

SIMULATION AND VERIFICATION OF ATOMICITY PROPERTIES FOR AN
ELECTRONIC CASH SYSTEM

Panagiotis Katsaros Vasilis Odontidis Maria Gousidou-Koutita

Department of Informatics Department of Mathematics Department of Mathematics
Aristotle University of Thessaloniki Aristotle University of Thessaloniki Aristotle University of Thessaloniki

54124 Thessaloniki, Greece 54124 Thessaloniki, Greece 54124 Thessaloniki, Greece
e-mail: katsaros@csd.auth.gr e-mail: gousidou@math.auth.gr

KEYWORDS
Electronic cash, Coloured Petri Nets, Model checking

ABSTRACT

An electronic cash system as any distributed system is subject
to site and communication failures, as well as potential secu-
rity attacks. This work focuses on simulation and verification
of three important correctness properties, for ensuring failure
resilience or detecting potential property violation scenarios.
We refer to the NetBill electronic cash system and the proper-
ties to be checked are money atomicity, goods atomicity and
certified delivery. We introduce a Colored Petri Net that
models NetBill, in the presence of site or communication
failures and all possible transaction abort cases. The pre-
sented model has been implemented in CPN Tools, a graphi-
cal ML-based tool for analyzing Colored Petri Nets. This
allows us to combine the provided state space exploration
functions and the supported Computation Tree like temporal
logic (CTL), for model checking the forenamed atomicity
properties. At the same time, it is possible to exploit the pro-
vided interactive simulation facilities to explore potential
property violation scenarios and correct the protocol’s design.

INTRODUCTION

NetBill (Cox et al. 1995) is an electronic cash protocol for
selling and delivering low-priced network goods. As in all
electronic cash systems, NetBill is required: (i) not to create
money in the presence of site and/or communication failures,
(ii) the merchant to receive payment if and only if the con-
sumer receives the ordered goods and (iii) both the merchant
and the consumer to be able to give non-repudiable proof of
the contents of the delivered goods. The first mentioned
property is called money atomicity, the second is known as
goods atomicity and the last one is called certified delivery.
The already published model checking approaches (Heintze
et al. 1996, Ray and Ray 2000, Ray et al. 2005) use a Com-
municating Sequential Processes (CSP) based system repre-
sentation (SYSTEM) and verification is performed by the Fail-
ure Divergence Refinement (FDR) model checker. The prop-
erties to be checked are expressed as CSP processes (SPEC)
and FDR checks if the set of behaviors generated by SYSTEM
is a subset of those generated by SPEC. An interesting result
is the fact that the Digicash electronic cash system (Chaum et
al. 1990) does not satisfy all forenamed properties in the pres-
ence of failures, as opossed to NetBill.
In this work, we propose a Colored Petri Net (CP-net) that
models NetBill, in the presence of site or communication
failures and all possible transaction abort cases. The proper-

ties of interest are expressed as CTL-based temporal logic
formulae (Clarke et al. 1986), which are model checked over
the generated model state space.
Compared to the already published modeling approaches, CP-
nets provide an explicit representation of both model states
and actions. Our model has been implemented in CPN Tools
(Jensen 1998), a graphical ML-based tool for editing and
analyzing CP-nets. This makes feasible to exploit the tool’s
interactive simulation facilities in order to explore potential
property violation scenarios and correct the protocol’s design.
CP-nets have been also used in the formal analysis of the
Internet Open Trading Protocol (Ouyang and Billington
2004). In that work the authors verify valid transaction termi-
nation (absence of deadlocks), absence of livelocks and ab-
sence of unexpected dead transitions. Their analysis approach
is based on inspection of the model’s terminal states (mark-
ings) and the corresponding strongly connected components
(SCC) graph1.
The properties considered in our work are not related to struc-
tural properties of the generated state space graph, as for ex-
ample the absence of self-loops. To the best of our knowl-
edge, our work is a first attempt to apply CTL-based model
checking, in order to ensure a set of functional properties
(money atomicity, goods atomicity and certified delivery)
over a CP-net representation of an e-commerce problem.
Given the advanced tool support of CPN Tools, the results
published in (Ouyang and Billington 2004) and the ones pro-
vided in this article, we believe that CP-nets is an attractive
alternative over the CSP-based modeling approach used in e-
commerce problems: it possesses the comparative advantage
of interactively simulating the actions executed in a property
violation scenario, in order to correct the protocol’s design.
Next section describes the implemented CP-net for the con-
sidered electronic cash system. Then, we proceed to the pro-
posed model checking of the required functional properties.
The paper concludes with a summary of the achieved results
and an eye on interesting future research prospects.

