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Abstract. Online social networks like Facebook recommend new friends
to users based on an explicit social network that users build by adding
each other as friends. The majority of earlier work in link prediction
infers new interactions between users by mainly focusing on a single
network type. However, users also form several implicit social networks
through their daily interactions like commenting on people’s posts or
rating similarly the same products. Prior work primarily exploited both
explicit and implicit social networks to tackle the group/item recom-
mendation problem that recommends to users groups to join or items
to buy. In this paper, we show that auxiliary information from the user-
item network fruitfully combines with the friendship network to enhance
friend recommendations. We transform the well-known Katz algorithm
to utilize a multi-modal network and provide friend recommendations.
We experimentally show that the proposed method is more accurate in
recommending friends when compared with two single source path-based
algorithms using both synthetic and real data sets.

1 Introduction

Web 2.0 technologies and especially social networking services have gradually al-
lowed users to form different types of interactions, like sharing and rating online
items, but primarily to form online friendship networks. For example, online so-
cial networks (OSNs) such as Facebook have become popular, since they enable
users to share digital content and expand their social circle by recommending
new friends, based on their explicit friendship network. Moreover, social rating
networks (SRNs) like Epinions and Flixter mainly focus on enabling users to
share opinions and rate online items (e.g. posts and movies, respectively), but
also to articulate an explicit network of trust. Both OSNs and SRNs constitute
multi-modal social networks (MSNs) since they allow people to form simultane-
ously more than one type of explicit and/or implicit networks. In Figure 1c we
demonstrate an example of an MSN, where thick black edges connect users in an
explicit friendship social network and thin edges connect users with items in an
implicit user-item social network. In MSNs, explicit social relationships among
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Fig. 1. Example of (a) Unipartite, (b) Bipartite and (c) Multi-modal Social Network

users co-evolve simultaneously with their interactions with several digital items
(e.g. co-participating in groups, co-commenting on posts, co-rating on products
etc.). MSNs have recently attracted a lot of research attention. For example,
an interesting research question is how to recommend new friends to users by
combining their existing social circle with the auxiliary information derived from
their user-item rating network. The main goal is to enhance the accuracy of the
future friendship prediction by using also the user-item rating network. Notice
that available information from the bipartite user-item network is crucial due to
possible absence of information from the friendship network.

There has been extended research [1, 11, 12] addressing the link prediction
problem within the OSNs, by only exploiting single-source information (i.e. the
unipartite user-user friendship network). However, little research has focused on
exploiting multiple sources of information in predicting links within MSNs. Lu
et al. [15] proposed a supervised framework, by incorporating three real implicit
networks (i.e. co-author, co-citation and co-reference) to predict links in the co-
author network. Vasuki et al. [22] exploited available information derived from
both explicit and implicit social networks such as Orkut and Youtube to pro-
vide users with group recommendations. They have tackled the group/affiliation
recommendation problem by employing both latent factor and graph proximity
models, whereas the latter turned out to be the most effective.

In this paper, we propose a framework that aims to boost the friend recom-
mendation task. Unlike previous works that primarily focused on recommending
affiliated groups to users [22], we recommend new friends to users. But to do this,
we look simultaneously into the user’s explicit friendship and user-item implicit
network. Our approach, elaborates one combined form of Katz algorithm [11]
into an MSN context. We first utilize the unipartite friendship network and
consider human chains of varying lengths corresponding to paths of this form
useri −→ userj and useri −→ userj −→ userk in varying lengths. Then, we expand
our approach to an auxiliary bipartite user-item network where we consider paths
of this type useri −→ itemj −→ userk. This combined Katz approach allows us to



provide recommendations in a unified level, traversing new paths for users to
connect between and through two discrete networks: user-user and user-item.
Our experimental evaluation provides evidence that the usage of auxiliary infor-
mation from the bipartite user-item network succeeds in enhancing the friend
recommendation task.

The rest of this paper is organized as follows. Section 2 summarizes the re-
lated work, whereas Section 3 briefly reviews preliminaries in graphs and presents
a motivating example of the proposed approach. In Section 4, we present the ex-
perimental protocol and our results. Finally, in Section 5 we further discuss the
proposed approach and possible directions, while Section 6 concludes this paper.

2 Related Work

The research area of link prediction in social networks tries to infer which new
interactions among members of a social network are likely to occur in the near fu-
ture. There are two main approaches [12] that handle the link prediction problem.
The first approach is based on local topological features of a network, focusing
mainly on the structure of the nodes. There is a variety of local similarity mea-
sures such as common neighbors, Jaccard’s coefficient, Adamic/Adar index [2],
Friend of a Friend (FOAF) algorithm [4] and Preferential Attachment [12], which
compute the proximity between a potential pair of nodes. These similarity mea-
sures employ local features of the network like the number of common neighbors
or the total number of connections and several other combinations.

