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Data-intensive flows are increasingly encountered in various settings, including business intelligence and
scientific scenarios. At the same time, flow technology is evolving. Instead of resorting to monolithic
solutions, current approaches tend to employ multiple execution engines, such as Hadoop clusters,
traditional DBMSs, and stand-alone tools. We target the problem of allocating flow activities to specific
heterogeneous and interdependent execution engines while minimizing the flow execution cost. To date,
the state-of-the-art is limited to simple heuristics. Although the problem is intractable, we propose
practical anytime solutions that are capable of outperforming those simple heuristics and yielding
allocation plans in seconds even when optimizing large flows on ordinary machines. Moreover, we prove
the NP-hardness of the problem in the generic case and we propose an exact polynomial solution for a
specific form of flows, namely, linear flows. We thoroughly evaluate our solutions in both real-world and
flows synthetic, and the results show the superiority of our solutions. Especially in real-world scenarios,
we can decrease execution time up to more than 3 times.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Our entry into the era of big data has signalled notable changes
in the way scientific research is conducted and enterprises operate.
More and more emphasis is put on processing large volumes of
data in less, if not real, time in order to accomplish scientific
or business intelligence tasks [1,2]. The most common approach
to this end is to design and execute data flows, using workflow
tools and platforms that take over the integration of multiple data
sources, data manipulation and service orchestration.

Our work is largely motivated by the needs of modern business
intelligence (BI) applications and data-intensive scientific work-
flows, e.g., in bio-informatics. Traditionally, BI builds on top of
data-warehouses and data-marts, which are populated by peri-
odic Extract-Transform-Load (ETL) flows. This setting has evolved

* Corresponding author.
E-mail addresses: georkoug@csd.auth.gr (G. Kougka), gounaria@csd.auth.gr
(A. Gounaris), tsichlas@csd.auth.gr (K. Tsichlas).

http://dx.doi.org/10.1016/j.future.2014.11.011
0167-739X/© 2014 Elsevier B.V. All rights reserved.

in two ways. First, flows have become more complex encompass-
ing text analytics and machine learning operations along with data
transformation activities. In addition, they operate on both stored
data and external, rapidly evolving runtime data, such as feeds
and click streams. Second, flows are no longer executed on a sin-
gle processing engine but their execution may span multiple en-
gines; such flows are also referred to as hybrid flows [3]. Examples
of execution engines include Hadoop clusters, traditional DBMS, R
scripts and stand-alone tools, each of which may come in several
different instances (e.g., both mysql and Oracle RDBMSs) or config-
urations (e.g., number of reducers in Hadoop) resulting in a big set
of candidate execution platforms for executing a single flow (e.g.,
[4,3,5-8]).

We can follow two main approaches to executing data flows.!
The first one involves the manual, low-level script-based design

1 Due to the increased impact of the volume of data in such flows, in the
remaining part of the paper, we will use the terms workflows, data flows or simply
flows interchangeably.
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of flows, which are then executed in a step-wise fashion. Such an
approach is prone to errors and sub-optimal execution, due to the
complexity of the flows. The second approach views the workflows
at a higher logical level and relies on flow optimizers to decide the
technical execution details; this is akin to the role of optimizers
in database systems. Optimizing data flows is a challenging multi-
dimensional task; two of the most important dimensions include
(i) the optimization of the structure of flows, which comes in a
form of a directed acyclic graph, but its vertices do not necessarily
have clear semantics, as is the case for relational operators; and
(ii) the allocation of each of the flow vertices to a potentially
different execution engine, choosing among multiple candidates.

Our work focuses on the second aspect mentioned above, and
more specifically, aims to devise a mapping of flow nodes to execu-
tion engines so that the performance is maximized putting empha-
sis on keeping the optimization overhead low. The performance is
measured in terms of the sum of the execution costs over all flow
activities (or flow nodes). For this problem, only simple heuristic or
non-scalable algorithms are known to date [4]; here we show how
we can significantly improve upon the state-of-the-art. Moreover,
we show how we can benefit from the existence of multiple exe-
cution engine options, rather than sticking to simple single-engine
solutions. The main challenges of tackling this problem are posed
by the following factors: the number of flow nodes and candidate
engine or engine configurations may be large, the engines are het-
erogeneous in the sense that each engine is capable of executing
a flow node in different time, and shipping data from one execu-
tion engine to another or switching between engines incurs cost,
i.e., choosing the best execution engine for each flow node in iso-
lation does not imply optimality [4].

Overall, we make the following contributions:

e We propose a set of anytime algorithms (Section 3) that, as
shown in our experimental section, they are capable of yield-
ing mappings of flow nodes to execution engines that are sig-
nificantly better than naive approaches (Section 2), even when
the flows are very large and our proposals are allowed to run
only for a few seconds on an ordinary machine. These anytime
algorithms fall into three main categories: branch and bound,
random walk and set-cover ones.

e We propose an optimal solution with polynomial time com-
plexity for the specific case, where the flow structure is linear,
i.e,, the flow is a chain of activities. Specifically, we present a
polynomial dynamic programming algorithm that can yield ex-
act solutions for linear flows and can act as an efficient approx-
imate solver in more generic cases (Section 4).

e We evaluate our proposals using both real flows and synthetic
in a wide range of settings. We declare winners among our pro-
posals, depending on the type of the flow. In summary, the value
of our solutions lies in that they are both effective in improv-
ing performance and easy to implement and light-weight. The
dynamic programming approach performs remarkably well in
many real-world settings and along with the anytime heuris-
tics, we perform consistently better than current heuristics. The
anytime proposals can run for any number of iterations toler-
ated by the users, e.g., to meet real-time constraints, and they
are capable of yielding improved performance in short time. Es-
pecially when the flows are near-linear, as happens in many
real-world cases, the execution cost can be decreased by more
than 3 times. If the flows are completely linear, the improve-
ments are even larger (Section 6).

e We prove the  #-hardness of the problem at hand (which
means that no solution with polynomial complexity can be
found in the generic case) and at the same time it is impossi-
ble to approximate it within a small constant, unless = N P
(Section 5).

2. Problem definition and background

In this paper, we will investigate resource allocation techniques,
where each flow activity can run on multiple execution engines,
of which, only one should be selected. At this point, we will not
consider the optimization of the ordering of flow activities or the
technical specifications of the available processors. To begin with,
we represent the logical view of a flow as a directed acyclic graph
(DAG), where each activity corresponds to a node in the graph and
the edges between nodes represent intermediate data shipping
among activities. Since we have different activity implementations
for a specific engine or multiple engines, each flow activity has
a processing cost in time units, which differs between engine
instances or engine configurations. Additionally, data transfer from
one engine to another and/or switching between engines has also
a cost.