A COLORED PETRI NET MODEL FOR NETBILL

CPN Tools

In CPN Tools, CP-nets are developed in a modern graphical
environment that provides interactive feedback for the
model’s behavior through simulation. Colors, variables, func-
tion declarations and net inscriptions are written in CPN ML,
which is an extension of Standard ML and for this reason

1 A strongly connected component (SCC) of the state space is a maximal

sub-graph whose nodes are mutually reachable from each other.

employs a functional programming style. In CPN Tools it is
possible to use simple as well as compound color sets such as
products, records, lists and union color sets.
The toolset provides the necessary functionality for the analy-
sis of simple and timed CP-nets specified in a number of hier-
archically related pages. Typical models consist of 10-100
pages with varying complexity and programming require-
ments. The companion state space tool allows the generation
of the entire or a portion of the model’s state space (occur-
rence graph) and the performance of standard as well as non-
standard analysis queries.
The standard properties that characterize the behavior of a
CP-net in terms of the model’s structure include:

• bounds-related properties that characterize the model
in terms of the number of tokens we may have at the
places of interest,

• home properties that provide information about mark-
ings or sets of markings to which it is always possible
to return,

• liveness properties that are used to examine whether a
set of binding elements X remains active and

• fairness properties that provide information about
how often the different binding elements occur.

The NetBill electronic cash system

The NetBill transaction model involves three parties: the con-
sumer (C), the merchant (M) and the bank server (B). We use
the notation “X ⇒ Y message” to indicate that X sends the
specified message to Y. The basic protocol consists of the
following messages:

1. C ⇒ M Price request
2. M ⇒ C Price quote
3. C ⇒ M Goods request
4. M ⇒ C Goods, encrypted with a key K
5. C ⇒ M Signed Electronic Payment Order (epo)
6. M ⇒ B Endorsed Electronic Payment Order (includ-
ing the key K)
7. B ⇒ M Signed result (including K in case of suc-
cessful payment)
8. M ⇒ C Signed result (including K in case of
 successful payment)

A transaction involves three phases: price negotiation, goods
delivery and payment. We consider the selling of information
goods, in which case the NetBill protocol, links goods deliv-
ery and payment into a single atomic transaction. The con-
sumer and the merchant interact with each other in the first
two phases:

• C issues a price request for a particular product (1)
and M replies with the requested price (2),

• C either aborts the transaction or issues a goods re-
quest to the merchant (3),

• in the second case, M delivers the requested goods
encrypted with a key K (4).

The goods are cryptographically checksummed so that C or M
can prove that the requested goods are not affected by a po-
tential transmission error and are not altered by a protocol
participant. The bank (B) is not involved until the payment
phase:

• C sends to the merchant a signed electronic payment
order (5) including all necessary payment details and
the received product checksum,

• M validates the received electronic payment order
and checksum information and either aborts the
transaction or endorses it by sending the received
payment order and the associated decryption key K to
B (6),

• B responds to M (7) with the payment result and the
decryption key K (in case of successful payment) and
the transmitted information is finally forwarded to C
(8) to end the transaction.

NetBill provides protection to C against fraud by M in the
following ways:

• the key K, which is needed to decrypt the goods is
registered with B and if M does not respond in a suc-
cessful payment as expected (possibly because of a
site or a communication failure), the consumer asks
the key from B, that in fact acts as a trusted third
party,

• if there is a discrepancy between what C ordered and
what M delivered, C can easily demonstrate this dis-
crepancy to the trusted third party, since the payment
order received by B includes all details about what
exactly was ordered, the amount charged, the key K
reported by M and the checksum of the delivered en-
crypted goods.

Thus, if the goods are faulty it is easy to demonstrate that the
problem lies with the goods as sent and not with any subse-
quent alteration. When as in our case the protocol assures that
both C and M can give non-repudiable proof of the contents
of the delivered goods, we say that the protocol possess the
property of certified delivery.

