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Abstract

In recent years a lot of divergent approaches have been proposed for the management of Valid Time (Historical)
data. However, no systematic effort has been reported, concerning the identification of the properties of such a
model. In the present work, it is initially shown that all proposed Valid Time (VT) models can be applied to areas
of practical interest, not related to VT data management. All VT models are also classified with respect to two
orthogonal parameters, the way time is represented, and the level at which it is incorporated (tuple or attribute).
This enables to identify that two reference VT models can be specified, VT-INF, a simple extension to the
conventional relational model and VT-NESTED, a more general one, which supports, in addition, relation-valued
attributes. The properties of these models are identified. Two more reference interval relational models are
proposed, I-INF and I-NESTED, which support any type of interval data. I-NESTED is the most general, in that it
can be applied to all the areas in which all others are applicable. Results are also reported, concerning the
evaluation of all VT models.

Keywords: Data type; Data model; Time point; Time interval; Valid time data; Historical data; Interval data;
Historical database; Interval database

1. Introduction

Commercial Database Management Systems (DBMS) have been based on models which
are suitable for the representation and manipulation of the most recent snapshot of a subset of
the real world, we are interested in. Using such a model, we can either record new pieces of
data or delete/update any piece which does not reflect this most recent snapshot. Such a
model is called snapshot. However, in recent years, a continuously growing interest can be
witnessed, in the modelling of Historical Data or Valid Time (VT) data, according to a new
terminology proposed in [13], i.e. data which was valid at some previous state or will be valid
at some state in the future. Indeed, although Codd’s relational model [6] can handle certain
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types of such data, Codd himself admits [7] that the management of VT data is a

distinguishing problem.

On the other hand, research in VT databases has mainly focused in the formalisation of VT
extensions to the relational model. However, pioneers in the area admit [1, 3, 4, 19] that the
properties which a VT DBMS should satisfy are far from obvious, as is also verified by the fact
that over a dozen of diverge proposals have appeared in the literature [1-3, 5, 9, 12, 14-16,
19, 21, 23-29, 32]. Today, the properties, which a VT data model should satisfy, is still
considered to be an open problem, in spite of TSQL2, a Temporal extension to TSQL2, which
was recently proposed [27].

One of the purposes of this present paper is the identification of the properties of a
reference VT model. Based mainly on the representational capabilities of the most diverge VT
extensions to the relational model, which have been proposed, we identify, in particular, the
properties of two reference VT models, VT-INF and VT-NESTED. They are, respectively,
extensions to the S-1NF, the Snapshot model which satisfies First Normal Form (1INF) [6], and
S-NESTED, the Snapshot model which neglects INF [11]. Although it could be argued that
the identification of the properties of a reference model cannot be based on objective criteria,
the following should be noted:

(i) Our work has been based on the necessity to support certain requirements, which are of
practical interest, according to the opinion of many researchers.

(i) We have taken into consideration the properties of the VT models which have been
proposed. Indeed, it is shown that the models which represent simple extensions to
Codd’s, have many properties in common, in spite of their seemingly many differences.

(iii) We also report on the evaluation of VT-1NF with respect to actual user requirements, as
undertaken within ORES', a project aiming at the management of VT data.

It should also be noted that there is no objective way, either, to show that the set of properties
of each reference VT model is exhaustive. Again, however, we notice that although Codd’s
model [6] has been adopted, its properties are not exhaustive if one requirement is either the
satisfaction of the transitive closure property [33] or recursiveness. Although a DBMS, which
1s based on [6], relieves application programmers from a substantial amount of coding, the use
of programming languages is still necessary. As a general principle, if the properties of a
model are too few, it is most likely that a substantial number of user requirements will not be
satisfied. At the other end, a model may have arbitrarily many properties but, in this case, it
may turn out that it is too complex to use. Only one relatively objective measurement of its
functionality can be made, how effective it is, in satisfying quite common user requirements
within the area it is dedicated to serve.

One characteristic of VT models is that they implicitly incorporate time points and/or time
intervals as primitive data types. However, the paper also serves a second purpose, it shows
that all the models have the potential to be applied to a wide range of areas of practical
interest, not related, in any way, to the management of VT data, by incorporating a generic
type of point and/or interval data. Thus, we also identify the properties of two more reference
models, I-INF and I-NESTED. We show that they are proper supersets of VT-INF and
VT-NESTED, respectively. I-NESTED is the most general of all, in that it inherits the

' ORES comes from the Greek word QPEZ, which stands for HOURS.
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properties of all other models. Although the management of interval data has many
application areas, we are not aware of any piece of work, to identify the properties which a
relevant model should satisfy.

The remainder of this paper is outlined as follows: In Section 2 we show that all proposed
VT models can be applied to areas of practical interest, not related to VT data management.
All VT models are then classified with respect to two orthogonal parameters, the way time is
represented, and the level at which it is incorporated (tuple or attribute). This enables to
identify that two reference VT data models can be proposed, VI-INF and VT-NESTED,
which are consistent extensions to S-1NF and S-NESTED, respectively. Their properties are
presented in Sections 3 and 4. In Section 5 we evaluate all VT models which are simple
extensions to Codd’s, with respect to VT-1NF. We thus show that they have many similarities,
in spite of their major differences. We also report on the evaluation of VT-1NF with respect to
all others and against actual user requirements. In Section 6 we show that time is characterised
by a high degree of abstraction. Based on this observation, we identify the necessity to define
two more radical extensions to S-INF and S-NESTED.

2. Valid time models

In this section we provide a brief overview of the most characteristic VT models, in terms of
data representation and operations. In all models, time is considered as discrete and totally
ordered. Hence, for each model, we choose another discrete, totally ordered set. Thus, we
show that the particular model can be applied to areas other than VT databases. Note that, for
easiness of reading, we adopt a uniform syntax for the operations defined in each model,
equivalent to the original.

2.1. Navathe and Ahmed’s model

In relation SALARY (Fig. 1) we see how VT data, concerning the evolution of employee
salaries with respect to time, can be represented in this approach [21]. In attributes From and
To we record the boundaries of time intervals, closed on both sides. Thus, the first tuple
shows that John’s salary during [10, 20], was 10k. The second tuple shows that this salary was
again 10k, during [30, 40].

SATARY SERVICE
Name Amount From To Desk Name From To
John 10k 10 20 1 John AARD CCC
John 10k 30 40 1 John EEE FFF
Alex 14k 5 30 2 Alex GGG HHH
Alex 18k 31 60 2 Alex KKK LLL

Fig. 1. Relations in Navathe and Ahmed’s approach.
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However, if time is replaced by the set A={‘AAA’,'BBB’,...,ZZZ’}, which is
lexicographically ordered, then SERVICE (Fig. 1) shows a non-VT relation, which concerns
employees who serve citizens in a public organization: Now, the first tuple shows that citizens
whose name starts from AAA, BBB, or CCC, are served by John, at desk 1. The second one
shows that John also serves those whose name starts from EEE-FFF. We now demonstrate
how the operations defined in [21] can manipulate relation SERVICE.

