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Abstract We focus on range query processing on large-scale, typically distributed
infrastructures, such as clouds of thousands of nodes of shared-datacenters, of p2p
distributed overlays, etc. In such distributed environments, efficient range query pro-
cessing is the key for managing the distributed data sets per se, and for monitoring
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the infrastructure’s resources. We wish to develop an architecture that can support
range queries in such large-scale decentralized environments and can scale in terms
of the number of nodes as well as in terms of the data items stored. Of course, in
the last few years there have been a number of solutions (mostly from researchers in
the p2p domain) for designing such large-scale systems. However, these are inade-
quate for our purposes, since at the envisaged scales the classic logarithmic complex-
ity (for point queries) is still too expensive while for range queries it is even more
disappointing. In this paper we go one step further and achieve a sub-logarithmic
complexity. We contribute the ART (Autonomous Range Tree) structure, which out-
performs the most popular decentralized structures, including Chord (and some of its
successors), BATON (and its successor) and Skip-Graphs. We contribute theoretical
analysis, backed up by detailed experimental results, showing that the communica-
tion cost of query and update operations is O(log2

b logN) hops, where the base b is
a double-exponentially power of two and N is the total number of nodes. Moreover,
ART is a fully dynamic and fault-tolerant structure, which supports the join/leave
node operations in O(log logN) expected w.h.p. number of hops. Our experimental
performance studies include a detailed performance comparison which showcases the
improved performance, scalability, and robustness of ART.

Keywords Distributed data structures · P2P data management

1 Introduction and motivation

Decentralized range query processing is a notoriously difficult problem to solve ef-
ficiently and scalably in decentralized network infrastructures. It has been studied in
the last years extensively, particularly in the realm of p2p, which is increasingly used
for content delivery among users. There are many more real-life applications in which
the problem also materializes. Consider the (popular nowadays) cloud infrastructures
for content delivery. Monitoring of thousand of nodes, where thousands of different
applications from different organizations execute, is an apparent requirement. This
monitoring process often requires support for range queries over this decentralized
infrastructure: consider range queries that are issued in order to identify which of
the cloud nodes are under-utilized, (i.e., utilization < threshold) in order to assign to
them more data & tasks and better exploit all available resources, increasing the rev-
enues of the cloud infrastructure, or to identify overloaded nodes, (load > threshold)
in order to avoid bottlenecks in the cloud, which hurts overall performance, and rev-
enues.

Each node in the cloud maintains a tuple with attributes: utilization, OS, load,
NodeId, etc. Collectively, these makeup a relation, CloudNodes, and we wish to exe-
cute queries such as:

SELECT NodeId
FROM Cloudnodes
WHERE low < utilization < high
or point and range queries, e.g.
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SELECT NodeId
FROM Cloudnodes
WHERE low < utilization < high and OS = UNIX

An acceptable solution for processing range queries in such large-scale decentral-
ized environments must scale in terms of the number of nodes as well as in terms of
the number of data items stored. The available solutions for architecting such large-
scale systems are inadequate for our purposes, since at the envisaged scales (tril-
lions of data items at millions of nodes) the classic logarithmic complexity (for point
queries) offered by these solutions is still too expensive. And for range queries, it is
even more disappointing. Further, all available solutions incur large overheads with
respect to other critical operations, such as join/leave of nodes, and insertion/deletion
of items. Our aim with this work is to provide a solution that is comprehensive
and outperforms related work with respect to all major operations, such as lookup,
join/leave, insert/delete, and to the required routing state that must be maintained in
order to support these operations. Specifically, we aim at achieving a sub-logarithmic
complexity for all the above operations!

Peer-to-peer (P2P) systems have become very popular, in both academia and in-
dustry. They are widely used for sharing resources like music files etc. Search for
a given ID, is a crucial operation in P2P systems, and there has been considerable
recent work in devising effective distributed search (a.k.a. lookup) techniques. The
proposed structures include a ring as in Chord [13], a multiple dimensional grid as
in CAN [20], a multiple list as in SkipGraph [2, 8], or a tree as in PHT [22], BA-
TON [11] and BATON* [12]. Most search structures (including all the ones just
mentioned except for BATON* and PHT) bound the search cost to a base 2 loga-
rithm of the search space: for a system with N peer nodes, the search cost is bounded
by O(logN). Relative to tree-based indexes, a disadvantage of PHTs (Prefix Hash
Trees) is that their complexity is expressed in terms of the log of the domain size, D,
rather than the size of the data set, N and depends on distribution over D − bit keys.
BATON* is a multi-way search tree, which reduces the search cost to O(logm N),
where m is the tree fanout. The penalty paid is a larger update cost, but no worse
than linear in m. One of the distributed indexes with high fanout is the P-Tree [5],
where each peer maintains a B+-tree leaf and a path of virtual index nodes from the
root to the specific leaf. Search is very effective, but updates are expensive, possibly
requiring substantial synchronization effort. BATON* extends BATON by allowing a
fanout of m > 2. Thus, the search cost becomes O(logm N), as expected. Moreover,
the cost of updating routing tables is O(m logm N) only, as compared to O(log2 N)

in BATON—an improvement that is better than linear in m. Furthermore, BATON*
has better fault tolerance properties than BATON, and supports load balancing more
efficiently. In fact, the system’s fault tolerance, measured as the number of nodes that
must fail before the network is partitioned, increases linearly with m. Similarly, the
expected cost of load balancing decreases linearly with m.

Our results In this paper we present the ART structure, which outperforms the most
popular decentralized structures, including Chord (and some of its successors), BA-
TON and BATON* and Skip-Graphs. ART is an exponential-tree structure, which re-
mains unchanged w.h.p., and organizes a number of fully-dynamic buckets of peers.
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We provide and analyze all relevant algorithms for accessing ART. We contribute
theoretical analysis, backed up by detailed experimental results, showing that the
communication cost of query and update operations is O(log2

b logN) hops, where
the base b is a double-exponentially power of two. Moreover, ART is a fully dy-
namic and fault-tolerant structure, which supports the join/leave node operations in
O(log logN) expected w.h.p. number of hops. Since ART is a tree based system,
our experimental performance studies include our development of BATON* (the best
current tree based system), and a detailed performance comparison which showcases
the improved performance, scalability, and robustness of ART. We don’t compare our
solution to DHT-based structures like Chord, since the latter destroys the locality and
cannot support range queries.

In Sect. 2 we present more thoroughly key previous work. Section 3 describes a
terminology table, so that the paper is easier to follow. Section 4 presents a combi-
natorial game based analysis, which is the foundation of the theoretical analysis of
our solution. Section 5 describes the ART structure and analyzes its basic function-
alities. Section 6 presents a thorough experimental evaluation; Sect. 7 presents some
interesting heuristics and thresholds, whereas Sect. 8 concludes the paper.

2 Previous work

Existing structured P2P systems can be classified into three categories: distributed
hash table (DHT) based systems, skip list based systems, and tree based systems.
There are several P2P DHT architectures like Chord [13], CAN [20], Pastry [21],
Tapestry [29], Kademlia [17] and Kelips [7]. Unfortunately, these systems cannot
easily support range queries since DHTs destroy data ordering. This means that they
cannot support common queries such as “find all research papers published from 2004
to 2008”. To support range queries, inefficient DHT variants have been proposed (for
details see [1, 6, 23, 27]).

Skip list based systems such as Skip Graph [2, 8] and Skip Net [10] are based on
the skip-list structure. To provide decentralization they use randomized techniques
to create and maintain the structure. Moreover, they can support both exact match
queries and range queries by partitioning data into ranges of values. However, they
cannot guarantee data locality (which hurts efficient range query processing) and load
balancing in the system.

