each of them has
a unique timestamp Ti, where i ¼ 1; 2; . . . ;N , and N is the total number of images. This temporal
attribute expresses transaction time. Table 1 summarizes the basic parameters that will be used in
the remainder of this paper.

A STAM implicitly associates a transaction-time interval ½Tstart; TendÞ to each spatial object to
represent the object lifetime. Moreover, it is assumed that when a change occurs in the real world,
the database is updated at the same time (i.e., transaction time and valid time intervals coincide).
When a new object is inserted at time Ti, this time interval is set equal to [Ti; �), where the symbol
��� stands for the special value now [2] and means that the respective object will be valid until some
time-point in the future, that is not known beforehand. A real world deletion at time-point
Tjði < jÞ is carried out as a logical deletion by changing the Tend timestamp from � to Tj. A leaf
record of a STAM is said to be current or alive if its Tend timestamp is ��� i.e. it has not been
Table 1

Parameters used and definitions

Parameter Description

2n � 2n size of a binary raster image (n > 0)

N total number of time-evolving raster images

Ti unique timestamp associated with image i (i ¼ 1; 2; . . . ;N )

hC; Li FD linear representation (hquadcode; leveli) of a black Quadtree node

½Tstart; TendÞ semi-closed time interval representing the lifetime of a quadcode

R number of non-redundant quadcodes ever inserted

Rred number of redundant quadcodes ever created

RTi number of (valid) quadcodes in timestamp Ti
S number of different quadcodes ever inserted (S6 2n � 2n and S6R)
LA number of current quadcodes in node A
M number of disk pages containing leaves of the structure

MTi number of disk pages containing valid leaves for timestamp Ti
b tree node capacity
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updated or deleted. A leaf (an internal) node of a STAM is current or alive if it contains at least
one alive record (if it points to at least one current leaf), otherwise it is historical or dead. Finally,
there are two types of node splits allowed when a node overflows. Key split (K-split): is a split on
the key, as the one in a standard Bþ-tree. Time split (T-split): is a split on a specific value of the
transaction time. Records valid at or after this specific splitting-time value go to the new current
node and records valid before the splitting-time value remain in the original node, which becomes
historical.

3.2. Time-Split Linear Quadtree

In this section, we present a spatio-temporal extension of TSBT, the Time-Split Linear
Quadtree (TSLQ [23,25]), which converts the ‘‘ephemeral’’ Linear Quadtree to a persistent

structure. TSLQ couples timestamps with spatial objects in each node. Data records residing in
leaves are of the form fhC;Li; Tstartg, where hC;Li is the FD code of a black Quadtree node and
Tstart is the insertion timestamp of this FD code in the TSLQ. Non-leaf nodes contain index re-
cords of the form fC0; T 0

start; Ptrg, where Ptr is a pointer to a descendent node, C0 is the smallest C of
that descendent node and T 0

start is the time-point at which the latter node became current.
The TSBT structure does not support physical record deletions. Thus, even if the resulting node

after a T-split is sparse of records, TSBT does not run the risk of further future record reduction.
On the contrary, TSLQ supports logical and physical deletions of existing records. Therefore,
there is always a possibility that, as a result of consecutive physical deletions, a current node might
remain with zero records in the future. To avoid this, we set a node consolidation threshold
PTSLQ cons to control the minimum number of alive records a current TSLQ node must contain after
a record deletion or a T-split. However, the existence of pure K-splits does not guarantee that for
a time-point earlier than the current one, the number of valid records in a node would be above
this threshold. Nevertheless, the role of PTSLQ cons threshold is very important and analogous to the
node consolidation threshold used in the Bþ-tree, which leads to a merging in the case of a sparse
node. The requirement that a current page must have at least PTSLQ cons records alive, enables
clustering of the alive FD codes at the current time in a small number of pages, which in turn will
minimize the space overhead and the I/O cost for the next image insertion.

3.2.1. Insertion

Two types of nodes may exist: current and historical ones. In each TSLQ node, we added a new
field, called ‘‘StartTime’’, to register the time-point when this node starts being current. As all new
FD codes are inserted into current nodes, only current nodes are subject to a split. They can be
split either by key (i.e. by FD code), or by time. The split dimension, i.e. by quadcode or time, is
determined by a TSBT split policy. Lomet and Salzberg have proposed three different splitting
policies for the TSBT (for a discussion of them see [8,9]). For our TSLQ implementation, the IKS
policy was adopted, 1 since it generally exhibits a good balance between space overhead (i.e. the
degree of redundancy of stored data) and query performance.
1 The IKS policy performs a K-split if two thirds or more of the splitting node consists of current (valid) data.

Otherwise a T-split is performed and the time of last update among all records in the overflowing node, is used as the

splitting-time. The time of last update is the time value after which there were only insertions of records with new keys.
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The K-split creates a new node with StartTime value equal to that of the initially overflowing
node A. Assuming that LA is the number of current records in the original node, then the first
dLA=2e of them are kept in the original node and the remaining are moved into the new node.
Thus, after the K-split, the two TSLQ nodes share the same number of current records and not
necessarily the same total number of records. This ensures that both TSLQ nodes will contain
more than PTSLQ cons current records after the K-split, apparently assuming that PTSLQ cons 6

1=2� b, where b is the node capacity. According to the IKS policy, in order to have a K-split, the
following must hold: 2=3� ðbþ 1Þ6 LA 6 bþ 1. Therefore, for the consolidation threshold it
holds that: PTSLQ cons 6 1=3� ðbþ 1Þ6 LA=2.

The selected split-key for the correct partitioning of the overflowing original node must be the
dLA=2e-th current record of the node. Records with values larger than the split-key are directed to
the new node, whereas records with values smaller than the split-key (the split-key included)
remain in the original node. For example, consider the leaf A in Fig. 2a. The node capacity b is 6,
and the records are of the form fhC;Li; Tstartg. After the insertion of the FD code h311; 0i in
timestamp 2, leaf A overflows. A wrong handling of the K-split is shown in Fig. 2b. After the K-
split, leaf A contains dLA=2e current records as expected, but the search for the record fh220; 0i; 1g
will fail. Fig. 2c shows the correct handing of the overflow, where the dLA=2e-th current record of
the overflowed node is the last record on that node after the K-split.

The TSLQ T-split is also more complicated than that in TSBT. The detailed algorithm appears
in [25]. The TSBT T-split produces one historical node and one new node with split-time being the
Fig. 2. (a) Leaf A overflows after inserting the FD code h311; 0i in timestamp 2 (b) a wrong K-split and (c) the correct

K-split of node A.
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time of last update. On the contrary, the split-time in the TSLQ T-split may not be the time of last
update of the overflowing node, but it may be a more recent timestamp as well. If PTSLQ cons > 0
and the classical TSBT T-split procedure leads to a TSLQ node containing less than PTSLQ cons

current records, then before proceeding to the T-split, an alive sibling (preferably the right one) of
that TSLQ node must first be allocated. If such a sibling exists, 2 the TSLQ T-split differs than
that of TSBT. In this case, the time of last update of the overflowing node is compared to the
sibling StartTime. If they coincide, then all the alive records of the original node are copied into its
sibling. Records with Tstart greater than or equal to the split-time, need not have copies in the
original node that turns to historical. Otherwise, if the time of the last update of the overflowing
node and the StartTime of the sibling differ, then both the overflowing and the sibling node need a
T-split. The more recent time between the times of two nodes last updates is chosen as the split-
time for both T-splits. The StartTime field of the new current nodes gets the value of the split-time
stamp. If the total number of records of the two new nodes is below b, then the two nodes are
merged; otherwise a record redistribution between them occurs so that both nodes are at least half
full. The total number of current records after the two T-splits is guaranteed to be at least
2� PTSLQ cons � 1.

3.2.2. Deletion

The deletion algorithm in the TSLQ is also significantly different from that of TSBT, which
merely posts deletion markers for all deleted records and does not merge sparse nodes. On the
contrary, the implementation of a real world deletion of an FD code hC; Li in the TSLQ at time-
point Tj depends on the StartTime field of the corresponding leaf. For details, see [23,25].

3.2.3. Update
Updating (i.e. changing the value of the level L of) an existing FD code leaf entry at time-point

Tj is handled depending on the StartTime field of the corresponding leaf:

• If StartTime < Tj then the update is carried out by (i) the logical deletion of the existing entry
and (ii) the insertion of a new version of that entry; this new version of the entry has the same
quadcode C but a new level value L0. The number of current records in the leaf does not change
but if the procedure leads to a leaf overflow, the IKS policy must be followed.

• Otherwise, if StartTime ¼ Tj then the update is carried out by (i) the physical deletion of the
existing entry and (ii) the insertion of a new version of that entry. In this case, both the number
of current records and the total number of records in the leaf do not change.

3.2.4. Internal nodes

The insert, delete, update and K-split algorithms for TSLQ index nodes are similar to the ones
for TSLQ leaves. However, the T-split algorithm differs from that of TSLQ leaves. In particular,
whenever an index node becomes historical all its descendent nodes are also forced to split with
the same split-time. This introduces additional redundancy but a historical internal node cannot
2 If an alive sibling does not exist, then the current TSLQ tree version consists of only a single node, i.e. the

overflowing node.
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refer to current nodes since those nodes can split or move. After the T-split, index node entries
with Tstart greater than or equal to the split-time, need not have copies in the original and hereafter
historical node.