The Union of SERVICE with a union-compatible relation S of a unique tuple, (1, John,
DDD, DDD), yields R1 (Fig. 2). That is, the tuples with the overlapping or adjacent
intervals, [AAA, CCC], [DDD, DDD] and [EEE, FFF], merge into a single tuple, whose
value, for attributes From and To, represent the interval [AAA, FFF]. Inversely, the
difference R1-S yields SERVICE, again. Selection has been extended by predicates like
overlaps, follows etc., which can be applied to pairs of intervals, thus enabling to retrieve a
subset of the tuples of a relation. Projection has not been changed. Cartesian Product is not
formalised but four distinct types of a Join are defined: Two of them yield a relation with one
pair of From, To attributes, whereas the other two yield a relation with two such pairs. The
remainder operations function as follows:

TIME-SLICE[['BBB’, ‘GGG’]J(SERVICE), retrieves the first three tuples of SERVICE,
because the intervals in them intersect with ['BBB’, ‘GGG’].

INNER-TIME-VIEW[[‘BBB’, ‘CCC’]J(SERVICE) retrieves the first tuple of SERVICE
because [‘BBB’, ‘CCC’] is a sub-interval of [{AAA’, ‘CCC’].

OUTER-TIME-VIEW[[‘'DDD’, ‘FFF’]](SERVICE) retrieves the second tuple of SERVICE
because [‘DDD’, ‘FFF’] is a super-interval of ['EEE’, ‘FFF’]. A VT extension to SQL is also
defined.

The representation of VT data, as described in the above model, is also adopted in the
models proposed by Jones and Mason [15], Ben-Zvi [2], Sadeghi [23], Snodgrass [26], Sarda
[24, 25] and Lorentzos and Johnson [16], except that the time intervals may be open to the left
and closed to the right. The operations are not defined formally in all these models. Individual
remarks on the operations, are as follows:

In principle, Union and Difference function as in Navathe and Ahmed’s. Similarly, some
new predicates [15, 25, 26] and functions [25, 26] are defined.

In [2] one operation retrieves the tuples which are valid at a user-supplied time.

In [23] one operation retrieves the From, To values of selected tuples. Cartesian Product

R1 R2
Desk Name Trom To Desk Name From To
1 John ARR FFF 1 John ARA BBB
2 Alex GGG HHH 1 John BREB CcCcC
2 Alex KKK LLL 1 John EEE FFF
- 2 Alex GGG HHH
2 Alex KKK LLL

Fig. 2. Relations in Navathe-Ahmed’s and Sarda’s approach.
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has been extended in a way which incorporates intersection semantics. For example, assume
that a relation S(A, From, To) has a single tuple, (1, HHH, KKK). We then notice that the
interval [HHH, KKK] intersects with the intervals of the last two tuples of SERVICE.
Therefore, the application of Cartesian Product to SERVICE and S yields a relation R(Desk,
Name, A, From, To) with two tuples,

(2, Alex, 1, HHH, HHH),
(2, Alex, 1, KKK, KKK),

whose intervals represent the intersection of the intervals of SERVICE with the interval in S.
The approaches in [25, 26] also support event relations, relations with only one attribute,
Time, in place of attributes From and To. Time can also be represented as a point in [16].
In Sarda’s approach [24, 25] intervals are closed to the left and open to the right. The
traditional Projection and Cartesian Product operations do not change. The former may result
in a relation without From To attributes and the latter may yield a relation with two pairs of
such attributes. Two more operations in this approach are the following:
EXPAND(SERVICE) yields R2 in Fig. 2, i.e. each interval is split into elementary intervals,
i.e. their value for attribute To equals that for attribute From, increased by one. (Recall that
in this approach, the values x, y, for attributes From, To, respectively, are interpreted as an
interval [x,y).)
Inversely, COALESCE(R2) returns SERVICE, again. More generally, this operation
merges into one, all the tuples whose values for From and To form adjacent or overlapping
intervals. Thus, if the tuples of a relation S(A, B) are

(1, AAA, EEE),

(1, CCC, KKK),

(1, KKK, MMM),

(1, PPP, TTT)
then COALESCE(S) returns a relation with tuples

(1, AAA, MMM),

(1, PPP, TTT).
The approach by Lorentzos and Johnson [16] appeared shortly before Sarda’s [24] and it is
more general: Firstly, two operations, UNFOLD and FOLD, are functionally equivalent to
EXPAND and COALESCE, respectively. Secondly, a relation may have more than one pair

of From, To attributes. Finally, the Union and Difference operations can be applied to
relations with more than one pair of such attributes.

2.2. Tansel’s model

Fig. 3 shows an instance with scheme DEPARTMENT, in Tansel’s approach [28]. The
instance consists of two tuples. In this relation we record, for each department, its number,
current manager, and current employees. In addition, we record, in attribute Effectiveness,
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DEPARTMENT
No Manager Effectiveness Employees
1 Llex {[{100, 300) 1, {Alex, Carol, Mark}
[300, 500) 2,
(500, 600) 3}
2 John {[100, 250) 1, {Jim, John, Roger}
[250, 400) 2,
[550, 600) 2}
COMPETITION
No Chief Record Members

Fig. 3. One instance in Tansel’s approach, under two distinct schemes.

history records of the effectiveness of the department. Specifically, a value of a tuple for
attribute Effectiveness is a set, whose elements are pairs of the form (time-interval, value).
Thus, for department 1 we can see that during the time interval [100, 300), the department
was marked with 1. Then, during [300,500) and [500,600), the mark was 2 and 3,
respectively. Clearly, therefore, DEPARTMENT contains VT data.

Now, consider another scheme, COMPETITION(No, Chief, Record, Members), which is
depicted at the bottom of Fig. 3. It is used to store the daily records of a climbing competition:
For each team, we record its number, chief and members. As opposed to the previous
scheme, in attribute Record, we now record a set whose elements are pairs of the form
(integer-interval, time-point). In this attribute we now keep records of the daily effectiveness of
each team. Assuming, therefore, that this relation has exactly the same data with DEPART-
MENT, we can see that, on the first day of the competition, team 1 started at height 100
metres and reached 300 metres. The next two rows of this tuple show the record of the team
on the second and third day. If we compare the instance, under the two distinct schemes, we
notice that, a pair in Effectiveness is interpreted as (time-interval, value) and, in the Record,
as (integer-interval, time-point). However, we argue that COMPETITION again contains VT
data, except that the roles of the time and value components, in attribute Record, have been
reversed: Now, intervals represent heights and values represent time. Hence, according to
Tansel’s terminology [28], we now have values for time, stamped by height intervals.
Obviously, the operations defined in this model can directly be applied to COMPETITION.
We outline them briefly.