The second approach is based on global features, detecting the overall path
structure in a network. There is a variety of global approaches, such as Random
Walk with Restart algorithm [18] and Katz status index [11], SimRank and
PageRank [12], which have been used to compute the similarity between a pair
of nodes. The Katz status index is a proximity measure that directly sums over
the collection of all different length paths that connect two users. An attenuation
factor weights the contribution of the paths to the overall similarity according
to their length. Symeonidis et al. [20] proposed the FriendTNS algorithm to
provide more accurate friend recommendations. They defined a transitive node
similarity measure in OSNs by taking into account local and global features of
a social graph. Finally, Scholz et al. [19] performed unsupervised random walks
for predicting links in user-user networks (i.e. co-author in DBLP).

Besides the aforementioned link prediction algorithms that are based solely
on graph structure, there are also other methods that exploit other data sources
such as messages among users, co-authored paper and common tagging. For
instance, Ido Guy et al. [10], proposed a novel user interface widget for provid-
ing users with recommendations of people. Their people recommendations were
based on aggregated information collected from various sources across IBM (e.g.
common tagging, common link structure, common co-authored papers). Chen
et al. [4] evaluated four recommender algorithms (Content Matching, Content-
plus-Link, the FOAF algorithm and, SONAR) to help users discover new friends
on IBM’s OSN. Lo and Lin [13] proposed two algorithms, denoted as weighted



minimum message ratio (WMR) and weighted information ratio (WIR), respec-
tively, which generate a friend list based on real-time message interaction among
members of an OSN. Cha et al. [3] collected and analyzed large-scale traces
of information dissemination in the Flickr social network. They experimentally
derived that over 50% of users find their favorite pictures (i.e., pictures they
bookmark) from their friends in an OSN. TidalTrust [9] and MoleTrust [16] are
also hybrid approaches that combine the rating data of collaborative filtering
systems with the link data of trust-based social networks (i.e. Epinions.com) in
order to improve the recommendation accuracy.

There has also been research work that uses supervised approaches to ad-
dress the link prediction problem in multiple data sources. For instance, Lu et
al. [15] exploited topological features from four networks and applied a prob-
abilistic model to learn the network dynamics. They showed that supervised
approaches can improve link prediction tasks, suggesting that independency as-
sumptions and scaling issues should be further investigated. In addition, Davis
et al. [5] introduced a probabilistically weighted extension of the local-based
Adamic/Adar measure for heterogenous networks and showed that a supervised
approach based on topological features enhances prediction performance. Finally,
maximum-likelihood methods have been proposed to deal with the link predic-
tion problem providing insights about network organization that are difficult to
obtain from similarity-based approaches [14]. However, these methods presume
specific organizing principles of the network structure and suffer from scalability
and accuracy issues.

3 Preliminaries in Multi-modal Graphs

In this section, we present the most important notations with the correspond-
ing definitions and a motivating example based on Figure 1 that will be used
throughout the rest of the paper. The multi-modal graph of Figure 1c consists of
(i) friendships among users of an OSN and (ii) users’ affiliations with items shown
in Figure 1a and 1b, respectively. For our calculations, we will use well-known
representations, such as the adjacency matrix Au×u of friendship network, and
the user-item matrix Ru×w of the affiliation network.

3.1 Link Prediction Based on User-User Unipartite Graph

Let G be a graph with a set of nodes V and a set of edges E . Every edge is defined
by a specific pair of graph nodes (vi, vj), where vi, vj ∈ V. We assume that the
graph G is undirected and unweighted, thus the graph edges do not have any
weights, plus the order of nodes in an edge is not important. Therefore, (vi, vj)
and (vj , vi) denote the same edge on G. We also assume that the graph G can
not have multiple edges that connect two nodes, thus if two nodes vi, vj are
connected with an edge of E , then there can not exist another edge in E also
connecting them. Finally, we assume that there can not be self loop edges on G
(i.e. a node can not be connected to itself). A common graph representation is



