
Optimization of Data-intensive Flows:
Is it Needed? Is it Solved?

Georgia Kougka
Aristotle University of Thessaloniki

georkoug@csd.auth.gr

Anastasios Gounaris
Aristotle University of Thessaloniki

gounaria@csd.auth.gr

ABSTRACT

Modern data analysis is increasingly employing data-intensive
flows for processing very large volumes of data. As the
data flows become more and more complex and operate in a
highly dynamic environment, we argue that we need to re-
sort to automated cost-based optimization solutions rather
than relying on efficient designs by human experts. We fur-
ther demonstrate that the current state-of-the-art in flow op-
timizations needs to be extended and we propose a promising
direction for optimizing flows at the logical level, and more
specifically, for deciding the sequence of flow tasks.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

Keywords

data flow optimization; task reordering

1. INTRODUCTION
Nowadays, not only more and more data is produced, but

there is also an increasing need for end-to-end processing
of this data. End-to-end processing includes tasks, such as
cleaning, extraction, integration and analytics, and as such,
gives rise to data-intensive flows that go beyond traditional
ETL (Extract-Transform-Loading) flows; the latter are re-
stricted to simpler transformation task sequences and pur-
pose, namely to populate a data warehouse. Data-intensive
flows are encountered in both business intelligence [4] and
scientific [13] settings.

Currently, data flows are typically designed manually, al-
though commercial tools may provide some simple, static,
cost-oblivious rule-based optimizations [6, 7]. Interestingly,
there is an increasingly large portion of flow designers that
are not IT experts [1], which raises doubts about the opti-
mality of such manual designs. In addition, the optimality of
a data flow depends on statistics, such as task costs and se-
lectivities, which means that an optimal flow execution plan

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DOLAP’14, November 7, 2014, Shanghai, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-0999-8/14/11 ...$15.00.

http://dx.doi.org/10.1145/2666158.2666174 .

for a specific dataset may become sub-optimal when applied
to another dataset with different statistics, or even for the
same dataset if its characteristics evolve, as typically occurs
in streaming real-time analytics. Because of all these factors,
rather than relying on the skills of the designer, we need to
resort to automated cost-based optimization solutions.

Flow execution can be defined both at logical and the
physical level. At the logical level, the partial order of the
tasks is typically represented as a directed acyclic graph
(DAG), which describes the flow of the data from the source
tasks to the sink ones and the exact sequence of tasks in
between. Logical flow optimization bears similarities with
database query optimization but the problem is actually
more complex because (i) query optimizers cannot consider
the dependency constraints between tasks that appear in
data flows, (ii) the tasks in a flow execution graph do not
necessarily belong to a specific set of operators with clear
semantics, and (iii) the optimization objective is not limited
to performance. Overall, data flow optimization can be in-
spired by query optimization techniques that perform struc-
ture reformations, such as reordering and introducing new
tasks in an existing flow, but it cannot fully rely on them.
For example, in [9] ad-hoc query optimization methodolo-
gies are employed for optimizing the flow execution plan by
reordering and introducing filtering tasks. Other logical flow
optimization proposals consider swapping re-orderable flow
activities, merging tasks, splitting, and so on, in order to
generate new flow execution plan alternatives for ETL flows
[14]. Additional narrower proposals include task consolida-
tion for reducing the overall execution time [16, 5].

At the physical level, a wide range of implementation as-
pects need to be specified so that the flow can be executed.
The most significant of them include the choice of the ex-
act implementation alternative for each task, the selection
of the execution engine to run tasks, scheduling details, the
manner in which data is transmitted between tasks, deci-
sions as to whether the tasks are executed in a pipelined
or step-wise fashion, and so on. For all those aspects, sev-
eral techniques have been proposed, which assume that the
flow has been already optimized at the logical level. For
example, [17] proposes resource allocation algorithms and
heuristic techniques taking into account constraints, such
as cost optimization, user-specified deadline and workflow
partitioning according to assigned deadlines, while a set of
optimization algorithms for scheduling flows based on dead-
line and time constraints is analyzed in [2].

