
Data Min Knowl Disc
DOI 10.1007/s10618-008-0109-y

SkyGraph: an algorithm for important subgraph
discovery in relational graphs

Apostolos N. Papadopoulos · Apostolos Lyritsis ·
Yannis Manolopoulos

Received: 23 June 2008 / Accepted: 23 June 2008
Springer Science+Business Media, LLC 2008

Abstract A significant number of applications require effective and efficient
manipulation of relational graphs, towards discovering important patterns. Some exam-
ple applications are: (i) analysis of microarray data in bioinformatics, (ii) pattern dis-
covery in a large graph representing a social network, (iii) analysis of transportation
networks, (iv) community discovery in Web data. The basic approach followed by
existing methods is to apply mining techniques on graph data to discover important
patterns, such as subgraphs that are likely to be useful. However, in some cases the num-
ber of mined patterns is large, posing difficulties in selecting the most important ones.
For example, applying frequent subgraph mining on a set of graphs the system returns
all connected subgraphs whose frequency is above a specified (usually user-defined)
threshold. The number of discovered patterns may be large, and this number depends
on the data characteristics and the frequency threshold specified. It would be more
convenient for the user if “goodness” criteria could be set to evaluate the usefulness
of these patterns, and if the user could provide preferences to the system regarding the
characteristics of the discovered patterns. In this paper, we propose a methodology to
support such preferences by applying subgraph discovery in relational graphs towards
retrieving important connected subgraphs. The importance of a subgraph is determined
by: (i) the order of the subgraph (the number of vertices) and (ii) the subgraph edge

Responsible editors: Walter Daelemans, Bart Goethals, and Katharina Morik.

A. N. Papadopoulos (B) · A. Lyritsis · Y. Manolopoulos
Data Engineering Research Lab., Department of Informatics, Aristotle University, 54124 Thessaloniki,
Greece
e-mail: apostol@delab.csd.auth.gr

A. Lyritsis
e-mail: lyritsis@delab.csd.auth.gr

Y. Manolopoulos
e-mail: manolopo@delab.csd.auth.gr

123

A. N. Papadopoulos et al.

connectivity. The performance of the proposed technique is evaluated by using real-life
as well as synthetically generated data sets.

Keywords Graph mining · Skyline processing · Edge connectivity

1 Introduction

Subgraph mining is gaining importance due to the numerous applications that rely on
graph-based data (Cook and Holder 2007). A graph G is composed of a set of vertices
VG and a set of edges EG (Gross and Yellen 1999). Each vertex has a label (or identi-
fier) and each edge ei, j ∈ EG connects the vertices vi and v j . In some applications, the
label of each vertex is unique, whereas in other cases duplicates are allowed. If labels
are unique, the graph is termed relational. In this paper, we focus on relational graphs
which are met in important application domains such as (i) analysis of microarray
data and biological networks in bioinformatics (Wang et al. 2005), (ii) social network
analysis (Wasserman and Faust 1994), (iii) analysis of transportation networks (Bell
and Iida 1997), (iv) community discovery in the Web (Flake et al. 2000). Figure 1
shows two graphs. The graph on the left is a relational graph with seven vertices and
ten edges, whereas the graph on the right is a non-relational graph representing the
ethylene molecule which contains two carbon atoms (C) and four hydrogen atoms (H).

Existing pattern discovery approaches operate by using simple constraints on the
mined patterns. For example, given a database of graphs, a typical graph mining
task is to report all subgraphs that appear in at least s graphs, where s is the fre-
quency support threshold. In other cases, we are interested in the discovery of dense
or highly-connected subgraphs. In such a case, a threshold is defined for the density
or the connectivity of the returned patterns. Other constraints may be defined as well,
towards restricting the number of mined patterns. However, the methods proposed so
far apply the constraints by posing simple thresholds in the mining process (e.g., give
me all subgraphs which contain at least n vertices and their frequency is at least f).
There are three important limitations with this approach:

1. there is an on-off decision regarding the eligibility of patterns, i.e., a pattern either
satisfies the constraints or not,

2. in the case where the constraints are very strict, we risk an empty answer or an
answer with only a few patterns, and

(a) (b)

Fig. 1 Examples of relational and non-relational graphs

123

SkyGraph: an algorithm for important subgraph discovery

3. in the case where the constraints are too weak the number of patterns may be
huge.

Towards dealing with the previous limitations, in this work, we address the problem
of incorporating preferences in the pattern discovery process. Preference-based pro-
cessing have been successfully applied in database systems and are based on either
top-k processing or skyline processing. In top-k processing, a ranking function is
applied to records and the k records with the highest score are returned to the user. In
skyline processing, the records returned to the user are the ones that are not dominated
by any other record, where domination is based on the values of each record. Let p
and q be two records, each composed of d attributes. We denote by pi (qi) the value
of the i-th attribute of p (q). Record p dominates record q if p is “as good as” q in
all attributes and is “better” than q in at least one attribute. Assuming a preference in
large values, p is better than q in the i-th attribute if pi > qi . Skyline processing is
scale invariant, it does not require a ranking function, it does not require any threshold
and can be used as long as the data dimensionality is low (e.g., below 10). For high
dimensional spaces the probability that a record dominates another is very small and
this may lead to an increased answer size (Borzsonyi et al. 2001).

Towards applying preferences in subgraph discovery, each subgraph can be seen as
a record containing two attributes: (i) the order (number of vertices) and (ii) the edge
connectivity. The importance of a discovered subgraph increases as both the order and
the edge connectivity increase. Therefore, the best possible subgraphs (termed skyline
subgraphs) are the ones that are maximized both in order and edge connectivity. The
intuition behind this definition of importance is that if a subgraph is not a skyline
subgraph, there is at least another subgraph which is better in at least one attribute
(order or connectivity). In applications like microarray data analysis, edge connectiv-
ity represents the coherency of a set of genes in a microarray experiment (Hu et al.
2005). In addition to order and edge connectivity, the frequency of a subgraph in a set
of graphs can be used as another important attribute. In this case, we seek to maximize
order, edge connectivity and frequency. Evidently, by using more optimization criteria
the number of skyline subgraphs may increase significantly.

