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Abstract Efficient processing of Distance-Based Join Queries (DBJQs) in spatial databases
is of paramount importance in many application domains. The most representative and
known DBJQs are the K Closest Pairs Query (KCPQ) and the ε Distance Join Query
(εDJQ). These types of join queries are characterized by a number of desired pairs (K) or a
distance threshold (ε) between the components of the pairs in the final result, over two spa-
tial datasets. Both are expensive operations, since two spatial datasets are combined with
additional constraints. Given the increasing volume of spatial data originating from multiple
sources and stored in distributed servers, it is not always efficient to perform DBJQs on a
centralized server. For this reason, this paper addresses the problem of computing DBJQs
on big spatial datasets in SpatialHadoop, an extension of Hadoop that supports efficient pro-
cessing of spatial queries in a cloud-based setting. We propose novel algorithms, based on
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plane-sweep, to perform efficient parallel DBJQs on large-scale spatial datasets in Spatial-
Hadoop. We evaluate the performance of the proposed algorithms in several situations with
large real-world as well as synthetic datasets. The experiments demonstrate the efficiency
and scalability of our proposed methodologies.

Keywords Distance-based join queries · Spatial data processing · SpatialHadoop ·
MapReduce · Spatial query evaluation

1 Introduction

Distance-Based Join Queries (DBJQs) in spatial databases [2] have received considerable
attention from the database community, due to its importance in numerous applications,
such as image processing [3], location-based systems [4], geographical information sys-
tems (GIS) [5], continuous monitoring in streaming data settings [6] and road network
constrained data [7].

The most representative and known DBJQs are the K Closest Pairs Query (KCPQ), that
discovers the K closest pairs of objects between two spatial datasets, and the ε Distance
Join Query (εDJQ), that discovers the pairs of objects with distance smaller than ε between
two spatial datasets (detailed definitions appear in Sections 3.1.1 and 3.1.2, respectively).

Both join queries are expensive operations since two spatial datasets are combined with
additional constraints, and they become even more costly operations for large-scale data.
Several different approaches have been proposed, aiming to improve the performance of
DBJQs by proposing efficient algorithms [8–11]. However, all these approaches focus on
methods that are executed in a centralized environment.

With the fast increase in the scale of big input datasets, processing large data in parallel
and distributed fashions is becoming a common practice. A number of parallel algorithms
for DBJQs, like the K Closest Pair Query (KCPQ) [1], K Nearest Neighbor Join (KNNJ)
[12–15] and similarity join [16] in MapReduce [17] have been designed and implemented
recently. However, as real-world spatial datasets continue to grow, novel approaches and
paradigms are needed.

Parallel and distributed computing using shared-nothing clusters on extreme-scale data
is becoming a dominating trend in the context of data processing and analysis. MapRe-
duce [17] is a framework for processing and managing large-scale datasets in a distributed
cluster, which has been used for applications such as generating search indices, document
clustering, access log analysis, and various other forms of data analysis [18]. MapReduce
was introduced with the goal of supplying a simple yet powerful parallel and distributed
computing paradigm, providing good scalability and fault tolerance mechanisms. The suc-
cess of MapReduce stems from hiding the details of parallelization, fault tolerance, and load
balancing in a simple and powerful programming framework [18–21].

However, as indicated in [22], MapReduce has weaknesses related to efficiency when it
needs to be applied to spatial data. A main shortcoming is the lack of an indexing mecha-
nism that would allow selective access to specific regions of spatial data, which would in
turn yield more efficient query processing algorithms. A recent solution to this problem is
an extension of Hadoop, called SpatialHadoop [23], which is a framework that inherently
supports spatial indexing on top of Hadoop. In SpatialHadoop, spatial data is deliberately
partitioned and distributed to nodes, so that data with spatial proximity is placed in the same
partition. Moreover, the generated partitions can be indexed, thereby enabling the design of
efficient query processing algorithms that access only part of the data and still return the
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correct result query. As demonstrated in [23], various algorithms have been proposed for
spatial queries, such as range, nearest neighbor, spatial joins and skyline queries. Efficient
processing of the most representative and studied DBJQs over large-scale spatial datasets is
a challenging task, and is the main target of this paper.