So far, the existing flow optimization methodologies tend
to focus either on the physical or the logical level, without

95

Figure 1: A real-world analytic data flow. Figure 2: The optimized version of the data flow.

ID Flow Task Cost(secs) Selectivity

1 Tweets (data source) 1.7 1
2 Sentiment Analysis 4.5 1
3 Lookup ProductID 5 1
4 Filter Products 1.9 0.9
5 Lookup Region 6.5 1
6 Extract Date from Timestamp 19.4 1
7 Filter Dates 2 0.2
8 Sort Region, Product and Date 173 1
9 SentimentAvg 10.3 0.1
10 Lookup Total Sales 10.8 1
11 Lookup Campaign 11.6 1
12 Filter Region 2 0.22
13 Report Output 1 1

Table 1: The cost and selectivities values.

providing a holistic optimization proposal for both levels.
In this paper, we argue that the existing techniques regard-
ing logical flow optimization, although they are interesting,
they are inadequate. An optimal optimization solution re-
ferring at the physical level, which is based on a suboptimal
logical plan, yields an overall suboptimal execution. We re-
strict ourselves to one of the simplest cases and we show
that even for that case, the state-of-the-art can be signifi-
cantly advanced. More specifically, we focus on single-input
single-output (SISO) data flows, for which only the sequence
of tasks needs to be specified so that all dependency con-
straints are respected and the single optimization criterion
is the minimization of the sum of task execution times. We
provide a real use case that demonstrates the need for more
advanced optimization (Sec. 2), and we discuss the gap of
existing optimization proposals and our proposal for near-
optimal flow execution plans (Sec. 3).

2. MOTIVATIONAL EXAMPLE
A real data flow that processes free-form text data from

Twitter commenting on products in order to compose a dy-
namic report that associates sales with marketing campaigns
is shown in Figure 1. The flow is implemented with the
help of the Pentaho Data Integration tool (http://kettle.
pentaho.com). As shown in the figure, this data flow con-
sists of 13 tasks (or nodes or activities) with a single stream-
ing source that outputs tweets on products and a sink task
where the resulting report is stored. During processing, it
accesses four static sources (databases) through lookup op-
erations. The remainder 7 tasks perform various operations,
such as computing a single sentiment value for the products

that are mentioned in the tweet (Sentiment Analysis), filter-
ing according to several criteria including product type, and
date, transformation of the timestamp text data to date and
ad-hoc aggregation (SentimentAvg that averages sentiment
values over each region, product, and date). At the final
stage, the user has the option to narrow down the report
in order to focus on a specific region. Table 1 shows the
selectivity and cost values computed for a specific dataset of
1M records. We can observe that the most expensive tasks
are the grouping and lookup tasks, the cost of which is up
to two orders of magnitude compared to the less expensive
ones. Also, there are 4 filtering tasks, while the rest do not
modify the number of records (note that in general, selec-
tivities may be higher than 1). For this flow, there are 38%
precedence constraints (PCs, not presented in detail due to
space constraints), where a fully constrained flow with n

tasks and 100% PCs has n(n−1)
2

constraints and no equiva-
lent ordering alternatives.

We run an exhaustive algorithm and we find the optimal
flow for those statistics and precedence constraints, as shown
in Figure 2. We also apply the best-performing approximate
heuristic to date, which is proposed in [14]. Both exhaustive
and approximate solutions are discussed in the next section.
As we can see, the exhaustive optimization moves filtering
according to region, which at the initial design has been
placed at the end as a final optional step, at the very be-
ginning for this specific flow due to the metadata in Table
1. A less obvious optimization is to move the pair of date
extraction and filtering tasks upstream although the former
is expensive and not filtering.