To the best of the authors’ knowledge, this is the first work studying the skyline
problem in the process of knowledge discovery. The proposed method discovers all
subgraphs that are maximal (i.e., not dominated) in terms of order and edge con-
nectivity. Evidently, a brute-force approach to tackle the problem first determines all
subgraphs of the input graph and then performs domination checks to eliminate non-
maximal subgraphs. However, the number of all connected subgraphs of a given graph
grows exponentially in relation to the number of vertices and therefore, this method is
inapplicable even for graphs of moderate size. The challenge is to provide an efficient
polynomial time algorithm to discover the skyline subgraphs of a given input graph.

The rest of the article is organized as follows. Section 2 discusses related work in the
area of subgraph discovery in relational graphs. The proposed methodology is detailed
in Sect. 3, where the basic and the optimized versions of the SkyGraph algorithm are
studied in detail. Experimental results based on real-life as well as synthetically gen-
erated data sets are offered in Sect. 4, whereas Sect. 5 concludes the work and briefly
motivates for further research in the area.

123

A. N. Papadopoulos et al.

2 Related work and contribution

There is an on-going interest in the research community regarding knowledge discovery
from graph data (Cook and Holder 2007). In this section, we briefly present some fun-
damental contributions related to our work.

Density has been used as a measure of subgraph importance. In Cook and Holder
(2007) an algorithm has been studied to determine the densest subgraph of a given input
graph, by using O(log N) min-cut computations, where N is the number of vertices
of graph G. However, the densest subgraph may not be adequate to draw conclusions
regarding the properties of the initial graph. The basic limitation of the algorithm is
that it is not able to discover more than one dense subgraphs. The algorithm proposed
in Gibson et al. (2005) is able to determine many dense bipartite subgraphs of large
graphs.

The density concept has been also used in Hu et al. (2005) where the authors study
the problem of dense subgraph discovery across a set of input graphs. Instead of apply-
ing a dense discovery algorithm in each graph, a summary graph is first constructed and
then processed to determine the important subgraphs. A similar method has been used
in Yan et al. (2007) for reconstruction of human transcriptional regulatory modules.
The main limitation of this technique is that the answer is composed by all subgraphs
satisfying the constraints. This set may be too small or too large, according to the
constraints applied.

Since density cannot describe adequately the coherency of a graph, the concept of
edge connectivity has been used, which is a well-known concept in Graph Theory.
Edge connectivity has been applied as a clustering tool, where clusters are formed by
the vertices of a graph G that show a high degree of connectivity (Hartuv and Shamir
2000; Wu and Leahy 1993). In Yan et al. (2005) the authors describe two algorithms
(CLOSECUT and SPLAT) for mining frequent subgraphs in relational graphs, by
using connectivity constraints. The algorithms report all closed subgraphs that satisfy
the connectivity constraints and the support threshold.

A general framework for incorporating constraints into the discovery process has
been proposed in Zhu et al. (2007). The gPrune method is proposed which uses the
concept of pattern-inseparable data-antimonotonicity. This framework fails to consider
cases where only the most important patterns (regarding some preference criteria) are
required.

All the aforementioned research efforts are characterized by the application of
specific constraints that must be met by the discovered subgraphs. These constraints
may involve the number of vertices, the density, the edge connectivity, or the frequency.
We go beyond this approach, proposing a technique for the discovery of subgraphs
that are “as good as possible” with respect to some important characteristics such as
the number of vertices and the edge connectivity. This way, only the most significant
subgraphs (regarding the preference criteria) are exposed, whereas the rest are not
contained in the final result. Our work is inspired by the plethora of research propos-
als towards supporting skyline query processing in database systems (Borzsonyi et al.
2001; Papadias et al. 2005). The problem we study in this work is formally stated as
follows:

123

SkyGraph: an algorithm for important subgraph discovery

Given a relational graph G, determine the set of induced connected subgraphs of G,
which are maximal with respect to the number of vertices and the edge connectivity.

3 Discovering important subgraphs

3.1 Preliminaries

In this section, we study the problem of discovering important subgraphs. Given a
relational graph G, our primary target is to detect all induced connected subgraphs of
G that are more significant than others. Table 1 contains the most important symbols
used.

Definition 1 A subgraph g(Vg, Eg) of G(VG , EG), where Vg ⊆ VG and Eg ⊆ EG ,
is an induced subgraph of G, if Eg contains all edges of EG that have both endpoints
in Vg .

The significance of a graph G is determined by two attributes, the graph order
(number of vertices) denoted as NG and the edge connectivity of G, denoted as λ(G).

Definition 2 The edge connectivity, λ(G), of a connected graph G is the minimum
number of edges whose removal results in two connected subgraphs.

Definition 3 An edge cut-set C S(G) of a connected graph G is a set of edges with
cardinality λ(G) that its removal decomposes G in two connected subgraphs.

The edge connectivity, λ(G), of a graph G is a measure of its coherence. If λ(G) is
large, then the graph is considered more coherent. A small λ(G) is a sign that the graph
can be easily decomposed in two subgraphs, and therefore it is considered less coher-
ent. For example, if λ(G) = 1, then G contains one or more bridges, which means
that the removal of a single edge may decompose G in two connected subgraphs. If
G is disconnected then λ(G) = 0. In such a case, we proceed with the connected
components of G.