The proposed CP-net

In this section, we introduce a CP-net for the NetBill elec-
tronic cash system. The adopted modeling assumptions take
into account consumer and merchant site failures and non-
reliable communication between the protocol’s participants,
including potential message losses. We assume that both,
consumer’s account debit and merchant’s account credit take
place at the same site (bank server) that provides trivial trans-
action atomicity guarantees. Thus, we omit modeling bank
site failures, since this would burden the CP-net with details
that are not part of the NetBill protocol, but concern the pro-
vided transaction processing mechanism. This implies the
property of money atomicity, but we show how to express it
by exploiting the provided state space exploration functions
and the supported Computation Tree like temporal logic
(CTL).
The proposed CP-net consists of a number of hierarchically
related pages, which model the protocol’s behavior in differ-
ent levels of abstraction.
In the highest level of abstraction (Figure 1), we model the
protocol’s participants and message exchanges. We omit the
protocol steps 1 and 2, since they are not significant for
checking payment atomicity. Figure 2 summarizes the color
and variable declarations used for the transition and arc

inscriptions of the described CP-net. Our model is important
to reflect all possible protocol execution scenarios. We adopt
a compact representation of all distinct transaction abort cases
by specifying them as request typed tokens that encode the
following execution scenarios:
 1. C sends to M a valid goods request (gReq=v)
 2. C sends to M an invalid goods request (gReq=v)
 3. the encrypted goods received by C are the requested
 ones (enGoods=v)
 4. the encrypted goods received by C are affected by an oc-

curred transmission error (enGoods=i)
 5. C sends to M a valid electronic payment order
 (epoReq=v)
 6. C sends to M an invalid electronic payment order
 (epoReq=i)
An electronic payment order (epo) is not valid, when it is not
signed or includes invalid payment details, like for example a
product checksum that does not coincide to the

appropriate diagnostic string at the output place stop. Uni-
lateral transaction aborts are also represented by transitions
like the one called errorEnGoods, which correspond to the
validation actions performed by the protocol participants.
Dispatch of the signed epo by C signifies the commitment of
C to the executed transaction request.
The diagnostic strings placed at the place stop indicate pro-
tocol termination, but only “No Funds” and “Success” are
reported to the end user.
In case of site or communication failure, C is informed for the
transaction result by querying B.
Due to space limitations, we omit the details of the Mer-
chantProcess transition of the high-level model. The main
point considered in the design of the BankProcess transition
(Figure 4) is the money transfer transaction to not be inter-
leaved with queries that are potentially made by C.

q

1`STARTq^^[reqRec(aRequest)]

ConsumerProcess
ConsumerProcess

MerchantProcess
MerchantProcess

BankProcess
BankProcess

newRequest prmtrs
pPrmtrs

1`START1 1`START

goodsRequest
request

encrGoods
validORnot

ePaymentOrder
validORnot

endorsedPaymentOrder
INT

stop
STRING

bankOut
INT

endTransaction
INT

queryBank
result

reqQueue

lReqQ

[]1 1`[]

epoInput
validORnot

Figure 1: Top-level structure of the NetBill CP-net

 colset pPrmtrs =with START;
 colset validORnot =with v | i;
 colset request =record gReq:validORnot*enGoods:validORnot*epoReq:validORnot;
 colset sRequest =union reqRec:request;
 colset lReqQ =list sRequest;
 colset result =with noFunds | paymentReceipt | noRecord;
 var aRequest :request;
 var q :lReqQ;
 var valCode :validORnot;
 var intVar :INT;
 var res :result;

Figure 2: Color sets and variables used in the NetBill CP-net

one assigned to the encrypted goods sent to C.
Figure 3 introduces the consumer process page that corre-
sponds to the ConsumerProcess substitution transition of
Figure 1. Input and output places were assigned to the syno-
nyms shown in the top-level CP-net. Firing of transition gRe-
quest places the result typed token noRecord at the place
queryBank.
This models the possibility of C querying B (trusted third
party) for the result of the ongoing transaction. The request
typed token aRequest is passed to the place goodsRequest
and it is then used non-deterministically to fire either the
commErrCtoM1 transition (communication error: C to M) or
the one corresponding to its reception by the merchant proc-
ess (merchant process page).
We note that C can abort the executed transaction any time up
to the submission of epo. Potential unilateral abort decisions
and consumer site failures are modeled by transitions named
as abort# and terminate the protocol by placing an