the adjacency matrix An×n, where n=|V| is the number of nodes in G. Therefore,
it has n rows and n columns labelled by the graph nodes. For an unweighted
non-multiple graph (such as G), the adjacency matrix values are set as Aij=1
if (vi, vj) ∈ E and Aij=0 otherwise. Following all previous assumptions and
definitions, the adjacency matrix of an undirected and unweighted graph such
as G, is a symmetric matrix with values 0 and 1, if two nodes are neighbors or
not, respectively. In addition, as there are no self loop edges, the main matrix
diagonal has zero values. The adjacency matrix of the friendship network for
our running example is depicted in Figure 2a. As we want to investigate the
relations with ?, we can assume that initially are equal to 0 (i.e. there are no
connections between the corresponding users). It is obvious from Figure 1a and
its corresponding adjacency matrix A of Figure 2a that U1 is connected with
U3 and U4, while U2 only to U3. In terms of social networks, U1 and U2 have a
“mutual” friend U3, since they are both connected to this user. Let’s assume in
our running example, that we want to propose new friends to user U4. There are
several global similarity measures [12] (i.e Katz status index, RWR algorithm,
SimRank algorithm, etc.) for capturing similarity of nodes in a network, which
are path-dependent. We apply the Katz status index, which defines the similarity
score between two nodes Vx and Vy, by summing over paths of varying length `
connecting Vx to Vy given by Equation 1:

Katzβ =

∞∑
`=1

β`|paths`Vx,Vy
| (1)

where paths`Vx,Vy
is the set of all length-` paths from node Vx to Vy, which are

computed by the adjacency matrix A. Katz status index exploits that raising the
adjacency matrix in the power of n produces the number of n-paths connecting
one pair of nodes. An attenuation factor β is introduced to efficiently weight the
contribution of different lengths of paths to the final similarity score between
node pairs. Very low values of β force long paths connecting a pair of nodes to
contribute much less to the final similarity score. Thus, it is possible to limit
the reach of the similarity measure by weighting higher the shorter paths from
node’s neighborhood. Both analytical and factorized form of Katz is given by
Equation 2 when applied to the adjacency matrix A of Figure 2a:

Katz(A;β) = βA + β2A2 + β3A3 + ... = (I − βA)−1 − I (2)

U1 U2 U3 U4

U1 0 0 1 1
U2 0 0 1 ?
U3 1 1 0 ?
U4 1 ? ? 0

(a)

U1 U2 U3 U4

U1 0 0.16 0.49 0.43
U2 0.16 0 0.43 0.05
U3 0.49 0.43 0 0.16
U4 0.43 0.05 0.16 0

(b)

Fig. 2. Running Example: (a) Adjacency A and (b) Similarity Matrix of User-User
Unipartite Social Network



The identity matrix In is a n×n matrix of size n holding ones on the main
diagonal and being of the same size n as the adjacency matrix A. The attenu-
ation factor β should take values that can ensure series convergence and allow
the computation of the A−1 inverse matrix. Therefore, the β attenuation fac-
tor can take values β<1/λ, where λ is the largest absolute value among any
eigenvalue of matrix A [8, 11]. We choose β equal to 1/(1+K), as L.Katz orig-
inally introduced [11] and Foster et al. [8] employed for the fast approximation
implementation, where K is the maximum row/column sum of A. This choice
is sensible satisfying the sufficient condition for the computations to fulfill and
adaptive to the matrix size, thus, to each dataset. Back to our running example,
we want to recommend new friends to U4. Thus, we apply Katz algorithm to
the unipartite friendship graph G, in order to provide recommendations based
on an induced similarity matrix. We compute the Katz status index by applying
Equation 2 to the adjacency matrix A of Figure 2a. The attenuation factor β for
matrix A is β=1/(1 + 2), equal to 0.33. Notice that Katz calculates similarity
between two nodes taking into account paths of length `>1.

Firstly, the similarity between U4 and U2 is computed based on the unique
path that connects them 4→1→3→2, shown in Figure 1a. This path of length-
3 contributes a similarity score of 0.05 given in matrix of Figure 2b. For the
similarity between U4 and U3, there is only one path of length-2 (4→1→3) cor-
responding to a score of 0.16. The user-user similarity matrix entries of Figure 2b
capture the friendship relationships in the unipartite social network and its rows
show the “proximity” among users. There is a clear indication from the above
similarity matrix that U3 should be recommended as friend to U4 instead of U2,
with similarity value 0.16>0.05. Notice that the similarity score of (U1,U4) pair
is the highest observed matrix entry, but we do not recommend U1 to U4, since
they are already “friends” and it is not a new link.