SpatialHadoop is an efficient MapReduce disk-based distributed spatial query-
processing system. Actually, SpatialHadoop is a mature and robust spatial extension of
Hadoop (the most well-known shared-nothing parallel and distributed system). Spatial-
Hadoop has been developed for a longer time than related Spark-based spatial extensions,
although Spark-based systems are, in general, faster than Hadoop-based systems, especially
for iterative problems [24]. SpatialHadoop utilizes pure MapReduce based processing and
not DAG (Directed Acyclic Graph) based processing (a generalization of MapReduce), as
Spark-based systems. The problem we study, processing DBJQs, is well suited to pure
MapReduce based processing, since it has limited iterativeness and works on the whole
datasets, in batch mode. In this paper, we develop MapReduce algorithms for these queries
and study them in SpatialHadoop (a popular system with a wide installation base), as a first
step of a series of studies of spatial processing in shared-nothing parallel and distributed
systems that will also include Spark-based spatial extensions during further research steps.

Motivated by these observations, we first propose new parallel algorithms, based on
plane-sweep technique, for DBJQs in SpatialHadoop on big spatial datasets. In addition to
the plane-sweep base technique, we present a methodology for improving the performance
of the KCPQ algorithms by the computation of an upper bound of the distance of the K-
th closest pair. To demonstrate the benefits of our proposed methodologies, we present the
results of the execution of an extensive set of experiments that demonstrate the efficiency
and scalability of our proposals using big synthetic and real-world points datasets.

This paper substantially extends our previous work [1], which was the foundation of the
present research results, with the following novel contributions:

1. We improve the plane-sweep-based KCPQ MapReduce algorithm in SpatialHadoop
[1] by using new sampling and approximate techniques, that take advantage of Spatial-
Hadoop partitioning techniques, to compute an upper bound of the distance of the K-th
closest pair and make the KCPQ MapReduce algorithm much more efficient.

2. We have implemented a new distributed KCPQ algorithm using the local index(es) (R-
trees) provided by SpatialHadoop, similarly to the distributed join algorithm [23], and we
compare this approach to our plane-sweep-based KCPQ MapReduce algorithm, proving
experimentally that our algorithm outperforms the one that uses the local index(es).

3. We propose a new MapReduce algorithm for εDJQs in SpatialHadoop, based on the
plane-sweep technique, similar to our KCPQ MapReduce algorithm.

4. In experiments of DBJQ MapReduce algorithms, we utilize additional partitioning tech-
niques available in SpatialHadoop to check if performance improvements are obtained
with respect to the partitioning used in [1].

5. We present results of an extensive experimental study that compares the performance of
the proposed MapReduce algorithms and their improvements in terms of efficiency and
scalability. For synthetic datasets’ experiments, we have used clustered (more realistic)
datasets, instead of uniform ones [1]. Moreover, for real datasets’ experiments, we have
created a new big quasi-real dataset that is combined with the biggest real dataset used in [1].

The current research work is based on a completely new setting with respect to the one of
[11], since we have used a scalable and distributed MapReduce framework supporting spa-
tial data, SpatialHadoop, while in [11] processing in a centralized system is followed. Here,
we have only used the new plane-sweep KCPQ algorithm published in [11] and executed it
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in each parallel task. Moreover, new methodologies and improvements have been proposed
to speedup the response time of the studied DBJQs under cloud computing.

The rest of this article is organized as follows. In Section 2, we review related work about
different research prototype systems that have been proposed for large-scale spatial query
processing, the MapReduce implementations of the most representative spatial queries and
the recent SpatialHadoop framework for spatial query processing. Section 3 defines the
KCPQ and εDJQ, which are the DBJQs studied in this work. Moreover, a detailed presen-
tation of SpatialHadoop in the context of spatial query processing is exposed, which is the
core framework of this paper. In Section 4, we present the parallel (MapReduce) algorithms
for the processing of DBJQs (the KCPQ and εDJQ) in SpatialHadoop, using plane-sweep
techniques and local spatial indices. Section 5 presents several improvements of the KCPQ
MapReduce algorithm with main objective to make the algorithm faster. In Section 6, we
present representative results of the extensive experimentation that we have performed,
using real-world and synthetic datasets, for comparing the efficiency of the proposed algo-
rithms. Finally, in Section 7, we provide the conclusions arising from our work and discuss
potential directions for future work.