Tree based systems also carry their own disadvantages. P-Grid [5] utilizes a binary
prefix tree. It can neither guarantee the bound of search steps since it cannot control
the tree height. An arbitrary multi-way tree was proposed in [16], where each node
maintains links to its parent, children, sibling and neighbors. It also suffers from the
same problem. P-Tree [5] utilizes a B+-tree on top of the CHORD overlay network,
and peers are organized as a CHORD ring, each peer maintaining a data leaf and a
left most path from the root to that B+-tree node. This results in significant overhead
in building and maintaining the consistency of the B+-tree. In particular, a tree has
been built for each joining node, and periodically, peers have to exchange their stored
B+-tree for checking consistency. BATON [11] utilizes a binary balanced tree and
as a consequence, it can control the tree height and avoid the problem of P-Grid.
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Table 1 Performance comparison between ART, Chord, BATON and Skip Graphs

P2P architectures Lookup, insert,
delete key

Maximum size of
routing table

Join/
depart peer

CHORD O(logN) O(logN) O(logN) w.h.p.

H-F-Chord(a) O(logN/ log logN) O(logN) O(logN)

LPRS-Chord O(logN) O(logN) O(logN)

Skip Graphs O(logN) O(1) O(logN) amortized

BATON O(logN) O(logN) O(logN) w.h.p.

BATON* O(logm N) O(m logm N) O(m logm N)

ART-tree O(log2
b

logN) O(N1/4/ logc N) O(log logN)a

aexpected with high probability case

Nevertheless, similarly to other P2P systems, BATON’s search cost is bounded by
O(log2 N). BATON* [12] is an overlay multi-way tree based on B-trees, with better
searching performance. The penalty paid is a marginally larger update cost.

Systems like MAAN [4], Mercury [3] and DIM [15] support multi-attribute
queries in a multi-dimensional space. BATON* can also effectively support queries
over multiple attributes. In addition to supporting the use of multiple attributes in a
single index, BATON* further introduces the notion of attribute classification, based
on the importance of the attribute for querying, and the notion of attribute groups.
In particular, BATON* relies on the construction of multiple independent indexes for
groups of one or more attributes. For further details about the suggested techniques
for partitioning attributes into such groups, see [12].

For comparison purposes, in Table 1 we present a qualitative evaluation with re-
spect to elementary operations between ART, Skip-Graphs, Chord and its newest
variations (F-Chord(α) [24], LPRS-Chord [28]), BATON [11] and its newest varia-
tion BATON* [12]. It is noted that c > 0 is a positive constant.

3 List of symbols for the proposed solution

Table 2 depicts a list of symbols (acronyms) used in the proposed solution, so that the
paper is easier to follow.

4 Balls in bins combinatorial game based analysis

In the following we will briefly describe the combinatorial game of bins and balls
presented in [14], which is the foundation of the theoretical analysis of our solution.

In particular we describe a balls and bins random process that models each up-
date operation in a set of elements. Let S0 be a set of n elements, which are drawn
randomly according to the distribution μ(·) from the interval [a, b]. We consider the
next rn update operations, where r is a constant. Each update operation is either a
uniformly at random deletion of an existing element, or a μ-random insertion of a
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Table 2 A List of Acronyms
LRT Level Range Tree

ART Autonomous Range Tree

LSI Left Spine Index

CI Collection Index

RSI Random Spine Index

b A double-exponentially power of two (e.g. 2,4,16, . . .)

d(i) The fanout or branching factor at level i

t (i) The number of nodes (peers) at level i

n The total number of w-bit keys

N The total number of peers

label(x) The numbered label of peer x

N ′ The total number of cluster_peers

c A big positive constant

new element from [a, b]. To model the update operations as a balls and bins random
process, we do the following:

Let ρ be the set of bins. Each bin Bi , 1 ≤ i ≤ ρ, stores a subset of elements in
S0 and is represented by the element rep(i) = max{x : x̃ ∈ Bi}. The set of elements
stored in the bins constitute an ordered collection B1, . . . , Bρ such that max{x : x̃ ∈
Bi} < min{y : ỹ ∈ Bi+1} for all 1 ≤ i ≤ ρ − 1. In other words, Bi = {̃x : x ∈ (rep(i −
1), rep(i)]}, for 2 ≤ i ≤ ρ, and B1 = {̃x : x ∈ [rep(0), rep(1)]}, where rep(0) = a and
rep(ρ) = b.

We represent each selected element from [a, b] as a ball. We partition the in-
terval [a, b] into ρ = n

lnn
parts [rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ · · · ∪ (rep(ρ −

1), rep(ρ)], where rep(0) = a, rep(ρ) = b, and ∀i = 1, . . . , ρ − 1, the elements
rep(i) ∈ [a, b] are those previously defined. We represent each of these ρ parts as
a distinct bin.

During each of the rn insertion/deletion operations, a μ-random ball x ∈ [a, b] is
inserted in (deleted from) the i-th bin Bi iff rep(i − 1) < x ≤ rep(i), i = 2, . . . , ρ,
otherwise x is inserted in (deleted from) B1.

If we knew the distribution μ(·), then we could partition the interval [a, b] into ρ =
n

lnn
distinct bins (parts), [repμ(0), repμ(1)] ∪ (repμ(1), repμ(2)] ∪ · · · ∪ (repμ(ρ −

1), repμ(ρ)], with repμ(0) = a and repμ(ρ) = b, such that a μ-random ball x would
be equally likely to belong into any of the ρ corresponding bins. In other words, since
these ρ bins have equal probability to receive ball x, we have that ∀x ∈ [a, b] it holds:

Pr
[

x ∈ (

repμ(i − 1), repμ(i)
]]

=
∫ repμ(i)

repμ(i−1)

μ(t)dt = 1

ρ
= lnn

n
, i = 1, . . . , ρ = n

lnn
.

Remark 1 The above expression implies that the unknown sequence repμ(0), . . . ,

repμ(ρ) makes the event “insert (delete) a μ-random (random) element x” equiv-
alent to the event “throw (delete) a ball uniformly at random into (from) one of ρ

distinct bins”. Such a uniform distribution of balls into bins is well understood and
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it is folklore to find conditions such that no bin remains empty and no bin gets more
than O(lnn) balls.

Unfortunately, the probability density μ(·) is unknown. Consequently, the ma-
jor goal is to approximate the unknown sequence repμ(0), . . . , repμ(ρ) with a
sequence rep(0), . . . , rep(ρ), that is, to partition the interval [a, b] into ρ parts
[rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ · · · ∪ (rep(ρ − 1), rep(ρ)], aiming to prove that
each bin (part) will have the element property:

Pr
[

x ∈ (

rep(i − 1), rep(i)
]]

=
∫ rep(i)

rep(i−1)

μ(t)dt = Θ

(

1

ρ

)

= Θ

(

lnn

n

)

, i = 1, . . . , ρ.

Remark 2 The sequence rep(0), . . . , rep(ρ) makes the event “insert (delete) a μ-
random (random) element x” equivalent to the event “throw (delete) a ball almost
uniformly at random into one of ρ distinct bins”. This fact will become the corner-
stone in our subsequent proof that no bin remains empty and almost no bin gets more
than Θ(lnn) balls.

An illustration of Remarks 1 and 2 is given in Fig. 1.
Consider the part of the horizontal axis spanned by [a, b], which will be referred

to as the [a, b] axis. Suppose that only a wise man knows the positions on the [a, b]

Fig. 1 Plot of an unknown probability density μ(x), x ∈ [a, b]. The upper graphic represents the uniform
bins defined by: repμ(0), repμ(1), . . . , repμ(ρ). The lower graphic represents the almost uniform bins
defined by: rep(0), rep(1), . . . , rep(ρ)
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axis of the sequence repμ(0), . . . , repμ(ρ), referred to as the red dots. Next, perform
n independent insertions of μ-random elements from [a, b] (this is the role of the
set S0). In each insertion of an element x, we add a blue dot in its position on the
[a, b] axis. At the end of this random game we have a total of n blue dots in this
axis. Now, the wise man reveals the red dots on the [a, b] axis, i.e., the sequence
repμ(0), . . . , repμ(ρ). If we start counting the blue dots between any two consecutive
red dots repμ(i − 1) and repμ(i), we almost always find that there are lnn + o(1)

blue dots. This is because the number X
μ
i of μ-random elements (blue dots) selected

from [a, b] that belong in (repμ(i − 1), repμ(i)], i = 1, . . . , ρ, is a Binomial ran-

dom variable, X
μ
i ∼ B(n, 1

ρ
= lnn

n
), which is sharply concentrated to its expectation

E[Xμ
i ] = lnn.