3.2 Link Prediction Based on User-Item Bipartite Graph

Users can also form several implicit social networks through their daily in-
teractions like co-commenting on people’s posts, co-rating products, and co-
tagging people’s photos [22]. These implicit relations contain edges between two
types of entities (vertices in a graph), such as a user-item bipartite graph. Let
G′ = (V +W, E) be a bipartite graph with two sets of nodes V and W, and a
set of edges E . Every edge is defined by a specific pair of graph nodes (vi, wj),
where vi ∈ V denotes users set and wj ∈ W items set. Following the unipartite
adjacency matrix notation, we define the biadjacency matrix R corresponding to

bipartite user-item network as a new matrix B =

[
B11 B12

B21 B22

]
equal to

[
0 R
RT 0

]
,

where Rvi,wj = 1 if (vi, wj) ∈ E and Rvi,wj = 0 otherwise.
We extend our running example by affiliating users with items, as depicted

in Figure 1b and the corresponding biadjacency matrix R of Figure 3a. Our
main task remains the friend recommendation for U4 by using this time only
the bipartite user-item R. Edges of R represent length-1 paths of from a user
Ui ending to an item Ij . By multiplying matrix R with its transpose RT , we



derive all length-2 paths of this form Ui→Ij→Uk, where users are connected
through items. We employ the Bn×n adjacency matrix of Figure 3b where block
B2

11(Ui, Uj) = R(Ui, Ij)×RT (Ij , Ui). If B2
11(Ui, Uj) > 1, these two users are con-

nected with an implicit (i.e co-share, co-like, etc.) relationship with a potential
item. Katz algorithm is next applied to adjacency matrix B using Equation 3 to

I1 I2
U1 1 1
U2 1 1
U3 0 1
U4 1 0

(a)

U1 U2 U3 U4 I1 I2
U1 0 0 0 0 1 1
U2 0 0 0 0 1 1
U3 0 0 0 0 0 1
U4 0 0 0 0 1 0
I1 1 1 0 1 0 0
I2 1 1 1 0 0 0

(b)

U1 U2 U3 U4 I1 I2
U1 0 0.18 0.09 0.09 0.36 0.36
U2 0.18 0 0.09 0.09 0.36 0.36
U3 0.09 0.09 0 0.01 0.04 0.31
U4 0.09 0.09 0.01 0 0.31 0.04
I1 0.36 0.36 0.04 0.31 0 0.19
I2 0.36 0.36 0.31 0.04 0.19 0

(c)

Fig. 3. Running Example: (a) User-Item R, (b) Adjacency B and (c) Similarity Matrix
of Bipartite Social Network

obtain a new similarity matrix derived only from the bipartite user-item network.

Katz(B;β) = βB + β2B2 + β3B3 + β4B4 · · · =
∞∑
`=1

β`B` (3)

The odd factors of Equation 3 do not contribute to the similarity among users
denoted in B11 block, because they represent paths ending to items (we could
exclude them from the equation). Back to the running example, we aim to rec-
ommend friends to U4, thus we calculate its similarity with U2 and U3. We
apply Katz algorithm to the bipartite graph G′ by applying Equation 3 to the
adjacency matrix B of Figure 3b. The computed similarities are summarized in
the matrix of Figure 3c and the attenuation factor for the bipartite network is
β=1/(1+3), equal to 0.25.

In the 4th row of similarity matrix of Figure 3c is clearly indicated that user
U2 should be recommended to user U4 as a friend instead of U3, with similarity
value 0.09>0.01. There is a difference between the produced recommendations
when using different information sources, since previously we recommended U3

to U4 using only the user-user unipartite social network. The information from
user-item bipartite network suggests that we should recommend U2 to U4, since
more paths through the items connect these two users. Specifically, U4 and
U2 are connected through one path of length-2 (U4→I1→U2) and two paths
of length-4 (U4→I1→U1→I1→U2 and U4→I1→U1→I2→U2). In contrast, U4

and U3 are connected through two paths of length-4 (U4→I1→U1→I2→U3 and
U4→I1→U2→I2→U3).

In our running example, we produced all the possible similarity scores con-
cerning both the user-user and the user-item relationships, by using the adja-
cency matrix B of Figure 3b. We exploit only the information from B12 and



B21 blocks of matrix B that correspond to the user-item network, in order to
capture similarities concerning block B11. We also produced the similarities for
the auxiliary item-item network given by block B22 that is not currently used
here. In the future this block of the matrix could reveal semantic relationships
between items for other recommendation tasks, like cross-domain.