The main notation and assumptions of this Flow Activity
Allocation problem (henceforth named FAA) are as follows:

e Let G = (A, E) be a directed acyclic graph, where A denotes the
nodes of the graph and E represents the data flow among the
nodes, i.e., which activity feeds data to which activity.

e LetA = {a;, ..., a,} be a set of (possibly streaming) activities
of size n. Each flow activity is responsible for one or both of the
following tasks: (i) reading or retrieving or storing data, and
(ii) manipulating data. The definition of the activities and the
complete flow G is left to the flow designer.

e Let E = {edge,, ..., edge,} be a set of edges of size n’. Each
edge edge;, 1 < i < n’ equals to an ordered pair (g;, ax), so that
edge™ = g; and edge!™ = qj.

e Let ENG = {eq,...,ey} be a set of execution engines that
activities can be allocated to; ENG's size is m. In general, the
number of execution engines tends to be smaller than the
number of flow activities. However, different engine instances
and/or configurations (e.g., multiple Hadoop clusters, each
with varying number of reducers) are essentially treated as
different engines, so that the number of different engines at
our disposal may well be larger than the number of the flow
activities. Note that nowadays, it has become easier to support
multiple execution engines for each activity; for example,
in [5], it is discussed how a logical data flow activity definition
can automatically be translated to several distinct physical
implementations according to the underlying execution engine
including SQL, pig-latin and PDI? scripts.

e Let ¢;; be the execution time of an activity a; when mapped to
engine e;. We assume that this information is available, through
e.g., micro-benchmarking as in [6], and we do not deal with the
engine configuration ourselves.

o Let cegl!;. be the cost associated with the graph edges. It
consists of (a) the engine switching cost from engine e;,
which executes activity a, to engine e;, which executes the
subsequent activity; and (b) the data shipping from the output
of activity a, (executed on engine e;) to the subsequent activity.
The subsequent activity is the activity the edge points to.
The first component depends on the two engines, while the
second depends additionally on the data volume transferred
across the edge; this volume depends on the sender activity.
Overall, ce depends on the sender activity and the execution
engines of the activities connected through the edge. As above,
we assume that this metadata is available to our algorithms
either through micro-benchmarking or through log files. We
can support arbitrary settings of cei . values denoting the

i—i

edge cost for activities running on the same engine instance;

2 http://www.pentaho.com/product/data-integration.
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however, in the remaining part, we assume that ce* ; cost from
engine e; to engine e; is 0, because there is no data transfer over
the network and/or engine configuration changes involved and

we will refer to the ce cost as inter-engine cost.

Our goal can be stated as the derivation of an allocation function
f : [1,n] — [1, m], which expresses the mapping between
activities and processor engines, so that (i) the total execution time
is minimized; (ii) each activity is mapped to one and only one
engine; and (iii) our allocation algorithms run in seconds at most.
Generally, we denote the mapping between an activity g; and a
processor engine e as f(i) = j,where1 <i<nand1 <j<m.
The total execution time TET for a specific allocation is the sum of
all the execution costs of each activity on their engines plus the
cost of transferring data and switching between different engines.
The latter occurs whenever two nodes of an edge belonging to E
are allocated to distinct engines:

head

n n
_ edge;
TET = Z Cif + Z Cef(edge?ead)—>f(edgef““)'
i=1 i=1

In a more generic scenario, there are constraints between
allocations to denote the fact that not all activities can run on all
engines. In the constrained case, the goal is to allocate all activities
so that the total execution time cost is minimized subject to the
allocation constraints.

As explained later, our solutions behave differently depending
on whether the flows are linear or not. Linear flows are those that
contain one and only one activity with no incoming edges and
one and only one activity with no outgoing edges; all the other
activities have exactly one incoming edge and one outgoing edge.

2.1. Motivational example

A real-world data flow, which has the role of analysing emerg-
ing temporal trends, is illustrated in Fig. 1. The data flow builds
a taxonomy of current trends for a specific region, which are ex-
tracted from Twitter messages (tweets), and its purpose is to cate-
gorize the trends and derive key representative features.

This example flow comprises 14 activities for deriving the
timestamp from tweets (Extract timpestamp), deriving the textual
content (Extract textual content), performing look-up operations
on auxiliary data sources (LookupRegion, LookupTrends), executing
tasks that correspond to ordinary relational database operators
(Select, Join, Aggregation), and performing analysis operators
(Qualitative Analysis, Label trends, Quantitative Analysis).

In this example, we assume that 6 of the activities can execute
on 2 candidate engines and 5 of the activities can execute on 3 can-
didate engines. The engines can be MapReduce engines, GPU accel-
erators and O-RDBMSs. The remaining 3 activities are performed
using stand-alone scripts. In such a setting, the total number of
different engine allocations in the figure is 263° = 15,552. How-
ever, for each engine, there may be multiple engine instantiations
(not shown in the figure). If, for example, there are 3 different in-
stances per execution engine and stand-alone programs, there are
more than 7.4 - 10'° < 3'%(263°) possible allocations. It is easy
to see that this number increases exponentially in the number of
available engines. Furthermore, moving data from one engine to
another, e.g., from a Hadoop cluster to a database is associated with
a time overhead. Also, not all activities can run on any engine; for
example, the last activity can run only with the help of a GPU-based
implementation or as a Map-Reduce program in a specific cluster.
Our goal is to devise a concrete mapping of each flow activity to an
execution engine in a small amount of time.

In the remaining part of this section, we present first, an
exhaustive solution, upon which we later propose improvements,
and second, heuristics that are fast albeit not very efficient in
improving performance.

LookupTrends (timestamp,
textContent)

Trend
Dataset

Burst Detection
- LookupTrends .
(region)

s

Fig. 1. Areal-world data flow for interpreting emerging temporal trends.
2.2. An exhaustive solution

The rationale of an exhaustive methodology is to estimate all
the possible combinations of engine allocations with regards to
all flow activities. For a flow with n activities and m available
execution engines, we have the following auxiliary matrices: (i) the
n x m C matrix, where the element in the ith row and jth column
is the ¢; j execution time cost defined earlier; (ii) the n x m x m CE
matrix, where the element with the (k, i, j) coordinates is the
cef’;j inter-engine data shipping and engine switching cost; and
(iii) the n x m CONSTR matrix, where the element in the ith row
and jth column is set to 1 if the activity a; can be mapped to the
engine e;.

The exhaustive algorithm iterates over all possible m" alloca-
tions of execution engines to nodes. Due to this exponential com-
plexity, it can be only applied to tiny flows, e.g., flows with very
few nodes and candidate execution engines. In the exhaustive algo-
rithm, each allocation is mapped to a distinct number in the range
[0, m" — 1] with the help of the mapNumberToAllocation function.
We can imagine each allocation plan as a number with n digits of
base m. The value v of the ith digit from right to left denotes that the
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Algorithm 1 Exhaustive Search
Require: G(A, E), ENG, C, CE, CONSTR
1.f<0
2: mincost <— oo
3: foralli=0...m" — 1do
feandidate < mapNumberToAllocation (i)
if feandidace Satisfies constraints in CONSTR then
COSteandidate <— calculateCost (feandidate, C, CE)
if cost andidate < mincost then
mincost <— coSteandidate
f <_fcandida[e
10: end if
11:  end if
12: end for
13: return an engine allocation plan f

© e Nauh

ith activity is allocated to the engine v + 1. For example, the allo-
cation number (3521)s denotes a mapping of a 4-node flow to en-
gines, wherem = 6, f(1) = 2,f(2) = 3,f(3) = 6and f(4) = 4.
Since the allocations with the smallest and the largest numbers are
(0000)6 and (5555)¢, respectively, all possible allocations are in the
range of [0, 6% — 1].

2.3. Heuristics

Another approach of allocation is to apply simple heuristics in
order to avoid the complexity of estimating all the possible alloca-
tion combinations. For the purposes of this paper, we investigate
two different heuristics, similar to those mentioned in [4]:

H1: this is a 2-step heuristic. First, we rank all engines based
on their average execution cost for all flow activities in increasing
order, i.e., the value for g; is % 3%, cij. Then, we allocate each
activity to the engine with the highest rank that is capable of
executing that activity.