3.3. Multiversion Linear Quadtree

The Multiversion Linear Quadtree (MVLQ [21]) is based on the hierarchical decomposition of
space and maintains the evolution of a Linear Quadtree over time, by adapting ideas from the
MVBT. MVLQ couples time intervals with spatial objects in each node. Data records residing
in leaves contain entries of the form fhC; Li; ½Tstart; TendÞg, where hC;Li is the FD code of a black
region Quadtree node and ½Tstart; TendÞ represents the semi-closed time interval when this black
node appears in the image sequence. Non-leaf nodes contain entries of the form hC0; ½T 0

start;
T 0
endÞ; Ptri, where Ptr is a pointer to a descendent node, C0 is the smallest C value in that

descendent node and ½T 0
start; T

0
endÞ is the time interval that expresses the lifetime of the latter node.

In each MVLQ node, the field StartTime, registers the node creation time.
MVLQ hosts a number of version trees and has a number of roots so that each root stands

for a time/version interval T 0 ¼ ½Ti; TjÞ, where i; j 2 f1; 2; . . . ;Ng and i < j. On top of the
MVLQ, an additional main memory structure, the root� table, is used to index the MVLQ
roots. Each record in the root� table represents an MVLQ root and obeys the form fT 0; Ptr0g,
where T 0 is the root lifetime and Ptr0 is a pointer to its physical disk address. The MVLQ insert,
delete and update algorithms are significantly different from the corresponding MVBT algo-
rithms.

3.3.1. Insertion
A quadcode insertion leads to a structural change if at least one new MVLQ node is created. If

during a quadcode insertion, at time-point Ti, the target leaf is already full, a node overflow
occurs. Depending on the StartTime field of the leaf, the structural change may be triggered in two
ways.

• If StartTime ¼ Ti then a K-split occurs and the leaf splits. The first dðbþ 1Þ=2e entries of the
original node are kept in this node and the rest are moved to a new leaf.

• Otherwise, if StartTime < Ti, a TSBT T-split must first be performed in the original leaf since it
is not acceptable to structurally change nodes that may contain historical data (as in MVBT).
The split-time chosen is always the current time. The number of (current) quadcodes after the
T-split must be in the range from PMVLQ low to PMVLQ high, which are two given thresholds (for de-
tails see [1,21]). If a T-split leads to less than PMVLQ low quadcodes, then a merge or key redistri-
bution is attempted with an alive sibling (preferably the right one) or a copy of that sibling
containing only its current versions of quadcodes (the choice depends on the StartTime field
of the sibling). If a T-split leads to more than PMVLQ high quadcodes in a node, then a K-split
is performed.

3.3.2. Deletion
The implementation of a deletion of an existing quadcode at time-point Tj depends on the

StartTime field of the corresponding leaf.
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• If StartTime ¼ Tj, then the appropriate entry of the form fhC; Li; ½Tstart; �Þg is removed from the
leaf. After this physical deletion, the leaf is checked if it contains enough entries. If the number
of entries is above PMVLQ cons, where PMVLQ cons (6 PMVLQ low) is a node consolidation threshold
similar to that of TSLQ, then the deletion is completed. If the latter number is below that
threshold, then the node underflows. This case is handled as in the classical Bþ-tree, with the
difference that if an alive sibling exists (preferably the right one) then we check its StartTime field
before performing a merge or a key redistribution (if the StartTime value of the sibling is smaller
than the current time, a T-split is performed first).

• Otherwise, if StartTime < Tj then the quadcode deletion is handled as a logical deletion, by
updating the temporal information Tend of the appropriate entry from Tend ¼ � to Tend ¼ Tj. If
an entry is logically deleted in a leaf with exactly PMVLQ cons current quadcodes, then a version
underflow occurs that causes the node T-split, copying the current quadcodes into a new node.
Evidently, considering that PMVLQ cons 6 PMVLQ low holds, the number of quadcodes after the T-
split is below PMVLQ low and a merge or key redistribution is attempted with an alive sibling
or a copy of that sibling.

3.3.3. Update

The update procedure is similar to the TSLQ one and can be applied to MVLQ with slight
modifications. For brevity, the description of these modifications is not reported here.

3.3.4. Internal nodes

When an index or leaf node becomes historical, its index entry into its parent is updated for this
change or it is totally removed, depending on the StartTime field of the parent node. Note that
adding or deleting index entries in an internal node may cause its overflow or underflow,
respectively. This case is handled in a way similar to the case of the leaves.

An important property that the MVLQ inherited from MVBT is that in each node except for
the roots, the number of valid entries for a given timestamp Ti is either zero or at least PMVLQ cons.
As in the case of MVBT, a new node must contain at least PMVLQ low entries, and no more
than PMVLQ high entries. Therefore the number of inserts, deletes and updates that are necessary
until the overflow or underflow of this node, depends on the values of these three specific
thresholds.

3.4. Multiversion Access Structure for Evolving Raster Images

The Multiversion Access Structure for Evolving Raster Images (MVASERI, [25]) combines
concepts from three different indexing structures. The initial motivation for the MVASERI design
comes from the Multiversion Access Structure (MVAS, [27]). However, the new approach could
be also viewed as a modified MVLQ or as another partial persistent variant of the ‘‘ephemeral’’
Linear Quadtree, designed as a directed acyclic graph of pages.

Although MVLQ and MVASERI leaf and internal node entries have exactly the same form,
MVASERI uses extra storage-conservation overflow and underflow policies that substantially
differ from those of MVLQ. These policies try to reduce storage in two ways: (a) by partial
moving or copying records from a node, and (b) by using available space in an existing node
rather than creating a new one.
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3.4.1. Insertion

To insert a new record at time-point Ti, an entry of the form fhC;Li; ½Tstart; TendÞg is simply
added in the appropriate leaf. If there is not enough space in the leaf and an overflow occurs, then
two thresholds control this process: PMVASERI cons and PMVASERI high, where 4� PMVASERI cons 6

PMVASERI high 6 b (for details see [27]). An overflow in leaf A is handled by using the StartTime field
and the number of alive records LA. This algorithmic handling appears in [25]. The split-time of a
T-split is always the current time. When the number of entries in a node generated after a T-split is
below PMVASERI cons, then we examine for an alive sibling. If such a sibling exists, the MVLQ would
copy all the sibling�s alive records to the new and sparse T-split node, thus logically deleting the
sibling. Instead, the MVASERI will copy or move only that many alive records from the sibling,
as needed for the T-split node to avoid violating the threshold. This modification reduces
duplication and extra space.
3.4.2. Deletion

A deletion at time-point Tj is handled depending on the StartTime field of the leaf A.

• If StartTime ¼ Tj then the appropriate entry is removed from the leaf. If after this physical dele-
tion the total number of entries in A is below PMVASERI cons, then a node underflow occurs.

• Otherwise, if StartTime < Tj then the Tend field of that record changes to Tj. If after this logical
deletion the number of alive entries in A becomes less than PMVASERI cons, then a version underflow
occurs.

In both cases, in order to avoid having alive nodes sparse of current records, the MVASERI
detaches some or all the current quadcodes from an alive sibling, according to the rules presented
in [25].

3.4.3. Update

The update is handled in a way similar to that of TSLQ and MVLQ. Thus, for brevity its
description is not included.
3.4.4. Internal nodes
Inserts, deletes, updates, overflows and underflows in index nodes are similar to the corre-

sponding cases of leaves as described above. If due to node consolidations, the current root is left
with only one current child, then this child becomes the current root. A difference to the MVLQ
method, is that during an insert, delete or update in MVASERI, the quadcode range 3 of a node
may change. In such a case, the index entry of this node into its parent may not be valid any more
and may have to be deleted (logically or physically, depending on the StartTime field of the
parent). Afterwards, a new entry for the descendant node with its new lowest quadcode and a new
3 Quadcode range of a node is the set of quadcode values that are either contained within the specific node, or would

be contained, if they had been inserted.
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Tstart must be posted into the parent node. This ensures that top-down tree searches for copied or
moved quadcodes will lead to the proper leaf.

The main difference between the MVASERI insert, delete and update algorithms and the
corresponding ones of MVAS, is that the processing of the overflow and underflow conditions in
MVASERI are strongly affected by the StartTime value of each node involved in the process. This
is because MVASERI processes a huge number of record inserts, deletes and updates per time-
slot. On the contrary, only a single insert, delete or update may occur in MVAS per time-slot.
Therefore, the StarTime value of an MVAS node is always a timestamp earlier than the time under
process and it is not taken into account. The general remark is that the MVASERI algorithms are
more complicated than the MVAS ones because MVASERI is used in applications with different
data characteristics. This is the cost for MVASERI to reduce the number of T-splits and both the
historical part of the structure and the redundant data.

3.5. Overlapping Linear Quadtrees

Overlapping Linear Quadtrees method (OLQ, [22]) is a transaction-time spatio-temporal index
implemented as a sequence of Linear Region Quadtrees. The basic idea behind OLQ is that, given
two Linear Region Quadtrees where the second one is based on some changes upon the first one,
the second Linear Quadtree can be represented by registering only the modified branches of the
first one. The sub-trees that remain the same, are not replicated but simply re-used. Thus, each
tree has a separate root and substantial space is saved.

The OLQ leaves contain entries of the form fhC;Lig, where hC;Li is the FD code of a black
Quadtree node. By contrast to TSLQ and MVLQ, the insertion time-point or the time interval
that represents the quadcode life span, are not saved in the OLQ leaves. Internal nodes contain
records of the form fC0; Ptrg, where Ptr is a pointer to a descendent node and C0 is the smallest C
value in that descendent node.