3.3 Proposed Approach: Link Prediction in Multi-modal Graphs

In this section, the approach of combining the heterogeneous multiple sources of
the unipartite user-user and the bipartite user-item graphs, is presented. These
two graphs are combined in a multi-modal graph of Figure 1c. This approach
enables recommendations to be made in a unified way by opening new paths for
users to connect among two distinct sets: users and items. Similarity among users
results from both the explicit user-user friendship and the implicit user-item
networks. Therefore, in case the friendship network fails to capture similarity
between two users, the auxiliary user-item network could be used for this task,
and vice versa. The combined adjacency matrix C of Figure 4a is introduced in

the following form of four blocks:

[
A R
RT 0

]
. To obtain the combined similarity

matrix of Figure 4b, which uses information from both user-user A and RRT,
we apply Equation 4 to C:

Katz(C;β) = βC + β2C2 + β3C3 + β4C4 · · · =
∞∑
`=1

β`C` (4)

The computed attenuation factor for the multi-modal network is β=1/(1+4),
equal to 0.2. Unlike we did previously in the bipartite network where we used only
the B12 and B21 blocks of the bipartite network, for the multi-modal we exploit
information from blocks C11, C12 and C21. Block C22 holds also for the multi-
modal network non observed values. The combined version of Katz constructs

U1 U2 U3 U4 I1 I2
U1 0 0 1 1 1 1
U2 0 0 1 0 1 1
U3 1 1 0 0 0 1
U4 1 0 0 0 1 0
I1 1 1 0 1 0 0
I2 1 1 1 0 0 0

(a)

U1 U2 U3 U4 I1 I2
U1 0 0.225 0.379 0.332 0.370 0.379
U2 0.225 0 0.357 0.106 0.307 0.357
U3 0.379 0.357 0 0.109 0.169 0.392
U4 0.332 0.106 0.109 0 0.313 0.1098
I1 0.370 0.307 0.169 0.313 0 0.169
I2 0.379 0.357 0.392 0.109 0.169 0

(b)

Fig. 4. Running Example: (a) Adjacency C and (b) Similarity Matrix of Multi-modal
Social Network

multiple paths using both unipartite friendship and bipartite user-item networks



by traversing previously unreached paths between users. Generalization of Katz
for C11 user-user block is given by Equation 5 showing such form of paths:

Katz(C;β)11 = βA + β2(A2 + RRT ) + β3(A3 + ARRT + RRTA)+

β4(A4 + A2RRT + RRTA2 + ARRTA + RRTRRT ) · · · =
∞∑
`=1

β`C`
11 (5)

For instance, the ARRT factor shown in Equation 5 contains new traversable

length-3 paths of this form: Ui
A−→ Uj

RRT

−−−→ Uk. Finally, the 4th row of the
similarity matrix of Figure 4b indicates that U3 should be recommended to
U4 as a new friend and not U2, with similarity value 0.109>0.106. One can
observe that both unipartite and multi-modal approaches resulted in the same
recommendation, but with much smaller difference after the bipartite network
was also considered.

4 Experimental Evaluation

In this section, we experimentally compare the performance of the multi-modal
link prediction approach with two other single network algorithms. We want
to discover in what extent an auxiliary user-item bipartite network contributes
to predicting links in the friendship network. Firstly, we evaluate the combined
(cKatz) Katz utility for handling more networks, one user-user friendship and
one user-item network. Then, we employ RWR [18, 21] and Katz algorithm [11]
for predicting links in single social networks as comparison partners:

RWR is the well-known Random Walk with Restart algorithm [18, 21] taking
into account only one single friendship social network for providing recommen-
dations. In general, RWR considers one random walker starting from an initial
node Vx and randomly choosing among the available edges with a probability α.
Every time, before random walker makes a choice returns back to the initial node
with a probability 1− α. Similarity among nodes is computed by Equation 6:

RWR(P;α) = (1− α)(I − αP)−1 (6)

where In is the identity and P the transition-probability matrix.
sKatz is the model proposed in [11], which takes into account only the single

friendship social network, and analyzed in Section 3.1. The proposed approach
of this paper cKatz considers both the unipartite friendship and the bipartite
user-item auxiliary network, discussed in Section 3.3.

Parameter’s values were tuned as described in [8] and Section 3, therefore α
and β for both single network algorithms RWR and sKatz, is set at 0.0008 and
0.0003 for xSocial synthetic and Epinions 49K real data set, respectively. For
cKatz parameter β is set at 0.0005 and 0.0003. We employ a fast approximate
method of Katz introduced by [8] reducing the computational cost to O(n+m),
where n is the number of nodes and m the number of edges, since matrix opera-
tions require O(n3) used by the original Katz algorithm. In this implementation,



adjacency matrix is normalized by dividing each entry by the row/column de-
gree. Concerning the maximum length of paths that Katz algorithm employs,
we denote ` equal to infinite in Equation 2, considering all paths until series
convergence. Our experiments were performed on a Core 2 Duo processor with 4
GB of memory. All algorithms were implemented in C. To evaluate the examined
algorithms, we have generated synthetic data set using the xSocial generator [7]
and chosen one real data set from Epinions web site.