H2: this is also a 2-step heuristic. First, we rank all engines based
on their execution cost for each flow activity separately. Then, we
allocate each activity to the engine with the highest rank that is
capable of executing that activity.

In Fig. 2, we show an example for a linear and a non-linear flow
withn = 5 and m = 3. Because of the constraints between the en-
gines, some allocations are not considered and the corresponding
cells in C are shaded. Additionally, in this example we consider a
CE matrix; for simplicity this matrix is m x m assuming that the
values are the same for all n. For both flows, H1 and H2 provide a
single allocation plan as shown in the figure; this is because the
two flows differ only in their edges, which are not considered by
naive heuristics.

In the remaining part of this work, we will refer to those
solutions as simple or naive heuristics to distinguish them from
our proposals in the next two sections.

3. Anytime algorithms

We now introduce anytime algorithms that can be stopped at
any point and they are guaranteed to move closer to the optimal
allocation the longer they are allowed to run. In a sense, the ex-
haustive algorithm can be classified as an anytime algorithm, too.
But here, we present three types of solutions that are both efficient
and effective, as verified by our experiments.

3.1. A branch and bound solution

Abranch-and-bound (BB) approach can improve upon the naive
exhaustive algorithm of the previous section. More specifically, we

Algorithm input

[ CE CONSTR
8 2 0 2 7 0 1 1
5 8 3 6 0 2 1 1 1
9 2 5 1 1 1
4 7 1 1 0
0 9 8 6 6 linear flow
n=5
m=3
non-linear flow
H1 and H2
H1 Allocation H2 Allocation
6 8 2 3:f(1) 6 8 2 3:f(1)
5 8 3 3:(2) 5 8 3 3:(2)
9 2 5 3:(3) 9o |12 s 2:(3)
5 9 2 3:f(4) 5 9 2 3:f(4)
4 7 4 1:f(5) 4 7 4 1:f(5)
average 5.8 68 | 372

H2 allocation plan: f=332 31
H2 non-linear allocation cost: 30
H2 linear allocation cost: 26

H1 allocation plan: f=3333 1
H1 non-linear allocation cost: 32
H1 linear allocation cost: 24

Fig. 2. An application of H1 and H2.

can perform the following two main improvements. First, we can
calculate the flow execution cost after each activity gets allocated
and to abandon an intermediate allocation plan as soon as it
exceeds the current minimum cost, which is the minimum of H1
and H2 algorithms for the first time. Second, when an allocation of
an activity to a node is found not to satisfy the engine constraints,
we move the allocation id counter as many steps as required in
order not to examine a similarly invalid allocation of the same
engine to the same node. For example, let us suppose that the
(3300)¢ allocation is invalid because the 3rd node cannot run on
engine 4. Instead of examining (3301)g, (3302)¢, and so on (which
are bound to be invalid as well), we move directly to (3400)g.

Although, the two afore-mentioned improvements can yield
speedups in the decision taking time, the computational complex-
ity remains exponential, which renders the algorithm unsuitable
for use in large flows. Aremedy to this complexity problem is to cap
the number of the allowed iterations. More specifically, we derive
the BB-IC (Branch-n-Bound-Iteration Capping) algorithm, which,
in addition to the two previous improvements allows only a pre-
specified number of iterations (termed as noi). Given that thresh-
old, the algorithm first estimates the maximum number np,y of
nodes the allocation of which can be examined without exceeding
the iteration threshold: ny.x = |log,,(noi)]. Then, it runs the H1
and H2 and it keeps the best performing one. From the allocation
plan of the best performing heuristic, it detects the ny,, most ex-
pensive nodes, and investigates all their possible allocations using
the branch-and-bound approach. The rationale behind this is to in-
vestigate other allocations for the parts of the flow that contribute
the most to the total cost. The remaining nodes are allocated ac-
cording to the allocation of the best performing heuristic.

Compared to Algorithm 1, the main changes are in three places:
(i) the iteration of i is up to m™a — 1 in line 3; (ii) feandidate COTTE-
sponds to a plan with a subset of activities where the allocation of
the remaining activities is defined by the best performing simple
heuristic; as such, the cost estimation in line 6 needs to take this
into account, and (iii) after line 11, we insert an else statement to
increase the value of i, as explained above.
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Algorithm 2 RWR-b

Algorithm 3 DP-cost

Require: G(A, E), ENG, C, CE, CONSTR, length, r
1: f < best(H1, H2)

2: mincost < calculateCost (f)

3: foralli=1...rdo

4 fcandidate <~ f

5. forallj=1...lengthdo

6: make a random change in fangidace that satisfies constraints
in CONSTR

7: COSteandidate <— calculateCost (feandidate, C, CE)

8: if cost andidae < mincost then

9: Mincost < CoSteandidates S <— feandidate

10: end if

11:  end for

12: end for

13: return an engine allocation plan f

3.2. Random-walk solutions

Our second approach to coping with the complexity of the
problem is to explore the search space with random walks. We
examine three main variants:

RW: Starting from the allocation derived from the best perform-
ing heuristic between H1 and H2, we make random perturbations
for a pre-specified number of times; this number is the length of
the walk. In each iteration, we choose an activity in a round-robin
fashion and we randomly alter its allocation.

RWR-r: This flavour extends the previous one by restarting the
random walk r times. Each time, the starting point is a randomly
selected allocation of all activities.

RWR-b: This flavour also employs restarts, but the starting
point is the best performing allocation detected thus far (see
Algorithm 2).

3.3. Dealing with large flows

For flows with large sets of activities and candidate engines, BB-
IC and RW can explore only a very small part of the search space.
E.g., in BB-IC, if n = m = 100 and noi = 10, 000, then npy.x
is only 2. The two algorithms presented below, employ set-cover
approaches in order to prune the search space; more specifically,
they preprocess the candidate engines, and select a subset of ENG
before applying the BB-IC and RW solutions. The intuition is that if,
for large flows, we can derive a much smaller engine candidate set
than the initial one, BB-IC and RW can improve their performance.

SC1: This set-cover based approach reduces the ENG set as
follows. In each iteration, we count the number of activities each
engine is allowed to execute, and we select the engine that is
capable of processing the most activities. Conflicts are resolved
arbitrarily. Then, we remove the activities supported by that
engine and we proceed to the next iteration, unless there are no
activities left. After we have selected the subset of engines, we
apply both BB-IC and RWR-b (which run in very short time) and
we choose the allocation with the lowest cost.

SC2: The SC2 is another set-cover flavour, which takes into ac-
count the inter-engine cost. More specifically, it performs the first
iteration exactly as SC1 does. Then, in each subsequent iteration, it
chooses the engine with the lowest average inter-engine cost with
respect to the last added engine across all activities. Similarly to
SC1, this procedure continues until all the activities can be exe-
cuted on at least one engine, and the final allocation is found after
applying both BB-IC and RWR-b to the reduced engine set.