The Union of COMPETITION with a union-compatible relation S of a single tuple,

(2, John, {[400, 550), 2}, {Jim, John, Roger}),

yields a relation R, whose first tuple matches the first tuple of COMPETITION, and its
second tuple is
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2 John {[100, 250) 1, {Jim, John, Roger}
[250, 600) 2}

Thus, adjacent and/or overlapping intervals, in attribute Record merge again. Operation R-S
yields COMPETITION again. Selection incorporates predicates that can be applied to
set-valued attributes and enables the retrieval of a subset of tuples. Projection and Cartesian
Product are defined as in the traditional way.

To save space in the sequel, let us assume that COMPETITION contains only the first
tuple. We then demonstrate the functionality of two operations, UNPACK and PACK,
originally defined in [22]:

UNPACK[Members](COMPETITION) yields R1, with three tuples (Fig. 4). Similarly,
UNPACK|[Record](COMPETITION) yields R2 (Fig. 4), with three tuples. PACK performs

R1
No Chief Record Members
1 Alex {[{100, 300) 1, Alex
[300, 500) 2,
[500, 600) 3}
1 Alex {rioo, 300) 1, Carol
[300, 500) 2,
{500, 600) 3}
1 Alex {{100, 300) 1, Mark
[300, 500) 2,
[500, 600} 33}
R2
No Chief Record Members
1 Alex [100, 300) 1 {Alex, Carol, Mark}
1 Alex [300, 500) 2 {Alex, Carol, Mark}
1 Alex [500, 600) 3 {Alex, Carol, Mark}
R3
No Chief RV RF RT Members
1 Alex 1 100 300 {Alex, Carol, Mark}

Fig. 4. Result of operations in Tansel’s approach.
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the inverse, i.e. when applied to R1 on Members (to R2 on Record) it returns the first tuple
of COMPETITION.

To save space again, we assume that R2 contains only the first tuple. Then another
operation, TRIPLET-DEC[Record](R2), decomposes attribute Record into three distinct
attributes (see R3, Fig. 4). Inversely, TRIPLET-FORM[RYV, RF, RT](R3) returns again the
first tuple of R1.

Some more operations, in this approach, are proved to be expressible in terms of the above.
Finally, we do not demonstrate a final operation, AGGREGATE-FORMATION; it incorpo-
rates aggregate functions and can be used to non-VT relations, too.

A variation of this model is proposed by Tansel and Garnet in [29]. The major difference,
from the approach described above, is that PACK and UNPACK are replaced by operations
NEST and UNNEST, respectively, originally defined in [11].

2.3. Clifford’s model

The most recent version of this model has been formalised in [5]. VT time can be
represented either as a point or as an interval closed on both sides. If we replace Time by the
set of integers, we can apply this approach (Fig. 5), in order to represent the average pH
values and average CaCO3 composition, for various profiles (holes vertical to the surface) and
horizons (intersection of holes with layers of land). We have chosen to represent time as point,
in order to elaborate the difference of this approach from Tansel’s.

LAND has two tuples and each of them is associated with a depthspan (lifespan in Clifford’s
approach) shown in the last column of LAND. Also, each attribute is associated with an
interpolation function. This enables to deduce the value of a tuple for an attribute, at a depth
not explicitly recorded in the relation. The data recorded in each attribute is valid only at the
intersection of the depth, which is deduced by the interpolation function, with the depthspan
of the tuple: Assume, for example, that the interpolation function associated with the pH
attribute is a step function. It can then be deduced that, for profile 1 and horizon 1, the
average pH value is 8.0 for the depth [0, 30]. This value is 8.2 for the depths [30, 50] and
[80, 200].

Two variations for Union are provided: The first functions the ordinary way: The result
relation is obtained by appending in it the tuples of the two relations which participate in
Union. The second merges tuples: Assuming that LAND contains only the second tuple, its
union with S (Fig. 5) yields R1 in the same figure. We notice that the depthspan of R1 is the
union of the depthspans of the two relations. Inversely, R1-S yields again the second tuple of
LAND. Projection and Cartesian Product are defined the ordinary way (except that Product
may result in a relation containing some null values).

SELECT-IF retrieves a subset of the tuples of a relation.

SELECT-WHEN retrieves the portions of those tuples which satisfy the selection formula.
The depthspan of each tuple, in the result relation is a subset of the depthspan of the tuple in
the original relation. For example, SELECT-WHEN[pH = 8.2](LAND) retrieves R2 (Fig. 5).

TIME-SLICE is similar to SELECT-WHEN except that it gets, as an argument, a depth
value: Thus, assuming that LAND contains only the first tuple, then TIME-SLICE[[10,
20]}J(LAND) returns R3.
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LAND
Pno Hno pH CaCoO3 depthspan
1 1 0 8.0 0 22.8 | [[ 0, 507,
30 8.2 60 22.4 [80, 200717
1 2 0 8.4 0 32.5 [[ O, 1501}
50 8.3 80 38.6
S
Pno Hno pH CaCo03 depthspan
1 2 50 8.3 (150 37.0 [[{150, 2001])]
R1
Pno Hno pH CaCo0o3 depthspan
1 2 0 8.4 0 32.5 [[0, 200]]
50 8.3 80 38.6
150 37.0
R2
Pno Hno pH CaCo3 deptihspan
1 1 30 8.2 0 22.8 [[30, 507,
60 22.4 [80, 2007]]
R3
Pno Hno pH CaCo03 depthspan
1 1 10 8.0 10 22.8 [[10, 2071 ]

Fig. 5. Relations in Clifford’s approach.
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WHEN returns the depth values at which the data which satisfy the selection form‘ula are
valid, i.e. WHEN[pH = 8.4](LAND) returns [0, 50]. Finally, some variations of a Join have
also formalised, but they are not discussed here, for brevity reasons.