4.1 Real World Networks and Data Sets

Recognizing real-network evolution patterns enables us to better understand
the human social behavior and capture similarities among people or about their
preferences, detect network intrusions or virus propagation and highlight anoma-
lies [6]. There is a range of patterns that have been identified in real life networks,
such as power law distributions [7], six degrees [17](small worlds), scale-free and
other log-normal distributions [6], which are powerful tools to mimic observed
behaviors. Faloutsos et.al [7] classify graph generators models into emergent (e.g.
small-world), where the macro network properties emerge from the micro interac-
tions, and generative graph models, which facilitate a utility function performing
recursive iterations until the generated networks meet real network properties.

xSocial Synthetic Data xSocial Generator proposed by [7], is a multi-modal
graph generator that mimics real social networking sites to produce simultane-
ously a network of friends and a network of their co-participation. In particular,
xSocial builds a network with N nodes performing three independent actions
at each step (i.e. write a message, add a friend and comment on a message).
A node chooses his friends either by their popularity of by the number of mes-
sages on which they have commented together, which is determined by a unique
preference value. A node can also follow the updated status of his friends by
putting comments on the corresponding new written messages. In our experi-
ments we use xSocial generator to produce simultaneously one explicit friendship
and one implicit network of co-comments. In particular, we generated a MSN
data set3 with 100K users and 384K edges among pair of users, in which users
contributed 233K messages and 467K comments. The derived MSN for xSocial
data set consists of 330K user and item nodes with 852K edges. In Figure 5a
we calculated several topological properties for xSocial data set revealing a large
clustering coefficient (LCC) equal to 0.2 and small average shortest path length
value (ASD) equal to 2.1 discovered mostly in small-worlds networks [17]. Such
networks hold sub-networks with connections between most pairs of nodes (i.e.
high LLC) which are connected by at least one short path (i.e. small ASD).

Real Data We employ the Epinions 49K4 data set, which is a who-trusts-whom
social network. In particular, users of Epinions.com express their Web of Trust,

3 http://delab.csd.auth.gr/~symeon/
4 http://www.trustlet.org/wiki/Downloaded\_Epinions\_dataset



i.e. reviewers whose reviews and ratings they have found to be valuable. In addi-
tion, users are enabled to rate a variety of online items (e.g. books, computers,
movies, toys) using a 5 star rating scale. Epinions data set contains 49K users
and 487K edges among pair of users, constituting one single friendship social
network. Apart from that, it offers a user-item network with 140K items and
664K ratings as shown in Figure 5b. In our experiments, we use the whole single
network and we keep from the user-item network only items rated by users with
r≥3, positively affiliating users with items. Keeping all edges is meaningful in
rating prediction tasks, but for friend recommendation this binarization process
supports the intuition that we should not recommend users who rated differently
similar items. After this, the number of ratings, i.e. edges in user-item network,
is 570K. The MSN for Epinions 49K data set, when combining the trust and
rating network, has 189K nodes of users and items with more than 1M edges.
The calculated topological features of the Epinions 49K data set shown in Fig-
ure 5a characterize also Epinions 49K as a small-world network with LCC equal
to 0.26 and ASD equal to 4. Our evaluation considers the division of friends of

 
 

TOPOLOGICAL PROPERTIES OF FRIENDSHIP NETWORKS: 
N = total number of nodes 
E = total number of edges 
ASD = average shortest path distance between node pairs 
ADEG = average node degree 
LCC = average local clustering coefficient  
GD = graph diameter (maximum shortest path distance) 
GGS = global graph sparsity (number of zeros in adjacency matrix/ N2) 
 

 Data Set Type N E ASD ADEG LCC GD GGS 
xSocial 100K undirected 100000 384458 2.10 6.06 0.20 7 99.99% 
Epinions 49K Directed 49288 487183 4.00 19.77 0.26 14 99.96% 

(a)

  
       
PROPERTIES OF USER-ITEM BIPARTITE NETWORKS: 
N = total number of Nodes (users) 
R = total number of Ratings  
I = total number of Items 
MINR = minimum rating value 
MAXR = maximum rating value 
AVGR = average rating value 
GGS = global graph sparsity (zeros in matrix / existing users x items) 
 

Data-Set N R I MINR MAXR GGS 
xSocial 100K 100000 467640 233820 0 0 99.99% 
Epinions 49K 49288 664824 139738 1 5 99.98% 