The total execution times of the initial, optimal and heuris-
tic (i.e., approximately optimized) flow designs are 63, 18.3
and 36.5 seconds, respectively when run on a Intel Core
i5 machine. This is a representative example of a manually
designed data flow that exhibits significantly suboptimal be-
havior. In general, we can draw two observations. Firstly,
optimal solutions may yield lower execution costs by several
factors. A second equally important observation is that even
in simple cases like the one examined here, existing heuris-
tics may fail to closely approximate the optimal solution and
generate the plan in Figure 2. The main reason in this exam-
ple is that the approximate solution performs greedy swaps
of adjacent activities; however the region filter cannot move
earlier unless the campaign lookup task is moved earlier as
well, an action that a greedy algorithm cannot cover.

96

3. OPTIMIZATION SOLUTIONS
Finding the optimal ordering of tasks is an NP -hard prob-

lem when (i) each flow task is characterized by its cost per
input record and selectivity; (ii) the cost of each task is a
linear function of the number of records processed and that
number of records depends on the product of the selectivities
of all preceding tasks (assuming independence of selectivi-
ties for simplicity); and (iii) the optimization criterion is the
minimization of the sum of the costs of all tasks [3]. Here,
we discuss the inherently non-scalable exhaustive solutions,
the state-of-the-art heuristics and our proposal for flow op-
timization which improves on the latter heuristics.

3.1 Accurate (exhaustive) algorithms
Backtracking algorithm: The Backtracking algorithm,

as presented in [8], finds all the possible execution plans
generated after reordering the tasks of a given data flow
preserving the precedence constraints (PCs). The algorithm
enumerates all the valid sub-flow plans after applying a set
of recursive calls on these sub-flows and runs in O(n!) time.

Dynamic Programming (DP): The rationale of the
DP algorithm extends its query optimization counterpart
to calculate task subsets of size n based on subsets of size
n − 1. For each of these subsets, we keep only the optimal
solutions, which are valid with regards to the PCs. The time
complexity of DP is O(n22n).

Topological Sorting (TS): Contrary to query optimiza-
tion, we have found that enumerating all orderings that meet
the dependency constraints is a viable option for flows with
numerous PCs, although in the worst case the TS algorithm
runs in O(n!). Due to space limitations, we do not give full
details, but as shown in the experiments below, a variant
based on [15] can significantly outperform the two other ex-
haustive approaches mentioned above in terms of optimiza-
tion time (overhead).

3.2 Approximate (heuristic) algorithms
The state-of-the-art heuristics for flow task ordering is

summarized below. Preliminary results regarding their effi-
ciency in optimizing flows is provided in [10].

Swap: The Swap algorithm, proposed in [14], compares
the cost of the existing execution plan against the cost of
the transformed plan, if we swap two adjacent tasks pro-
vided that the PCs are always satisfied. This check is per-
formed for every pair of adjacent tasks. The complexity is
O(n2). GreedyI: The GreedyI algorithm is based on a typ-
ical greedy approach, which builds the flow execution plan
incrementally. In each step, it adds at the end of the par-
tial plan the activity with the maximum rank 1−selectivity

cost

among those for which all the prerequisite tasks have been
already added. The time complexity is O(n2). GreedyII:
The rationale of the GreedyII algorithm is similar to GreedyI
apart from the fact that the construction of the optimized
execution plan is right-to-left (i.e., from the sink to the
source). The algorithm is presented in [12]. Partition:
The Partition algorithm, in each step, detects the set of
tasks that can be added based on the PCs. For that set, it
exhaustively finds the optimal sub-solution, and then pro-
ceeds to the next set until all activities have been added. It
runs in O(n!) time in the worst case.

30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

precedence constraints (%)

n
o

rm
a
li
z
e
d

 c
o

s
t

TS

Swap

Greedy I

Greedy II

Initial Cost

30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

precedence constraints (%)

n
o

rm
a
li
z
e
d

 c
o

s
t

TS

Swap

Figure 3: Average (left) and maximum (right) improvements
of exhaustive solutions

50 55 60 65 70

10
0

10
2

10
4

total number of flow tasks (n)

o
p

ti
m

iz
a

ti
o

n
 t

im
e

 (
s

e
c

s
)

TS

020406080
10

−4

10
−2

10
0

10
2

10
4

precedence constraints (%)

o
p

ti
m

iz
a

ti
o

n
 t

im
e

 (
s

e
c

s
)