The above discussion suggests the following procedure for constructing the se-
quence rep(0), . . . , rep(ρ). Partition the sequence of n blue dots on the [a, b] axis
into ρ = n

lnn
parts, each of size lnn. Set rep(0) = a, rep(ρ) = b, and set as rep(i) the

i · lnn-th blue dot, i = 1, . . . , ρ − 1. Call this procedure Red-Dots.

Remark 3 The above argument stresses on the crucial fact that the probability mea-
sure enclosed in the random interval (rep(i − 1), rep(i)], i = 1, . . . , ρ, must be of
order Θ( 1

ρ
) = Θ( lnn

n
), regardless of the particular distribution density μ(·).

Theorem 1 Let rep(0), rep(1), . . . , rep(ρ) be the output of procedure Red-Dots,
and let pi(n) = ∫ rep(i)

rep(i−1) μ(t)dt . Then:

Pr

[

∃ i ∈ {1, . . . ,m} : pi(n) 	= Θ

(

1

ρ

)

= Θ

(

lnn

n

)]

→ 0.

Proof For details see [14]. �

The above discussion and Theorem 1 imply the following.

Corollary 1 If n elements are μ-randomly selected from [a, b], and the se-
quence rep(0), . . . , rep(ρ) from those elements is produced by procedure Red-
Dots, then this sequence partitions the interval [a, b] into ρ distinct bins (parts)
[rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ · · · ∪ (rep(ρ − 1), rep(ρ)] such that a ball
x ∈ [a, b] can be thrown (deleted) independently of any other ball in [a, b] into
(from) any of the bins with probability pi(n) = Pr[x ∈ (rep(i − 1), rep(i)]] = ci lnn

n
,

where i = 1, . . . , ρ and ci is a positive constant.

Definition 1 Let c = mini{ci} and C = maxi{ci}, i = 1, . . . , ρ, where ci = npi(n)
lnn

.

Definition 2 Let the random variable M(j) denote the number of balls existing at
the end of the j -th insertion/deletion operation, j = 0, . . . , rn. Initially, M(0) = n/c.

All the above establish the following result.
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Theorem 2 Consider the aforementioned random process of n balls and n/ lnn bins
modeling the update operations, where during each operation j = 0, . . . , rn (r con-
stant) with probability p > 1/2 a μ-random ball x ∈ [a, b] is inserted into an ap-
propriate bin and with probability 1 − p an existing ball is deleted (uniformly at
random) from the current number of M(j) balls. Then, with high probability, there is
no sequence of empty bins and each bin receives Θ(logn) balls.

Proof For details see [14]. �

5 Our solution

First, we build the LRT (Level Range Tree) structure, one of the basic components of
the final ART structure. LRT will be called upon to organize collections of peers at
each level of ART.

5.1 Building LRT structure

LRT is built by grouping peers having the same ancestor and organizing them in a tree
structure recursively. The innermost level of nesting (recursion) will be characterized
by having a tree in which no more than b peers share the same direct ancestor, where b

is a double-exponentially power of two (e.g. 2,4,16, . . .). Thus, multiple independent
trees are imposed on the collection of peers. Figure 2 illustrates a simple example,
where b = 2.

The degree of the peers at level i > 0 is d(i) = t (i), where t (i) indicates the
number of peers at level i. It holds that d(0) = b and t (0) = 1. Let n be w-bit keys.
Each peer with label i (where 1 ≤ i ≤ N ) stores ordered keys that belong in the range
[(i − 1) lnn, i lnn − 1], where N = n/ lnn is the number of peers. Note here that the
lnn (and not logn) factor is due to the specific combinatorial game we presented in
Sect. 4.

We also equip each peer with a table named Left Spine Index (LSI), which stores
pointers to the peers of the left-most spine (see pointers starting from peer 5).

Furthermore, each peer of the left-most spine is equipped with a table named Col-
lection Index (CI), which stores pointers to the collections of peers presented at the
same level (see pointers directed to collections of last level). Peers having the same
father belong to the same collection. For example, in Fig. 2, peers 8, 9, 10, and 11
constitute a certain collection.

Lookup algorithm Assume we are located at peer s (we mean the peer labeled by
integer number s) and seek a key k. First, we find the range where k belongs in. Let
say k ∈ [(j − 1) lnn, j lnn − 1]. The latter means that we have to search for peer j .
The first step of our algorithm is to find the LRT level where the desired peer j is
located. For this purpose, we exploit a nice arithmetic property of LRT. This property
says that for each peer x located at the left-most spine of level i, the following formula
holds:

label(x) = label
(

father(x)
) + b2i−2

(1)
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Fig. 2 The LRT structure for b = 2

For example, peer 4 is located at level 2, thus 4 = father(4) + 2 or peer 8 is located
at level 3, thus 8 = father(8) + 4 or peer 24 (not depicted in the Fig. 2) is located at
level 4, thus 24 = father(24) + 16. The last equation is true since father(24) = 8.

Thus, for each level i (in the next subsection we will prove that 0 ≤ i ≤ log logN ),
we compute the label x of its left most peer by applying Equation (1). Then, we
compare the label j with the computed label x. If j ≥ x, we continue by applying
Equation (1), otherwise we stop the loop process with current value i. The latter
means that peer j is located at the i-th level. So, first we follow the i-th pointer of
the LSI table located at peer s so as to reach the leftmost peer x of level i. Then, we
compute the collection in which the peer j belongs. Since the number of collections
at level i equals the number of peers located at level (i − 1), we divide the distance
between j and x by the factor t (i − 1). Let m (in particular m = � j−x+1

t (i−1)

) be the

result of this division. The latter means that we have to follow the (m + 1)-th pointer
of the CI table so as to reach the desired collection. Since the collection indicated
by the CI[m + 1] pointer is organized in the same way at the next nesting level, we
continue this process recursively.

Analysis The degree of the peers at level i > 0 is d(i) = t (i), where t (i) indicates
the number of peers at level i. It is defined that d(0) = b and t (0) = 1. It is apparent
that t (i) = t (i − 1)d(i − 1), and, thus, by putting together the various components,
we can solve the recurrence and obtain d(i) = t (i) = b2i−1

for i ≥ 1. This double
exponentially increasing fanout guarantees the following lemma:
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Lemma 1 The height (or the number of levels) of LRT is O(log logb N) in the worst
case.

The size of the LSI table equals the number of levels of LRT. Moreover, the max-
imum size of the CI table appears at last level. It is apparent from the building of
the LRT structure that at last level h, t (h) = O(N). It holds that t (h) = b2h−1

, thus
b2h−1 = O(N) or h − 1 = O(log logb N) or h = O(log logb N) + 1. Since the num-
ber of collections at level h equals the number of peers located at level (h − 1)

we take t (h − 1) = b2h−2 = b2(O(log logb N)+1)−2
or b2O(log logb N)−1 = b2O(log logb N)2−1 =

(b2O(log logb N)
)1/2 and the Lemma 2 follows:

Lemma 2 The maximum size of the CI and LSI tables is O(
√

N) and O(log logN)

in worst-case respectively.

We need now to determine what will be the maximum number of nesting trees
that can occur for N peers. Observe that the maximum number of peers with the
same direct ancestor is d(h − 1). Would it be possible for a second level tree to have
the same (or bigger) depth than the outermost one?

This would imply that
∑h−1

j=0 t (j) < d(h − 1).
As otherwise we would be able to fit all the d(h − 1) peers within the first h − 1

levels. But we need to remember that d(i) = t (i), thus d(h − 1) + ∑h−2
j=0 d(j) <

d(h − 1).
This would imply that the number of peers in the first h − 2 levels is negative,

clearly impossible. Thus, the second level tree will have depth strictly lower than the
depth of the outermost tree.