2.4. Gadia’s model

We choose the set
PLATE = {XY|'A’ < X =‘Z’,0<Y < 10000, Y integer},

which can substitute the role of time in the VT model defined in Gadia’s approach [9]. This set
is totally ordered, in the ordinary lexicographic way. .
CARPLATES (Fig. 6) shows the departments of a public organization which are authorised
to issue car plates. For each department, the relation also shows the employees who have been
assigned this task. Thus, D1 is responsible for the car plates in [AAA0001, CCC0001). Those
in [AAA0001, BBB0001) are processed by Tom whereas those in [BBB0001, CCC0001) are
processed by Mary. Each attribute value in this approach must be accompanied by a plate
domain (temporal domain in Gadia’s approach), which is defined as the union of car plate
intervals. For example, the plate domain of department D2 equals [EEE0001, GGG0001) U
[KKKO0001, MMMO0001). In CARPLATES, we notice that the plate domain of D1 (Fig. §)
equals the union of the plate domains of the values recorded in attribute Manager, of this

CARPLATES
Department Manager
[AARAODO1, CCCO001) D1 {ARA0001, BBB0001l) Tom
[BBB0OOO1, CCCO0001) Mary
[EEE0001, GGG0001l)U [EEE0001, FFF0001) Alex
[KKK0001, MMMOO00O1l) D2 [FFF0001, GGGQ0001) Mark
[KKK0001, MMMQOOOl) John
R1
Department Manager
{AAAO0O1, DDD000O1) D1 [AAAOOCO1, BBB0001l) Tom
[BBB0001, DDD0001) Mary
[EEE0001, GGG0001)U [EEE0001, FFF0001) Alex
[KKK0001, MMMO001l) D2 [FFF0001, GGGO0001l) Mark
[KKK0001, MMMO0OO1) John

Fig. 6. Relations in Gadia’s approach.
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same tuple. Gadia asserts that this property (termed homogeneity) must be satisfied by all the

tuples in every relation.
The Union of CARPLATES with a relation S, of a single attribute,

(([CCC0001, DDD0001) D1), ([CCCO001, DDD0001) Mary)),

yields R1 in Fig. 6. Inversely, R1-S yields CARPLATES again. Projection is defined the usual
way. The same also applies to Cartesian Product except that, because of the homogeneity
property, the plate domain of each tuple in the result relation equals the intersection of the
plate domains of the tuples from which it is deduced. Select retrieves portions of tuples: Thus,
SELECT|[Manager = ‘Mark’](CARPLATES) yields a single tuple,

(([FFF0001, GGGO0001) D2), ([FFF0001, GGGO0001) Mark)).

Finally, one operator, TDOM, returns the plate domain of a relation.
2.5. McKenzie and Snodgrass’s model

To show how the model defined in [19] can be applied to an area, another than VT
databases, let the role of time be played by the set T={0.0,0.1,...,99999.9}. T is a totally
ordered subset of the set of reals. Let us now consider relation RAIL (Fig. 7): For each
portion of a railway system, we record, in this relation, the employee who inspects various
parts of the railway track. Thus, the first tuple shows that Alex supervises tracks
0.0,0.1,...,4999.9 Km of the route Athens—Lamia. In each attribute of a relation we must
record a value component and, optionally, a valid component. The latter represents a subset
of T. For example, in the first two attributes of RAIL we record only value components,
whereas in the third one we record both value and valid components. Each relation must have
at least one attribute with both value and valid components. Also, a relation may not have
two tuples which satisfy the property that all their value components are pairwise identical.

The Union of RAIL with a relation S of two tuples,

(Athens, Patra, {6000.0, . . ., 9999.9} Paul),
(Athens, Halkis, {0000.0, . . ., 3999.9} Paul)

yields R1 (Fig. 7), i.e. tuples with pairwise identical values merge into one. R1-S gives RAIL
again. The ordinary Projection has been revised in [19]: For example, PROJECT
[Employee](R1) would normally give a relation of four tuples. In this approach, however, this
operation gives R2 (Fig. 7), where we observe a merging of tuples. Cartesian Product
functions the ordinary way. The selection formula of a retrieval may not incorporate valid
components. A final operation, HISTORICAL-DERIVATION, not described here, enables
either the modification of a valid component or the assignment of a valid component to a
value component.

2.6. TSQL?

TSQL2 [27], an extension to SQL2 [10], is the result of a joint effort. A relevant conceptual
algebra has been formalised in [31]. The approach adopts Gadia’s homogeneity property and
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RAIL
Departure Destination Employee
Athens Lamia {0.0, 0.1, ..., 4999.9} Alex
Athens Lamia {5000.0, ceey 9999.0} John
Athens Patra {0.0, 0.1, ..., 4999.9} Paul
R1
Departure Destination Employee
Athens Lamia {0.0, 0.1, ..., 4999.9}) Alex
Athens Lamia {5000.0, «--y 9989.0} John
Athens Patra {0.0, 0.1, ..., 4999.9,
6000.0, ooy 9999.9} Paul
Athens Halkis {0.0, 0.1, ..., 3999.0} Paul
R2
Employee
{0.0, G.1, ..., 4999.9} Alex
{5000.0, «e., 9999.0} John
{¢.0, 0.1, ..., 4999.9, 6000.0, ..., 9992.9} Paul

Fig. 7. Relations in McKenzie and Snodgrass’s model.

temporal domains. To demonstrate the functionality of the algebra in areas other than VT
databases, let the set of time points be replaced by the set A = {‘AAA’, ‘BBB’, ..., ZZZ’}.
Then relation SERVICE, in Fig. 1, can be represented as is shown in Fig. 8. A relation may
have at most one attribute, where valid time is recorded.

Union and Difference apply as in Gadia’s [9]. Cartesian Product incorporates intersection
semantics, as in Sadeghi’s [23]. A Selection may contain predicates which incorporate time.

SERVICE
Desk Name Range
1 John [AAA, CCC] U [EEE, FFF]
2 Alex [GGG, HHH] U [KKK, LLL]

Fig. 8. A relation in TSQL2.
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A projection consists not only of an attribute list, it also includes a function which can
modify the valid time of a tuple. Assume, for example, that td1, td2 are plate domains and
that intersection(td1, td2) returns their intersection. Then, an example of the extended
Projection is PROJECT[Name, intersect(Range, [EEE, KKK])(SERVICE), and yields two
tuples,

(John, [EEE, FFF])
(Alex, [GGG, HHH] U [KKK, KKK]).

Operation SLICE splits a relation with temporal domains to another, where tuples are
stamped with maximal time intervals. For example, SLICE(SERVICE) yields a relation with
tuples

(1, John, [AAA, CCC])
(1, John, [EEE, FFF))
(2, Alex, [GGG, HHH])
(2, Alex, [KKK, LLL]).

This is the only operation by which the result relation may contain tuples whose values on all
attributes, except Range, are identical. Another operation projects out valid time and
transforms a relation to the respective snapshot. Some more operations have also been
defined, including variations of a Join, which are not described here, for brevity reasons.

Alternatively, the value of all tuples for Range may be represented as a set of time points
(event relation), as in [19]. For example, if SERVICE (Fig. 8) were an event relation, the
value of its first tuple for attribute Range would be {AAA, BBB, CCC, EEE, FFF}. In such
relations, the previously presented operations have been adapted, accordingly.