 
    

 
(b)

Fig. 5. Topological properties of (a) friendship and (b) bipartite user-item networks

each target user into two sets: (i) the training set ET is treated as known infor-
mation and, (ii) the probe set EP is used for testing and no information in the
probe set is allowed to be used for prediction. It is obvious that, E = ET ∪ EP
and ET ∩ EP = �. Therefore, for a target user we generate the recommenda-
tions based only on the friends in ET . Each experiment has been repeated 30
times (each time a different training set is selected at random) and the presented
measurements, based on two-tailed t-test, are statistically significant at the 0.05
level. All algorithms predict the friends of the target users in the probe set. We
use the classic precision/recall metric as performance measure for friend recom-
mendations. For a test user receiving a list of k recommended friends (top-k list):
precision is the ratio of the number of relevant users in the top-k list (i.e. those
in the top-k list that belong in the probe set EP of friends of the target user)
to k. Recall is the ratio of the number of relevant users in the top-k list to the
total number of relevant users (all friends in the probe set EP of the target user).
F1-measure is the normalized harmonic mean of precision and recall, providing
the overall performance metric.



4.2 Combined Katz Sensitivity Analysis

In this section, we examine the sensitivity of the combined and single Katz in
terms of accuracy performance when we set different density degree of observed
items in the user-item network. We want to identify under which circumstances
and to what extend the recommendation task is enhanced when we gradually
use auxiliary information from an implicit user-item network.

In particular, we test how the performance of cKatz, a multi-modal network
approach, is affected when we keep the fraction of observed friend nodes fixed and
gradually increase the fraction of observed items as we select user-items edges
randomly. We test both in synthetic and real data sets. Firstly, for the synthetic
100K xSocial data set, we set 5 different density cases (i.e. 0.2, 0.4, 0.6, 0.8, 1)
by varying the fraction of observed co-comments, as depicted in Figure 6a, while
y-axis holds F1-measure at top-1, which is the average performance of the algo-
rithm in terms of both precision and recall when we recommend only one user.
Since, sKatz exploits only the friendship network to provide recommendations,

21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

%
	  F
1@

1	  

Frac)on	  of	  items	  degree	  oberved	  

cKatz	   sKatz	  

(a)

27	  

28	  

29	  

30	  

31	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

%
	  F
1@

1	  

Frac)on	  of	  items	  degree	  observed	  

cKatz	   sKatz	  

(b)

Fig. 6. Comparing cKatz with sKatz Performance in terms of F1-measure at Top-1 vs.
fraction of items degree for (a) 100K xSocial synthetic and (b) Epinions 49K data set

increasing the density of the user-item network has no effect in its performance.
The fraction of observed friend nodes in the friendship network is fixed to 0.5,
where sKatz achieves its best performance. However, cKatz constantly improves
its predicting performance as more items from the user-item networks are being
observed. We further verify our results in the Epinions 49K real data set shown
in Figure 6b. As expected, cKatz improves its overall predicting performance
when the fraction of observed items increases. The auxiliary information derived
from the affiliation of users with the positively rated items boosts the overall
performance, showing that there is fruitful information in the bipartite network.
The best performance that sKatz achieves is in 0.5 fraction of observed users,
since it does not exploit any auxiliary information and after a certain fraction of
friend edges the prediction space of new possible links in the friendship network
decreases. Henceforth, we tune the fraction of user nodes observed in 0.5 and
this of items observed in 1, for the rest of the experimental evaluation.



Next, we focus on the combined Katz algorithm and we further investigate
its performance sensitivity when we vary the number of k recommended friends
in the top-k list. We depict the cKatz precision and recall scores versus the
varying number of recommended users when applied to the synthetic xSocial
and Epinions 49K data sets in Figure 7a and 7b, respectively. In both synthetic
and real data sets, cKatz achieves the most accurate scores when we recommend
top-1 user. The precision accuracy of cKatz, as expected, gradually decays when
we ask for a higher number k of predictions while recall scores increase. Recall
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Fig. 7. cKatz Performance in terms of Precision and Recall vs. Top-k for (a) 100K
xSocial synthetic and (b) Epinions 49K data set

is the ratio of the number of correct predictions to the number of all the actual
friends in the test set. Each user has a different number of actual friends and this
indicates the difficulty of getting better predictions as we increase the number of
requested recommendations. The average number of friends (ADEG) for xSocial
is 6 and for Epinions 49K data set is 19, depicted in Figure 5a for both data
sets. Thus, it is more possible that we return correct recommendations in the
Epinions 49K data set as we increase k in the top-k list. In Figure 7a and 7b
the recall scores versus top-k diagram are depicted with k varying from 1, 2,
3 and 4 for the xSocial and Epinions 49K data set, respectively. In both data
sets we observe, as expected, that we get more correct predictions when we ask
for more recommendations. When we produce the top-4 list we achieve the best
results for both xSocial and Epinions 49K with recall equal to 59,7% and 54,2%,
respectively. We would expect that we get better recall scores in the Epinions
49K data set but the average shortest path distance (ASD) is 2 for xSocial and 4
for Epinions 49K, meaning that it is easier to produce more predictions localized
in node’s neighborhood since we use small values of β.