Table 1 Basic symbols and
descriptions

Symbol Description

G, g A connected undirected relational graph
VG , EG Set of vertices and set of edges of G
NG or N , MG or M Order and size of G (NG=|VG |, MG=|EG |)
Gle f t , Gright The two connected components of G after

removing the cut edges
λ(G) The edge connectivity of graph G
C S(G) An edge cut-set of G with cardinality λ(G)

δmin(G), δmax (G) The minimum and maximum degree of graph G
�(G) The degeneracy value of G
S(G) The set of all induced connected subgraphs of G
Gi � G j Subgraph Gi dominates subgraph G j
sky(G) The skyline subgraphs of G

123

A. N. Papadopoulos et al.

Fig. 2 G1 and G2 have the same density, but λ(G1) = 3 whereas λ(G2) = 1

Notice the fundamental difference between the concepts of edge connectivity and
density. The density of G is the fraction 2 · MG

NG · (NG−1)
and assumes a value of 1 if G is

a complete graph (i.e., a clique). Edge connectivity poses stronger constraints since it
requires that each pair of vertices be connected with at least λ(G) distinct paths. On
the other hand, a highly dense graph is not necessarily characterized by a large edge
connectivity. As an example, consider the two graphs shown in Fig. 2. It is evident,
that the two graphs have the same density (i.e., 18/30), whereas the edge connectivity
of G1 is 3 and the edge connectivity of G2 is 1.

Let S(G) be the set of all induced subgraphs of graph G. Among all subgraphs in
S(G) we are interested in determining the most important ones regarding order and
edge connectivity. Each subgraph g is represented as a pair 〈Ng, λ(g)〉, where Ng is
the number of vertices of g and λ(g) the edge connectivity. Between two subgraphs
gi ∈ S(G) and g j ∈ S(G), gi is considered more significant than g j if one of the
following holds:

– Ngi > Ng j and λ(gi)>λ(g j): in this case, gi has more vertices that g j and also
the edge connectivity of gi is higher than that of g j .

– Ngi = Ng j and λ(gi)>λ(g j): in this case, gi and g j have the same number of
vertices, and gi has higher connectivity than g j .

– Ngi > Ng j and λ(gi)= λ(g j): in this case, gi contains more vertices than g j , but
the edge connectivity of the two graphs is the same.

If one of the above cases holds, we say that gi dominates g j , and this is denoted by
gi � g j . The skyline of G, denoted as sky(G) ⊆ S(G), is composed of all subgraphs
that are not dominated by any other subgraph. Therefore, the subgraphs in sky(G) are
the skyline subgraphs of G, and therefore they are maximal in terms of order and edge
connectivity. More formally:

sky(G) = {gx ∈ S(G) : �gz ∈ S(G), gz � gx }

Figure 3 depicts a connected undirected graph G which is composed of NG = 11
vertices and MG = 17 edges. By a careful examination of the graph one will realize
that the skyline subgraphs of G are the following: the subgraph g1 = G with connec-
tivity λ(G) = 1, the subgraph g2 = {v1, v2, v3, v4, v5, v6, v7, v8} with connectivity
λ(g2) = 2, the subgraph g3 = {v5, v6, v7, v8} with connectivity λ(g3) = 3. Any other
subgraph gx ∈ S(G) is dominated by at least one of the subgraphs g1, g2 and g3. In
addition, there is no gx ∈ S(G) such that gx � g1, gx � g2 and gx � g3. Therefore,
sky(G) = {g1, g2, g3}.

123

SkyGraph: an algorithm for important subgraph discovery

Fig. 3 Running example

3.2 The basic SkyGraph algorithm

Given a relational graph G, a brute-force approach to determine sky(G) is to generate
all induced connected subgraphs, and then compute the skyline subgraphs. However,
the number of subgraphs in S(G) is exponential in relation to the number of vertices,
and therefore the performance of the method degrades rapidly for large graphs. For
this reason, we are interested in a polynomial time algorithm to solve the problem.
Such an algorithm, termed SkyGraph, is proposed in the sequel.

The SkyGraph algorithm is based on successive applications of a min-cut
algorithm, towards determining the edge connectivity λ(G), an edge cut-set CS(G)

and the two produced subgraphs Glef t and Gright of G. The application of successive
min-cuts has been also used in Hartuv and Shamir (2000) as a clustering tool. The
initial graph G can be expressed as Glef t ∪ C S(G) ∪ Gright . The first step of Sky-
Graph involves the min-cut of the initial input graph G. Then, the process is repeated
for the two produced subgraphs. This process generates a tree-like structure termed
min-cut decomposition tree (MCD-tree for short) which is composed of nodes of the
form 〈g Ptr, λ(g), C S(g), le f t NodePtr, right NodePtr〉, where g Ptr is the pointer
to the subgraph g associated with the node, λ(g) the corresponding edge connectivity
of g, C S(g) is the edge cut-set and le f t NodePtr , right NodePtr are the pointers
to the two tree nodes associated to the two subgraphs generated after removing the
edge cut-set of g. Notice that a subgraph g may contain many edge cut-sets (i.e., a tree
graph with n vertices contains n−1 cut-sets each containing a single edge). One of
the available cut-sets is selected and, as we are going to show later, the selection can
be performed arbitrarily, since this choice does not have an impact on the elements
contained in the skyline set.

In its basic form, SkyGraph performs successive applications of a min-cut
algorithm until each subgraph consists of a single vertex. The skyline subgraphs are
stored in sky(G), which is initially empty. When a new application of the min-cut
algorithm is performed for a subgraph g, and therefore the edge connectivity of g is
determined, a test is performed to realize if g has a chance to be a skyline subgraph of
G or not. If g is dominated by at least one subgraph gx ∈ sky(G) then it is rejected.
If g dominates one or more subgraphs in sky(G), then these subgraphs are removed
from sky(G) and g is inserted into sky(G). Finally, if g does not dominate and is
not dominated by any subgraph in sky(G), it is simply inserted into sky(G). When
no new subgraphs can be generated, the set sky(G) contains the skyline subgraphs

123

A. N. Papadopoulos et al.

of the input graph G. Notice that, it is not necessary to store the subgraphs for each
MCD-tree node. The pointer g Ptr may be released if the node is not a leaf node. Only
the subgraph associated to the selected edge cut-set must be maintained in this case.

Our next step is to provide evidence that SkyGraph is correct, that is, it successfully
computes the skyline subgraphs of the initial graph G.

Lemma 1 The set of skyline subgraphs of G contained in sky(G), is a subset of the
set of subgraphs associated to the nodes of the MCD-tree.