2.7. Other approaches

Some more approaches have also been proposed, not described here: Tuzhillin and Clifford
[32] define an algebra of six operations and an equivalent calculus, independent of some
particular VT model. Jensen, Soo and Snodgrass [14] define an algebra of seven algebraic
operations, of a conceptual model. The algebra by Jang and Johnson [12] incorporates
transaction time, consists of eight operations and has similarities with Tansel's [29]. A
completely different approach is undertaken by Ariav [1], who defines an algebra and SQL
extension: Time is incorporated at the relation level. The set of algebraic operations is
incomplete (only three operations are defined) and, as Ariav admits, further work is needed in
this approach. Again, for all these models, similar, non-VT database applications, of practical
interest, can be identified.

2.8. Classification of models
In the table of Fig. 9, all proposed VT models have been classified with respect to two

orthogonal parameters, the way valid time is represented (point, interval, etc.) and the level at
which time is incorporated (tuple, attribute, relation). The numbers in brackets denote the
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Level of
Time Tuple Attribute |[Relation
Recording Time- Time- Time-
Stamping Stamping Stamping
Time
Representation
Snodgrass Clifford-
Time point Sarda (7) |Croker (8) |Ariav (3)
Lorentzos-
Johnson (7)
Jones et al
Ben-Zvi (6)
Snodgrass Clifford-
Time interval Navathe- Croker (8)
Ahmed (11) —_
Sadeghi (6)|Tansel (9)
Sarda (7)
Lorentzos-
Johnson (7)
McKenzie-
Set of Snodgrass (6) —_—
time points Jang-
TSQL?2 Johnson (8)
Gadia (5)
Temporal Domain Gadia- e
Yeung (5)

Fig. 9. Classification of VT data models.

number of fundamental algebraic operations defined in each model. The approaches in [14,
32}, have not been included, since they are argued to be independent of any particular time
and relation representation.

We notice that the models in the second and third column, termed in the literature [20] as
tuple time-stamping and attribute time-stamping, tespectively, represent two distinguishing
modelling approaches:

(i) Models whose basic characteristic is that the value of a tuple for an attribute is either
atomic or time (second column). If we call Snapshot First Normal Form Relational Model
(S-1NF) the one defined in [6] and consider it as a reference model, then these approaches
can be seen as simple extensions to S-1NF.

(ii) Models whose basic characteristic is that both values (either atomic or non-atomic) and
time are recorded in an attribute (third column). Such models clearly violate First Normal
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Form. Hence, if we call Snapshot Nested (S-NESTED) the model defined in [11] and
consider it as a reference model, too, all these models can be seen as extensions to
S-NESTED. Note that TSQL2, though a tuple time-stamping approach, also belongs to
this class, since it violates First Normal Form.
The above imply that the properties of two reference VT models can be identified, VT-INF
and VT-NESTED, which can be seen as extensions to S-INF and S-NESTED, respectively:
Their properties are identified in Sections 3 and 4, respectively.

3. Properties of VT-INF

In this section we identify the properties of VT-INF. We initially notice that a general
property of every data model is that it must be characterised by a satisfactory degree of
abstraction and simplicity [30]. In [30], the generic properties of a data model are also
identified, i.e., the data types and structures which are supported, as well as its operations.
Thus, in the following, we investigate, separately, the general properties of a model and the
individual properties of a VI-INF model, in terms of data types, data structures and
operations. Since time is the key parameter in a VT model, the properties of time are also
included. Each proposed property is justified by some explanation.

3.1. General properties

One fundamental property is adopted by all researchers, hence it is listed without
comments:

G1. VT-INF has to be abstract, simple and its operations must be closed.
A second reasonable property is:

G2. In a VT-1NF relation, it has to be possible to record data valid in both the past, present
and future.

3.2. Properties for time

In principle, Time is isomorphic to the set of reals. The latter is a continuous, uncountably
infinite, totally ordered set. However, in a database, only a proper, discrete subset of reals can
be recorded. Continuity is, in practice, relaxed, by adopting an appropriate time precision. By
analogy therefore,
T1. It suffices to consider VT time as discrete and totally ordered.

The next property is accepted by all authors:

T2. Various granularities for VT time must be supported.
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As is shown in Fig. 9, four representations for time have been proposed. The two first, time
points (also supported in S-1NF) and time intervals are widely used in every day life. The other
two, sets of points and temporal domains are not such commonly used. In addition, sets of
points imply, in principle, a nested model, whereas temporal domains are complicated
structures, not complying with the simplicity of a simple model like VT-INF. Thus, we
conclude that

T3. VT time should be supported exclusively either as time point or as time interval.

A simple and easy way to support time intervals is to maintain two distinct attributes in a
relation, for the recording of the interval boundaries. However, this solution has certain
drawbacks:

(i) The user has to declare to the DBMS pairs of attributes which form intervals. If this is
not done, the DBMS will not be in a position to automatically disallow the recording of
invalid time intervals, like those whose starting point is greater than their end-point.

(i) Certain simple queries are difficult to formulate in terms of the boundaries of the time
intervals (see the discussion for property O2, in Section 3.5).

(ili) As is also shown below, in discussion for property S2 (Section 3.4), it is meaningful to
consider relations with more than one time interval attribute. In cases like this, however,
the user is likely to lose track of the correct pairing of these attributes, especially after a
combination of projections (in which only one of the attributes which form a pair is
rejected) and joins between relations (in which time point attributes, derived from
distinct relations, have to be considered as forming a pair of time interval attributes).

To eliminate the above shortcomings, we assert a new property,
T4. A VT time interval should be supported as a primitive data type.

As was shown is Section 2, various VT data models support only one type of intervals. In
practice, however, there are four distinct types, [i, j], [i,j), (i, j] and (i, j). Thus, for reasons
of user-friendliness, we conclude that:

TS. All four types of VT time intervals should directly be supported.

This property, in conjunction with T2, implies that intervals over various time granularities
should also be supported.

3.3. Data types

The satisfaction of the next property is obvious.

D1. Every data type, valid in S-1NF, must also be valid in VT-1NF.
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3.4. Data structures

By the definition of VT-INF, time and data must be recorded under distinct attributes.
From this observation, in conjunction with property T4, it can directly be deduced that the
relations in Fig. 10 should be valid structures in VT-1INF. We describe, briefly, the semantics
associated with them. SALARY has the same semantics with the relation in Fig. 1. In
INFLATION we record the rate at which the inflation of various countries was running-during
various intervals of time. For example, the first tuple shows that, during the first three months
of the year, the inflation of country A was running at 3%. In the next two relations we record
the president of an enterprise, at various times. The former uses time intervals and the latter
time points.

We now notice that relation S (Fig. 10) is also valid in S-INF. This gives an indication that,
more generally, a valid S-1NF relation should also be valid in VT-INF. Another justification,
for the satisfaction of this property, is given in Section 3.5 below, in the discussion for Project.
Thus,

S1. Every S-1NF relation must also be valid in VT-1NF.