The record capacity of OLQ leaves is kept small. This factor maximizes the probability that
a leaf will not change (a few FD codes are very likely to remain unchanged) and will belong
to consecutive Linear Quadtrees. Thus, we keep the number of newly created paths between
consecutive tree instances as low as possible, since consecutive images have large identical
parts. In our implementation, the leaf capacity was 10 FD codes, thus a data page may host a
number of consecutive leaves. When, during an image insertion, a new page is allocated on the
disk, it is filled with new OLQ leaves as they are generated by the OLQ modification algorithm.
When a data page runs out of free space, or a new image is to be inserted, then a new
data page is allocated. As a consequence, it is guaranteed that all the OLQ leaves contained in a
data page, have been generated during the same timestamp thus sharing the same StartTime
value.

On the other hand, this technique helps so that some leaves (due to their small size) may remain
valid for a long time period. As a consequence, top-down tree searches through OLQ roots need
to visit a large number of pages hosting only a few long-life leaves that are however alive for the
time-point of interest. In the worst case, a page may be accessed just because it contains only a
single long-lived leaf of 5 alive FD codes. This degrades the efficiency of an image insert because
the current tree version is scattered over a large number of pages created in various transaction
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times and each of them contributing little to the current database. An efficient solution to this is to
set a page usefulness threshold POLQ usef at the leaf level that causes the T-split of all current leaves
contained in a page, every time the total number of current records in that page is above the
threshold. This technique enables better clustering of alive records per any transaction time and it
is similar to the node consolidation in TSLQ, MVLQ and MVASERI.

The OLQ structure is accompanied by an additional substructure, the Header Table, which is
built on top of the OLQ and is used similarly to the root� table in MVLQ and MVASERI.
Each record in this table is of the form hTi; Ptrii, where Ti is the timestamp when the respec-
tive image recorded in the relation and Ptri points to the root of the corresponding Linear
Quadtree.

The advantage of OLQ is its implementation simplicity, which is owed to the following
properties.

• Except for the Header Table records, no other record involves any timestamping because nodes
do not accommodate records from various versions.

• The form of OLQ index and data records and the search traversal are identical to the Bþ-tree
ones.

• Finally, except for the POLQ usef page usefulness threshold, no additional threshold is considered
during the index construction.

Therefore, OLQ is simply implemented as a forest of typical Bþ-trees that share their common
subtrees. However, this comes at the expense of the space performance. Even if a single record
changes in a node, this node cannot be shared by different trees; rather a new copy of the node is
generated. Further details can be found in [22].

3.6. Image insertion in TSLQ, MVLQ, MVASERI or OLQ

The structures of TSLQ, MVLQ, MVASERI and OLQ are accompanied by one more addi-
tional main memory table, which represents the last inserted image in the preorder traversal of its
Quadtree. This compacted array is called Depth First-expression (DF-expression, [7,13]) and it
keeps track of all the black quadblocks of the last inserted image, in order to know, at no I/O cost,
the common black quadrants between this image and the next one. Thus, given a new image and
before proceeding to its insertion, we do know the specific FD code inserts, deletes and updates.
The DF-expression is composed of the symbols �B�, �W� and �G�, corresponding to black, white and
gray Quadtree nodes, respectively. For example, the DF-expression of the image of Fig. 1 is
GGBWWGBWWBWWGWWGWWBBB.

Generally, we face an image insertion in two stages. Firstly, we sort the quadcodes of the new
image and compare this sequence against the quadcodes of the last inserted image, using the
binary table of its DF-expression. After discovering all the FD code inserts, deletes and updates at
no I/O cost, we build the new tree version. Simultaneously, the DF-expression of the new image is
constructed, replacing step-by-step the DF-expression of the previous one.

Table 2 summarizes the basic characteristics of TSLQ, MVLQ, MVASERI and OLQ. Some of
the listed issues in the table are closely related.



Table 2

The basic characteristics of TSLQ, MVLQ, MVASERI and OLQ

Access

method

T-split Pure

K-split

T-split

and

K-split

Sparse

node

merge

Number

of roots

Leaves

per disk

page

Building

thresholds

Additional

sub-structure(s)

TSLQ Yes Yes No Yes One One PTSLQ cons,

PTSLQ high
a

DF-expression

MVLQ Yes No Yes Yes Many One PMVLQ cons,

PMVLQ low,

PMVLQ high

root� table and

DF-expression

MVASERI Yes No Yes Yes Many One PMVASERI cons,

PMVASERI high

root� table and

DF-expression

OLQ Yes No Yes Yes Many Many POLQ usef Header Table and

DF-expression
a PTSLQ high (¼ 2=3� b) is the threshold which is introduced by the TSBT IKS split policy.
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4. Spatio-temporal query processing

4.1. Benchmark queries for time-evolving regional data

Very common queries in STDBs and GISs are the window queries that also involve time. In
particular, a spatial query retrieves all the spatial information related to a certain user criterion
and refers to the current database version. On the other hand, a spatio-temporal query may also
refer to specific past states or time-intervals of the database lifetime. Here, we present a set of
necessary queries for the examination of the efficiency of access methods for time-evolving re-
gional data. These queries are representative of typical STDB applications and, therefore, it would
be very important for the TSLQ, MVLQ, MVASERI, and OLQ techniques, to support efficiently
as many of them as possible.

Given a sequence of N binary raster images, each one associated with an unique timestamp Ti,
for i ¼ 1; 2; . . . ;N , we distinguish between two types of spatio-temporal queries for time-evolving
regional data:

• Snapshot (or Pure-timeslice) Queries: that retrieve all the quadblocks alive at timestamp Ti,
which therefore can reconstruct the corresponding image. In Fig. 3, an example of a specific
Fig. 3. The quadblocks of a image and a query window (thick lines).
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image partitioned in quadblocks is depicted. The Snapshot Query for this timestamp would
give back quadblocks 1–6.

• Time-interval Window (or Pure-coordinate) Queries: that retrieve all the quadblocks correspond-
ing to black regions intersecting with the area of a given k � k window, at each time-point with-
in the time interval [Ti; Tj], where i; j ¼ 1; 2; . . . ;N , and i < j.

The support for time-interval window queries is of primary importance since these queries are
usually the building blocks for other more sophisticated operations. Therefore, their efficient
processing is vital to the overall system performance. Five different time-interval window queries
have been proposed in [22]. Given N raster images, a k � k window and a time interval [Ti; Tj],
where i; j ¼ 1; 2; . . . ;N , and i < j, the following queries may be expressed:

The Strict Containment Window Query: Find the black regions totally inside the window
(including those touching the window borders from inside), at each time-point within the time
interval [Ti; Tj]. For the image of Fig. 3 and the depicted query window, the Strict Containment
Window Query would give back quadblocks 2 and 4.
The Border Intersect Window Query: Find the black regions intersecting a border of the window
(including those touching a window border from inside or outside), at each time-point within
the time interval [Ti; Tj]. The Border Intersect Window Query for the time-point corresponding
to the image of Fig. 3, would give back quadblocks 1, 3, 4 and 5.
The General Border Intersect Window Query: Find the black regions completely inside the
window or intersecting a window border (including those touching a border from inside or
outside), at each time-point within the time interval [Ti; Tj]. The General Border Intersect Win-
dow Query for the time-point corresponding to Fig. 3 would give back quadblocks 1–5.
The Cover Window Query: Find out whether or not the window is completely covered by black
regions at each time-point within the time interval [Ti; Tj]. The Cover Window Query gives back
YES/NO answers. For the time-point corresponding to Fig. 3, it would answer NO.
The Fuzzy Cover Window Query: This query can take two different forms:
1. Find out whether the percentage of the black part of the window area is over a given

threshold, at each time-point within the time interval [Ti; Tj],
2. Find out the percentage of the black part of the window area at each time-point within the

time interval [Ti; Tj].
The second kind of Fuzzy Cover Window Query for the time-point corresponding to Fig. 3 would
give 80% as answer. The first kind would return YES/NO answers depending on the comparison
of 80% with the given threshold.

4.2. Supplementary lists to speed up query processing

In order to keep track of the image evolution and efficiently satisfy spatio-temporal queries over
the stored images, we embed some additional information in the leaves of TSLQ, MVLQ,
MVASERI and OLQ. First, we add one more extra field in every leaf, called EndTime, to register
when a leaf becomes historical. As long as a leaf remains current, its EndTime value equals to now.
Moreover, in order to improve the efficiency of time-interval window queries over the stored
images, we incorporated four horizontal pointers in every leaf of TSLQ, MVLQ, MVASERI and
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OLQ. This way, there is no need to traverse consecutive tree instances to retrieve the history of an
FD code. These pointers are called: F-pointer, ST-pointer, B-pointer and ET-pointer.

• F- (B-)pointer points to a leaf with a more recent (an earlier) creation timestamp than the one
of the leaf accommodating the pointer. These pointers connect in two ways the leaves that are
involved in a T-split procedure.

• ST- (ET-)pointer always points to a leaf (a historical leaf) with the same StartTime (EndTime)
field value. It is used to link in increasing quadcode order, all the leaves that have been created
(logically deleted) in the same transaction time.

The B-pointer is also used for the proper setting of the F-pointer during leaf mergings. If two
current leaves are merged with StartTime values equal to now, then one of them has to be totally
removed. As a consequence, the historical leaf (if any) that points through its F-pointer to the
recently removed leaf has to be updated and point to the node produced after the merge. This
historical leaf is accessed through the B-pointer of the recently removed leaf.

By using the F- and ST- (or B- and ET-)pointers, the satisfaction of a time-interval window
query involves three steps.

1. Using the header table for OLQ or the root� table for MVLQ and MVASERI, the very first
(the current, respectively) root is located. This part does not hold for TSLQ since it has only
one root.