Proof To prove this, it is sufficient to prove that if a subgraph does not correspond
to an MCD-tree node, then it cannot be a member of sky(G). Let g′ be an induced
connected subgraph of G, which does not correspond to any node of the MCD-tree.
Also, let x denote the nearest common ancestor MCD-tree node of the vertices of g′,
and g be the corresponding subgraph associated to x . It is evident that g′ is a subgraph
of g (g′ ⊂ g). Due to the min-cut decomposition process, g has been split to two
subgraphs after removing the edge cut-set which contains λ(g) edges. Since node x
is the nearest common ancestor of the vertices of g′, the vertices of g′ will be parti-
tioned into two subsets, corresponding to the left and right children of node x . This
means that the edge connectivity of g′ will be less or equal to the edge connectivity
of g, that is λ(g′) ≤ λ(g). Moreover, since g′ ⊂ g we have that Ng′ < Ng . These two
inequalities imply that subgraph g′ is dominated by g, and therefore g′ can not be part
of the skyline set sky(G). 	

With the previous lemma, we are sure that by always selecting the edge cut-set
corresponding to the min-cut, the subgraphs associated to the nodes of the MCD-tree
is a superset of sky(G). However, in many cases, there may be several edge cut-sets
with minimum cardinality. It is evident that by changing the selection order of min-
cut applications, the MCD-tree changes as well. However, according to Lemma 1,
each subgraph g contained in sky(G) must correspond to a node of the MCD-tree.
Therefore, although two MCD-trees corresponding to the same initial graph G may be
different, the skyline subgraphs will always be represented as nodes in any MCD-tree
selected, meaning that no skyline subgraph will be ever missed.

SkyGraph is based on the application of a deterministic min-cut algorithm
towards edge connectivity computation. Hao and Orlin (1992) have proposed an
O(M · N · log(N 2/M)) algorithm, whereas Nagamochi and Ibaraki (1992) and Stoer
and Wagner (1997) have provided a bound of O(M · N + N 2 · log N). These bounds
correspond to undirected graphs with non-negative real-valued edge weights. If the
graph is unweighted, then the min-cut can be computed in O(M · N) (Matula 1987;
Nagamochi and Ibaraki 1992). For the rest of the article we assume that the computa-
tion of the min-cut is performed by an O(M · N + N 2 · log N) algorithm, to cover both
weighted and unweighted graphs. Although we focus on unweighted graphs, edge
weights can be incorporated easily by performing the appropriate modifications to the
proposed algorithm. Based on the previous discussion, we proceed with the worst-case
analysis of SkyGraph.

Lemma 2 The worst case for the SkyGraph algorithm appears when in each min-cut
computation one of the subgraphs contains a single vertex.

123

SkyGraph: an algorithm for important subgraph discovery

Proof Let N and M denote the number of vertices and the number of edges of the input
graph. According to our previous discussion, the complexity of the min-cut algorithm
is O(M · N + N 2 · log N). Since we are interested on the number of vertices, we
express M as a function of N by considering three different cases: (i) M = O(N),
(ii) M = O(N · log N), and (iii) M = O(N 2). For the first two cases the worst-case
complexity of min-cut is O(N 2 · log N), whereas in the third case the complexity
becomes O(N 3). We will show that the worst-case complexity of SkyGraph appears
when the application of each min-cut computation results in a completely unbalanced
cut, where one of the subgraphs contains a single vertex (i.e., each time only one vertex
is removed from the graph). Let F(N) = C · N 2 · log N (the O(N 3) case is handled
in a similar manner), where C is a positive real constant. To prove the statement of the
lemma it is sufficient to prove that for any integer x ∈ [0, N − 2]:

F(1) + F(N − 1) ≥ F(1 + x) + F(N − 1 − x) (1)

Essentially, this inequality states that the we can not find a worse cut than that produced
by isolating a vertex each time we apply the min-cut algorithm. Thus, for any integer
number x ∈ [0, N − 2], a more balanced cut can not have worse performance. The
above inequality is equivalent to the following one:

F(N − 1) − F(N − 1 − x) ≥ F(1 + x) − F(1) (2)

Since F(N) is increasingly monotone, both parts of inequality (2) are positive. More-
over, since the growth rate of F(N) (as determined by its first derivative F ′(N) =
2 · C · N · log N + (C/ ln 2) · N) increases in a loglinear fashion by increasing N , it
follows that inequality (2) is true. 	

Lemma 3 The worst-case bound for the SkyGraph algorithm is O(N 3 · log N),
O(N 3 · log N) and O(N 4), for M = O(N), M = O(N · log N) and M = O(N 2),
respectively.

Proof According to Lemma 2, the worst case bound for SkyGraph is obtained when
every time the min-cut algorithm is applied, one of the resulting connected compo-
nents, after the removal of the edge cut-set, contains a single vertex. In other words,
if the initial graph contains N vertices, the next subgraph contains N − 1 vertices and
the process continues until N = 1. Therefore:

(i) If M = O(N), or M = O(N · log N) the bound becomes

N∑

k=1

k2 · log k ≤ log N
N∑

k=1

k2 = log N · N · (N + 1) · (2N + 1)

6
= O(N 3 · log N)

(ii) If M = O(N 2), the bound is

N∑

k=1

k3 = N 2 · (N + 1)2

4
= O(N 4) 	

123

A. N. Papadopoulos et al.

The worst case bound of SkyGraph motivates for further research towards
performance improvement. In the sequel, we study several optimizations that can
be applied to speed up the discovery of skyline subgraphs. These optimizations aim at
the reduction of the number of min-cut computations applied. The use of these tech-
niques lead to an optimized version of SkyGraph, which is studied in the following
section.

3.3 The optimized SkyGraph algorithm

The optimized version of SkyGraph is enhanced by two important tools towards
performance improvement: (i) a pruning mechanism for early termination of the
decomposition process and (ii) a subgraph preprocessing mechanism for subgraph
simplification.