The innermost (let say j th) level of nesting (recursion) is characterized by having
a tree in which no more than b nodes share the same direct ancestor, where b is a
double-exponentially power of two (e.g. 2,4,16, . . .). In this case b = N1/bj

and the
Lemma 3 follows:

Lemma 3 The maximum number of possible nestings in LRT structure is
O(logb logN) in the worst case.

At each peer we pay an extra processing cost by repeating Eq. (1) O(log logN)

times at most in order to locate the desired LSI pointer. Then, we need O(1) hops
for locating the left-most peer x of the desirable level. We must note here that the
processing overhead compared to communication overhead is negligible, thus we can
ignore the O(log logN) processing factor at each peer. Finally we need O(1) hops
for locating the desirable collection of peers via the CI[m + 1] pointer. Since, the
collection indicated by the CI[m + 1] pointer is organized in the same way at a next
nesting level, we continue the above process recursively. According to Lemma 2 the
maximum number of nesting levels is O(logb logN), and the theorem follows:

Theorem 3 Exact-match queries in the LRT structure require O(logb logN) hops or
lookup messages in the worst case.
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5.2 Building ART structure

We define as cluster_peer a bucket of ordered peers. At initialization step and accord-
ing to Red-Dots procedure presented in Sect. 4, we choose as bucket representatives
the 1st peer, the (lnn + 1)-th peer, the (2 lnn + 1)-th peer and so on. This means that
each cluster_peer with label i′ (where 1 ≤ i′ ≤ N ′) stores ordered peers with sorted
keys belonging in the range [(i′ − 1) ln2 n, . . . , i′ ln2 n − 1], where N ′ = n/ ln2 n or
N ′ = N/ lnn is the number of cluster_peers.

ART stores cluster_peers only, each of which is structured as an independent de-
centralized architecture. The backbone-structure of ART is exactly the same with
LRT (see Fig. 3). Moreover, instead of the Left-most Spine Index (LSI), which re-
duces the robustness of the whole system, we introduce the Random Spine Index
(RSI) routing table, which stores pointers to randomly chosen (and not to left-most)
cluster_peers (see in Fig. 3 the pointers starting from peer 3). Let W be the clus-
ter_peer pointed by RSIS[h] link, 1 ≤ h ≤ O(log logN), of the RSI routing table
located at node S. In particular, RSIS[h] points the root of the decentralized structure
of W . With other words, RSIS[h] = Root(W). If the Root(W) peer (node) fails or de-
parts, then we have to execute the respective failure_departs_Repairing(W) routine,
which is according to the decentralized structure we use and when the recovering
has been occured we update the RSIS[h] link with the new root of W . So, the to-
tal cost of RSI maintenance in ART structure is the cost of running the appropriate
failure_departs_Repairing(W) routine. In our experiments W = BATON∗, meaning

Fig. 3 The ART structure for b = 2
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Fig. 4 The 2-level LRT structure

that we call the respective routine presented in [12]. Also, in [12] there is no complex-
ity analysis for this operation (resistance after massive failures or load balancing after
departs). Only heuristics have been applied. As a consequence, the same holds for the
cost of RSI maintenance in our structure. RSI offers resistance in ART structure and
Sect. 6.4 presents the respective experimental evaluation.

In addition, instead of using fat CI tables, we access the appropriate collection of
cluster_peers by using a 2-level LRT structure. The 2-level LRT is an LRT structure
over log2c Z buckets each of which organizes Z

log2c Z
collections in a LRT manner,

where Z is the number of collections at current level and c > 0 is a positive constant
(see Fig. 4).

Load balancing We model the join/leave of peers inside a cluster_peer (bucket) as
the combinatorial game of bins and balls presented in [14] and according to Theo-
rem 2, Lemma 4 follows:

Lemma 4 Given a μ(·) random sequence of join/leave peer operations, the load of
each cluster_peer never becomes zero and never exceeds Θ(logN) size in expected
w.h.p. case.

The complexity analysis of the combinatorial game of balls in bins presented
in [14] is probabilistic and as a consequence the results hold for the expected with
high probability scenario. In the worst-case scenario, the things are different. For ex-
ample, in practice, the sequence of join/leave peer operations may become skewed.
In this case the load distribution becomes skewed, meaning that a majority of peers
(Θ(N)) are possibly located in a cluster_peer and Lemma 5 follows:

Lemma 5 For a skew sequence of join/leave peer operations, the load of each clus-
ter_peer never becomes zero and never exceeds Θ(logN) size in expected w.h.p. case
but may become Θ(N) in the worst-case.

Routing overhead ART stores cluster_peers, each of which is structured as an in-
dependent decentralized architecture (be it BATON*, Chord, Skip-Graph, etc.) (see



84 Distrib Parallel Databases (2013) 31:71–109

Fig. 3). Here, we will try to avoid the existence of CI routing tables, since these ta-
bles may become very large (O(

√
N)) in the worst case as well as the occurrence

of local hot spots in the left-most spine results in a less robust decentralized infras-
tructure. Thus, instead of the Left-most Spine Index (LSI), we introduce the Random
Spine Index (RSI) routing table. The latter table stores pointers to the cluster_peers
of a random spine (for example, in Fig. 3 the randomly chosen cluster_peers 1, 2, 6
and 10 are pointed to by the RSI table of cluster_peer 3). Furthermore, instead of CI
tables, we can access the appropriate collection of cluster_peers by using the 2-level
LRT structure discussed above (see Fig. 4). Let 2lLRT i be the 2-level-LRT structure,
which organizes the ith level of ART. The overhead of CI and LSI routing informa-
tion in 2lLRT i structure is dominated by the second level structures in each of which,

from Lemma 2, we need O(
√

Z

log2c Z
) and O(log logZ) space for CI and LSI tables

respectivelly, where Z = O(N1/2i
) the number of organized collections at ith level of

ART. Obviously, the maximum overhead of routing information appears at first level,
where we have the biggest number of Z = O(N1/2) collections. In this case, we need

O(
√

Z

log2c Z
+ log logZ) = O(

√

N1/2

log2c N1/2 + log logN1/2) and Theorem 4 follows:

Theorem 4 The maximum overhead of routing information in ART structure is
O(N1/4/ logc N) in the worst case.

Remark 4 If we use a k-level LRT structure, the routing information overhead be-
comes O(N1/2k

/ logc N) in the worst case.

Remark 5 The bigger the constant c is the lower the routing overhead becomes.

The total space of routing tables remains linear, since:

TotalRoutingSpace =
log logb N

∑

i=0

(

√

N1/2i

log2c N1/2i
+ log logN1/2i

)

+
logb logN

∑

i=0

logb logN
∏

i=0

(

N1/2i )
(

√

N1/2i

log2c N1/2i
+ log logN1/2i

)

= O(N).

The first sum is with respect to the 2-level LRTs at the basic ART structure (without
nesting levels) of O(log logb N) height and the second sum with respect to the 2-level
LRTs at the O(logb logN) nesting levels. Thus, Theorem 5 follows:

Theorem 5 The total routing space in ART structure remains linear O(N) in the
worst case.

Lookup algorithms Let us explain the lookup operations in ART. For example, in
Fig. 5 suppose we are located at cluster_peer 3 and we are looking for two keys, which
are located at cluster_peers 19 and 119 respectively. The first step of our algorithm
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Fig. 5 An example of Lookup Steps via RSI[ ] tables and 2-level LRT structures

is to find the levels of the ART where the desired cluster_peers (e.g. 19 and 119) are
located. In our example, the fourth and fifth levels are the desired levels. By following
the RSI[4] and RSI[5] pointers we reach the cluster_peers 10 and 87 respectively.
Now, we are starting from peers 10 and 87 to lookup the peers 19 and 119 respectively
in the 2-level LRT structures of the collections in respective levels.