2. The answer for the first (for the current, respectively) timestamp is located by searching the
corresponding tree version in an umbrella-like fashion, i.e. a Snapshot Query at the first (at
the current, respectively) timestamp.

3. Finally, by using the forward (the backward, respectively) leaf chaining, historical nodes of
later (earlier) timestamps are called recursively, until the current (the very first) timestamp of
the time-interval is reached.

Example. Fig. 4 depicts a forward chaining example of TSLQ, MVLQ, MVASERI and OLQ
leaves. The left part of the figure illustrates a set of leaves of four successive tree versions, whereas
the middle part shows how these leaves can be forward-chained through the F- and ST-pointers.
For simplicity, the B- and ET-pointers in the leaves are not depicted. The figure assumes a case
where, among others, the leaves A, B, C and D were created during timestamp T1. At time instant
T2, the leaves E and G were created after a T-split on leaves A and C, respectively, whereas the leaf
F was created after a K-split on E. The leaves of timestamp T1 that were not valid any more, were
connected to the new nodes by using the F-pointer field, whereas the ST-pointer field was used to
chain together the three new nodes. Similarly, a number of leaves was also generated during the
timestamps T3 and T4. For instance, at timestamp T3 the leaves B and G were merged, thus pro-
ducing node H . In all cases, the F- and ST-pointer fields are maintained accordingly.

Assume now that a specific time-interval window query within the time interval [T1; T4] is posed.
Also, assume that the spatio-temporal rectangle of this query is the shadowed area of Fig. 4a. The
answer to this query for the timestamp T1 is provided through a range search in the first tree
version, which accesses the leaves A, B, C and D. Then, from the first of the above leaves that is
not valid in the time T2 (leaf A), we follow the F-pointer at a first step and the chain of ST-pointers



Fig. 4. (a) Layout of a set of data pages intersecting the shadowed area of the rectangle of a time-interval window

query, (b) the corresponding forward linked lists, and (c) explaining the figure.
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at a second step, and thus we locate all the leaves generated during time T2 that contribute to the
query (leaves E, F and G, respectively, in the sequential page access order). Therefore, the answer
for the time T2 is the union of the leaves that are shared between the two successive timestamps
and the newly discovered leaves, i.e. in total the leaves E, F , B, G and D. While the last time-point
of the time interval [T1; T4] has not been reached, we proceed to the next tree version by repeating
the above procedure for each leaf that contributes to the query answer in the remaining time-
stamps.

Note, that when we process the query for the tree of a certain time-point, we keep in main
memory the collected leaves for this tree, as well as some of the accessed tree leaves of the pre-
ceding time-point (only those that are common between the two successive trees). Also, note that
as we claimed in Section 3.6, all the FD code inserts, deletes and updates per timestamp are
performed in an increasing quadcode order. Thus, the leaves that are generated in the same
transaction time, are all created in an order that also enjoys the property of increasing quadcode
range order. This means that for OLQ, there is no need to use the ST-pointer to connect two
consecutively created leaves allocated within the same data page, and thus considerable disk space
can be saved.

The horizontal leaf chaining proposed for OBþ trees [17] uses four leaf pointers, the B-, BC-, F-
and FC-pointers. This method was successfully adopted in OLQ [22], and in a similar manner can
be adapted to TSLQ, MVLQ and MVASERI. However, it suffers from the duplicate result
problem [30], since a quadcode may be reported more than once due to multiple visits of the same
page. The approach proposed in the current paper avoids multiple accesses of the same page. It
is also much simpler and boosts query processing and image insertions. More details can be found
in [25].
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Efficient algorithms for processing the five time-interval window queries discussed previously
have been reported in [22]. These algorithms use the B-, BC-, F- and FC-horizontal pointers that
link leaves of different trees and can be easily adapted to TSLQs, MVLQ, MVASERI and OLQ
for the four new pointers B-, ET-, F-, and ST-, with slight modifications.
5. Performance comparison

5.1. Data generation

In order to compare the four Quadtree-based STAMs of Section 3, extensive experimentation
using sequences of raster images is required. Due to the lack of large real data sets, the region data
sets used in the experiments were sequences of artificial images following the real-world behavior
of spatial data that change over time. For the generation of such data, we used the G-TERD [24],
a generator especially designed for time-evolving regional data. The basic concepts that determine
the function of G-TERD are: the two-dimensional workspace; the position and movement of a
rectangular scene-observer over the workspace; the structure of complex regional objects, their
color, maximum speed, zoom and rotation-angle per time-slot; the influence of other moving or
static objects on the speed and on the moving direction of an object; the statistical distribution of
each changing factor; and, finally, time. G-TERD supports also a variety of widely-used con-
tinuous and discrete data distributions. It is highly parameterized and very flexible in the simu-
lation of a variety of real-world scenarios.

To demonstrate the use of G-TERD, in Figs. 5–7 we present a number of sample data sets.
These are the data sets that were used for the experimentation purposes of this paper. The number
of evolving images in each data set is N ¼ 200 and the snapshots illustrated correspond to time-
slots Ti ¼ 40, 80, 120, 160 and 200. The image size in Fig. 5 is 2048· 2048 pixels, whereas it is
1024· 1024 pixels in the remaining figures.

5.1.1. Scenario 1
Scenario 1 in Fig. 5 illustrates complex static objects and a scene-observer of 2048 · 2048 pixels

field of vision that shifts over the 6000· 6000 pixels workspace. The speed of the scene-observer is
constant and its orientation is diagonal, from southwest to northeast. Five data sets of N ¼ 200
images each, were generated from this scenario. The only difference between them is the value of
the speed of the scene-observer, i.e. 1, 3, 5, 7 or 9 pixels per time-slot in each spatial axis. The
scenario involves 100 complex static objects comprised by 100 long-lived rectangular sub-objects
each and uniform initial distribution of their centers, and a color palette of 16 colors.

5.1.2. Scenario 2

Fig. 6 presents Scenario 2, where complex moving, re-sizing and rotating objects appear from
the bottom of the workspace. Each object comprises of 100 rectangular sub-objects. The orien-
tation of the moving objects on the y-axis is south to north, whereas on the x-axis it is random and
the speed is uniformly distributed in the domain ½�4; 4�. Many new objects are created per time-
slot and remain alive for a long time period. Therefore, the objects have sufficient time to cross the
whole workspace. When they arrive at the upper edge, G-TERD prevents them from leaving the



Fig. 5. Static objects and a scene-observer moving from southwest to northeast.

Fig. 6. Moving objects that appear at the bottom and cross the workspace.
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workspace and they are thus scattered over the entire upper part of the workspace, until their
deletion time comes. A static scene-observer which supports only black and white colors, monitors
the time-evolving scene. Five different data sets of N ¼ 200 images each, were generated and the
parameter that varies was the speed of the objects on the y-axis (1, 3, 5, 7 or 9 pixels per time-slot).

5.1.3. Scenarios 3a and 3b
Scenario 3 is a complex scenario and Fig. 7 depicts some of its snapshots. This scenario is based

on two sub-scenarios and merges their data sets. The first sub-scenario creates complex static
objects that live for the whole scene lifetime. The second sub-scenario creates moving objects



Fig. 7. A complex scenario that combines two sub-scenarios.

Table 3

Storage gain by using 2-bytes timestamps in node entries (page size 1024 bytes)

Access method Actual timestamps Relative timestamps Storage gain

bleaf binternal bleaf binternal In bleaf (%) In binternal (%)

TSLQ 110 84 142 100 22.5 16.0

OLQ 10 126 10 126 0 0

MVLQ, MVASERI 76 62 110 84 30.9 26.2
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generated along the y-axis and cross the workspace but each one at a different speed. The scene-
observer is static, and 16 colors are supported.

In the experimentation that will be presented in the sequel, two different versions of scenario 3
were used, scenarios 3a and 3b. In the first case, 50 static and 50 moving regional objects com-
prising 100 rectangular sub-objects each were generated. Five different data sets for five values of
the maximal speed of the moving objects on x-axis were generated: 1, 3, 5, 7 and 9 pixels per time-
slot, respectively. The minimal speed on the x-axis was set at zero, whereas the speed on the y-axis
was uniformly distributed in the domain ½�2; 2�. In the case of scenario 3b, five data sets of 200
images each were also generated. 50, 100, 150, 200 or 250 static and moving regional objects per
data set (dedicated to each object class as two equal portions of half the number of objects) of 100
rectangular sub-objects each were created. The speed on the x- (y-)axis was randomly distributed
between 0 ()2) and 5 (2) pixels per time-slot, and both the re-sizing and the rotation-angle were set
between )1 and +1 pixels per time-slot. The snapshots illustrated in Fig. 7 correspond to one of
the generated data sets.