3.3.1 MCD-tree pruning mechanism

The complete MCD-tree comprises two sets of nodes: (i) leaf nodes which correspond
to the vertices of G and (ii) internal nodes corresponding to induced subgraphs of G.
However, there are several cases where the decomposition can terminate early, without
any further applications of the min-cut procedure. Figure 4 illustrates an MCD-tree
corresponding to the example graph of Fig. 3. The root node (node A) is associated
to the initial graph G. The edge connectivity of G is λ(G) = 1, and the correspond-
ing edge cut-set contains only the edge e6,9 shown bold in Fig. 4. The removal of
e6,9 produces two connected subgraphs, which are associated to nodes B and C of
the MCD-tree. In the same lines, nodes D and E are produced by removing the edge
cut-set {e2,5, e4,7} from the graph of node B, whereas the graphs in nodes F and G
are produced by removing the edge cut-set {e1,2, e2,3} from the graph of node D. The
resulting MCD-tree contains three internal nodes (A, B and D) and four leaf nodes (C,
E, F and G). Notice that it is not necessary to continue the decomposition process for
nodes C, E, F and G. Regarding node G, this is evident since the subgraph contains
only one vertex. The other cases are covered by the following lemma.

Lemma 4 Let g be a subgraph produced during the generation of the MCD-tree. It
is not necessary to continue the decomposition process if g is one of the following: (i)
a tree, (ii) a cycle or (iii) a clique.

Proof Let g be the subgraph corresponding to the node of interest. (i) If g is a tree,
then λ(g) = 1 and any induced connected subgraph of g has an edge connectivity
of 0 (single vertex) or 1 (a tree) and contains at most Ng − 1 vertices. This means
that any induced subgraph of g is dominated by g and therefore can not be part of
the skyline. (ii) If g is a cycle, then λ(g) = 2. Any induced connected subgraph of g
has an edge connectivity of 1 and contains at most Ng − 1 vertices. Again, these facts
show that g dominates any connected subgraph induced by g. (iii) If g is a clique,
then λ(g) = Ng − 1. Any induced connected subgraph of g has an edge connectivity
at most λ(g) − 1 and contains at most Ng − 1 vertices. Again, it is observed that g
dominates all induced connected subgraphs of g. In conclusion, it is safe to declare

123

SkyGraph: an algorithm for important subgraph discovery

Fig. 4 The MCD-tree for the graph of Fig. 3

the node associated to g as a leaf node and terminate the decomposition process since
the continuation does not have an impact on the final result set. 	

The result of the previous lemma is used as a pruning mechanism (simple pruning)
to avoid unnecessary applications of the min-cut process and therefore, to declare that
the investigated node is in fact a leaf node. The detection of trees, cycles and cliques
is performed very efficiently by checking the connectivity, the number of vertices and
the number of edges of the graph, and therefore this pruning criterion is easily applied.
Although useful, this pruning criterion may not be proven strong enough to speed-
up the decomposition process. We proceed with the description of a more powerful
pruning criterion, which requires additional computational overhead, but it can help

123

A. N. Papadopoulos et al.

avoiding the construction of MCD-tree parts which are not promising. This advanced
pruning criterion is based on the concept of graph degeneracy (Behzad et al. 1979).

Definition 4 The degeneracy of a graph G is the minimum number �(G) such that
G can be reduced to an empty graph by the successive deletion of vertices with degree
at most �(G).

It has been shown in Wolle et al. (2004) that the degeneracy of G equals the maxi-
mum value among the minimum vertex degrees produced by all subgraphs of G. More
formally:

�(G) = max
g

{δmin(g) | g ⊆ G}

For a graph G it holds that λ(G) ≤ δmin(G), i.e., the edge connectivity is less than
or equal to the minimum degree among all vertices of G (Whitney 1932). Therefore,
the value �(G) is an upper bound of the edge connectivity of any subgraph of G.
These observations lead to the second pruning criterion, which is explained by the
following lemma:

Lemma 5 Let g be a graph associated with a node x of the MCD-tree. If there is at
least one entry in sky(G) that dominates the entry 〈Ng,�(g)〉, then the decomposition
may stop at x (i.e., x can be declared as a leaf node), since no subgraph of g can be
a skyline subgraph of G.

Proof Since the value �(g) is an upper bound of the edge connectivity of any
subgraph of g, for every g′ ⊆ g we have that λ(g′) ≤ �(g) and, evidently, Ng′ ≤ Ng .
Moreover, if g′ ⊂ g then Ng′ < Ng . The upper-right corner of the region associated
to g is shown black in Fig. 5, and it is denoted as pg . The coordinates of pg are
〈Ng,�(g)〉. By representing the skyline subgraphs as points in the two dimensional
space, the gray region of Fig. 5 corresponds to the possible values that may be achieved
by the subgraphs of g. If pg is dominated by at least one skyline subgraph, then all
points located inside this region are dominated. Therefore, none of the subgraphs of
g will ever manage to be part of the skyline subgraphs in sky(G). This suggests that
the decomposition of g can be safely avoided. 	

The result of the previous lemma is used as a second pruning criterion (degeneracy
pruning). Note, however, that although this pruning does not come at zero cost, the
computation of the degeneracy �(g) of a subgraph g is less computationally intensive
than the application of the min-cut algorithm. An algorithm for the computation of
�(g) has been reported in Wolle et al. (2004): in each step, the vertex with the mini-
mum degree is chosen (ties are broken arbitrarily), the value �(g) is updated, and then
the vertex is removed from g. The process continuous until the remaining subgraph is
not possible to offer a better value for the minimum degree. Since in every step at most
�(g) vertices are updated in g, and assuming a binary heap data structure to prioritize
vertices with respect to their degree, the worst case complexity is O(�(g)·Ng ·log Ng)

(proof omitted). If the pruning test fails, then the min-cut algorithm should be applied.
Therefore, in order to give a chance for success, the application of the degeneracy
criterion can be applied after some subgraphs have been inserted into sky(G).