Generally speaking, since the maximum number of nesting levels is O(logb logN)

and at each nesting level i we have to apply the standard LRT structure in N1/2i

collections, the whole searching process requires T1(N) hops or lookup messages to
locate the target cluster_peer, where:

T1(N) =
logb logN

∑

i=0

logb log
(

N1/2i ) = logb

(logb logN
∏

i=0

log
(

N1/2i )

)

(2)

where
logb logN

∏

i=0

log
(

N1/2i )

< (logN)logb logN

from which we get:

T1(N) < logb

(

(logN)logb logN
) = O

(

log2
b logN

)

.

Then, we have to locate the target peer by searching the respective decentralized
structure, requiring T2(N) hops. According to Lemma 4 the load of each clus-
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ter_peer never exceeds Θ(logN) size in expected w.h.p. case. Since each of the
known decentralized architectures requires a logarithmic number of hops, T2(N) =
O(log(Θ(logN))) = O(log logN). As a consequence, the total process requires
T (N) = T1(N) + T2(N) = O(log2

b logN) hops or lookup messages and the theorem
follows.

Theorem 6 Exact-match queries in the ART structure require O(log2
b logN) hops or

lookup messages in expected with high probability case.

Having located the target peer for key k� and exploiting the order of keys on each
node, range queries of the form [k�, kr ] require an O(log2

b logN + |A|) complex-
ity, where |A| is the number of node-peers between the peers responsible for k�, kr

respectively. The theorem follows.

Theorem 7 Range queries of the form [k�, kr ] in the ART structure require an
O(log2

b logN + |A|) complexity in expected with high probability case, where |A|
is the answer size.

According to Lemma 5, for a skew sequence of join/leave peer operations, the
load of each cluster_peer may become Θ(N) in the worst-case. In this case, T2(N) =
O(logN). As a consequence, the total process requires T (N) = T1(N) + T2(N) =
O(logN) hops or lookup messages in the worst-case and Theorems 8 and 9 follow.

Theorem 8 Exact-match queries in the ART structure require O(logN) hops or
lookup messages in the worst-case.

Theorem 9 Range queries of the form [k�, kr ] in the ART structure require an
O(logN + |A|) complexity in the worst-case, where |A| is the answer size.

Query processing, data insertion and data deletion, peer join and peer departure In
the following we briefly present the basic routines for query processing, data insertion
and data deletion, peer join and peer departure.

The Range_Search(s, k�, kr ) routine (Algorithm 1) gets as input the peer s

in which the query is initiated and the respective range of keys [k�, kr ] and
returns as output the id of the cluster_peer S, which contains peer s as well
as the cluster_peer W in which the key k� belongs. Then, it calls the basic
ART_Lookup(T ,S, idS,W, idW) routine, in order to locate the target peer respon-
sible for key k�, and then, exploiting the order of keys on each peer performs a right
linear_scan till it finds a key > kr .

The ART_Lookup(T ,S, idS,W, idW) routine (Algorithm 2) gets as input the clus-
ter_peer S (with identifier idS) in which the query is initiated and returns as output
the id (idW) of the cluster_ peer W in which the key k� belongs. T denotes the ART-
tree structure. Moreover, Algorithm 2 requires O(log2

b logN) hops, according to first
part (T1(N)) of Theorem 6. Obviously, the same complexity holds for insert/delete
key operations (see Algorithms 3 and 4), since we have to locate the target peer into
which the key must be inserted or deleted.
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Algorithm 1 Range_Search(s, k�, kr ,A)

1: Input: s, k�, kr (we are at peer s and we are looking for keys in range [k�, kr ])
2: Output: idW (the identifier of cluster-peer W , which stores k� key), A (the answer)
3: BEGIN
4: We compute idS: the identifier of Cluster_peer S, which contains peer s;
5: We compute idW : let j be the identifier of target Cluster_ peer W , which stores k� key;
6: Let T the basic ART structure of cluster-peers;
7: W = ART_Lookup(T ,S, idS,W, idW); {call of the basic routine}
8: A = Linear_Scan of all Cluster_peers located in and right to W until we find a key > kr ;
9: END

Algorithm 2 ART_Lookup(T ,S, idS,W, idW)

1: Input: We are at cluster-peer S with identifier idS
2: Output: We are looking for the cluster-peer W with identifier idW
3: BEGIN
4: If (S is responsible for k�)
5: Return S;
6: Else
7: If W = 1 then i = 0;
8: Else if W ∈ {2,3, . . . , b + 1] then i = 1;
9: Else

10: x = b + 2;
11: For (i = 2; i < c1 log logb N;+ + i)

12: x = father(x) + b2i−2
;

13: If j < x then break( );
14: Follow the RSI[i] pointer of cluster_peer S;
15: Let X the correspondent cluster_peer;
16: Search for W the 2-level LRT structure starting from X;
17: Let Y the first cluster-peer of the correspondent collection;
18: Let T ′ the ART structure of the collection above at next level of nesting with root the

cluster-peer Y ;
19: S = Y ;
20: ART_Lookup(T ′, S, idS,W, idW); {recursive call of the basic routine}
21: Return W ;
22: END

Algorithm 3 ART_insert(T , s, k)

1: Input: We are at peer s and we want to insert the key k

2: Output: The peer w in which k must be inserted
3: BEGIN
4: We compute idS: the identifier of Cluster_peer S, which contains peer s;
5: We compute idW : let j be the identifier of target Cluster_ peer W , which stores the k key;
6: ART_Lookup(T ,S, idS,W, idW);
7: Let W the target cluster_peer;
8: Search W for peer w containing k;
9: If k does not exist into w, then insert k into it;

10: END
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Algorithm 4 ART_delete(T , s, k)

1: Input: We are at peer s and we want to delete the key k

2: Output: The peer w in which k must be deleted
3: BEGIN
4: We compute idS: the identifier of Cluster_peer S, which contains peer s;
5: We compute idW : let j be the identifier of target Cluster_ peer W , which stores the k key;
6: ART_Lookup(T ,S, idS,W, idW);
7: Let W the target cluster_peer;
8: Search W for peer w containing k;
9: If k exists into w, then delete it;

10: END

Algorithm 5 ART_join/leave_peer(T , s,w)

1: Input: We are at peer s and we want to insert/delete the new peer w

2: Output: The cluster_peer W in which the peer w must be inserted/deleted
3: BEGIN
4: We compute idS: the identifier of Cluster_peer S, which contains peer s;
5: We compute idW : let j be the identifier of target Cluster_ peer W , which contains peer w;
6: ART_Lookup(T ,S, idS,W, idW); {call of the basic routine}
7: Let W the target cluster_peer;
8: Insert/delete w into/from W ;
9: END

For join (depart) peer operations (for details see Algorithm 5), we need
O(log2

b logN) + Tjoin(N) (O(log2
b logN) + Tdepart(N)) lookup messages, where

Tjoin(N) (Tdepart(N)) is the number of hops required from the respective decentral-
ized structure for peer-join (peer-departure).

In the peer join algorithm we assumed that the new peer is accompanied by a key,
and this key designates the exact position in which the new peer must be inserted. If
an empty peer u makes a join request at a particular peer v (which we call entrance
peer) then there is no need to get to a different cluster peer than the one in which u

belongs. Similarly, the algorithm for the departure of a peer u assumes that the request
for departure of peer u can be made from any peer in the ART-structure. This may not
be desirable, and in many applications it is assumed that the choice for departure of
peer u can be made only from this peer. Of course, in this way the algorithm for peer
departure is simplified since there is no need to traverse the ART structure but only
the cluster peer in which u belongs. In order to bound the size of each cluster_peer
we assume that the probability of picking an entrance peer is equal among all existing
peers, and that the probability of a peer departing is equal among all existing peers in
the ART. Since the size of the cluster_peer is bounded by Θ(logN) peers in expected
w.h.p. case, the following theorem is established:

Theorem 10 The peer join/departure can be carried out in O(log logN) hops or
lookup messages.