Each 32-bit pixel of the above 4 · 5 · 200¼ 4000 images corresponds to a workspace pixel and it
was originally representing a value in the scale of the number of colors of the corresponding color
palette. We transformed each multicolored image to black and white, by considering as black all
the pixels that had been colored (i.e. held a non-null color value) by G-TERD. Note that we are
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not interested on the ratio between black and white color analogy because the images are not
unobstructed synthetic images. [24] provides details for all the user-defined parameters and sta-
tistical models mentioned in this subsection.
5.2. Experimental setup

TSLQ, MVLQ, MVASERI and OLQ were implemented in C/C++, and all experiments were
performed on a 450 MHz Pentium II-MMX PC, with 400 Mbytes RAM, running Microsoft
Windows NT Server 4.0. The disk page size was 1024 bytes and 2048 bytes, the FD locational code
size, the timestamp size and the pointer size were 4 bytes each (standard integer implementation in
C/C++), whereas the FD code level size was 1 byte. As already mentioned in Section 3.5, in order to
maximize overlapping in OLQ leaf level, the capacity of OLQ leaves was fixed to 10 quadcodes.
Thus, a 1024-bytes page can host 14 consecutive OLQ leaves. On the other side, the temporal
information stored in each node of TSLQ, MVLQ and MVASERI lowers the node capacity and
decreases space utilization and query performance. Instead of storing the actual timestamps with 4
bytes each, we keep the relative timestamps, which is the actual time-point minus the StartTime
value of the corresponding node. This way, we use only 2 bytes for each timestamp in node entries
and the Tstart and Tend of each node entry are in the range ½0; 65535�. If this range is exceeded (e.g.,
entries have excessively long lifetimes), appropriate T-split and data duplication is introduced to
ensure correctness. However, it is assumed that this should happen in practice very rarely. As Table
3 shows, this mechanism increases the node capacity in TSLQ, MVLQ and MVASERI substan-
tially but it does not affect OLQ, since entries in OLQ nodes are not timestamped.

As mentioned previously, the number of evolving images is N ¼ 200 per data set. Thus, the
Header Table of OLQ and the root� table of MVLQ and MVASERI are very small and, thus,
stored in main memory. The same holds also for the DF-expression, whose size in the worst case is
1.33 Mbytes for a 2048· 2048 image and 0.33 Mbytes for a 1024· 1024 image. For every image
insertion (for converting it from raster to linear FD format), we used the algorithm OPTI-
MAL_BUILD of [14]. At the start of every experiment, the FD codes of the first image were
inserted in an empty tree. The codes were inserted one at a time, as they were produced by
OPTIMAL_BUILD.

In the sequel, we introduce an extensive experimental comparison of the four STAMs regarding
storage requirements, index building cost, data redundancy, impact of buffering, query processing
cost and several other important parameters that characterize their performance. We do not
present graphs for some data sets or scenarios because they lead to the same observations as with
the illustrated experiments.

We assume that the space efficiency of an access method for time-evolving regional data is
measured by the number of occupied pages and by the values of the following parameters that
describe intrinsic method characteristics.

Definition 1. Duplication ratio DR on an index is the average number of times that a single FD
code appears in the index:
DR ¼ Rþ Rred

R
ð1Þ
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Definition 2. Multiple version utilization MVU [9] is the fraction of the total data space occupied
by all the non-redundant FD codes:
4 T

deleti
MVU ¼ R
M � b

ð2Þ
where R does not include deletion markers 4 (if they exist) in order to have a fair comparison of
the four STAMs. MVU measures how effectively a structure is, together with the particular T- and
K-split policies and index construction thresholds, in supporting multiversion data. It expresses
the cost of carrying multiple FD code versions, in terms of total space consumed by these retained
versions. It, also, reflects the index maintenance cost for the entire image collection and the cost of
storing redundant copies of the quadcode versions to support spatio-temporal queries. Therefore,
MVU is correctly one of most representative parameters of the overall performance of an access
method for multiversion data.

Definition 3. Single version current utilization SVCU [9] is the fraction of data pages containing
FD codes alive at the current time occupied by these alive records:
SVCU ¼ Rnow

Mnow � b
ð3Þ
where Rnow and Mnow are the number of alive quadcodes and the number of pages containing alive
leaves, respectively, for the current timestamp. SVCU measures the occupancy of the current data
and reflects how effective a method is in minimizing the current database space. In general, the
smaller the current database, the smaller the I/O cost for an image insertion and the response of
queries based on current time will be.

5.3. Index construction

5.3.1. Index construction thresholds
According to [21] and by taking into account the node capacity of MVLQ, the three threshold

values are set as: PMVLQ high ¼ 0:809� b, PMVLQ low ¼ 0:39� b and PMVLQ cons ¼ 0:20� b. According
to [27], the two thresholds used in MVASERI index construction are set to: PMVSERI high ¼ 0:80� b
and PMVSERI low ¼ 0:20� b, respectively, for bP 5 and any analogy on quadcode inserts, deletes
and updates. Also, according to [9] we set TSLQ PTSLQ high ¼ 2=3� b. All the above threshold
values were selected in order to minimize the time split frequency, and hence the index size and
data duplication without compromising the index construction time and the query time, in terms
of I/O activity.

The only two thresholds which have not been decided upon by previous related studies, are the
TSLQ page consolidation threshold PTSLQ cons and the OLQ page usefulness threshold POLQ usef .
Their values will be selected after an experimental comparison. In the sequel we present this
experimental investigation for the PTSLQ cons consolidation threshold in the TSLQ nodes. The
he use of deletion markers is the result of the drawback of the TSLQ method to handle efficiently quadcode

ons (see [25] for details).



Fig. 8. (a) Disk space used, (b) DR, (c) I/O index building cost and (d) the TSLQ SVCU as a function of various PTSLQ cons

values in the TSLQ nodes.
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corresponding study for the POLQ usef threshold in the OLQ leaf level leads to similar observations
and thus it is omitted.

As mentioned earlier in the description of TSLQ method, when an internal node becomes
historical after a T-split, then all its descendent nodes are also forced to T-split with the same split-
time of the corresponding internal node. Thus, the appropriate PTSLQ cons value for internal levels is
an interesting issue for experimentation.

Fig. 8 illustrates the behavior of TSLQ for various PTSLQ cons values in the leaf level and two
different policies for its value in internal levels. In the first policy, the PTSLQ cons value in internal
nodes equals to that in the leaf level. In the second policy this value is set to zero. The maximum
PTSLQ cons value used in the experiments is 1=3� b since PTSLQ cons 6 1=3� ðbþ 1Þ must hold (see
Section 3.2), whereas the data sets were generated by scenario 2. Fig. 8 shows that the PTSLQ cons

increase in the internal levels is followed by an increase of the index size, the DR, the I/O building
cost and the SVCU . This is because, on the one hand the node consolidation threshold helps in
avoiding having nodes with zero records and in minimizing the number of pages of the current
database; however, on the other hand, it increases the number of T-splits in index and data nodes.
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In particular, the higher the PTSLQ cons in internal levels, the higher the number of T-splits required
and the higher the corresponding additional data duplication.

Fig. 8a–c indicate that the total index size and the I/O building cost decreases when the
PTSLQ cons ¼ 0 in internal levels. Especially when this is combined with a PTSLQ cons in leaves set at
0:10� b or 0:20� b, the index size and the I/O building cost are 21% and 35%, respectively,
smaller than the case of no PTSLQ cons. Fig. 8d shows that when the PTSLQ cons increases, the SVCU
increases spectacularly and thus the space occupied by the current database is reduced. This figure
illustrates that when PTSLQ cons ¼ 0 in internal nodes and 0:20� b in leaves, then the SVCU is very
close to its maximal value (i.e. it is 90% of its maximal value). Therefore, for the rest of this study
we fix these values in the TSLQ internal nodes and leaves, respectively, because this is the most
satisfactory trade-off between total space, access time and dispersion into the disk of the quad-
codes of the last inserted image. Fig. 8 shows that, although the PTSLQ cons threshold does not
guarantee that for any past time-point the number of valid records in a node would be above this
threshold, the space and the I/O building cost savings it offers are considerable. In an experimental
study similar to the above, the POLQ usef page usefulness threshold is also set at the 20% of the total
page capacity in FD codes.

5.3.2. Storage requirements

Fig. 9a (Fig. 9b and c) compares the disk space occupied by each of the four STAMs as a
function of the speed of the moving scene-observer (the speed of the objects, respectively) of the
data sets generated from scenario 1 (scenarios 2 and 3a, respectively). An interesting observation
is that increasing the speed of the scene-observer or the moving objects in the continuously
changing scene, leads to an index size increase. This is because the faster the changes in the time-
evolving scene are, the higher the difference between two consecutive raster images 5 of a data set
will be. As a consequence, the common FD codes between two consecutive images are reduced
and the quadcode inserts, deletes and updates per timestamp increase.

Another interesting observation stems from the slope of the curves of Fig. 9d, which depicts the
index size as a function of the number of objects appearing in the time-evolving scene. One can see
that the larger the number of objects appearing on the scene, the smaller the size for all the
examined structures is. This holds because the increase of the number of static and moving objects
of scenario 3b, leads to a workspace which is gradually more filled with moving objects and sub-
objects (recall Fig. 7). Therefore, the corresponding black and white raster images generated by G-
TERD form many large and solid black regions (‘‘islands’’) which remain common between
consecutive images because of the large overlapping between the regional objects. This results in
consecutive images having small differences and STAMs that do not need enormous storage.
Especially, the case where 250 objects with 100 rectangular sub-objects each, are generated in
scenario 3b, results to a packed workspace with 250 · 100¼ 25,000 small static and moving
rectangles on it. This time-evolving scene introduces many black and white raster images that
have minimal differences as they are almost black.
5 The difference between two consecutive raster images is defined as the percentage of different FD codes that their

corresponding Quadtrees contain.