4.3 Comparison with other Methods

In this section, we conducted the comparison of our multi-modal proposed com-
bined Katz approach with the two other single network comparison partners i.e.
sKatz and RWR algorithms, in terms of precision and recall. As the number k
of the list varies starting from the top-1 user to top-4, we examine the precision



and recall scores. Achieving high recall scores while precision follows with the
minimum decline indicates the robustness of the examined algorithm.

For the xSocial synthetic data set, in Figure 8a we visualize the precision vs.
recall curve for all three algorithms. As k increases, precision falls while recall
increases as expected for all algorithms. cKatz attains the best results achieving
the highest precision, outperforming both single network algorithms. This is due
the fact that cKatz exploits information from both friendship and the user-item
networks. We conduct the same experimental configuration for the Epinions 49K,
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Fig. 8. Comparing cKatz, sKatz, and RWR Performamce in terms of Precision and
Recall at Top-k for (a) 100K xSocial synthetic and (b) Epinions 49K data set

shown in Figure 8b real data set to confirm our initial results in the synthetic
one. It is clear that cKatz outperforms the two single network partners in terms
of both precision and recall, exploiting the user-item auxiliary network. Between
the two single network algorithms sKatz performs again better than RWR.

5 Discussion

In this section we discuss several issues concerning the multi-modal network
context and our approach. We based our method on path-dependent approaches
since they capture the overall structure of the network and can limit their reach
to node neighborhood level by using attenuation factors. Furthermore, we un-
derstand that weighting strategies are essential to effectively control the contri-
bution of various social networks to the final similarity among users. For us, the
main task is to recommend new friends to users by exploiting both explicit and
implicit social networks. Therefore, we promote the information derived from
the unipartite friendship network and control the contribution of the auxiliary
information from the user-item network. In this context, the combined adjacency

matrix C takes the following form C =

[
A wR

wRT 0

]
, where w ≥ 0 is the weighting

parameter controlling the user-item network contribution to the final similarity.
When w=0, the bipartite social network does not offer any information in

the computation of the similarity between users. In this case, the combined Katz
behaves like the single version of Katz, sKatz. Earlier in our running example, we



observed from the similarity matrix of Figure 2b that when we use information
only from the unipartite friendship network we recommend U3 to U4. The same
result is acquired when using the MSN and matrix of Figure 4b, where U3 is again
recommended to U4, but with much smaller similarity difference from U2. How-
ever, when we exploit information only from the bipartite user-item network, U2

is recommended to U4 as seen in matrix of Figure 3c. Therefore, we understand
that the friendship network is in any case important for providing friend rec-
ommendations within the friendship domain. However, the contribution of the
user-item network could be proven both fruitful, but in some cases also noisy.
Parameter w is a factor that could be tuned by either learning the dynamics
of the network, or following a specific range according to the recommendation
domain, or being adjusted by the user.

Concerning computational issues, our approach is based on a fast approxima-
tion of Katz algorithm introduced by [8], who reduce the computational cost to
O(n+m) where n is the number of nodes and m the number of edges, since matrix
operations require O(n3) used by the original Katz algorithm [11]. Concerning
the maximum length of paths that Katz algorithm employs, we set ` equal to
infinite taking into account all the paths until the convergence of the series.
Nevertheless, wisely tuning ` could potentially improve the proposed approach
in terms of efficiency by not traversing very long paths. Truncated versions of
Katz can reduce the computational cost, but can also improve the efficacy of
the recommendations by learning how to avoid uninformative paths [15]. Notice
that Katz algorithm can also handle directed graphs.

6 Conclusions and Future Work

In this paper, we presented an extended framework exploiting multi-modal social
networks to provide friend recommendations. We experimentally showed that
implicit information can be proven fruitful for the friend recommendation task.
In the future, MSNs will allow us to perform more cross-domain recommendation
tasks, but will also raise challenges like scaling, the effective weighting of multiple
information sources and the exploitation of semantic information.
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