From property T2, more than one time granularities should be supported in VT-INF. In
S-INF, however, a relation may have more than one attribute of a time point type, therefore,

SALARY INFLATION
Name | Amount Time Country Time Rate
John 10k [10, 20) A [1, 3] 3
John 10k [30, 40) A [1, 6] 4
Alex 14k [ 5, 30) A [7, 12] 5
Alex 18k [31, 60) A [1, 12] 5
R S
Year President Year President

[1984, 1987] john 1984 john

[1988, 1990] george 1985 john

[1992, 1992] alex 1986 john

1987 john
1988 george
1989 george
1990 george
1992 alex

Fig. 10. Relations in VT-INF.
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from S1, the same also applies to a VT-1NF relation. Clearly, the same also should be possible
if a relation has more than one time interval attribute or both time point and time interval
attributes. This is also justified by the following: Firstly, as is shown later in property O1, it is
possible for one such relation to be derived, as a result of a Cartesian Product operation.
Secondly, Fig. 11 shows that such relations are useful and meaningful in VT-INF: In
particular, in SHIFT we record employee shifts during various data intervals. For example,
the first tuple shows the time interval 1, 6), during which John will be working and, for each
of the dates in this interval, it also shows the shift [8, 16), he has been assigned. From this, it
can be deduced that:

S2. Relations with more than one VT time attribute (of the same or of a different time
granularity) of either a point or interval type, should be possible to be declared to the DBMS.

3.5. Operations

The operations defined in a data model may form either a relational algebra or a relational
calculus (tuple or domain). In principle, however, for each relational algebra an equivalent
relational calculus is formalised and, next, a calculus-oriented query language is defined and
implemented, usually based on the calculus. In terms of operations, therefore, and without
loss of generality, our discussion here will restrict to algebraic operations.

From S1, every S-INF relation, R, must also be valid in VT-INF. As a valid S-1NF relation,
R may have time point attributes. In addition, R is handled by the S-1NF operations Union,
Difference, Projection and Cartesian Product. Hence, one first conclusion is that these
operations should also be valid, when applied to VT-INF relations which have time point
attributes. We shall now demonstrate, by examples, that these operations must also remain
exactly the same for VT-INF relations with time interval attributes.

Union: Consider INFLATION (Fig. 10) and assume that it consisted of only the first three
tuples. In order to insert the fourth tuple (a, [1, 12], 5), the S-INF Union operation has to be
issued, thus yielding a relation with these four tuples. This is exactly what we would like to
obtain. Incidentally, we notice that it is valid for INFLATION to contain tuples whose
Country and Rate components are identical, but their Time components form overlapping
intervals (last two tuples).

SHIFT
Name Day Hour
john [1, 6) [ 8, 16)
john [8, 13) [ 8, 16)
alex [1, 6) [16, 24)
alex {8, 13) [16, 24)

Fig. 11. A VT-INF relation with two VT time attributes.
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Difference: By a similar argument, it can be deduced that the S-INF Difference also has to
remain exactly the same in VT-1NF.

Projection: Consider SALARY in Fig. 10 and the query ‘‘list the names of all the employees
who were ever paid”. Then the S-1NF projection is necessary to be issued, in order to get a
relation without time attributes. Thus, the result relation, which is valid in S-1NF, must also
be valid in VT-INF. It is also reasonable to issue a projection on attributes of a time type.
Considering for example INFLATION (Fig. 10), a query could be ‘list the distinct time
intervals for which the inflation rate for country A has been recorded”. The result of its
execution should be exactly the time intervals which have been recorded for country A, that is
(1, 3], 1, 6], [7, 12] and [1, 12].

Cartesian product: This operation is usually involved indirectly, in S-1NF, as part of a Join.
The same also applies to VI-INF. For example, SHIFT (Fig. 11) can be obtained by an
appropriate join of two relations, DSHIFT(Name, Day) and HSHIFT(Name, Hour), in which
the S-INF Cartesian Product is involved indirectly.

The above observations lead to the property that:

O1. The S-1NF operations Union, Difference, Projection and Cartesian Product must remain
the same in VT-1NF.

From this property, in conjunction with G2, it should be obvious that the insertion, deletion
and update of pieces of data valid in the past, present or future must directly be supported.

By an argument identical with that of the previous operations, it is clear that the S-INF
Selection must also be valid for relations not having time interval attributes. In addition,
however, we notice that in S-1NF six relational operators, <<, “< =7 “<>7 =7 “>7
are used in comparisons between two comparison-compatible pieces of data. However, there
are thirteen relative positions of a time interval x = [x1,x2) with respect to another a =
[al, a2). It is then easy to realise that the direct support of time interval predicates can greatly
simplify the formulation of certain queries. For example, a predicate ¢p (common points) is
defined in a way that “xcp a” evaluates to true, if the intervals x and a have points in
common. In the absence of this predicate, the user has to type the equivalent expression,
(x1 <a2 and al <x2), assuming that he is provided with capabilities to access the boundaries
of intervals. However it is not easy for every user to formulate this query so easily: Our
experimentation has shown that it is usually misformulated. Hence,

02. The Selection operation of S-1NF has to be generalized in VT-1NF, by the inclusion of
interval predicates, so as to also be applied to both VT time points and VT time intervals.

We now show that additional operations, variations of the above, have also to be defined in
VT-INF. We do so, by providing examples for which the respective operation can hardly, if at
all, be formulated by using solely the S-1NF operations.

In Section 2, we saw that, in almost all tuple time-stamping models, the union of SALARY
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with another relation, requires the merging of the intervals of the tuples whose values on all
other attributes are pairwise identical. We call the respective operation Points-Union(P-
Union). It only has to be noted that P-Union has to be general enough, so as to apply to
relations like SHIFT, with more than one time interval attribute. Similar observations can be
made, in order to obtain the difference of two relations. The respective operation is termed
P-Difference (P-Difference).

Consider relation SALARY (Fig. 10) and assume that a person is employed if and only if he
is paid. Then the query “retrieve the time interval(s) during which at least one person was
employed”, should yield a tuple of a single time interval value, [5, 60). Various queries can be
found which require such a projection functionality. We call this operation P-Project.
Considering the above, the next property can be concluded:

03. Three more operations have to be defined in VT-INF, P-Union, P-Difference and
P-Project.

In fig. 10 we demonstrated two distinct ways of representing VT data, concerning the
presidents of an enterprise. However, people have a dual perception for time: Occasionally
they interpret time as point and, in other cases, as interval. It is reasonable, therefore, for
both views to be supported, simultaneously. This leads to another property:

O4. Operations have to be defined, to enable transformations between the two complement
views of VT time, time points and time intervals.