TS

15 16 17 18 19
10

1

10
2

10
3

10
4

10
5

total number of flow tasks (n)

o
p

ti
m

iz
a

ti
o

n
 t

im
e

 (
s

e
c

s
)

DP

Figure 4: Optimization overhead for TS and DP

3.3 Pros and cons of exhaustive solutions
We conducted a set of experiments to further support the

observation in Section 2 that the existing heuristics fail to
approximate the optimal solution. We examined randomly
generated data flows consisting of n = 10, 15, . . . , 25 tasks,
selectivity values sel ∈ (0, 2] where selectivities higher than
1 denote increase in the task output, cost ∈ [1, 10] and 30%-
95% PCs. The flows were executed on an Intel Core i5 ma-
chine and all experiments were repeated 20 times. The re-
sults show that the performance improvement derived by
the application of exhaustive algorithms is significantly high
for small flows, as they provide the optimal solution. For
example, Figure 3(left) presents the results for flows with 15
tasks; the accurate algorithms, such as TS, can have up to
59% better performance improvement compared to a ran-
dom initial flow that just respects the PCs. On average, the
best performing heuristic is Swap. Figure 3(right) shows
the maximum normalized difference between Swap and TS,
which can reach up to 61% in favor of the latter.

However, exhaustive solutions are inapplicable for medium
and large flows, and/or few PCs. As shown in Figure 4(top),
TS cannot scale in either the number of the flow tasks or
the PCs. DP ’s overhead does not depend on the PCs and,
as shown in Figure 4(bottom), this algorithm is not practi-
cal for flows with more than 18 tasks. Backtracking is less
scalable than TS as well, with higher overhead by a factor
between 46 and 62 on average.

3.4 Our optimization proposal
In the quest of finding an efficient optimization solution for

our problem, as our starting point, we chose the well-known
KBZ query optimization algorithm for join ordering in [11].
That algorithm is of low complexity O(n2) and can consider
PCs that can be represented as a rooted tree. The rationale
is to consider the rank of each task and order tasks by their

97

rank value; if this is not possible due to PCs, then tasks
are merged and the rank values are updated accordingly.
The evaluation results (not presented here in detail) show
that, when applicable, this approach can be dozens of times
less expensive than Swap and the other heuristics. However,
allowing only tree-shaped PC graphs implies that there is no
task with more than one independent prerequisite activity
and the percentage of PCs is very low and decreases with the
number of tasks (e.g., less than 10% for a 100-node flow);
both cases do not occur frequently in practice.

So, to combine KBZ’s efficiency and support for generic
flows, we reduce our problem to that of transforming the
DAG that typically represents PCs (an edge from one task
to another denotes that the former must precede) into an
acyclic one after removing edge directions. We initially pro-
pose a simple heuristic algorithm RO-I (for rank ordering)
that, omitting implementation details, transforms the graph
of PCs into an acyclic one by removing incoming edges with
no maximum rank, if a task has more than one incoming
edge. Then it applies the KBZ algorithm and is followed by
a post-processing phase, where any resulting PC violations
are resolved by moving tasks upstream if needed as prereq-
uisites for other tasks placed earlier. That heuristic is simple
but does not always behave well. We have investigated an-
other approach, termed as RO-II, which detects paths in the
PC graph that share an intermediate source and sink and
merges them to a single path based on their rank values. In
that way, both all PCs are preserved and the rationale of
rank ordering is kept at the expense of implicitly examining
fewer re-orderings. As such, these local optimizations do not
guarantee a globally optimal solution.

Preliminary evaluation results are shown in Figures 5 and
6. We can see that the average improvements of RO-II over
Swap can be significant, whereas RO-I in some cases outper-
forms RO-II but in others is significantly worse. For isolated
runs, we have observed that Swap can be up to 7 times more
expensive.

25 50 75 100
0

0.5

1

1.5

2

total number of flow tasks(n)

n
o

rm
a
li
z
e
d

 c
o

s
t

RO I

RO II

Swap

Figure 5: 20% PCs.