Fig. 9. Index size as a function of the data sets generated from (a) scenario 1, (b) scenario 2, (c) scenario 3a and (d)

scenario 3b.
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All the parts of Fig. 9 agree that (i) OLQ is superior than the other three access methods in
terms of storage requirements, (ii) MVASERI and MVLQ demand about the same space, and (iii)
TSLQ is clearly the most space consuming structure. The OLQ size is up to 30%, 40% and 50%
smaller than that of MVASERI, MVLQ and TSLQ, respectively. This is due to the fact that there
is no timestamping in OLQ node entries; thus, OLQ pages may contain up to 140 FD codes (14
leaves · 10 FD codes each). Therefore, from Table 3 we infer that the OLQ page may contain up
to 21.5% more leaf records than in MVLQ and MVASERI, and the same maximum number of
leaf records as TSLQ. On the other hand, TSLQ has larger node capacity than MVLQ and
MVASERI but it can not take any advantage of it because of its inefficiency to handle logical
deletions by means of deletion markers. TSLQ is based on the TSBT which is a method for
temporal applications where the most frequent changes are object inserts and updates. Thus, in
the case of evolving images that cause multiple quadcode deletions, the existence of deletion
markers and pure K-splits that do not sweep historical data from the current database degrades
TSLQ space performance.

It is also interesting that, even if the MVAS improves significantly the overall space used by
MVBT in the temporal domain [27], the existence of batch inserts, deletes and updates per



Fig. 10. (a) I/O building cost as a function of the LRU-buffer size for data sets of scenario 3a, (b) and (c) actual building

time cost as a function of the data sets of scenarios 1 and 3a, respectively.
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transaction time in the case of time-evolving regional data reduces this efficiency in MVASERI in
comparison to MVLQ. However, it remains better than MVLQ in all our experiments.

5.3.3. LRU-buffer and index building cost
Another important component of our experiments is the buffer manager, for which we assume a

least-recently-used (LRU) page replacement policy. Fig. 10a depicts the impact of the LRU-buffer
size on the I/O building time cost of each access method. The data sets used correspond to sce-
nario 3a. We experiment with buffer sizes of 0, 4, 16, 64, 256 and 1024 pages, or about 0%, 0.07%,
0.25%, 1.05%, 4.30% and 17%, respectively, of the average index size. From the figure it appears
that after an LRU-buffer size of about 10 pages (i.e. 0.15% of the average index size), the number
of accessed pages stabilizes regardless of the further increase of LRU-buffer size. This is because
during an image insertion, its FD codes are firstly sorted in increasing order. Then, the building
algorithm performs all the FD code modifications (i.e. inserts, deletes and updates) in a batch
manner and increasing quadcode order. Therefore, every leaf is updated only once per transaction
time and in most cases, it will not be accessed again in the same transaction time. This way, there
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is no need to use large buffers. In the remaining of this study, it is assumed that the LRU-buffer
size is 256 pages, unless otherwise stated.

One interesting aspect is the time cost for index construction. Fig. 10b and c show the index
construction cost in terms of actual processing time for the four STAMs. The measured time
includes CPU time, search time in the LRU-buffer, disk seek time and disk transfer rate. Both
figures show a remarkably fast (slow) OLQ (TSLQ) construction time, which comes as a result of
the simplicity (complexity) of its quadcode insert, delete and update algorithms. On the other
hand, the index construction of MVLQ and MVASERI is from 10 to 20 times slower (from 2 to 3
time faster) than the corresponding one of OLQ (TSLQ). Both MVLQ and MVASERI structures
spend a considerable amount of time when T-splits, K-splits or merges are performed.

Fig. 11 depicts the construction costs for all the examined methods in terms of disk accesses and
indicates analogous conclusions as in the case of the storage requirements. Depending on the data
set, the disk I/O for OLQ is on average 30% faster, 2% slower and 7% faster in scenarios 1, 3a and
3b, respectively, than the corresponding one for MVASERI, which presents the second-best
performance. TSLQ pays large costs in index construction time although the existence of the
PTSLQ cons in the leaf level is a beneficial parameter with respect to reducing the current database
Fig. 11. I/O building cost for all the methods as a function of the data sets generated by G-TERD for (a) scenario 1, (b)

scenario 3a and (c) scenario 3b.
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size and the I/O building cost. Its performance is burdened mainly by its inefficiency in handling
logical deletions.

Another interesting remark is that the results shown in Fig. 11a and b are not proportional to
the actual time that was reported in Fig. 10b and c, respectively. This means that the construction
of MVLQ, MVASERI and TSLQ is impeded by many CPU processes and buffer searches.

5.3.4. Duplication ratio

Fig. 12 refers to the duplication ratio DR and shows that the MVASERI and MVLQ spend less
space for data redundancy by managing more carefully the number of T-splits performed. The left
(middle) part of the figure compares the DR of the Quadtree-based STAMs as a function of the
speed of the moving scene-observer (regional objects) of the data sets generated from scenario 1
(scenario 2, respectively). The right part of the figure compares the DR as a function of the number
of regional objects in the time-evolving scene of scenario 3b. A general remark is that the higher
the speed or the number of objects in the scenario is, the higher the percentage of difference
between two consecutive images will be and the smaller the amount of duplication. This is because
Fig. 12. Duplication ratio as a function of the data sets generated for the (a) scenario 1, (b) scenario 2, and (c) scenario

3b.
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the common FD codes between two consecutive images are reduced and, consequently, so is the
percentage of candidate records for duplication between successive tree versions.

5.3.5. MVU and SVCU
MVU and SVCU are parameters that measure the page utilization of a multiversion structure.

Therefore, the capacity b which is used in the calculation of Eqs. (2) and (3), must be the total
page capacity in records. In TSBT, MVLQ and MVASERI, the node capacity coincides with the
page capacity. However, in the case of OLQ, a page may host 14 leaves of 10 quadcode records
each, meaning that the b used in the equations equals 14· 10¼ 140.

The MVU parameter is studied in Fig. 13a (Fig. 13c) as a function of the data sets of scenario 1
(scenario 3a, respectively). The figure shows that OLQ outperforms all the other structures. Its
MVU utilization is very close to 0.69, meaning that OLQ performance is comparable to having a
forest of independent Bþ-trees, without storing any records redundantly. That is, the redundant
copies are being stored without compromising the OLQ storage utilization. The figure shows,
also, that the MVU qualitative behavior of MVLQ, MVASERI and TSLQ structures does not
seem to depend much upon the speed of the scene-observer or the number of the moving objects
Fig. 13. (a) MVU and (b) SVCU as a function of the data sets of scenario 1, (c) MVU and (d) SVCU as a function of the

data sets of scenario 3a.
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appearing in the time-evolving scene. According to the MVU definition, a correlation between
MVU and index sizes should exist. Indeed, the comparison of Figs. 9, 13a and c shows that high
(low)MVU values correspond to access methods with low (high) storage requirements and confirm
our expectations. As also expected, this comparison indicates that a stabilized (increased) MVU
behavior leads to an increased (stabilized) index size.

In Fig. 13b (Fig. 13d) the SVCU is given for all the methods and for the data sets of scenario 1
(scenario 3a, respectively). As Eq. (3) demonstrates, SVCU measures the average page occupancy
that a structure displays in the current database. Both figures indicate a stabilized SVCU per-
formance for MVLQ, MVASERI and TSLQ at about 0.47, 0.49 and 0.46, respectively. On the
other hand, the SVCU of OLQ depends highly on the scenario used. For the 2048· 2048 images of
scenario 1, the SVCU of OLQ is the highest and over 0.69, i.e. the average page utilization of Bþ-
trees. However, for the 1024 · 1024 images of scenario 3a, the OLQ SVCU provides an average
value of about 0.47. To save space, we do not provide results from scenarios 2 and 3b, which,
nevertheless, coincide with the corresponding results of scenario 3a.

The behavior of TSLQ, MVLQ and MVASERI in Fig. 13b and d as well as the behavior of
OLQ in Fig. 13d indicate that their leaves contain some records that remain valid for long time
periods. As a consequence, the current tree version is scattered over a large number of pages
created in various timestamps. These �long-life� pages may not violate the corresponding con-
solidation threshold but they may contribute a little to the current database. In the worst case, a
long-life page may be accessed by the current database of TSLQ, MVLQ, MVASERI and OLQ
because only 0:20� b of the contained records are alive (PTSLQ cons ¼ PMVLQ cons ¼ PMVASERI cons ¼
POLQ usef ¼ 0:20� b, where b is the total page capacity in records).

In Fig. 13b with the experiment of the 2048· 2048 images of scenario 1, OLQ outperforms the
other three structures because the number of quadcode inserts, deletes and updates per new image
is huge, the probability of a leaf update is very high and the number of �long-life� leaves is thus
very small. Fig. 14a illustrates the results with the same data sets, using a disk page of 2048 bytes.
The figure provides results for two different OLQ leaf capacities: 10 and 20 FD codes per leaf. In
the case of 10 records per leaf, the OLQ behavior is analogous to the one illustrated in Fig. 13b
and confirms that the page size increase weakens the OLQ SVCU performance. In the case of 20
records per leaf, the probability of a leaf update increases and the SVCU performance of OLQ
strengthens. Therefore, the proper setting of OLQ leaf capacity regarding the page size, the image
size and the number of inserts, deletes and updates per timestamp may lead to high SVCU values.
Fig. 14a indicates, also, that the page size increase does not affect the SVCU performance of
TSLQ, MVLQ and MVASERI.

5.4. Query processing

The evolving binary images were snapshot views of the scenarios presented in Section 5.1.
Query processing cost was measured for a static database state, i.e. no new image insertions were
processed concurrently to the queries. Unless otherwise mentioned, the disk page is set at 1024
bytes. There are two classes of queries to study, the Snapshot Query and the five time-interval
window queries mentioned in Section 4.1. In each query execution, we kept track of the average
number of disk reads needed to satisfy the query. The results of some of the conducted experi-
ments are reported below.



Fig. 14. (a) The SVCU for scenario 1 and page size 2048 bytes, (b) the Snapshot Query time response vs. LRU-buffer

size for data sets from scenario 3a, (c) the Snapshot Query time response as a function of the data sets from scenario 1.