3.6. Semantics, constraints and functions

From property S1, it is obvious that the semantics and, more generally, the constraints
(functional dependencies, key of a relation etc.) captured by S-1NF, must also be captured by
VT-1INF. Similarly, the functions defined in S-1NF must also be supported by VT-1NF. Since,
however, VT-INF also incorporates time intervals, all these characteristics must be enhanced
in VI-INF. Thus:

V1. The semantics, constraints and functions of S-1NF must be enhanced in VT-1NF.

This completes the properties of VT-1NF. Because of properties D1, S1, O1, O2 and V1, it
can then be deduced that VT-1NF will be, in all respects, a consistent generalisation to S-1NF.

4. Properties of VI-NESTED

Since VT-INF is a consistent generalisation to S-INF, it is reasonable to assert a similar
requirement, that VI-NESTED should also be a consistent generalisation to S-NESTED (Fig.
12). This implies that the reference model, S-NESTED, has first to be identified. In fact, at
least two such candidate models have been identified [11, 22]. From these, we consider, as
reference, the former, for the following reasons: It is more general, because it has specially
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S-1NF > S~-NESTED

VT-1NF > VT-NESTED

Fig. 12. Generalisation of relational models.

been defined for nested relations and supports an arbitrary, application dependent, nesting. Its
properties have been investigated [11] and an implementation of a prototype SQL extension
has been reported [8]. In contrast, the latter has particularly been defined for the management
of statistical data, and supports only a one-level nesting.

The properties of S-NESTED [11] can be summarised as follows: It supports all S-1NF data
types and structures. In addition, it supports structures with relation valued attributes. All the
S-1NF operations have been generalised and can be applied to all its valid structures. Finally,
two more operations, Nest and Unnest have been defined [11}, with functionality similar to
PACK and UNPACK, described in Section 2.2: The former can transform S-1NF relations to
nested. The latter can perform the inverse. Thus, S-NESTED is also, in all respects, a
consistent extension to S-INF. In order therefore to identify the properties of VI-NESTED,
we notice the following.

Similarly to the fact, that VT-INF is a generalisation to S-INF, VI-NESTED should, by
analogy, also be a generalisation of S-NESTED. Since S-NESTED is a generalisation to
S-INF, VT-NESTED should be a generalisation to VI-INF, too (Fig. 12). This leads to the
following properties for VT-NESTED:

G1 remains the same. However, it should be noted that VI-NESTED may not maintain the
simplicity of VT-INF, exactly as it is the case for S-NESTED, as compared with S-1NF.
However, this is balanced by the fact that VT-NESTED can handle more complicated objects
than both VT-INF and VT-NESTED.

Properties G2, T1-T5, D1, and S2 are inherited from VT-INF to VT-NESTED.

Property S1 is adapted in that every relation valid in either VT-INF or S-NESTED (and
subsequently every valid S-1NF) relation must also be valid in VI-NESTED. This implies that
the relation in Fig. 13 is a valid structure in VT-NESTED. (Note that, in the more general
case, VT data may be nested in a much lower level, in a VIT-NESTED relation.)

From O1, operations Union, Difference, Project and Cartesian Product are the same both in
S-INF and VT-INF. However, they have been extended from S-INF to S-NESTED. By a
similar argument, therefore, these operations are defined, in VI-NESTED, exactly the same
way as in S-NESTED.

From O2, Selection has been extended from S-1NF to VT-1NF, by the incorporation of
predicates which apply to time intervals. This operation then further extends from VT-INF to
VT-NESTED, in a way similar to that Selection was extended from S-1NF to S-NESTED.

By analogy to the fact that the five primitive operations of S-INF have been generalised in
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EMPLOYEE
Name H-SALARY H-ASSIGNMENT
Amount PERIOD Department PERIOD
Time Time

john 10k [10, 18) hardware [10, 18)
[20, 28)

[20, 28) shoe [10, 18)

alex 11k [20, 30) shoe [25, 35)
18k [40, 60)

Fig. 13. A relation in VT-NESTED.

S-NESTED, the operations of VT-1NF whose definition is proposed in properties O3 and O4
have to be generalised in VI-NESTED.

V1 is adapted in that a VI-NESTED based language must support the semantics,
constraints and functions of both a VT-INF and an S-NESTED based language. In addition,
new ones must also be defined in VT-NESTED.

Four more properties inherited from S-NESTED, are the following:

Ul: Support of relation-valued attributes whose domain is the powerset of time points.
U2: Support of relation-valued attributes whose domain is the powerset of time intervals.
N1: Support of operation Unnest.
N2: Support of operation Nest.
It should be noted that, as a consequence of all the above properties, VI-NESTED
transitively inherits all the properties of S-INF, hence, it is the most general of all four
models, S-INF, S-NESTED, VT-INF, VT-NESTED.
5. Evaluation of VT models

In this section we evaluate the tuple time-stamping approaches with respect to VT-1INF. To
this end, particular effort was made, to be as precise as possible. Note that another evaluation,

between attribute time-stamping approaches and VT-NESTED was avoided. The reason is
that S-NESTED is not widely accepted, therefore there are substantial differences between
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this and the relevant VT extensions. To provide a measurement of the functionality of the
reference models, we also report on the results of another theoretical evaluation, between the
reference models and all VT models. Finally, we report on the evaluation of VT-1INF against
actual user requirements.

The table in Fig. 14 is a summary of the properties satisfied by tuple time-stamping VT
models. Answers are denoted by Y (Yes), N (no) and P (Partly), whereas “?” stands for not
specified in the literature. Explanations are as follows:

G1: This property is too subjective, therefore we have assumed that it is satisfied by all
models.

T2: The necessity for the satisfaction of this property is explicitly reported in most models,
therefore, we have assumed that it is satisfied by all.

S1: From [21], it is implied to be satisfied by Navathe’s and Ahmed’s. It is also assumed to be
satisfied by Jones’s, Snodgrass’s, Ben-Zvi’s, Sarda’s and Sadeghi’s.

O1: It is partly satisfied by Snodgrass’s, Navathe’s and Sadeghi’s because the Cartesian
Product between two VT relations applies only under an interval intersection condition.
Sarda’s satisfies it, although it is argued that the result is not a VT relation [24].

O2: In Ben-Zvi’s it is partly satisfied because the result relation of a selection is valid only for
one time point. In some models (e.g. Sadeghi’s) a special operation has been defined for
retrievals over VT time. We have assumed that such models satisfy this property by making the

Model Gl|(G2|T1|T2{T3(T4|T5|D1{S1|S2|01j02}|03]04(V1
Jones Y |Y (Y |Y [N [N [N |Y |Y |[N [(? |[Y |? |N |P
Snodgrass|Y |Y |Y |Y |Y [N |N |Y {Y |N |P |Y |? [N (P
Ben-Zvi Y |Y (Y |Y [N ([N |N Y |Y |[N (? [P {? |N |P
Sarda Y Y (Y |[Y {Y [N [N |Y |Y [N {Y |Y [Y {P |P
Navathe Y (Y [Y |Y IN [N [N (Y |Y [N |P |Y (Y |P |P
Sadeghi Y [?2 Y {Y [N [N [N |Y |Y [N |P |Y |? |N (P
Lorentzos|Y |Y |Y |Y |Y |[N [N Y |Y |[Y |Y |[Y {Y |Y |P

Fig. 14. Evaluation of tuple time-stamping models with respect to VT-1NF.
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assumption that the desired result can be obtained by the composition of two distinct retrieval
operations.