The maximum number of iterations in the pre-processing
engine selection phase for both set-cover approaches is m, but in
practice, it is a small fraction of m and thus, the pre-processing

Require: G(A, E), ENG, C, CE, CONSTR
1: forallj=1...mdo
2: if f(1) = j satisfies constraints in CONSTR then
3 DPeost (1, ) < C(1,))
4: endif
5: end for
6: foralli=2...ndo
7. forallj=1...mdo
8 if f (i) = j satisfies constraints in CONSTR then
9 kmin <= miny<x<m{DPcos: (i — 1, k) + CE(i, k, j)}

10: DP o5 (i, j) <= C(i, j) + DPeost (i — 1, Kinin)
11: DProdes (l,]) <~ kmin

12: end if

13:  end for

14: end for

step runs in a few milliseconds on a simple modern machine.
Additionally, the number of iterations or restarts of BB-IC and
RWR-b algorithms define the actual execution of the SC flavours
that can be classified as anytime, too.

3.4. A hybrid solution

According to our experience, each of the previous anytime
solutions may exhibit the best performance in different settings.
Since all of them are lightweight and explore the search space in
different ways, it is both possible and effective to run all of them
and choose the best each time. Therefore, we introduce the BEST
meta-heuristic that, after executing all BB-IC, RWR-b, SC1 and SC2,
chooses the one that yields the allocation plan with the lowest
execution cost. As shown in Section 6, we can further increase the
performance benefits by more than 10% because of that.

4. Dynamic programming

The previous proposals put emphasis on improving the naive
heuristics without significantly raising the optimization overhead.
Here, we propose a dynamic programming proposal that can find
the optimal solution for linear flows and can act as an approximate
solver for arbitrary flows.

4.1. Detailed description

The rationale of the DP algorithm is to calculate the cost of
increasingly larger portions of 4, i.e,, it starts of flows containing
only a;, then it examines flows containing (ay, a;), and so on,
until it examines the complete flow. When examining flows with
the first i activities, we consider the allocation costs of the flow
consisting with the first i — 1 activities. We employ a DP,,; matrix
of size n x m, where each cell (i, j) denotes the optimal cost of
the plan with the first i activities when f (i) = j. The first row is
initialized with the activity costs in C[1, *]. For the other rows, we
have DPCOSt(i7j) = C(l5]) + minke[LmJ {Dpcost(i - ]7 k) + CE(](,])}
We also employ an auxiliary matrix, DP .45, Which, in each cell
(i, j), stores the engine for which the last part of the sum expression
in the recursive formula is minimized. Overall, the last row of the
DP. contains the costs when all activities are considered for all
possible allocations of the last activity. In Algorithm 3, we show
how the matrices are populated. The exact allocation is found by
recursively examining the rows of the DP,,,q.s matrix from bottom
to top (not included in the pseudocode).

When the flow is linear, the DP algorithm finds the optimal cost
of an allocation; that cost is the minimum cost in the last row of
DP ... To find the allocation function f, we start from the minimum
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value of the last row of DPy, the column of which denotes the
allocation of the last activity f(n); then, with the help of DPges,
we can recursively find the allocations f (n— 1), f(n—2), ..., f(1).
Interestingly, the algorithm can be employed as an approximate
solver for arbitrary flows. In that case, we can run the algorithm as
previously and build the allocation plan, but such an allocation is
not guaranteed to be optimal.

In Fig. 3, the allocation plan of DP for the metadata of example
in Fig. 2 is the same for both flows as well, i.e., f = (3, 3, 3, 3, 2).
We can see that for both flows, DP yields a better solution than H1
and H2. The allocation of DP is optimal for the linear case, but it is
sub-optimal for the non-linear case.

Additionally, we should mention that for reasonable values of
noi, r and length, BB, BB-IC and the random walk flavours find the
optimal solution for both flows. The optimal solution of the non-
linear case is f = (3, 3, 2, 3, 2) with total cost 22 instead of 25.

4.2. Analysis

The time complexity of DP is O(nm?) because the size of the
DP . matrix is n x m and in order to fill in each cell, the algorithm
examines all m values of the cells in the previous row. As shown
in the experiments, for a few hundreds of nodes and engines, the
algorithm terminates in a few seconds. The space complexity is
O(nm), because of the n x m size of the DP,,4s matrix, which
stores intermediate allocation. Note that, although we assume an
n x m DP. matrix, we only need to keep two rows each time,
thus the space complexity depends on DP,,,4.s. Below, we provide
a sketch of the proof that DP is correct for linear plans; due to space
limitations, we prove only that the cost found by DP is optimal.

Theorem 1. DP finds the minimum cost of a linear flow.

Proof. A sketch using induction on the size of the set A is as
follows. If n = 1, the optimal solution is trivial and is found by the
algorithm. Let the algorithm find the optimal solution OPT (n, j) for
n = x and all engines 1 < j < m. Assume now thatn = x + 1.
For the cost of the (x + 1)th running on e;, the DP algorithm
examines, for all possible allocations of the xth activity, the sum of
the allocation cost of the first x activities and the inter-engine cost
ce}‘(x)ﬂ i The first part of that sum is optimal. The second part of the
sum corresponds to the cost incurred by an edge (x, x+ 1), which s
the only real edge that exists between the first x activities and the
(x+1)th one. Thus, forn = x+1, DP examines the whole set of valid
combinations of optimal allocations of the first x activities plus the
inter-engine cost between the first x activities and the (x + 1)th
one, i.e., it does not miss any valid solution. O

5. Theoretical analysis

In the following we prove that the FAA (Flow Activity Alloca-
tion) problem is not only . #-hard (the corresponding decision
problem is & #-complete) but at the same time it is impossible
(unless # = N &) to approximate it within a small constant factor.
The proof concerns a simplification of FAA, where¢;j =1, 1 <i <
n, 1 <j < m(uniform engines and activities with unit-processing
times) while ce*,; = 0 when i = jand ce{*,; = 1, when i # j. We
consider the case where the number of engines m can be arbitrary.
In case where the number of engines is restricted we can get sim-
ilar but slightly better results with respect to the approximation
ratio bound. The proof is based on a transformation of the schedul-
ing problem Poolprec, ¢ = 1,p; = 1|Cnax (we use the notation
introduced in [9] to denote scheduling problems). In this schedul-
ing problem, the number of engines is arbitrary (Poo), there are
precedence constraints (prec) with unit-processing times for the
activities (p; = 1), there is a unit-time communication cost among

DP
DPcost DPnodes
© 8 2 0 0 0 Non-linear:
DP allocation plan: f=33332
15 13 5 3 3 3 DP allocation cost: 25
22 10 10 3 3 3 Linear:
w © 12 L I DP allocation plan: f=3333 2
2 22 © 3 3 0 DP allocation cost: 22
Example | pPcost(2,1) = 5 + min { (inf +0), (8 +6), (2 +8)} = 15

computations:

DPcost(3,2) = 2+ min { (15 + 2), (13 +0), (5+3)} = 10

Fig. 3. An application of DP.

engines (c = 1) and the goal is to minimize the makespan, that is
the total length of the schedule. Note, that the simplified FAA prob-
lem could be represented as Poo|prec,c = 1,p; = 1| Y G, since
the goal is to minimize the total activity completion time. The fol-
lowing theorem is stated without a proofin [ 10], which we provide
here for the sake of completeness.

Theorem 2. The simplified FAA is N $-hard and cannot be approx-
imated by a polynomial-time algorithm with approximation error
bound less than 8/7.