MODEL CHECKING THE REQUIRED ATOMICITY
PROPERTIES

The results for the properties of the standard report of the
CPN Tools state space analysis constitute a necessary input
source, for correctly expressing the CTL formulae of the re-
quired correctness properties. The standard report for the
described NetBill CP-net are based on a state space graph
with 59 nodes and 103 arcs with no home markings and no
dead and live transitions insrances. There are no infinite oc-
currence sequences and the protocol terminates in one of the
13 dead markings, with node numbers that are easily found by
the provided state space exploration functions.
The ML-functions used in model checking the required atom-
icity properties are summarized in Table 1.
Function SearchNodes is used to detect the marking(s) right
after the occurrence of a particular event, like for example a
money transfer from C’s account to M’s account.

reqRec(aRequest)::q

aRequest

"aborted by C"

1`i

1`v"err: invalid encrypted goods"

"aborted by C"

"aborted by C"

reqRec(aRequest)::q

valCode

valCode
valCode

valCode

#epoReq aRequest

valCode

valCode

intVar

intVar

"No Funds"

"Success"

1`noRecord
aRequest

"comm err: CtoM"

valCode

"comm err: CtoM"

1`noRecord

q
q

valCode

gRequest

abort2

errorEnGoods

epoRequest

abort3

abort1

succeeded
intVar=1

NoPayment
intVar=0

commErrCtoM1

commErrCtoM2

reqQueue
lReqQI/O

stop

STRING
Out

goodsRequest
requestOut

encrGoods
validORnotIn

epoInput
validORnotI/O

ePaymentOrder
validORnotOut

endTransaction
INTIn

queryBank
result

Out

Figure 3: The Consumer (C) process page of the NetBill CP-net

1
0

1 1 1
1

10

0 0

1`noFunds 1`paymentReceipt
res

1 0

res

1`noRecord

1`noRecord

OK_Trans

No_Trans

pay

receipt

finished

updateDB

noFunds

endorsedPaymentOrder
INTIn

debitC
INT

creditM
INT

bankOut
INTOut

No_Transaction
INT

queryBank
resultI/O

paymentResult
result

Figure 4: The Bank (B) process page of the NetBill CP-net

Table 2 summarizes the CTL formulae used to express the
required properties in terms of paths over the generated state
space graph. A path is a sequence of states and transition oc-
currences, that is, a walk-through of the state space con-
strained by the direction of existing arcs. A path may be infi-
nite, but for the described NetBill CP-net, due to the absence

of infinite occurrence sequences (state space report), there are
no infinite paths. A CTL expression that corresponds to the
required property is model checked by the eval_node func-
tion, starting from the node number that is passed as second
argument.

Table 1: State space querying functions

function description use
Mark.<PageName>’<PlaceName> N M Returns the set of tokens positioned on place <PlaceName> on the Nth instance of page <PageName> in the marking M
SearchNodes (

 <search area>,
 <predicate function>,

 <search limit>,
 <evaluation function>,
 <start value>,
 <combination function>)

Traverses the nodes of the part of the occurrence graph specified in <search area>. At each node the calculation specified
by <evaluation function> is performed and the results of these calculations are combined as specified by <combination
function> to form the final result. The <predicate function> maps each node into a boolean value and selects only those
nodes, which evaluate to true. We use the value EntireGraph for <search area> to denote the set of all nodes in the
occurrence graph and the value NoLimit for <search limit> to continue searching for all nodes, for which the predicate
function evaluates to true.

List.nth(l,n) Returns the nth element in list l, where 0 <= n < length l.

Table 2: CTL state formulae operators and model checking functions

state formulae syntax meaning
NOT(A) Boolean value that corresponds to the negation of A, where A is a CTL

formula.
AND(A1,A2) This formula is true if both A1 and A2 are true.
NF(<message>,<node function>) A function that is typically used for identifying single states or a subset

of the state space. Its arguments are a string and a function, which takes
a state space node and returns a boolean. The string is used when a
CTL formula evaluates to false in the model checker.

EV(A)≡FORALL_UNTIL(TT,A) This formula is true if the argument A becomes true eventually (within a
finite number of steps) starting from the state we are now. TT denotes
the true constant value.