0O3: In principle, it has been assumed that P-Union and P-Difference is satisfied by all
models. The “?” has been put because the satisfaction of P-Project is not clear in all models.

O4: Navathe’s approach makes use of window, which splits time intervals into sub-intervals.
It is assumed, therefore, that window can transform time intervals to elementary time
intervals; the latter consist of only one time point, each, hence, up to an isomorphism, each
time interval is equivalent with a time point. Sarda’s satisfies O4 partly, too. The inverse
operation is also assumed to be supported indirectly, in both models, by the incorporation of
P-Union.

V1: It is assumed that this property is supported partly by all models, because, in our opinion,
further work is needed on this topic.

We notice that, in spite of their seemingly major differences, tuple time-stamping models have

many similarities: Properties G1, G2, T1, T2, D1, S1 and O2 are satisfied by almost all of

them, whereas T4, T5 and S2 are satisfied by almost none. The remainder properties are
satisfied by almost half of the models. The reason for this similarity is due to the fact that all
these VT extensions have been based on Codd’s model [6], which is widely accepted.

Another theoretical evaluation [17] concerned a comparison of VT-INF with almost all VT
models. The evaluation showed the following:

(i) Every piece of VT data which can be represented in some VT model can also be
represented in VT-INF.

(ii) For any result relation, derived by the application of the operations defined in any of
these models, an equivalent result can be obtained, by applying the operations of
VT-1INF to VT-1INF relations. One exception is the functionality of the window clause,
defined in Navathe and Ahmed’s approach [21].

(iii) Using the operations of VT-1NF, it is possible to reduce valid VT-INF relations from
any proposed VT model, and inversely. (Note that, to transform between VT-INF and
attribute time-stamping models, VT-1NF has to be enhanced by the operations Nest and
Unnest.)

(iv) VT-INF enables, in addition, the representation and manipulation of VT relations with
more than one valid time attribute (property S2).

Since VT-NESTED is a generalisation of both S-NESTED and VT-1NF, it is obvious that the

above results also apply to a comparison between VI-NESTED and all proposed VT models.

Another evaluation of VT-INF, of practical interest, was also undertaken: Within the

ORES project, an algebra, VT-AL, was defined, which satisfies all the properties of VT-INF,

except T5. VT-AL was measured against actual user requirements [17]. It was thus shown that

it oversatisfied the requirements of the users of the particular application. Although it could
be argued that VT requirements may vary from one application to another, to our knowledge
no similar evaluation has been reported for some other approach. The same conclusions were
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also drawn for VT-SQL [18], an SOL extension, based on VT-AL. Both VT-AL and VT-SQL
have been implemented.

6. Interval models

In this section we show that sime is characterised by a high degree of abstraction. We thus
elaborate on the necessity to define two more radical extensions to S-INF and S-NESTED,
denoted by I-INF and I-NESTED, respectively, and specify their properties.

Firstly, we notice that whether some value should be treated as time or not, is only a matter
of interpretation. This is demonstrated by the following examples:

Example 1. Consider the value 12-05-95. We then notice that this can be interpreted in many
distinct ways: (i) May 12, 1995 (European interpretation of date). (ii) December 5, 1995
(American interpretation of date). (iii) A value of a special data type, interpreted as the 12th
article of the 5th law, voted in 1995. (iv) A value of another special type, interpreted as an
individual car plate in some particular country. (v) An arbitrary value in CHAR(8).

Example 2. In the previous example we showed that a value, optically reminding of a date
may/may not represent time. We now show that, inversely, an integer may represent time.
Consider, that, for the purposes of a scientific experiment, it is necessary to record how the
values of certain parameters change with respect to the 1st, 2nd, . . ., nth day. Then the set of
integers has to be treated exactly the same way as valid time. (Note incidentally, that, for
simplicity reasons, in almost all VT data modelling approaches, time is represented by the set
of integers.)

Example 3. The values of other conventional data types may also be interpreted as valid time:
For example, the elements of {A,...,Z} may denote the successive phases for the
completion of a project. It may then be necessary to schedule various activities of the project
and record them in a relation. For example one tuple of SCHEDULE(Activity, Phase) could
be (1, [A, C])), indicating that activity 1 will last from phase A up to phase C. (Incidentally,
we notice that it may not be necessary for all phases to have the same time duration.)

Secondly, it was shown, by specific examples, that every VT model can be applied to many
other areas of practical interest. To achieve this, we only had to identify another set with
properties identical with those of time. In fact, many such sets can be identified. We can thus
conclude that, although all VT models have specially been defined for VT data management,
in fact, both their representational capabilities and operations are independent of the necessity
for VT data handling.

From the above, it can be concluded that, rather than defining VT reference models, which
are extensions to S-INF or S-NESTED, one should rather define two more general
extensions, (i) and (ii), described below:

(1) We notice that S-1NF does not support time intervals, whereas VT-INF does. Also, the
representation and operational capabilities of VT-1NF are actually independent of time.



84 N.A. Lorentzos, Y. Manolopoulos | Data & Knowledge Engineering 17 (1995) 59-86

Hence, a more general reference model, I-INF, can be defined, in place of VT-INF: It is
a simple extension to S-INF, enhanced by appropriate capabilities for interval data
management. Its properties are those specified for VT-1NF, except that the concept of a
time interval is now replaced by the more general concept, interval.

(ii) By a similar argument, I-NESTED can also be specified, with properties those of
VT-NESTED. This is the most general, in that it can handle every piece of data handled
by either S-INF, S-NESTED or I-INF.

It is then obvious that the management of VT data is only one special application of the above

interval-extended models.

7. Conclusions

Starting from the necessity to support valid time data, we identified the properties of two
reference relational models, VT-INF, VT-NESTED, which are consistent extensions to the
snapshot models proposed in [6] and [11]. We also showed that more radical extensions to [6]
and [11] should rather be attempted, I-INF and I-NESTED, which support data of an interval
type.

In [20] an evaluation of various VT models was undertaken, different than that, in the
present work. It was also shown [20] that certain desirable properties of a VT model are
conflicting, i.e. there is no VT model which can satisfy them all. However, I-INF and
I-NESTED support valid time data and, at the same time, they satisfy all the properties in
[20].

Further work concerns the formal definition of IN-SQL, an Interval Nested extension to
SQL.
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