Proof. [11] provides a polynomial-time transformation to prove
that the decision scheduling problem Poolprec, ¢ = 1, pj = 1|Crax
is & P-complete. In particular, given an instance S of the 3-SAT
problem, we construct an instance J for the scheduling problem.
In a nutshell, for each variable in S, 6 activities are constructed
and for each clause in S, 13 activities are constructed. Appropriate
precedence constraints between these activities are enforced so
that S has a truth assignment if and only if there is a schedule of
J with makespan 6. This means, than in the case where S is a YES-
instance of 3-SAT, then all activities in J are processed in the time
interval [0, 6], while in the case where S is a NO-instance then in
every possible feasible schedule of instance | there is at least one
activity that completes at time 7 or later.

Let there be a polynomial-time approximation algorithm for
the problem in the current paper with approximation 8/7 — e,
€ > %. We construct k copies of the instance J, J1, 2, ..., Jk
adding the precedence constraint that all activities in instance J;
are predecessors to all activities in Ji;1, 1 < i < k — 1. Let the
resulting schedule be denoted by J*.If S is a YES-instance of 3-SAT,
then instance J* has a schedule with total activity completion time
equal to 57mk?. This quantity is computed based on the precedence
graph of the activities related to variables and clauses (see [11]).IfS
is a NO-instance of 3-SAT then the earliest possible time that J; can
start is 7i — 7. Based on the precedence graph we get that at each
integer time in the range [7i—6, 7i— 3] at most 4m activities can be
completed. At time 7i—2 at most m activities can be completed and
finally at time 7i — 1 at most 2m activities can be completed. As a
result, the total completion time of J; is at least 133mi—76m, which
when summed for all i, gives that the minimum total completion
time for all activities in J* is 66.5mk*> — 9.5mk.

From the above discussion we get that a polynomial-time ap-
proximation algorithm for our restricted problem with approx-
imation ratio strictly less than 8/7 — —12- is impossible unless
P = NP, since this algorithm could be used to distinguish be-
tween the YES- and NO-instances of 3-SAT. This also proves the
fact that the FAA problem is & -hard. O

6. Evaluation

In this section, we conduct a thorough evaluation of the solu-
tions presented in the previous sections. We use both synthetic and



G. Kougka et al. / Future Generation Computer Systems 45 (2015) 133-148 139

Montage

Tasks: 1..24

Edges: 4 ..12

25.70

Tasks: 2x 18

LIGO

Epigenomics

Tasks: 4 x 20

CyberShake

Fig. 4. The structure of the real workflows used in our experiments.

real-world flows. First, we examine real-world flows, where the fo-
cus is on the performance (Section 6.1.1) and testing under “real-
world” conditions. For the latter, we examine two main aspects:
the impact of inaccuracy in the statistical metadata (Section 6.1.2)
and behaviour under settings where, intuitively, employing mul-
tiple engines does not seem promising; e.g., when all tasks can
be executed on any engine, and the inter-engine costs are an or-
der of magnitude higher than task processing costs (Section 6.1.3).
The real-world flows are taken from [12]; they correspond to data-
intensive scientific scenarios from several disciplines including as-
tronomy, earthquake hazard characterization, biology and physics,
and they are commonly used in the evaluation of techniques for
data flows (e.g., [13]).

The purpose of the synthetic flows’ experiments is to unveil the
strengths and weaknesses of each allocation algorithm in random
flow instances. In the synthetic flows, we focus on the following
dimensions: (i) performance of the alternatives presented in terms
of the estimated flow execution cost (Section 6.2.1); (ii) associated
overhead of each solution in terms of real time spent in reaching
allocation decisions (Section 6.2.2); (iii) accuracy, which refers to
the deviation of the approximate flow execution costs compared to
the optimal ones and is examined only when the optimal solution
can be found in reasonable time (Section 6.2.3); and (iv) sensitivity
analysis, which investigates the impact of different flavours and
parameter values for the random walk proposals (Section 6.2.4).

In order to cover a wide range of settings, the flows vary in terms
of the number of activities, engines, execution time of activities,
transfer and switching costs between engines, and density of the
DAG representing the flow. The probability of an engine to be ca-
pable of executing a specific activity is set to 50% unless otherwise
stated. The activity and the inter-engine cost values are uniformly

distributed in the range [1, 100]. To generate the inter-engine cost
values we take into account the engine-independent amount of
data outputted by each activity. The default settings of the random
walk solutions are: number of restarts r = 50 and length of walk
| = 103. The default setting of the number of iterations (noi) for
the BB-IC solution is 10%. These values are set in such a way that
the anytime algorithms complete in a few seconds at most.

All the algorithms are implemented in MATLAB and the
experiments were executed on a machine with an Intel Core i5 660
CPU and 6 GB of RAM. All experiments were repeated 50 times and
we report the average values (except in Table 5).

6.1. Real-world flows

We experimented with 4 real-world flow structures, described
in [12]. In particular, we created instances of the following flow
types: Montage, Epigenomics, LIGO and CyberShake (see Fig. 4).
For those flows, we experimented withn = m = 100 and the
rest of the settings as in the introduction of this section. Initially,
we assume that each activity processes the same amount of data
and the inter-engine connection speed is the same for all pairs
of engines; this implies that the inter-engine costs are activity-
independent but we relax this assumption later.

6.1.1. Performance

In this experiment, we evaluate the relative performance in
terms of execution time TET of the different policies (see Ta-
ble 1). The numbers are normalized according to the execution cost
yielded by BEST. For the montage flow, the BEST meta-heuristic is
the best performing policy, while the naive heuristics H1 and H2
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Table 1
Normalized performance for real-world flows with 50% engine constraints.

G. Kougka et al. / Future Generation Computer Systems 45 (2015) 133-148

Accurate statistics

Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 N BEST
Montage 1.3355 1.4083 1.4043 1.2555 1.2362 1.1578 1.0815 1
Epigenomics 1.5147 1.0282 0.3208 1.0057 1.0118 1.3652 1.1720 1
LIGO 1.3559 1.0512 0.7601 1.0245 1.0358 1.2604 1.0843 1
CyberShake 1.2858 1.1806 0.9751 1.1267 1.1304 1.1577 1.0489 1
Table 2
Normalized performance for real-world flows with 50% engine constraints and inter-engine cost activity-dependent.
Accurate statistics
Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 sc2 BEST
Montage 1.3463 1.2507 1.2589 1.1427 1.0984 1.1443 1.0984 1
Epigenomics 1.9009 1.2167 0.4664 1.1390 1.0911 1.5464 1.3353 1
LIGO 2.0327 1.4644 0.9433 1.3526 1.2668 1.5341 1.3177 1
CyberShake 1.5200 1.3433 1.1649 1.1749 1.1308 1.2738 1.1899 1
Table 3
Normalized performance for real-world flows with 50% engine constraints.
Inaccurate statistics
Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 sc2 BEST
10% inaccurate statistics
Montage 1.0660 1.1054 1.1035 1.0373 1.4565 1.1331 1.2793 1
Epigenomics 1.4548 0.9874 0.3107 1.0000 1.8556 1.6620 1.7467 1
LIGO 1.3206 0.9844 0.7026 1.0000 1.7263 1.4803 1.5855 1
CyberShake 1.1728 1.0381 0.8469 1.0215 1.5245 1.2302 1.3635 1
30% inaccurate statistics
Montage 1.1082 1.1542 1.1512 1.0649 1.5024 1.2354 1.3023 1
Epigenomics 1.4429 0.9789 0.3034 1.0000 1.8527 1.6091 1.7258 1
LIGO 1.2789 0.9890 0.7188 1.0000 1.7321 1.4334 1.5649 1
CyberShake 1.1614 1.0558 0.8744 1.0390 1.5639 1.2124 1.3491 1

yield 33% and 40% higher execution cost, respectively. However,
the pattern changes for the rest of the real-world flow types. Those
flows are not linear but they comprise linear subflows. So, DP out-
performs the other policies. For Epigenomics, DP’s execution time
is more than 3 times lower than those from the best performing
heuristic, which is H2, and BEST. For LIGO and Cybershake, the DP’s
performance benefits are higher than 20% compared to the simple
heuristics.