Node failure, fault tolerance, network restructuring and load balancing Since we
have modeled the join/leave of peers inside a cluster_peer as the combinatorial game
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of bins and balls presented in [14], each cluster_peer of an ART structure (according
to Lemma 4) never exceeds a polylogarithmic number of peers and never becomes
empty in expected case with high probability. The latter means that the skeleton ART
structure of cluster_peers remains unchanged in the expected with high probability
case as well as in each cluster_peer the algorithms for peer failure, network restruc-
turing and load balancing are according to the polylogarithmic-sized decentralized
architecture we use. In particular, after peer failures or departs, we have to update
appropriately the RSI routing tables. Let W be the cluster_peer pointed by RSIS[h]
link, 1 ≤ h ≤ O(log logN), of the RSI routing table located at node S. In particular,
RSIS[h] points the root of the decentralized structure of W (RSIS[h] = Root(W)).
If the Root(W) peer (node) fails or departs, then we have to execute the respective
failure_departs_Repairing(W) routine, which is according to the decentralized struc-
ture we use and when the recovering has been occurred we update the RSIS[h] link
with the new root of W . The Algorithm 6 follows:

Algorithm 6 ART_NodeFails_Departs_Repairing(T ,w)

1: Input: The peer w, which fails or departs
2: Output: The repaired cluster_peer W in which the peer w belonged to.
3: BEGIN
4: Let W be the Cluster_peer in which peer w fails or departs;
5: if (w = Root(W) AND RSIs [h] = w) {there is a link from the RSI table of s to w} then
6: Begin
7: RSIs [h] = NULL; {free pointer and disconnect}
8: failure_departs_Repairing(W); {f.e. if W = BATON∗ then we call the respective routine

of BATON∗}
9: w′ = Root(W); {let w′ be the new root after the recovering of W}

10: RSIs [h] = w′; {allocate pointer and connect}
11: End
12: else failure_departs_Repairing(W);
13: END

Multi-attribute queries As in [12], we divide the whole range of attributes into sev-
eral sections: each section is used to index an attribute (if it appears frequently in
queries) or a group of attributes (if these attributes rarely appear in queries). Since
ART can only support queries over one-dimensional data, if we index a group of
attributes, we have to convert their values into one-dimensional values (by choos-
ing Hilbert space filling curve or other similar methods). For example, if we have
a system with 12 attributes: a1, a2, . . . , a12 in which only 4 attributes from a1 to a4
are frequently queried (i.e. 90 % of all queries), we can build 4 separate indexes for
them. The remaining attributes can be divided equally into two groups to index, four
attributes in each group. This way, the number of replications can be significantly
reduced from 12 down to 6.

However, the actual solution is to index attributes and some combinations of at-
tributes separately. Thus, this approach has limitations on number of attributes that
can be supported, and may encounter another problem of join processing while eval-
uating queries over attributes that are not indexed together.
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The main decision to design a join evaluation strategy in a P2P context is related to
the algorithm to use. This way we can find Sorting-based, Hash-based, Index-based
and Nested-Loop Join algorithms that could be implemented in one or several phases,
depending upon the available main memory in the system and the memory needed to
load the relations implied in the join operation. Sort-based and Hash-based algorithms
will be too expensive in terms of processing, number of messages required, and disk
space capacity (for details see [9]). These algorithms realize an extra step for sorting
and for rehashing of the tuples using the attribute or attributes involved in the join con-
dition. This step is critical in a large-scale distributed environment like P2P systems.
As a consequence, we consider only the Index-based join algorithm, because ART
maintains indexes to resolve join queries with EqTerms (Equality Terms), IneTerms
(Inequality Terms) and LikeTerms. The join evaluation strategy selects first a “query
coordinator peer”. Such coordinator peer isolates the terms composing the query and
initiates their evaluation in a parallel manner. EqTerms, IneTerms and LikeTerms are
evaluated and the process to evaluate joins (CondJoin terms) uses the Index-based
strategies introduced in [19]. Partial answers obtained by the evaluation of each term
of the query are integrated by the coordinator peer. It evaluates the “and/or” operators
and returns the final answer.

Low-dimensionality is considered in this work (e.g., d ≤ 6), where the number
of messages required for join operations is negligible in comparison to the number
of lookup messages required for querying the six (6) separate ART indexes. This
assumption is sufficient for many practical applications. For example, location-aware
services in mobile computing systems may require only a few join attributes (e.g., the
longitude and latitude corresponding to locations). For higher dimensionality (e.g.,
tens or hundreds of features as in images and video data), a feasible solution may be
to use dimension-reduction techniques [18].

6 Evaluation

For evaluation purposes we used the Distributed Java D-P2P-Sim simulator presented
in [25]. The D-P2P-Sim simulator is extremely efficient delivering >100,000 cluster
peers in a single computer system, using 32-bit JVM 1.6 and 1.5 GB RAM and full
D-P2P-Sim GUI support. When 64-bit JVM 1.6 and 5 RAM is utilized the D-P2P-
Sim simulator delivers >500,000 cluster peers and full D-P2P-Sim GUI support in a
single computer system.

The Admin tools of D-P2P-Sim GUI (see Fig. 6) have specifically been designed
to support reports on a collection of wide variety of metrics including, protocol op-
eration metrics, network balancing metrics, and even server metrics. Such metrics
include frequency, maximum, minimum and average of: number of hops for all ba-
sic operations (lookup-insertion-deletion path length), number of messages per node
peer (hotpoint-bottleneck detection), routing table length (routing size per node-peer)
and additionally detection of network isolation (graph separation). All metrics can
tested using a number of different distributions (e.g. normal, weibull, beta, uniform
etc.). Additionally, at a system level memory can also be managed in order to ex-
ecute at low or larger volumes and furthermore execution time can also be logged.
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Fig. 6 D-P2P-Sim GUI

The framework is open for the protocol designer to introduce additional metrics if
needed. Futhermore, XML rule based configuration is supported in order to form a
large number of different protocol testing scenarios. It is possible to configure and
schedule at once a single or multiple experimental scenarios with different number
of protocol networks (number of nodes) at a single PC or multiple PCs and servers
distributedly. In particular, when D-P2P-Sim simulator acts in a distributed environ-
ment (see Fig. 7) with multiple computer systems with network connection delivers
multiple times the former population of cluster peers with only 10 % overhead.

Our experimental performance studies include a detailed performance comparison
with BATON*, one of the state-of-the-art decentralized architectures. In particular,
we implemented each cluster_peer as a BATON* [12], the best known decentralized
tree-architecture. We tested the network with different numbers of peers ranging up
to 500,000. A number of data equal to the network size multiplied by 2000, which are
numbers from the universe [1..1,000,000,000] are inserted to the network in batches.
The synthetic data (numbers) from this universe were produced by the following
distributions: beta,1 uniform2 and power-law.3 The distribution parameters can be
easily defined in configuration file.4 Also, the predefined values of these parameters
are depicted in Fig. 8.