ALONG(A)≡NOT(EV(NOT(A))) This formula is true if there exists a path for which the argument A
holds for every state. The path is either infinite or ends in a dead state.

POS(A)≡EXIST_UNTIL(TT,A) This formula is true if possible from the state we are now, to reach a
state where the argument A is true.

EXIST_NEXT(A) This formula is true iff there exists an immediate successor state, from
where we are now, in which the argument A is true.

FORALL_NEXT(A) This formula is true iff for all immediate successor states from where we
are now the argument A is true.

eval_node <formula> <node> The standard model checking function that takes two arguments: the
CTL formula to be checked and a state from where the model checking
should start.

Figure 5 shows the model checking of the money atomicity
property. We are interested to verify that money transfer takes
place atomically that is, for all paths starting from the occur-
rence of the consumer’s debit, the protocol performs the cor-
responding credit to the merchant’s account irrespective of
the considered failure possibilities.
Value firstdebitState corresponds to the marking that
signifies consumer’s debit. This is the marking from where
the model checking starts. Value noDebit is used to detect
redundant debits before the occurrence of the expected credit.
Value moneyAtomicity (true) ensures that for all immedi-
ate successors, noDebit is true for each state along the path,
until the last state on the path, where creditState becomes
true.
Figure 6 shows the model checking of non-atomic goods de-
livery. We are interested to verify that irrespective of the con-
sidered failures and unilateral abort decisions (i) when C
signs a valid epo it is not possible to eventually perform C’s
debit, without a subsequent protocol termination with a regis-
tered payment receipt (including the required decryption key)
and (ii) when C sends a not necessarily valid epo it is not pos-
sible to eventually register a payment receipt, without having
previously debited C’s account. The first mentioned guaran-
tee ensures goods atomicity from the consumer’s perspective
and the second mentioned guarantee ensures goods atomicity
from the merchant perspective.
Value dispatchedEPOState corresponds to the marking
that signifies the dispatch of a valid, signed epo. This is the
marking from where the model checking of (i) starts. Value
debitState is used to detect C’s debit. Value notRegis-

teredDecrKey is used to check the absence of a payment
receipt. Value noGoodsAtomicityA (false) ensures that
there is no path, for which it is possible to eventually occur
C’s debit and at the same time in every state, to not register
the expected payment receipt. Note that because of the ab-
sence of infinite paths (state space report), all paths quantified
by ALONG end in a dead marking (protocol termination).
Value dispatchedEPOState1 corresponds to the marking
that signifies the dispatch of a valid signed epo. On the other
hand, value dispatchedEPOState2 corresponds to the
marking that signifies the dispatch of an invalid epo. These
are the markings from where the model checking of (ii) starts.
Value noDebitFound is used to check the absence of C’s
debit. Value registeredDecrKey is used to detect registra-
tion of an unexpected payment receipt. Value noGoodsA-
tomicityB (false in both model checking cases) ensures
that there is no path, for which it is possible to eventually
register a payment receipt and at the same time in every state,
to not have performed C’s debit.
Figure 7 shows the model checking of a non-certified deliv-
ery. We are interested to verify that irrespective of the con-
sidered failures and unilateral abort decisions, the protocol
does not fall in a state, where it is possible to end with a pay-
ment receipt, without C having previously obtained an en-
crypted version of the requested goods and the corresponding
checksum number. The obtained checksum number can be
used to prove potential discrepancy between what C ordered
and what M delivered (if the number coincides with the
checksum number written on the registered payment receipt).

 fun debitDone n = (Mark.BankProcess'debitC 1 n = [1]);
 val firstDebitState = List.nth(SearchNodes (
 EntireGraph,
 fn n => (debitDone n),
 NoLimit,
 fn n => n,
 [],
 op ::),0);
 fun creditDone n = (Mark.BankProcess'queryBank 1 n = [paymentReceipt]);
 val noDebit = NOT(NF("Double debit!",debitDone));
 val creditState = NF("No credit!",creditDone);
 val moneyAtomicity = FORALL_NEXT(FORALL_UNTIL(noDebit,creditState));
 eval_node moneyAtomicity firstDebitState;