T. Tzouramanis et al. / Data & Knowledge Engineering xxx (2003) xxx–xxx 31

ARTICLE IN PRESS
5.4.1. Snapshot queries

The Snapshot Query retrieves all the quadcodes that were valid at a certain timestamp Ti, where
i ¼ 1; 2; . . . ;N . Its algorithm performs independent searches through the TSLQ, MVLQ, MVA-
SERI and OLQ root(s), as if all images were separately stored in Linear Quadtrees. This algo-
rithm does not use the F- and ST- (or B- and ET-)pointers that link leaves of different trees. Fig.
14b compares the Snapshot Query time response of all the four STAMs for six LRU-buffer sizes.
The data sets used in this experiment are G-TERD data sets generated by scenario 3a. The results
are the average number of I/Os in the case of the Snapshot Query for each one of the N ¼ 200
different versions.

The figure shows that for LRU-buffer sizes of more than the threshold of 4 pages (which is
about the 0.07% of the index size in average), the query processing cost for the TSLQ, MVLQ and
MVASERI is independent of the LRU-buffer size. This is because as we claimed earlier, for the
Snapshot Query umbrella-like searches are performed in TSLQ, MVLQ, MVASERI and OLQ
and records are located in increasing quadcode order. Thus, every TSLQ, MVLQ and MVASERI
leaf is accessed only once per Snapshot Query and the same holds for the internal nodes when the
LRU-buffer size is larger than the height of the respective tree. However, some OLQ pages
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contributing to the answer may be accessed more than once if they host more than one leaf valid
for the specific timestamp. As a result, the query I/O cost of OLQ that appears in Fig. 14b does
not stabilize as fast as the corresponding I/O cost of the other three examined methods.

Figs. 14c and 15 depict the response for the Snapshot Query in terms of actual time (measured
in seconds) and disk activity (measured in I/Os), respectively. The results are given for each one of
the 200 timestamps per generated data set. The LRU-buffer size is fixed at 256 pages and it is
cleared between two consecutive runs of the Snapshot Query. The comparison of Figs. 14c and
15a corresponding to the same scenario, shows that (as expected) the qualitative performance
behavior of TSLQ, MVLQ and MVASERI structures in terms of actual time coincides the cor-
responding behavior of the I/O activity. However, it is interesting to note that OLQ response in
actual time is slower than the corresponding response of the other three structures, whereas in disk
activity it is faster. The reason is that by contrast to TSLQ, MVLQ and MVASERI, each OLQ
leaf page is partitioned into many small leaves. Therefore, the Snapshot Query time response is
burdened by additional CPU processes and buffer searches.

It is interesting, also, that TSLQ, MVLQ and MVASERI indicate almost the same behavior in
terms of disk activity in all the scenarios. On the contrary, OLQ appear to perform up to 40%
Fig. 15. Snapshot Query response time as a function of the data sets of (a) scenario 1, (b) scenario 2, (c) scenario 3a and

(d) scenario 3b.
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faster, 60% slower, 20% faster and 25% faster I/O processing in scenarios 1, 2, 3a and 3b,
respectively. This OLQ query processing behavior is analogous to that of the SVCU parameter and
the observations of Section 5.3.5 are valid here as well. The Snapshot Query may visit a large
number of OLQ pages hosting only a few long-life leaves that are however alive for the time-point
of interest. Our experiments with disk pages of 2048 bytes and the data sets of scenario 1, resulted
in TSLQ, MVLQ, MVASERI and OLQ behavior similar to that of SVCU illustrated in Fig. 14a.

5.4.2. Time-interval window queries
In the sequel, we investigate the performance when querying spatial information during a time

interval. The implementation of the algorithms of the five time-interval window queries is based
on algorithms described in [22]. We argue that all the leaves that contain or should contain re-
cords contributing to the query for a certain timestamp must be kept in main memory. These
leaves are needed in order to continue the process to the next timestamp. Thus, it is obvious that
different LRU-buffer sizes would result into different response times. To avoid risking the use of
an LRU-buffer size or a cashing technique that would bias for any structure, we decided to leave
this issue for future investigation. For example, an average LRU-buffer size (in pages) for a fast
Strict Containment Window Query response in MVASERI is
LRU -buffer sizeave ¼
k � k
2n � 2n

� �&
�

�RTiRTi

b� 1=4� ln 5

 !’
ð4Þ
where k � k and 2n � 2n are the query window and image size, respectively, �RRTi is the average
number of FD codes per timestamp and 1=4� ln 5 is the MVASERI average storage utilization
per timestamp (its proof is analogous to the ln 2 B-tree average storage utilization).

Below we report the average I/O activity for each of the five time-interval window queries
presented in Section 4.1 for the time internal [T1; TN ], where N ¼ 200 is the total number of in-
serted images. The qualitative performance behavior remains asymptotically the same for smaller
intervals in the time domain. Queries with window sizes of 4 · 4, 16· 16, 32 · 32, 64· 64, 128 · 128
and 256 · 256 pixels were carried out for all structures. Every query was executed 100 times for
every window size and every time for a randomly positioned window in the image space. The
buffer was cleared between two consecutive runs of each query.

Fig. 16 depicts some diagrams for the Strict Containment Window Query for a 64· 64 window
size, whereas the query processing algorithm uses the horizontal F- and ST-pointers at the leave
level. An interesting observation is that the shapes of all curves are almost the same as in Fig. 9,
which gives the index size of each structure for the corresponding scenario. This clearly shows that
the number of seeks (I/O cost) and that the data volume transferred to satisfy this query depend
directly on the storage requirements of each method.

However, the results shown in Fig. 16a for the OLQ query response in scenario 1 are not
consistent with our expectations with regards to the corresponding OLQ size. More specifically,
the response of OLQ in the Strict Containment Window Query was expected to be faster than the
corresponding MVASERI, MVLQ and TSLQ responses, regardless of the speed of the scene-
observer. The explanation for this behavior is that in the case of a scene-observer with a low
speed, the generated successive raster images exhibit minimal differences from each other and a
relatively small number of quadcode inserts, deletes and updates is performed in a tree leaf. In



Fig. 16. I/O cost of the Strict Containment Window Query for 64 · 64 windows as a function of the data sets of (a)

scenario 1, (b) scenario 2, (c) scenario 3a and (d) scenario 3b.
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TSLQ, MVLQ and MVASERI, if a leaf has enough available free slots it may absorb this number
of inserts, deletes and updates without performing a split. On the other hand, OLQ duplicates (T-
splits) every leaf of the ‘‘ephemeral’’ Linear Quadtree before proceeding to any quadcode insert,
delete or update. This behavior does not affect significantly the OLQ index size since every new
leaf is only a fraction of a data page. However, it influences the time response of all the time-
interval queries which use the horizontal F- and ST-pointers.

Fig. 16 indicates that when the difference between two consecutive images is small (e.g. when
the scene-observer or the objects are moving slowly) MVASERI and MVLQ are up to 30% faster
than OLQ and up to 22% faster than TSLQ. Reversely, when there is significant difference be-
tween two consecutive images, then OLQ are up to 15% faster than MVASERI and MVLQ and
25% faster than TSLQ.

The performance of TSLQ is always inferior to the performance of MVASERI and MVLQ
because of its considerable index size and its low MVU , as a result of the existence of deletion
marker records. This conclusion drawn for TSLQ holds for all our experiments in a consistent
way.
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In Fig. 17 the number of disk accesses is depicted for the Strict Containment Window Query as
a function of the data sets of two different scenarios and for query windows with 128· 128 and
256 · 256 sizes. The figure shows that the results for these window sizes are similar in shape to the
corresponding results presented in Fig. 16 (with respect to 64· 64 windows and the same sce-
narios) and are qualitatively proportional to the query size.

Fig. 18 shows some diagrams of the Border Intersect Window Query, as a function of the data
sets of scenarios 2b and 3a, for various query window sizes. The plots are similar to the case of the
Strict Containment Window Query and the corresponding data sets. The algorithmic handling of
this query also uses the horizontal leaf lists in the examined access method. The results for the I/O
time response on the General Border Intersect Window Query also have similarities in shape to
those of the Strict Containment Window Query and, therefore we did not include them.

Fig. 19 refers to the Cover Window Query and shows the number of page accesses as a function
of several various data sets and window sizes (i.e. 4 · 4, 16 · 16 and 32 · 32 pixels). This query can
be answered through two different approaches [22]:
Fig. 17. I/O efficiency of the Strict Containment Window Query, as a function of the data sets of (a) scenario 2 for

128 · 128 windows, (b) scenario 3b for 128· 128 windows, (c) scenario 2 for 256 · 256 windows, and (d) scenario 3b for

256 · 256 windows.



Fig. 18. I/O activity of the Border Intersect Window Query as a function of the data sets of (a) scenario 1 for 64· 64
windows, (b) scenario 3a for 64· 64 windows, (c) scenario 3a for 128· 128 windows, and (d) scenario 3a for 256· 256
windows.
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1. by using the horizontal leaf linking approach (the F- and ST-pointers), or
2. by performing top-down searches per tree version and moving to the next timestamp when the

YES/NO answer in the timestamp under process is concluded.

Tzouramanis et al. [22] claims that when two consecutive tree versions do not share much of
their data, then the second algorithmic approach for the Cover Window Query outperforms the
first one. This has also been confirmed by out own experiments. Thus, for the current experi-
mentation, it was decided to perform top-down tree traversals and to not follow the horizontal
leaf lists. The buffer is cleared between two consecutive query runs and not between two con-
secutive timestamps.