For each test, 1,000 exact match queries and 1,000 range queries are executed, and
the average costs of operations are taken. Searched ranges are created randomly by
getting the whole range of values divided by the total number of peers multiplies α,

1http://acs.lbl.gov/software/colt/api/cern/jet/random/Beta.html
2http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Random.html
3http://acs.lbl.gov/software/colt/api/cern/jet/random/Distributions.html#nextPowLaw(double,double,cern.
jet.random.engine.RandomEngine)
4http://code.google.com/p/d-p2p-sim/downloads/detail?name=Art-config.xml&can=2&q=

http://acs.lbl.gov/software/colt/api/cern/jet/random/Beta.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Random.html
http://acs.lbl.gov/software/colt/api/cern/jet/random/Distributions.html#nextPowLaw(double,double,cern.jet.random.engine.RandomEngine)
http://acs.lbl.gov/software/colt/api/cern/jet/random/Distributions.html#nextPowLaw(double,double,cern.jet.random.engine.RandomEngine)
http://code.google.com/p/d-p2p-sim/downloads/detail?name=Art-config.xml&can=2&q=
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Fig. 7 The distributed environment

Fig. 8 Snippet from config.xml
with the pre-defined
distribution’s parameters setup

where α ∈ [1..10]. The source code of the whole evaluation process is publicly avail-
able.5

6.1 Single- and multi-attribute query performance

As proved previously, the whole query performance of ART is O(log2
b logN ′) where

the N ′ cluster_peers structure their internal peers according to the BATON* archi-
tecture. For “good” or “smooth” distributions like normal, beta and uniform there is

5http://code.google.com/p/d-p2p-sim/

http://code.google.com/p/d-p2p-sim/


Distrib Parallel Databases (2013) 31:71–109 93

Fig. 9 Cost of 1-dimensional exact match query in case b = 2

Fig. 10 Cost of 1-dimensional exact match query in case b = 4

no cluster_peer storing more than 0.75 log2 N peers and for “bad” or “non-smooth”
distributions like pow-law (zipfian like) there is no cluster_peer with more than
2.5 log2 N peers. Thus, in the former case the average number of cluster_peers is
N ′ = N

0.75 log2 N
, whereas in the latter case the number of cluster_peers becomes

N ′ = N

2.5 log2 N
on average. With other words for “good” distributions the load is dis-

tributed well and each cluster-peer is LIGHT (its load is a fraction of polylogarithmic
size). However, for “bad” distributions there exist HEAVY cluster-peers (with load
more than 2 times the polylogarithmic size). This is the reason why we have grouped
our experiments in that way. Of course the data-sets for normal, beta and uniform
distributions may have differences. However the queries executed were exactly the
same even if we searched for a specific key that existed in one dataset but didn’t exist
in the other.

Except for the case where b = 2 (Fig. 9), ART outperforms BATON* by a wide
margin (Fig. 10, Fig. 11). As depicted in Fig. 9, for b = 2 the BATON* structure is
almost 2 times faster but for b > 2 (in particular for b = 4, b = 16, etc.) our method
is almost 2 (see Fig. 10) up to 3 times (see Fig. 11) faster and as a consequence we
have a 50 % up to 66 % improvement. The results are analogous with respect to the
cost of range queries as depicted in Figs. 12, 13 and 14.

Figures 15, 16 and 17 depict the cost of updating routing tables. Since BATON*
updates its routing tables consuming m logm N messages and each cluster_peer struc-
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Fig. 11 Cost of 1-dimensional exact match query in case b = 16

Fig. 12 Cost of 1-dimensional range query in case b = 2

Fig. 13 Cost of 1-dimensional range query in case b = 4

tures Θ(logN) (and not O(N)) peers according to BATON* architecture, ART re-
quires m logm(Θ(logN)) messages only and the results are as expected. As depicted
in Figs. 15, 16 and 17, our method updates the routing tables 2.5 up to 4 times faster.
In particular for b = 2,4 and 16 our solution requires no more than 40, 32 and 30



Distrib Parallel Databases (2013) 31:71–109 95

Fig. 14 Cost of 1-dimensional range query in case b = 16

Fig. 15 Cost of updating routing tables in case b = 2

Fig. 16 Cost of updating routing tables in case b = 4

messages respectively. On the contrary, BATON* requires from 96 up to 150 mes-
sages.

Figures from 18 up to 32 depict the insertion cost in multi-attribute case, where
we have k (2 ≤ k ≤ 6) separate indexes. BATON* requires k logN hops and ART
requires k log2

b log(N/polylog N) + k log(polylog N) hops. We observe that the in-
sertion cost of ART is the lowest for any distribution and in cases where b > 2. In
particular, for arbitrary k (2 ≤ k ≤ 6) and b = 2 BATON* is always 2 times faster
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Fig. 17 Cost of updating routing tables in case b = 16

Fig. 18 Cost of multi-attribute (k = 2) insertion in case b = 2

Fig. 19 Cost of multi-attribute (k = 2) insertion in case b = 4

(see Figs. 18, 21, 24, 27 and 30). But, for b > 2, we observe the following cases: If
k = 2 our method is from 2 (see Fig. 19) up to 5 (see Fig. 20) times faster and as a
consequence we have a 50 % up to 80 % improvement. For k = 3, ART is from 2 (see
Fig. 22) up to 8 (see Fig. 23) times faster and we have a 50 % up to 87.5 % improve-
ment. For k = 4, our method is from 2 (see Fig. 25) up to 6 (see Fig. 26) times faster,
achieving a range of 50 % up to 83.33 % improvement. For k = 5, our method is
from 2 (see Fig. 28) up to 5.5 (see Fig. 29) times faster and as a consequence we have
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Fig. 20 Cost of multi-attribute (k = 2) insertion in case b = 16

Fig. 21 Cost of multi-attribute (k = 3) insertion in case b = 2

Fig. 22 Cost of multi-attribute (k = 3) insertion in case b = 4

a 50 % up to 81.81 % improvement. Finally, if k = 6, ART is from 2 (see Fig. 31) up
to 7 (see Fig. 32) times faster, meaning a 50 % up to 85.72 % improvement.

Finally, the results are analogous for multi-attribute exact-match (see Figs. 33, 34
and 35) and range queries (see Figs. 36, 37 and 38) respectively. We used k sepa-
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Fig. 23 Cost of multi-attribute (k = 3) insertion in case b = 16

Fig. 24 Cost of multi-attribute (k = 4) insertion in case b = 2

Fig. 25 Cost of multi-attribute (k = 4) insertion in case b = 4

rate indexes for running the k separate queries in parallel where for k ≤ 6 the join
processing overhead is negligible. The later does not hold for k > 6.

Thus, for k ≤ 6 and b = 2, BATON* is almost 2 times faster for both multi-
attribute exact-match and range queries respectively (see Figs. 33 and 36). But for
b > 2 the things are different. In particular, for multi-attribute exact-match queries
and b = 4 and 16, our method is from 2 (see Fig. 34) up to 4 (see Fig. 35) times faster
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Fig. 26 Cost of multi-attribute (k = 4) insertion in case b = 16

Fig. 27 Cost of multi-attribute (k = 5) insertion in case b = 2

Fig. 28 Cost of multi-attribute (k = 5) insertion in case b = 4

respectively and as a consequence we have a 50 % up to 75 % improvement. Exactly
the same holds for multi-attribute range queries (see Figs. 37 and 38 respectively).
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Fig. 29 Cost of multi-attribute (k = 5) insertion in case b = 16

Fig. 30 Cost of multi-attribute (k = 6) insertion in case b = 2

Fig. 31 Cost of multi-attribute (k = 6) insertion in case b = 4

6.2 Load balancing

ART not only reduces the search cost but also achieves better load balancing. To
verify this claim, we test the network with a variety of distributions and evaluate
the cost of load balancing. For simplicity, in our system, we assume that the query
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Fig. 32 Cost of multi-attribute (k = 6) insertion in case b = 16

Fig. 33 Cost of k-dimensional (k ≤ 6) exact match query in case b = 2

Fig. 34 Cost of k-dimensional (k ≤ 6) exact match query in case b = 4

distribution follows the data distribution. As a result, the workload of a peer is de-
termined only by the amount of data stored at that peer. In BATON*, when a peer
joins the network, it is assigned a default upper and lower load limit by its parent.
If the number of stored data at the peer exceeds the upper bound, it is considered as
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Fig. 35 Cost of k-dimensional (k ≤ 6) exact match query in case b = 16

Fig. 36 Cost of k-dimensional (k ≤ 6) range query in case b = 2

Fig. 37 Cost of k-dimensional (k ≤ 6) range query in case b = 4

an overloaded peer and vice versa. If a peer is overloaded and cannot find a lightly
loaded leaf peer, it is likely that all other peers also have the same work load; thus,
it automatically increases the boundaries of storage capability. In ART the overlay
of cluster_peer remains unaffected in the expected case with high probability when
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Fig. 38 Cost of k-dimensional (k ≤ 6) range query in case b = 16

Fig. 39 Cost of expected load balancing

peers join or leave the network. Thus, the load-balancing performance is restricted
inside a cluster_peer (which is a new BATON* structure), meaning that the b param-
eter does not affect the expected load balancing cost and as a result ART needs no
more than 4 lookup-messages (instead of 1000 messages needed from BATON* in
case of 500.000 nodes). For details see Fig. 39.