25 50 75 100
0

0.5

1

1.5

2

total number of flow tasks(n)

n
o

rm
a
li
z
e
d

 c
o

s
t

RO I

RO II

Swap

Figure 6: 50% PCs.

4. CONCLUDING REMARKS
The fact that existing logical optimization techniques are

inadequate to provide a (near) optimal solution even for
small flows implies that, even after applying the most ad-
vanced physical optimization techniques, the execution per-
formance is suboptimal since the latter techniques depend
on the former. More research is needed (i) for deciding the
sequence of the flow tasks and (ii) for building more holistic
approaches that consider additional factors, such as merg-
ing and splitting tasks and physical implementation details.
For item (i), our proposal is promising and the results pro-
vided here provide strong insights in its ability to fill the
gap between exhaustive non-scalable solutions and existing
heuristics; however more research and thorough analysis and
evaluation is needed for rank-ordering-based solutions.

Acknowledgments.
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

5. REFERENCES
[1] D. Abadi et al. The beckman database research

self-assessment meeting. Technical report, 2013.
[2] S. Abrishami, M. Naghibzadeh, and D. H. Epema.

Deadline-constrained workflow scheduling algorithms for
infrastructure as a service clouds. Future Generation
Computer Systems, 29(1):158 – 169, 2013.

[3] J. Burge, K. Munagala, and U. Srivastava. Ordering
pipelined query operators with precedence constraints.
Technical Report 2005-40, Stanford InfoLab, 2005.

[4] S. Chaudhuri, U. Dayal, and V. Narasayya. An overview of
business intelligence technology. Commun. ACM, 54:88–98,
2011.

[5] R. Dewan, A. Seidmann, and Z. Walter. Workflow
optimization through task redesign in business information
processes. In HICSS, pages 240–252. IEEE Computer
Society, 1998.

[6] R. Halasipuram, P. M. Deshpande, and S. Padmanabhan.
Determining essential statistics for cost based optimization
of an etl workflow. In EDBT, pages 307–318, 2014.

[7] S. Holl, O. Zimmermann, M. Palmblad, Y. Mohammed,
and M. Hofmann-Apitius. A new optimization phase for
scientific workflow management systems. Future Generation
Comp. Syst., 36:352–362, 2014.

[8] F. Hueske, M. Peters, M. Sax, A. Rheinländer,
R. Bergmann, A. Krettek, and K. Tzoumas. Opening the
black boxes in data flow optimization. PVLDB,
5(11):1256–1267, 2012.

[9] G. Kougka and A. Gounaris. On optimizing work ows using
query processing techniques. In SSDBM, pages 601–606,
2012.

[10] G. Kougka and A. Gounaris. Declarative expression and
optimization of data-intensive flows. In DaWaK, pages
13–25, 2013.

[11] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization
of nonrecursive queries. In VLDB, pages 128–137, 1986.

[12] N. Kumar and P. S. Kumar. An efficient heuristic for
logical optimization of etl workflows. In BIRTE, volume 84
of Lecture Notes in Business Information Processing, pages
68–83. Springer, 2010.

[13] E. S. Ogasawara, D. de Oliveira, P. Valduriez, J. Dias,
F. Porto, and M. Mattoso. An algebraic approach for
data-centric scientific workflows. PVLDB, 4:1328–1339,
2011.

[14] A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-space
optimization of etl workflows. IEEE Trans. Knowl. Data
Eng., 17(10):1404–1419, 2005.

[15] Y. L. Varol and D. Rotem. An algorithm to generate all
topological sorting arrangements. The Computer Journal,
24(1):83–84, 1981.

[16] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang,
V. Markl, A. Maier, and T. Kraft. An approach to optimize
data processing in business processes. In VLDB, pages
615–626, 2007.

[17] Z. Xiao, H. Chang, and Y. Yi. Optimization of workflow
resources allocation with cost constraint. In Proc. of the
10th Int. Conf. on Computer supported cooperative work in
design, pages 647–656, 2007.

98