We now relax the assumption regarding the homogeneity of
inter-engine network and the volume of data processed by each
activity. More specifically, we experiment with scenarios where
the inter-engine cost is a linear function of the data volume, and
each activity may alter this volume by a factor uniformly drawn
from 0.5 to 1.5 (denoting the pruning of half of the data and
generating half as much additional data, respectively). The results
are shown in Table 2. We observe that the heuristics yield relatively
better performance for the montage flow, but the performance
degradation with regards to BEST remains significant (25%). For the
other three types of real-world flow structures, we observe that
both H2 and DP exhibit worse performance than the one reported
in Table 1 and difference between our best performing proposal
and the best performing heuristic widens. This is attributed to
the fact that the more the heterogeneity in the cost associated
with the graph edges, the more the need to consider these costs
carefully, something that H2 does not perform and DP performs
only partially (since it considers only some of the existing edges). In
the remaining part and in order to keep the evaluation concise, we
will discuss mostly the case, where inter-engine costs are assumed

to be activity-independent showing that even for that setting our
solutions manage to yield improvements.

Regarding the time overhead, this is a couple of seconds even
for the most time consuming techniques, such as the dynamic
programming and random walk. Detailed experiments for the
decision making overhead are presented later.

6.1.2. Imprecise statistical metadata

So far, we have assumed that the statistics in C and CE (the
execution time and inter-engine shipping and switching costs) are
accurately known. Here, we relax this assumption and we allow for
imprecise statistics. We repeat the first part of the experiment in
Section 6.1.1, but after we determine the allocation, we perturb the
values in C and CE and we re-evaluate the total cost. In particular,
we multiply each element in the two cost matrices with a scalar
value @« € [0.9, 1.1] (denoting inaccuracies of +10%) or o €
[0.7, 1.3] (denoting inaccuracies of £30%). In this way, we emulate
a situation, where the actual costs differ from those used during
decision taking.

The results are shown in Table 3. For smaller inaccuracies of up
to 10%, DP still outperforms the other policies for the last 3 flow
types. The performance improvements vary from 15% up to more
than 3 times. For Montage flows, BEST performs better, as in the
case with no inaccuracies. However, the difference of BEST from
the naive heuristics drops to 6.6%. When the inaccuracies grow
larger, this difference is up to 10% for Montage flows. For such
inaccuracies, DP clearly outperforms all the other policies for the
other flow types.
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Table 4
Normalized performance for real-world flows with no engine constraints.
Flow Algorithm
H1 H2 DP BB-IC RWR-b SC1 N BEST
Inter-engine cost € [1, 100] and no engine constraints
Montage 1.0502 3.4899 3.42259 1.0307 1.0453 1.1453 1.0196 1
Epigenomics 1.0293 1.2458 0.2980 1.0018 1.0248 1.1788 1.0359 1
LIGO 1.0328 1.4764 0.9932 1.0023 1.0265 1.1653 1.0396 1
CyberShake 1.0645 2.2775 1.8019 1.0387 1.0615 1.1628 1.0288 1
Inter-engine cost € [1, 1000] and no engine constraints
Montage 1.4840 32.4686 30.3408 1.4739 1.4761 1.1429 1.0012 1
Epigenomics 7.0332 1.0136 0.5915 1.0012 1.0099 8.1907 7.1936 1
LIGO 1.2568 13.6752 7.7084 1.2489 1.2514 1.1293 1.0037 1
CyberShake 1.2459 21.2047 15.6062 1.2424 1.2429 1.1289 1.0002 1
6.1.3. Settings discouraging multiple execution engines Table 5

Intuitively, one might expect that when allowing any engine to
run the complete flow (i.e., not having engine constraints), then
not switching between engines, as in H1, yields the highest per-
formance. However, as shown in the top part of Table 4, for the
Epigenomics flow, DP still achieves more than 3 times lower exe-
cution cost. For the rest of the real-world flows, the improvements
are significantly lower (between 3.2% and 6.4%). H2 produces much
worse results.

In addition, in real world, one might expect the inter-engine
data transfer and switching costs to dominate. So, we perform an-
other experiment, where the CE values are an order of magnitude
higher than the values in C. The results are presented in the lower
part of Table 4. Our solutions in that case improve the performance
from 24.5% to 42%.

6.2. Synthetic flows

The results regarding the real-flows provide strong insights into
the strengths of our solutions but they are tailored to the specific
flows examined. To complement the evaluation, we randomly
generate DAGs. The flows considered consist of n = 10, 20, 50, 100,
200 activities. We categorize the flows depending on their number
of activities, as small (10 or 20 activities), medium (50 activities),
large (100 activities) and very large (200 activities), based on the
categorization in [ 14]. Regarding the exact shape of the flow graph
G, we consider dense flows, where the probability of two activities
to be connected with an edge is 50% (i.e., there exist @ edges),
sparse flows, where the edge probability is 20% (i.e., there exist
% edges), and linear flows, where activity a; is connected only
with a; 1.

The number of the available engines is m = 10, 20, 50, 100,
200. The Montage flow is the one closer to the random flow
instances tested below. Also, the sparse flows are less sparse than
the rest of the flows in Section 6.1.

As in the experimental setting of real-world flows, by default
we assess the performance improvement where the inter-engine
cost is activity-independent, but we later relax this to show that
the our results hold for a wide range of inter-engine cost values.

6.2.1. Performance improvement

In the first set of experiments, we evaluate the flow perfor-
mance in terms of flow execution time. We compare the two
heuristics H1 and H2 against DP, BB-IC, RWR-b, SC1, SC2 and BEST,
which is the best among the last four. For the random walk flavours,
we choose only the best performing one, and we leave their com-
parison for Section 6.2.4. The average results of these experiments
are presented in Fig. 5. The numbers are normalized according to
the execution cost yielded by BEST as previously.