6.3 Expected search cost in case of massive failures

The problem that massive failures cause is the invalidation of links among them.
As the search procedures have to overcome non-reachable connections, it is hard to
choose a path that does not include failed nodes. Queries oscillate inside the overlay
until the alternative path is determined. Thus an increase in node failures is expected
to result in an increase to search costs. To evaluate the system’s search cost in case
of massive failure we initialized the system with 10,000 peers. In the sequel, we let
peers randomly fail step by step without recovering. At each step, we check to see
if the network is partitioned or not. With massive peer failures, we face a massive
destruction of links connected to failed peers. Since the search process has to bypass
these peers, the search query has to be forwarded forth and back several times to
find a way to the destination and as a result the search cost is expected that will in-



104 Distrib Parallel Databases (2013) 31:71–109

Fig. 40 Search cost in case of massive failures

crease substantially. Since the backbone of ART structure remains unaffected w.h.p.,
meaning that there is always a peer for playing the role of cluster representative, the
search cost is restricted inside a cluster_peer (which is a BATON* structure), mean-
ing that the b parameter does not affect again the overall expected cost and as a result
ART needs no more than 32 lookup-messages (instead of 180 messages needed from
BATON* in case of 6.000 nodes). Figure 40 illustrates this effect.

6.4 Fault tolerance

Node failures and departures are important in order to achieve real life conditions dur-
ing simulation. D-P2P-Sim give us all the necessary services to implement strategies
for

– the self-willing departure of peer nodes (node departure)
– the failure or their sudden retirement for any reason (network failure, application

failure etc.)
– monitoring whether the overlay network is parted after successive node failures or

departures
– statistics and management in order to monitor all different strategies natively in the

simulator.

Statistics include: (i) cost monitoring of importing and retirement of nodes, (ii) the
number of failed queries due to node failures and (iii) the number of nodes leading to
overlay partition.

Self-willing departure of nodes could be simulated following two approaches. It
is possible to simulate scenarios that departure of nodes is initiated in parallel, so
that random nodes in the network depart simultaneously. A second approach is to set
nodes departing in a sequential mode, where each next node departs after another’s
complete leave. Though the simulator supports both modes, we have seen that se-
quential departures are not realistic and as a result they tend to hide problems that
might appear (e.g. simultaneous departure of a node and its backup node). On the
other hand, multiple concurrent departures make P2P protocol designers to deal with
such cases.
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Fig. 41 Failure percentage for BATON*

Fig. 42 Failure resistance comparisson between ART and BATON*

In our setup, a network of 0.5M nodes is initialized, with a 10 % of randomly cho-
sen nodes being assigned to leave abruptly (sudden node death), without rebuilding
the network. The experiments continue increasing the percentage of nodes failing in
the network by 1 % at each round. In each step, the network is checked in order to
verify that it is not partitioned into isolated areas that cannot communicate. All the
experiments are repeated for fanout 2 up to 10 for Baton*. Figure 41 shows the av-
erage number of nodes that is expected to fail before the network is partitioned. The
results verify that the network is resistant to failures when a quarter of the nodes fails
for fanout = 2. A fanout increase results in higher degrees of tolerance.

Figure 42 shows the resistance (tolerance) comparison between BATON* (fanout =
10) and ART (we considered the average cost in all alternate b parameters). For
50.000 nodes, BATON* and ART resist till 25.900 and 232.031 nodes have ran-
domly failed respectively. For 500.000 nodes, BATON* and ART resist until 259.000
and 264.109 nodes have randomly failed respectively. Thus, the average resistance
is 51,8 % for BATON* (fanout = 10) and almost 56,4 % for ART. The existence of
LSI and CI routing tables in ART result in higher degrees of tolerance, and as a result
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Fig. 43 Messages per node

ART is more Robust than BATON*. However, as we describe in the following, we
pay an extra cost of hot-spots existence.

6.5 Hot spots

Figure 43 presents the number of messages that each node receives, for any of the
operations (search, update, join, leave), for node populations up to 0.5M nodes and
for 3K operations. For ART structure we considered the average cost in all alternate
values of b parameter (b = 2, b = 4 and b = 16). Due to the existence of large CI ta-
bles in ART, we expect that our method will appear more hot-spots than BATON*. As
shown for BATON*, the maximum number of messages in the experiments reached
13 and this only happens for a single node. On the contrary, 30,590 nodes (up to
0.5M) receive a single message. For our method, the maximum number of messages
in the experiments reached 14 and this only happens for a single node. On the con-
trary, from 30,590 nodes (up to 0.5M) receive from 9 down to 7 messages. As a result,
we can safely say that even ART retains large CI tables at each level and the proba-
bility of hot-spots existence is higher than in BATON*, it still successively balances
the visiting rate among nodes.

7 Trade-offs and heuristics

If each collection of cluster_peers is organized individually as a BATON∗ structure
(not the whole level of collections), then we can climb up the ART structure until
we reach the nearest common ancestor of the cluster_peer we are located in, and the
cluster peer we are searching. Then a downwards traversal is initiated to reach this
cluster_peer. Since, each collection of ith-level is organized according to BATON*,
we can decide in O(logm n1/2i

) hops the child we must follow for further searching.
As a result, the total time becomes O(logm n) and no improvement has been achieved.

In our solution, if we parameterize the size of the buckets (depicted in Fig. 3)
from O(log2c N) to O(log2f (N) N), where f (N) is a function of the network size,
then we can get an interesting trade-off between the routing data overhead and the
number of hops for an operation. In particular, if Z is the number of collections
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at the current level, then each bucket contains O( Z

log2f (N) N
) collections. Thus, the

first LRT layer organizes O(log2f (N) N) bucket representatives and each second LRT
layer organizes O( Z

log2f (N) N
) collections. In this case, the routing overhead is domi-

nated by the second layer LRTs which becomes O( N1/4

logf (N) N
). To achieve an optimal

routing data overhead we would like the following: O( N1/4

logf (N) N
) = O(1) ⇔ f (N) =

O(logN). In this case the first LRT layer contains O(log2f (N) N) or O(log2 logN N)

bucket representative nodes. Therefore, a lookup operation in first layer requires
O(log log(log2 logN N)) or ω(log logN) hops. Each of the second layer LRTs con-

tains O( Z

log2f (N) N
) collection representative nodes, where Z is the number of collec-

tions at current level. Therefore, the number of hops required by a lookup operation
in second layer is O(log logN). So, the total time becomes ω(log logN) and the sub-
logarithmic complexity is not guaranteed. As a result, if we want an optimal routing
overhead we cannot guarantee sub-logarithmic complexity. If we relax the routing
overhead to be of polynomial size then we can achieve this.

In our solution the routing data overhead (O(N1/4/ logc N)) is a polynomial
function. However, in reality even for an extremely large number of peers N =
1,000,000,000, the routing data overhead is 6 for c = 1, which is less than the fanout
of BATON∗ (m = 10) that we used to run our experiments. The latter demonstrates
the significance of our result.

8 Conclusions

We presented a new efficient decentralized infrastructure for range query process-
ing with probabilistic guarantees, the ART structure. Theoretical analysis showed
that the communication cost of query, update and join/leave node operations scale
sub-logarithmically expected w.h.p. Experimental performance comparison with BA-
TON*, the state-of-the-art decentralized structure, showed the improved perfor-
mance, scalability and efficiency of our new method. Finally, we believe that ART
will enable general purpose decentralized trees to support a wider class of queries,
and then broaden the horizon of their applicability.
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