123

SkyGraph: an algorithm for important subgraph discovery

Fig. 5 Two-dimensional
representation of skyline
subgraphs

order

N

connectivity

p1

p3

p4

p5

p6

p2

g

∆(g)

region
defined by
subgraph g

dominated
region

pg

dominant
region

3.3.2 Subgraph preprocessing mechanism

The main contribution of the pruning mechanism is that it enables the early termina-
tion of the decomposition process when the part of the MCD-tree under study is not
promising. In addition, SkyGraph is enhanced with two more optimizations which
lead to simpler subgraphs, avoiding unnecessary min-cut computations.

The first optimization (bridge detection) involves the detection of possible bridges
in the examined subgraph g. If g contains one or more bridges, then clearly λ(g) = 1.
Before applying the min-cut process, a fast bridge detection algorithm is applied. The
algorithm is based on DFS and therefore is linear with respect to the number of vertices
and the number of edges, i.e., O(N + M). Essentially, the algorithm detects edges
that do not participate in any cycle. If there are b bridges in g their removal produce
b + 1 connected components. The min-cut decomposition continues for each of these
components.

The second optimization (minimum degree criterion) is due to the following theo-
rem (Chartrand 1966).

Theorem 1 Let δmin(g) denote the minimum degree among all vertices of g and Ng

the number of vertices of g. If δmin(g) ≥ �Ng/2, then λ(g) = δmin(g).

The result of the above theorem is used as a preprocessing phase as follows. First,
the value of δmin(g) is computed by using a linear time algorithm on g. Then, if
δmin(g) ≥ �Ng/2, one of the vertices vx with degree δmin(g) is selected randomly.
Finally, the edges of g emanating from vx are removed. This way, graph g is decom-
posed to two subgraphs, one of which contains the single vertex vx . The preprocessing
is continuously applied to the resulting subgraph, until the inequality of Theorem 1
becomes false. This way, several min-cut computations may be avoided, reducing the
total cost of MCD-tree construction. Beyond this point, the decomposition process
continues by applying the min-cut procedure.

To illustrate the applicability of the two preprocessing steps (bridge detection and
minimum degree), we focus on the decomposition process depicted in Fig. 4. The ini-
tial graph contains a bridge e6,9. Therefore, a min-cut computation can be avoided by
running a bridge detection algorithm first, with linear time complexity. Now, we focus

123

A. N. Papadopoulos et al.

Fig. 6 Outline of optimized SkyGraph algorithm

on the graph associated to node D of the MCD-tree. Since δmin(g) = 2 and Ng = 4,
it is evident that δmin(g) ≥ �Ng/2, and therefore another min-cut computation can
be avoided. The computation of δmin(g) takes linear time on the number of vertices.
One of the vertices with degree δmin(g) (vertex v2 or vertex v4) is randomly selected
and it is removed from g.

The outline of the complete optimized SkyGraph algorithm is given in Fig. 6.
Pruning is performed in line 16, whereas preprocessing is applied on lines 6 and
12. In conclusion, the optimized SkyGraph algorithm is enhanced by a number of
pruning and preprocessing tools aiming at the reduction of the number of min-cut
computations. These techniques are summarized as follows:

– Pruning is performed by: (i) a simple pruning mechanism based on the detection of
trees, cycles and cliques in the subgraph under study and (ii) an advanced technique

123

SkyGraph: an algorithm for important subgraph discovery

Table 2 Data sets used in performance evaluation

Network Num vertices Num edges Min degree Max degree Avg degree

Microarray (MA) 8,791 314,816 1 409 71.62
San Francisco (SF) 174,956 221,802 1 7 2.54
Co-authors (CA) 7,949 10,055 1 53 2.53

based on the concept of graph degeneracy. Both techniques lead to the elimination
of MCD-tree parts that are not promising.

– Preprocessing involves: (i) the application of a bridge detection algorithm and (ii)
the application of the minimum degree criterion. Both techniques work as subgraph
simplification tools towards avoiding min-cut computations.

4 Performance evaluation

SkyGraph has been implemented in C++ and all experiments have been performed
on an Intel Core Duo at 2.2 GHz, with 2 GB RAM running Windows Vista. The perfor-
mance evaluation study is based on real-life graph data sets, as well as on synthetically
generated random graphs. The synthetic networks are basically used to have control
upon the basic parameters of the graph, such as order, size and degrees, towards
investigating performance by varying these parameters. The real-life data sets are
summarized in Table 2 and have as follows:

– The Microarray network represents coexpression of human genes. Each vertex
corresponds to a gene and an edge between two genes denotes a high coexpression
level. In Yan et al. (2007) the coexpression level between two genes vi and v j ,
denoted by ri, j , is measured by using the minimum of the absolute values of leave-
one-out Pearson correlation coefficients. Then, statistics are used to determine the
p-value of a coexpression. An edge is formed between the genes if the p-value is
less than a specified threshold (usually 0.01). The top 1% of the most significant
edges are used in the final graph.

– The San Francisco1 data set represents the road network of San Francisco. Verti-
ces correspond to road intersections and edges correspond to connections between
intersections. Multiple edges between vertices have been removed.

– The Co-authors2 network contains information regarding paper co-authorships.
There is an edge between authors vi and v j if they have at least a paper in com-
mon.

Figure 7 shows the scatter plots for the subgraphs generated by SkyGraph. Each
point in the 2-D space corresponds to a node of the MCD-tree. Among these points,
only a few of them correspond to skyline subgraphs. In some cases, as in Fig. 7a,
the points follow an anti-correlated distribution, which poses challenges to skyline
computation.