Maximum performance degradation of H1 and H2 in a single iteration compared to
our solutions.

n m
10 20 50 100 200
Dense flows
10 2.92 2.78 3.16 3.77 437
20 3.03 2.96 3.46 438 3.65
50 3.23 2.88 3.01 3.09 4.68
100 241 2.32 2.58 2.80 3.09
200 1.89 2.39 3.58 3.83 2.56

Sparse flows

10 2.10 2.67 2.24 2.31 2.80

20 2.70 2.22 2.67 3.41 2.90

50 3.15 3.01 2.67 2.62 3.10
100 2.60 3.50 2.75 2.42 2.68
200 3.27 2.68 2.42 2.25 2.24
Linear flows

10 2.15 2.70 4.36 5.64 6.99

20 1.93 2.60 3.84 4.95 6.65

50 2.09 2.47 3.51 4.29 5.84
100 1.72 2.39 3.13 4.14 5.53
200 1.82 2.10 2.94 4.02 5.40

The main observation for dense and sparse flows is that the
proposed anytime algorithms (i.e., BB-IC, RWR-b, SC1, SC2 and
BEST) consistently outperform the two simple heuristics; this is
not the case for the DP proposal, which is proved to be optimal for
linear flows and the more dense a flow is the higher the deviation
of DP’s solution from the optimal one. Specifically, for dense flows
(left column in Fig. 5), when the flow size is small, the best
performing simple heuristic can run on average up to 100% longer
than BEST (forn = 10and m = 100). The best performing heuristic
is H1 because it implicitly tackles edge cost minimization contrary
to solutions, such as H2 and DP. The relative degradation decreases
but remains significant as the flow size grows. For instance, the
average degradation can be up to 70% for dense flows of medium
size, 45% for large flows and 33% for very large flows. Note that
the maximum performance degradation in a single iteration can
be much higher, as shown in the upper part of Table 5. That table
presents the highest number of times the best performing heuristic
cost is higher than our best performing solution, which is always
BEST for dense and sparse flows, and DP for linear flows. In a single
iteration, the simple heuristics’ execution costs observed are up to
368% larger for medium flows and up to 283% for very large flows.

In sparse data flows, the performance improvement is lower
than in dense flows, but it is still considerable and up to 66%,
51%, 47% and 34% for small, medium, large and very large flows,
respectively. We always compare our best performing solution
against the best performing naive heuristic. Another observation
is that both in dense and sparse data flows, HI outperforms the
other heuristic H2, with some exceptions for small sparse flows.
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Fig. 5. Performance comparison when n = 10, 20, 50, 100 and 200 (from top to bottom).

As explained in Section 3, BEST is a meta-heuristic, which
leverages BB-IC, RWR-b and set cover solutions. In general, the set
cover solutions are the ones with the highest average performance
between the approaches considered by BEST (apart from sparse
flows when n = m = 10). Without BEST, our proposal with the
highest performance would be at least 10% slower. Between BB-IC
and RWR-b, which are used by all SC1, SC2 and BEST, there is no
clear winner, but in the majority of the settings, RWR-b is superior
to BB-IC.

As far as the linear data flows are considered, the DP algorithm
finds the optimal solution, and as such, achieves the lowest
execution times. On average, DP can exhibit up to 7.5 times better
performance than the naive heuristics. BB-IC and RWR-b attain
similar performance improvements for large and very large flows.
In all cases, both the SC1 and SC1 algorithms are outperformed by
the BB-IC and RWR-b solutions. H2, which does not consider edge

costs, performs better than H1, and in some cases better than some
of our proposals, such as SC1.

In the next experiment, we show the performance of the al-
gorithms when the average inter-engine cost becomes an order
of magnitude lower than the average activity cost. More specifi-
cally, Fig. 6 depicts the execution cost of dense data flows when
the inter-engine cost between engines € [1, 10]. In this figure, we
can see that, especially for non large flows, the naive heuristics per-
form very slightly worse than our solutions. This is expected since,
when the inter-engine cost becomes zero, H2 yields an optimal so-
lution. However, even in this setting, the performance degradation
for large and very large flows is significant and can reach 21%.

As for real flows, we relax the assumption and we consider
activity-dependent inter-engine costs as in Section 6.1.1. The
results are shown in Fig. 7 and confirm the conclusions that we
discussed for real flows about the impact of execution engine
homogeneity on the performance improvement of data flows.
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Fig. 6. Performance comparison when the inter-engine cost € [1, 10] for dense flows.
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Fig. 7. Performance comparison when n = 10, 20, 50, 100 and 200 and the inter-engine cost is activity-dependent.

Specifically, we observe that the performance improvement of
the data flows due to our proposals follows the same pattern
for both inter-engine activity-dependent and activity-independent
cases. We have observed that our solutions can be up to more
than 5 times faster than the existing heuristics in isolated runs.
Comparing Fig. 7 against the left column of Fig. 5, we see that H1 is
better than H2 in Fig. 7, but its performance against our solutions
is even worse for small and medium flows. For large and very large
flows, the performance gap is slightly narrower, especially for a
large number of candidate execution engines. In the remaining
part, we will only discuss the case where the inter-engine costs are
activity-independent for simplicity.

Figs. 8 and 9 refer to a more and a less constrained setting,
where, on average, each flow activity can run on only 20% or 80% of
the engines, respectively (instead of 50%). When having 20% engine
probability, the performance degradation of the naive solutions
is more evident for small flows (where it can be up to 51%), but
becomes smaller for very large flows (where it can be up to 12%).
In the case of 80% engine probability, the performance degradation
increases compared to the results of 20% or 50% engine constraints.
Specifically, for small flows, the simple heuristics in the best case
are 63% worse than our proposals, while, in large flows, our average
performance improvements are at least 60%.

6.2.2. Decision making overhead

We show the running time of the optimization process in
Fig. 10. For simplicity, we discuss only dense flows, but the obser-
vations apply to all flow types. We can draw the following observa-
tions: the naive heuristics run in milliseconds for any size of flows
and candidate engine sets. If the number of engines is up to 50,
the DP and BB-IC algorithms run in hundreds of milliseconds. For
m = 100, DP still runs in less than 1 s, except when n = 200.
For m = 200, the average time overhead of DP is between 0.3
and 6.7 s.

RWR-b runs in 1 s for small flows, up to 1.8 s for medium flows;
for large and very large flows, RWR-b does not exceed 4.2 and
13.7 s, respectively.® The overhead of the set cover solutions are
largely determined by the overhead of RWR-b; it is slightly smaller
than that of RWR-b since SC1 and SC2 examine a smaller set of
engines. Overall, the running overhead is low, which supports our
claim that our proposals are practical.

3 The overhead of RWR-b is mostly due to the estimation of the cost of each

allocation plan after each random change from scratch; for large flows, more
efficient cost estimation approaches that reuse previous results can be devised.
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Fig. 8. Performance comparison when the probability of an engine to be capable of executing an activity is 20% for dense flows.
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Fig. 9. Performance comparison when the probability of an engine to be capable of executing an activity is 80% for dense flows.

6.2.3. Accuracy

The accuracy of the algorithms can be accurately measured only
if the optimal solution can be found. This can be done in reasonable
time in two cases: (i) when the flows are linear; and (ii) when
n and m are sufficiently small so that BB can be applied. For the
first case, we can use the third column of Fig. 5, which shows
the average performance of the algorithms. The accuracy of the
anytime algorithms degrades as n and m increase. In addition,
the bottom part of Table 5 shows the maximum performance
degradation observed for the two simple heuristics.

We also check the accuracy of the algorithms for very small
dense flows, where n,m = 5,6, 7, 8. For such flows, RWR-b is
remarkably accurate, and, on average, it is within 2% of the optimal
solution provided by BB. The next more accurate algorithm is BB-
IC, the average degradation of which is 15%. DP is 29% slower,
whereas, the best performing naive heuristic, H1 incurs 63% higher
execution costs (see Fig. 11).

6.2.4. Random walk flavours

In Section 3, we discussed a set of random walk flavours and
here we explain why we used only RWR-b in the previous experi-
ments. We present the comparison of the flavours only for a rep-
resentative setting: dense data flows with n = 50, m = 50. The

results of this experiment are presented in Fig. 12. RWR-b algo-
rithm has the best performance compared to RW and RWR-r, al-
though the difference of performance and time overhead between
RWR-r and RWR-b is negligible. Nevertheless, the optimization
time of the simple RW is much lower than 1 s for activities at the
expense of approximately 4.2% of performance degradation.