Figure 5: Model checking money atomicity: true

fun signedEPO n = (Mark.Protocol'ePaymentOrder 1 n = [v]);
val dispatchedEPOState = List.nth(SearchNodes (
 EntireGraph,
 fn n => (signedEPO n),
 NoLimit,
 fn n => n,
 [],
 op ::),0);
fun debitDone n = (Mark.BankProcess'debitC 1 n = [1]);
fun noTrans n = (Mark.Protocol'queryBank 1 n <>
 [paymentReceipt]);
val debitState = NF("No debit!",debitDone);
val notRegisteredDecrKey = NF("Found decryption key!",
 noTrans);
val noGoodsAtomicityA = ALONG(AND(EV(debitState),
 notRegisteredDecrKey));
eval_node noGoodsAtomicityA dispatchedEPOState;

fun sendEPO n = (Mark.Protocol'ePaymentOrder 1 n <> []);
val dispatchedEPOStates = SearchNodes (
 EntireGraph,
 fn n => (sendEPO n),
 NoLimit,
 fn n => n,
 [],
 op ::);
val dispatchedEPOState1 = List.nth(dispatchedEPOStates,0);
val dispatchedEPOState2 = List.nth(dispatchedEPOStates,1);
fun noDebitDone n = (Mark.BankProcess'debitC 1 n <> [1]);
fun succeedTrans n = (Mark.Protocol'queryBank 1 n =
 [paymentReceipt]);
val noDebitFound = NF("Debit found!",noDebitDone);
val registeredDecrKey = NF("Failed transaction!",
 succeedTrans);
val noGoodsAtomicityB = ALONG(AND(EV(registeredDecrKey),
 noDebitFound));
eval_node noGoodsAtomicityB dispatchedEPOState1;
eval_node noGoodsAtomicityB dispatchedEPOState2;

Figure 6: Model checking the two parts of the non-atomic goods delivery: false

 fun registerKeyState n = (Mark.Protocol'queryBank 1 n = [paymentReceipt]);
 val registerKey = POS(EV(NF("No paymentReceipt!",registerKeyState)));
 fun enGoodsTransferedState n = (Mark.Protocol'encrGoods 1 n = [v]);
 val noGoods = NOT(POS(EV(NF("Encr goods sent!",enGoodsTransferedState))));
 val nonCertifiedDelivery = EXIST_NEXT(AND(noGoods,registerKey));
 eval_node nonCertifiedDelivery InitNode;

Figure 7: Model checking non-certified delivery: false

Table 3: Protocol termination inspection

marking (N) Mark.Protocol'stop 1 N Mark.Protocol'queryBank 1 N interpretation
59 [“No Funds”] [noFunds] No failures.
58 [“comm err: MtoC”] [noFunds] Communication failure: M fails to report the transaction result to C. C is informed for the

result of the submitted transaction by querying B.
57 [“Success”] [paymentReceipt] No failures.
56 [“comm err: MtoC”] [paymentReceipt] Communication failure: M fails to report the transaction result to C. C obtains the product

decryption key by querying B.
55 [“comm err: BtoM or M site

failure”]
[noFunds] M is not informed for the result of the submitted transaction due to a potential site/ com-

munication failure. C is informed for the result of the submitted transaction by querying B.
51 [“comm err: BtoM or M site

failure”]
[paymentReceipt] M is not informed for the result of the submitted transaction due to a potential site or

communication failure. C obtains the product decryption key by querying B.
35 [“comm err: MtoB”] [noRecord] Communication failure: the signed payment order is not transmitted to B. C is informed

that there is no transaction by querying B.
33 [“err: invalid EPO”] [noRecord] M aborts the transaction due to an invalid epo. C is informed that there is no transaction

by querying B.
30 [“err: invalid encrypted

goods”]
[noRecord] C aborts the transaction due to reception of encrypted goods that are possibly affected by

an occurred transmission error.
21 [“comm err: CtoM”] [noRecord] Communication failure: the goods request or the signed payment order is not transmitted to

M. C is informed that there is no transaction by querying B.
20 [“err: invalid goods reque”] [noRecord] M aborts the transaction due to an invalid goods request.
19 [“aborted by M”] [noRecord] M aborts the transaction due to a potential site failure or due to a unilateral abort decision.

C is informed that there is no transaction by querying B.
10 [“aborted by C”] [noRecord] C aborts the transaction due to a potential site failure or due to a unilateral abort decision

before being committed to it, by the dispatch of a signed payment order.