1 Available in http://www.rtreeportal.org.
2 Available in http://www.cs.helsinki.fi/u/tsaparas/MACN2006/data-code.html.

123

http://www.rtreeportal.org
http://www.cs.helsinki.fi/u/tsaparas/MACN2006/data-code.html

A. N. Papadopoulos et al.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

edge connectivity

nu
m

be
r

of
 v

er
tic

es
(a)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18 x 10
4

edge connectivity

nu
m

be
r

of
 v

er
tic

es

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

edge connectivity

nu
m

be
r

of
 v

er
tic

es

(c)

Fig. 7 Scatter plots of edge connectivity vs. number of vertices. (a) MA, (b) SF, (c) CA

Table 3 Performance results
for optimized SkyGraph for
real-life data sets

Measurements SF CA MA

Running time (sec) 1884 5.48 6222
Min-cut computations 2 357 8147
Cliques detected 1671 532 0
Cycles detected 4475 0 0
Trees detected 0 879 0
Bridges detected 110,635 2237 3
Min degree criterion 502 129 1
Degeneracy pruning 5 4 1
Skyline subgraphs 3 4 88

The performance of SkyGraph when applied to the real-life data sets is given in
Table 3. In addition to the total running time, the table contains information regarding
the pruning and preprocessing mechanisms. The cardinality of sky(G), the number
of significant subgraphs determined for each data set, is given in the last row of the
table. Table 4 depicts the results for synthetic random graphs. Each graph contains
10K vertices, whereas the number of edges varies between 20K and 1M. Each column
is associated to a different graph. For both real-life and synthetic graphs the perfor-
mance of SkyGraph depends heavily on the number of vertices and the number of
edges. Regarding the usability of pruning and preprocessing mechanisms, it is evident
that their effectiveness depends on the type of the input graph. For example, during

123

SkyGraph: an algorithm for important subgraph discovery

Table 4 Performance results for optimized SkyGraph for synthetic data sets (number of vertices is set to
10K, number of edges varies between 20K and 1M)

Measurements 10K/20K 10K/30K 10K/50K 10K/100K 10K/500K 10K/1M

Running time (sec) 21.98 192.75 406.86 716.57 966.88 1600.20
Min-cut computations 1 1245 2348 1944 382 274
Cliques detected 0 0 0 0 0 0
Cycles detected 0 0 0 0 0 0
Trees detected 0 0 0 0 0 0
Bridges detected 286 3 0 0 0 0
Min degree criterion 0 0 0 0 0 0
Degeneracy pruning 1 1 1 1 1 1
Skyline subgraphs 2 3 6 9 15 19

the skyline computation for the SF and CA networks, there is a significant number of
detected bridges, cycles and cliques, leading to a reduction of the number of min-cut
computations. On the other hand, in the MA network there are only three bridges
detected, since the corresponding graph is more dense than SF and CA. Another inter-
esting observation is the effectiveness of the minimum degree preprocessing. This
operation is successfully applied for 502 times in SF, 129 times in CA and 1 time in
MA. The more this criterion is successful the more min-cut computations are saved.
Finally, the degeneracy pruning criterion is successful 5 times in SF, 4 times in CA
and 1 time in MA. Again, every time this criterion is successful, a significant number
of min-cut computations may be saved. When synthetic networks are being used, we
observe that the detection of bridges, cycles and cliques does not offer significant help,
as it is shown in Table 4. However, the use of the degeneracy computation can reduce
the number of min-cut computation, as it is demonstrated in the second row of the
table. It is observed that the number of min-cut computations increases up to a point.
After this point, the number of min-cut computations decreases. This happens because
the degeneracy pruning criterion is successful earlier, thus saving a large number of
min-cut computations.

In the next experiment, we show the performance of the min-cut algorithm in
comparison to the pruning and preprocessing mechanisms applied in SkyGraph.
Among the preprocessing mechanisms, bridge detection is the most computation-
ally expensive, since the minimum degree criterion can be easily applied. In addition,
among the pruning mechanisms, the degeneracy criterion is the most demanding, and
as we have demonstrated earlier, its time complexity is O(�(G) · NG · log NG) for a
graph G. Figure 8 shows the required time for a single run of (i) bridge detection, (ii)
degeneracy computation and (iii) min-cut computation, for synthetic random graphs
composed of different number of vertices and edges. It is evident, that bridge detection
and degeneracy computation require small computational overhead than the min-cut
computation. These observations lead to the conclusion that both bridge detection and
degeneracy computation can be used prior to min-cut, towards performance boosting.

Figure 9 depicts the running time (a) as well as the number of min-cut computations
(b) for SkyGraph. There are two curves in each graph, corresponding to the version
of the algorithm with or without the degeneracy pruning criterion. The experiment

123

A. N. Papadopoulos et al.

0 1000 2000 3000 4000 5000
10−3

10−2

10−1

100

101

102

number of edges (thousands)

tim
e

(s
ec

on
ds

)
bridge detection
degeneracy computation
min−cut computation

(a)

0 1000 2000 3000 4000 5000
10−2

10−1

100

101

102

number of edges (thousands)

tim
e

(s
ec

on
ds

)

bridge detection
degeneracy computation
min−cut computation

(b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−2

10−1

100

101

102

103

number of edges (thousands)

tim
e

(s
ec

on
ds

)

bridge detection
degeneracy computation
min−cut computation

(c)

2000 3000 4000 5000 6000 7000 8000 9000 10000
10−1

100

101

102

103

number of edges (thousands)

tim
e

(s
ec

on
ds

)

bridge detection
degeneracy computation
min−cut computation

(d)

Fig. 8 Running time (s) for bridge detection, degeneracy computation and min-cut (time axis in logarithmic
scale). (a) 10K vertices, (b) 50K vertices, (c) 100K vertices, (d) 200K vertices

20 30 50 100
0

200

400

600

800

1000

1200

1400

number of edges (thousands)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

SkyGraph with degeneracy
SkyGraph without degeneracy

(a)

20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

number of edges (thousands)

m
in

−
cu

t c
om

pu
ta

tio
ns

SkyGraph with degeneracy
SkyGraph without degeneracy

(b)

Fig. 9 Effectiveness of degeneracy pruning criterion (a) running time (b) min-cut computations

has been performed on synthetically generated graphs with 10K vertices, whereas the
number of edges varies between 10K and 100K. It is evident, that by using the degen-
eracy pruning criterion not only a large number of min-cut computations is avoided,
but also the total running time of SkyGraph is significantly reduced.