A general remark from Fig. 19 is that the OLQ approach leads to significantly higher I/O
activity than the other three methods for the three window sizes. This is due to the fact that the
algorithm of the Cover Window Query accesses not only leaves but also some internal nodes for
each tree version in the TSLQ, MVLQ, MVASERI and OLQ structures. In the case of OLQ, most



Fig. 19. Performance of the Cover Window Query as a function of the data sets of (a) scenario 3b for 4· 4 windows,

(b) scenario 3a for 4 · 4 windows, (c) scenario 3a for 16· 16 windows, and (d) scenario 3a for 32 · 32 windows.
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of the internal nodes are not shared between consecutive trees. The most representative example is
the current OLQ root which is duplicated in every transaction time, even if a single FD code
changes in the whole tree. Therefore, assuming that the number of similar but not identical raster
images per scenario is N ¼ 200, the cost for the Cover Window Query in OLQ will be at least 200
pages because of the corresponding tree roots.

This phenomenon does not hold in TSLQ, MVLQ and MVASERI since the corresponding
modification algorithms duplicate an internal node only if it overflows. Otherwise, it is shared
between consecutive tree instances and if an LRU-buffer with a proper size exists, the Cover
Window Query accesses this page only once. In TSLQ, only one root exists for all the stored
images. However, it can not take advantage of this against MVLQ and MVASERI, because the
TSLQ size is larger than the size of the other two structures.

The last query examined is the Fuzzy Cover Window Query. Fig. 20 illustrates the time re-
sponse of TSLQ, MVLQ, MVASERI and OLQ for two different scenarios and for query windows
of various sizes. Recall that this query can take two different forms. However, both forms are
processed with the same algorithm and, thus, they give the same query time response. This



Fig. 20. I/O efficiency of the Fuzzy Cover Window Query, as a function of the data sets of (a) scenario 1 for 64· 64
windows, (b) scenario 3b for 64 · 64 windows, (c) scenario 3b for 128 · 128 windows, and (d) scenario 3b for 256· 256
windows.
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algorithm uses the F- and ST-pointers to process the query. The observations are analogous to the
case of the Strict Containment and the Border Intersect Window Queries for the corresponding
data sets.
6. Discussion

Selecting the appropriate access method is crucial in achieving reasonable storage overhead and
efficient information retrieval. Towards this goal, in the remaining of this section we discuss the
major observations from a performance comparison of TSLQ, MVLQ, MVASERI and OLQ.
These observations are also summarized in Table 4, according to the scenario used.

• OLQ are superior in comparison to all the other access methods in terms of storage require-
ments and index construction cost (actual time and I/O disk activity). It is notable that the
building time of OLQ in seconds is at least 10 times faster than that for any other method. Also,



Table 4

Performance of TSLQ, MVLQ, MVASERI and OLQ according to the scenario used

TSLQ MVLQ MVASERI OLQ

Sce1 Sce2 Sce3 Sce1 Sce2 Sce3 Sce1 Sce2 Sce3 Sce1 Sce2 Sce3

Index size F G G/F F G VG/G F G VG/G VG VG VG

Building cost (s) F F F G G G G G G VG VG VG

Building cost (I/Os) F G F/G F VG VG/G F VG VG/G VG VG VG

DR VG G G VG VG VG VG VG VG VG G F

MVU B B B G G G G G G VG VG VG

SVCU F F F F F F F F F VG F F

Snapshot Query F VG G/F F VG G F VG G VG F VG

Strict Cont. W.Query F G VG G VG VG G VG VG VG VG VG

Border Int. W.Query F G VG G VG VG G VG VG VG VG VG

Gen.Bor.Int.

W.Query

F G VG G VG VG G VG VG VG VG VG

Cover W.Query VG VG VG VG VG VG VG VG VG VG B B

Fuzzy Cover

W.Query

F G VG G VG VG G VG VG VG VG VG

Explanations: Sce1¼ scenario 1, Sce2¼ scenario 2, Sce3¼ scenarios 3a/3b, VG¼Very Good, G¼Good, F¼Fair and B¼Bad.
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the MVU storage utilization parameter of OLQ approaches 69%, i.e. the B-tree average storage
utilization, which means that OLQ store the redundant copies without any compromise. On the
other hand, its I/O query response is at least as good as that of MVASERI for the four out the
five time-interval window queries examined and in most of the cases for the Snapshot Query.
However, the Cover Window Queries are inefficiently executed through OLQ. This is because
the Cover Window Query performs top-down tree searches through all the OLQ roots and vis-
its a large number of index nodes, most of which are not shared between consecutive tree ver-
sions.

• MVASERI provides the second-best performance. It is a rather robust access method that can
address time-interval queries with good average performance, using only minimal extra space
(about 10–30% more space than OLQ) and comparable or minimal extra building I/O cost with
regard to OLQ. In relation to the other structures, MVASERI provides fast responses in the
Snapshot Query and very fast responses in the Cover Window Query. It gives the smaller dupli-
cation ratio reducing thus the size of the historical database. It is superior to MVLQ and TSLQ
in almost all our experiments. However, even if MVAS improves significantly the overall space
used by MVBT in temporal databases, the existence of batch inserts, deletes and updates per
transaction time for time-evolving regional data reduces this efficiency in MVASERI in favor
of MVLQ.

• TSLQ is based on the TSBT which is a transaction-time access method designed for cases where
the most frequent changes are object inserts and updates. In the face of evolving images that
cause multiple quadcode inserts, deletes and updates per time-slot, the existence of deletion
markers and pure K-splits that do not sweep historical data from the current database degrades
TSLQ space and time performance. To deal with this drawback, we set the leaf consolidation
threshold that is an important prerequisite for more compactly clustered alive records in cur-
rent versions, thus improving the index size, I/O building cost and query response time.

• The page size increase does not affect much the performance of TSLQ, MVLQ and MVASERI.
By contrast, OLQ are very sensitive to the page size. When the page size increases the search
performance of OLQ deteriorates because the larger the page size, the higher the number of
pages containing long-life OLQ leaves is. This affects greatly the SVCU storage utilization
parameter, the Snapshot and the Cover Window Query response. However, the proper setting
of the OLQ leaf capacity is capable of reducing the size of the current database, the Snapshot
and the Cover Window Query response time.

• The storage requirements of all Quadtree-based STAMs depend mainly on the extent at
which the time-evolving regional data change. The larger the difference from one image to
the next, the larger the storage requirements. OLQ is the most sensitive structure in this re-
spect. However, OLQ have the advantage that, depending on the image difference, its perfor-
mance can become effective by the proper setting of its leaf capacity. Small or large image
difference requires respectively very small or small OLQ leaves, in order to avoid the existence
of many long-life leaves that degrade its SVCU value and its Snapshot and Cover Window
Query responses.
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7. Conclusions

In the present paper, we focused in benchmarking access methods for time-evolving regional
data. We compared four Quadtree-based STAMs, the Time-Split Linear Quadtree (TSLQ), the
Multiversion Linear Quadtree (MVLQ), the Multiversion Access Structure for Evolving Raster
Images (MVASERI), and Overlapping Linear Quadtrees (OLQ), by tuning several parameters
that affect their performance. None of the access methods studied can be viewed as the best in all
cases, e.g. regardless of the application. However, in general:

• OLQ is the most space efficient method. Its index construction is impressively faster than
those of the other examined structures. It performs in snapshots and time-interval window
queries as good as or better than MVASERI. However, OLQ appears to be inefficient for
the execution of the Cover Window Query. Its most important advantage is the simplicity
of its implementation.

• MVASERI is always the fastest structure in Cover Window Query, whereas its response in
snapshot and time-interval window queries is good in general. It is a good alternative if some
extra space and time for index construction can be tolerated.

• MVLQ is superior compared to TSLQ and slightly inferior than MVASERI, in almost all our
experiments.

• TSLQ is clearly the method with the greatest costs in space, building time and search response.

In summary, OLQ are the best choice for the manipulation of sequences of evolving raster
images. Considering that with current technology storage is not an issue in comparison to the time
performance, MVASERI could be chosen as an acceptable alternative method.

Another contribution of this paper is the design of a new technique to handle efficiently time-
interval queries. This new technique links the leaves of different tree versions through ‘‘hori-
zontal’’ pointers and provides very fast query response without reporting duplicated data. The
only expense is the space overhead of holding four pointers per data node.

In the future we plan to develop a declustering scheme for the nodes of the TSBT, MVLQ,
MVASERI and OLQ in order to exploit I/O parallelism for snapshot and time-interval window
queries. Another interesting path for future research is the proposal of algorithms for other
spatio-temporal queries (such as window queries with view point changing in time, spatio-tem-
poral joins, as well as spatio-temporal nearest neighbor queries) in the context of Quadtree-based
STAMs, and the investigation of their performance. For example, consider answering time-
interval window queries while the scene-observer of G-TERD zooms in or out. Assuming that the
window of the query remains constant in relation to the field of vision of the scene-observer, if
the scene-observer zooms-in, the regional objects will appear larger and fewer objects will be in the
query area. This query looks like a pyramid [6] in the three-dimensional space where one
dimension stands for the time domain.

Suggestions for further research would also be to perform experiments based on similar arti-
ficial images created by shifts, rotations, scaling and other transformations. Besides, we believe it
would be interesting to examine the presented methods with grayscale and/or colored images.
Finally, it is important to note the generality of the methodology of transforming TSBT, MVBT,
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MVAS and OBþ trees into efficient STAMs by embedding ideas from the Linear Quadtree. Thus,
this methodology can also be applied into other transaction-time access methods (especially to the
B-tree-based ones).
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