Value registerKey is used to detect registration of the ex-
pected payment receipt. Value noGoods is used to check the
absence of an encrypted goods delivery. Value nonCer-
tiefiedDelivery (false), when it is model checked start-
ing from the initial node, ensures that there is no path for
which it is possible to not have delivered the assumed en-
crypted goods and the protocol to terminate with having
registered a payment receipt.
Model checking certified delivery from the merchant perspec-
tive is performed in a similar way.

Protocol failure analysis

Protocol failure analysis aims in exploring all property viola-
tion scenarios and pinpoints areas where design changes or
revisions should be considered. Having shown that CP-net
based model checking of payment atomicity is feasible, we
can then exploit the CPN Tools advanced graphical environ-
ment, to interactively simulating the actions performed in
possible property violation scenarios. In what is concerned
with NetBill, protocol failure analysis is not applicable, since
we did not detect atomicity violation cases. However, we pro-
ceed to the inspection of the CP-net’s terminal markings (Ta-
ble 4) by interactively simulating the presented CP-net.

CONCLUSION

In this paper, we have illustrated how Colored Petri Net
model checking can be used to prove that an e-commerce
protocol satisfies the properties of money atomicity, goods
atomicity and certified delivery. The proposed protocol fail-
ure analysis exploits the advanced interactive simulation fea-
tures of CPN Tools to explore potential property violation
scenarios and to pinpoint areas, where design changes or revi-
sions should be considered.
The described approach can also be applied for model check-
ing other properties relevant to the design of e-commerce
protocols, like for example anonymity, security (Panti et al.
2002), personalization potentiality (Georgiadis and Manit-
saris 2005), information flow security (Katsaros 2005) etc.

ACKNOWLEDGMENTS

We acknowledge the CPN Tools team at Aarhus University,
Denmark for kindly providing us the license of use of the
valuable CP-net toolset.

REFERENCES

Chaum, D., Fiat, A. and M. Naor. 1990. “Untraceable electronic
cash”, In Proc. CRYPTO’88, Springer-Verlag, 200-212

Clarke, E. M., Emerson, E. A. and A. P. Sistle. 1986. “Automatic
verification of finite state concurrent system using temporal
logic”, ACM Transactions on Programming Languages and Sys-
tems 8, No. 2, 244-263

Cox, B., Tygar, J. D. and M. Sirbu. 1995. “NetBill security and
transaction protocol”, In: Proc. 1st USENIX Workshop in Elec-
tronic Commerce, New York, California, 77-88

Georgiadis, C. K. and A. Manitsaris. 2005. “Personalization in Mo-
bile Commerce Environments: Multimedia Challenges”, Cutter
IT Journal 18, No. 8, 36-43

Heintze, N., Tygar, J., Wing, J. and H. Wong. 1996. “Model check-
ing electronic commerce protocols”, In: Proc. 2nd USENIX
Workshop in Electronic Commerce, Oakland, CA, 146-164

Jensen, K. 1998. “An introduction to the practical use of colored
Petri Nets”, In: Lectures on Petri Nets II: Applications, LNCS
1492, Springer-Verlag, 237-292

Katsaros, P. 2005. “On the design of access control to prevent sensi-
tive information leakage in distributed object systems: a Colored
Petri Net model”, In: Proc. CoopIS/DOA/ODBASE, LNCS 3761,
Springer-Verlag, 945-962

Ouyang, C. and J. Billington. 2004. “Formal analysis of the Internet
Open Trading Proocol”, In: Proc. FORTE 2004 Workshops,
LNCS 3236, Springer-Verlag, 1-15

Panti, M., Spalazzi, L. and S. Tacconi. 2002. “Verification of secu-
rity properties in electronic payment protocols”, In: Proc. ACM
SIGPLAN Workshop on Issues in the Theory of Security, Oregon

Ray, I. and I. Ray. 2000. “Failure Analysis of an E-Commerce Pro-
tocol using Model Checking”, In: Proc. 2nd Int. Workshop on
Advanced Issues of E-Commerce and Web-based Information
Systems, San Jose, CA, 176-183

Ray, I., Ray, I. and N. Natarajan. 2005. “An anonymous and failure
resilient fair-exchange e-commerce protocol”, Decision Support
Systems 39, 267-292