123

SkyGraph: an algorithm for important subgraph discovery

5 Concluding remarks

In this article, we have studied the problem of discovering subgraphs of an input
graph G by respecting order and edge connectivity preferences. The higher these
values become the more important the subgraph. Towards this goal, the SkyGraph
algorithm has been developed which determines the skyline subgraphs of a relational
graph G. SkyGraph is based on successive min-cut decompositions of the initial graph
and it is equipped with two valuable tools for performance boost: (i) a pruning mech-
anism to terminate the decomposition process for specific branches of the MCD-tree
and (ii) a preprocessing mechanism for subgraph simplification. Both mechanisms
aim at reducing the number of min-cut computations.

There are several directions that can be followed to extend the ideas reported in this
study. It would be interesting to include more preferences regarding other subgraph
attributes, such as the frequency of a subgraph, i.e., the number of database graphs
that contain the subgraph. This way, we introduce another dimension to the problem
which deals with the coherency of the subgraph across multiple graphs.

Another issue for investigation is the introduction of ranking functions that will be
able to score each subgraph enabling the incremental discovery of important subgraphs
in a top-k fashion. This way, a user may control the number of retrieved subgraphs by
selecting an appropriate value for k.

Evidently, a min-cut operation is computationally intensive, albeit its polynomial
complexity. However, randomized algorithms have been proposed towards a faster
but less accurate result (Karger 1996). It would be interesting to compare the results
of the proposed deterministic and a randomized version of SkyGraph regarding the
accuracy of the produced set of skyline subgraphs.

Min-cut algorithms usually do not offer a balanced cut, and in most of the cases
a single vertex is isolated with every min-cut computation. This fact has been also
verified by Hu et al. (2005). A possible solution to this problem is to select the most
balanced cut, if several choices are available. Another possibility, is to select a rela-
tively balanced cut which is not necessarily the minimum. This way, the performance
will be improved but the quality of the results will be penalized. It is interesting to
study the significance of this trade-off.

Acknowledgements The authors are grateful to Kostas Tsichlas and Anastasios Gounaris for their help-
ful comments, Xifeng Yan for providing the microarray data and the anonymous reviewers for their aid
towards improving the quality of the manuscript. This research was partially supported by the 2005–2007
Joint Research and Technology Program between Poland and Greece, funded by the General Secretariat of
Research and Technology, Greek Ministry of Development.

References

Behzad M, Chartrand G, Lesniak-Foster L (1979) Graphs and digraphs. Pindle, Weber & Schmidt, Boston
Bell MGH, Iida Y (1997) Transportation network analysis. Wiley, London
Borzsonyi S, Kossmann D, Stocker K (2001) The Skyline operator. In: Proceedings of the 17th international

conference on data engineering, pp 421–430
Chartrand G (1966) A graph-theoretic approach to a communications problem. SIAM J Appl Math

14(5):778–781

123

A. N. Papadopoulos et al.

Cook DJ, Holder LB (eds) (2007) Mining graph data. Wiley, London
Flake GW, Lawrence S, Giles CL (2000) Efficient identification of Web communities. In: Proceedings of

the ACM KDD conference, pp 150–160
Gibson D, Kumar R, Tomkins A (2005) Discovering large dense subgraphs in massive graphs. In: Proceed-

ings of the 31st VLDB conference, pp 721–732
Gross J, Yellen J (1999) Graph theory and its applications. CRC Press, Boca Raton
Hao J, Orlin JB (1992) A faster algorithm for finding the minimum cut in a graph. In: Proceedings of the

3rd ACM-SIAM symposium on discrete algorithms, pp 165–174
Hartuv E, Shamir R (2000) A clustering algorithm based on graph connectivity. Inform Process Lett 76:175–

181
Hu H, Yan X, Huang Y, Han J, Zhou XJ (2005) Mining coherent dense subgraphs across massive biological

networks for functional discovery. Bioinformatics 21(1):i213–i221
Karger DR (1996) Minimum cuts in near-linear time. In: Proceedings of ACM STOC, pp 56–63
Matula DW (1987) Determining edge connectivity in O(m · n). In: Proceedings of the 28th symposium on

foundations of computer science, pp 249–251
Nagamochi H, Ibaraki T (1992) Computing edge-connectivity in multigraphs and capacitated graphs. SIAM

J Discrete Math 5:54–66
Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems. ACM

Trans Database Syst 30(1):41–82
Stoer M, Wagner F (1997) A simple min-cut algorithm. J ACM 44(4):585–591
Wang JTL, Zaki MJ, Toivonen HTT, Shasha D (eds) (2005) Data mining in bioinformatics. Springer
Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University

Press, Cambridge
Whitney H (1932) Congruent graphs and the connectivity of graphs. Am J Math 54:150–168
Wolle T, Koster AMCA, Bodlaender HL (2004) A note on contraction degeneracy. Technical Report UU-

CS-2004-042, Utrecht University
Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application

to image segmentation. IEEE Trans Pattern Anal Machine Intell 15(11):1101–1113
Yan X, Mehan MR, Huang Y, Waterman MS, Yu PS, Zhou XJ (2007) A graph-based approach to system-

atically reconstruct human transcriptional regulatory modules. Bioinformatics 23(13):i577–i586
Yan X, Zhou XJ, Han J (2005) Mining closed relational graphs with connectivity constraints. In: Proceedings

of ACM KDD conference, pp 324–333
Zhu F, Yan X, Han J, Yu PS (2007) gPrune: a constraint pushing framework for graph pattern mining. In:

Proceedings of PAKDD conference, pp 388–400

123

	SkyGraph: an algorithm for important subgraph discovery in relational graphs
	Abstract
	1 Introduction
	2 Related work and contribution
	3 Discovering important subgraphs
	3.1 Preliminaries
	3.2 The basic SkyGraph algorithm
	3.3 The optimized SkyGraph algorithm

	4 Performance evaluation
	5 Concluding remarks
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