For the same experimental setting, we investigate the impact
of the random walk length for RWR-b. We evaluate walk lengths
of 103, 10* and 10°, as shown in the middle row of Fig. 12. The
main observation is that as we increase the length of the walks, the
execution cost of the algorithm is slightly increased too, whereas
the optimization time increases proportionally to the length of the
walk. For large lengths the optimization overhead is on the orders
of minutes without significant performance benefits. Finally, in the
last set of experiment, we evaluate the impact of the number of
restarts (r = 10, 20, 30, 40, 50), as shown in the bottom row of
Fig. 12. According to the results, the impact of restarts does not
significantly affect the performance: going from 10 restarts to 50
yields approximately 2% of improvement.

6.3. Summary of lessons learnt and discussion

The real-world flows in scientific scenarios tend to be sparse
and either close to linear ones, or comprising many linear subflows.
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Fig. 10. Decision making time for n = 10, 20, 50, 100 and 200 (from top to
bottom).

This implies that the contribution of the inter-engine cost to the
flow execution cost is less significant compared to arbitrarily
random flows. In scenarios, where there are many linear subflows,
DP exhibits clearly better performance; otherwise BEST yields the
lowest execution times. Our solutions can also yield significant
benefits when there is no obligation to switch between engines (in
the sense that an engine can run the complete flow) and the inter-
engine costs are an order of magnitude higher than the processing
costs.

From the experiments with the synthetic data, we can draw
the following conclusions for random flows: (i) our solutions
can efficiently handle even very large flows and outperform
naive solutions; (ii) we can declare clear winners for different
types of flows: for dense and sparse flows, BEST is the superior
algorithm; for linear flows, DP is optimal; (iii) the performance

improvements of our proposals compared to naive solutions are
significant in every type of flows; and (iv) the running time of
the decision making process completes in less than a second in
most of the cases, which supports our claim that our proposals are
practical.

Note that for random flows, BEST is a practical and efficient
solution, and its efficiency is largely due to the set cover algorithms.
For those algorithms, several additional flavours can be devised; for
example to select engines according to their average inter-engine
costs. Such flavours may support better specific scenarios, e.g., flow
types where some tasks play the role of a hub with high degree
of incoming and outgoing edges. In this work, we mostly focus on
generic flows; the development of additional flavours tailored to
specific flow structures is out of our scope.

7. Related work

The closest proposal to our work appears in [4,3], where
the authors also deal with the complexity of flows in multi-
engine environments and present a concrete workflow enactment
system that supports hybrid flow execution. Apart from the system
presentation, in [4], an exhaustive approach for allocating the
activities of a flow to different execution engines is proposed
in order to meet multiple-objectives, such as performance and
fault-tolerance. In addition, heuristic techniques are presented for
pruning the search space; those heuristics are equivalent to H1
and H2. In our work, we improve upon such allocation schemes,
and, through our evaluation, we show that our approaches are
both scalable and significantly better than simple heuristics, when
performance is the single optimization criterion.

[15] introduces an ant colony optimization algorithm that se-
lects service instantiations between multiple candidates, in a set-
ting where the flows mainly consist of a series of remote service
invocations. In our work, we do not employ such type of algo-
rithms, because their optimization overhead is at least two orders
of magnitude higher (see indicative running times in [16]).

A state-of-the-art approach to flow scheduling is presented
in [17,13]. Specifically, a set of optimization algorithms based on
deadline and time constraints was analysed for scheduling flows.
If we consider to adapt these methodologies in order to fit in our
problem keeping only the allocation part regardless of deadlines,
we will come to the conclusion that these methodologies are re-
duced to the simple heuristics presented in Section 2; more specif-
ically the allocation part is reduced to H2, to which our proposals
are shown to be superior. Another family of proposals aims at find-
ing allocations of flow nodes to processors within a cluster, when
the processors are homogeneous. Apart from that difference, which
renders them inapplicable to our setting, typical assumptions are
that there is no notion of inter-engine cost and there are no con-
straints with regards to the capabilities of an engine to execute a
specific flow activity. Examples of such allocation approaches are
described in [18-20].

For completeness, we briefly discuss additional aspects of flow
optimization, which differ from our problem setting. [21] discusses
optimal time schedules given a fixed allocation of activities to en-
gines. Scheduling issues are also considered in works such as [22],
which exploit existing systems, e.g. Pegasus, for task mapping
procedure and [23], in which deadline constraints are taken into
account. The proposals of [24-26] focus on methodologies of re-
ordering and/or merging flow activities in order to yield im-
proved performance, while keeping the flow semantics. In [27],
flow activities are transformed in order to benefit from underly-
ing data management infrastructures. [28,14] discuss optimization
of data flows according to multiple objectives without consider-
ing engine allocation issues. In [29], a data oriented method for
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workflow optimization is proposed in order to minimize execu-
tion cost. This method is based on the fact that data may be
shared across several functions, and, as such, workflow perfor-
mance stands to benefit from optimizations in the form of incor-
porating a shared database to handle common data-oriented tasks.
Another proposal of flow optimization is presented in [30] based
on soft deadline rescheduling in order to deal with the problem
of fault tolerance in flow executions. In [31], an auction-based
scheduling methodology for multi-objective flow optimization is
presented; in our setting, choosing the most inexpensive engine is
similar to the policy of the naive heuristic H2. Also, a methodology
for minimizing the performance fluctuations that might occur by

the resource diversity is proposed in [32]. Their proposal focuses on
the delay correction during task execution. All these optimization
aspects are orthogonal to our research.

The optimization of flows bears also similarities to distributed
query optimization [33] and optimization of queries with user-
defined functions [34]; however, in those problems, the focus is
on the shape of the query plan and the ordering of the distributed
operators (e.g., [34,35]) instead of deciding the mapping of a plan
node to a specific engine. Other issues that differentiate query and
flow optimization include the definition of the semantics of flow
nodes, algebraic re-writing of flow plans and respecting inter-task
dependencies.
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8. Conclusions and future work

In this work, we investigate the problem of allocating nodes
of data-intensive flows to concrete executing engines. We prove
that this problem is # #-hard and cannot be approximated within
a small constant. Due to the problem complexity, to date this
problem is addressed using naive heuristics. In this work, we
show that we can do significantly better without much overhead.
We propose an optimal polynomial time dynamic programming
solution for the specific case of flows that are linear, i.e., a chain of
activities. Furthermore, we propose anytime algorithms that can
handle any type and size of flows. With the help of our thorough
experimentation, we declare clear winners depending on the type
of the flow. Our proposals are capable of yielding solutions that are
significantly better than naive approaches; actually, in real-world
flows and conditions, they outperform those naive approaches by
a factor of up to three. Our proposals are also easy to implement
and are light-weight.

This work aims to propose fast algorithms for engine selection
and focuses on the generic properties of the solutions. Apart from
devising tailored solutions for each type of real-world flow, in
the future, it is interesting to investigate solutions without the
constraint of finding an allocation in a limited time period. Two
further avenues for extending this work are to consider multiple
objectives (e.g., both total time and makespan) and consider the
impact of co-allocating activities to the same engine on the costs
of those activities.
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