2 Related work

In this section we review related literature to highlight the most representative prototype sys-
tems that have been developed for large-scale spatial query processing. Next, we look over
specific spatial operations using MapReduce and finally, we review the proposed spatial
queries that have been implemented in SpatialHadoop.

2.1 Research prototype systems for large-scale spatial query processing

Researchers, developers and practitioners worldwide have started to take advantage of the
MapReduce environment in supporting large-scale spatial data processing. Until now, the
most representative contributions in the context of scalable spatial data processing are the
following prototypes:

– Parallel-Secondo [25] is a parallel spatial DBMS that uses Hadoop as a distributed task scheduler.
– Hadoop-GIS [26] extends Hive [27], a data warehouse infrastructure built on top of

Hadoop with a uniform grid index for range queries, spatial joins and other spatial
operations. It adopts Hadoop Streaming framework and integrates several open source
software packages for spatial indexing and geometry computation.

– SpatialHadoop [23] is a full-fledged MapReduce framework with native support for
spatial data. It tightly integrates well-known spatial operations (including indexing and
joins) into Hadoop.

– SpatialSpark [28] is a lightweight implementation of several spatial operations on top
of the Apache Spark1 in-memory big data system. It targets at in-memory processing
for higher performance.

– GeoSpark [29] is an in-memory cluster computing system for processing large-scale
spatial data, and it extends the core of Apache Spark to support spatial data types,
indices and operations.

1http://spark.apache.org/

http://spark.apache.org/
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– Simba (Spatial In-Memory Big data Analytics) [30] offers scalable and efficient in-
memory spatial query processing and analytics for spatial big data. Simba extends the
Spark SQL engine to support rich spatial queries and analytics through both SQL and
the DataFrame API.

– LocationSpark [31] has been recently presented as a spatial data processing system built
on top of Apache Spark. It offers a rich set of spatial query operators, e.g., range search,
KNN, spatio-textual operation, spatial join and KNN join. Moreover, it offers an effi-
cient spatial Bloom filter into LocationSpark’s indices to avoid unnecessary network
communication overhead when processing overlapped spatial data.

All the previous prototypes have been designed for processing and analysis of mas-
sive spatial vectorial data (e.g. points, line-segments, etc.), but there are other prototypes
for managing spatial raster data derived from imaging and spatial applications (e.g. cli-
mate data [32], satellite data, etc.). The most remarkable scientific prototype systems for
handling raster data are: SciHadoop [33], Shahed [34] and SciSpark [35]. SciHadoop [33]
supports array-based query processing of climate data in Hadoop and defined a query lan-
guage to express common data analysis tasks. Shahed [34] is a MapReduce-based system
for querying, visualizing, and mining large scale satellite data. It considers both the spa-
tial and temporal aspects of remote sensing data to build a multi-resolution Quadtree-based
spatio-temporal index to conduct selection and aggregate queries in real-time using MapRe-
duce. SciSpark [35] extends Apache Spark to achieve parallel ingesting and partitioning of
multidimensional scientific data.

It is important to highlight that the previous prototype systems differ significantly in
terms of distributed computing platforms, data access models, programming languages and
the underlying computational geometry libraries. Moreover, all these prototypes support
query processing for the most representative spatial operators and use the MapReduce soft-
ware framework to carry them out. In the next subsection we review the most remarkable
contributions of the literature for spatial query processing using MapReduce.

2.2 Spatial query processing using MapReduce

Actually, there are a lot of works on specific spatial queries using MapReduce. This
programming framework adopts a flexible computation model with a simple interface
consisting of map and reduce functions whose implementations can be customized by appli-
cation developers. Therefore, the main idea is to develop map and reduce functions for the
required spatial operation, which will be executed on-top of an existing Hadoop cluster.
Examples of such research works on specific spatial queries using MapReduce include:

As apparent from the discussion, multiple efforts addressing various aspects of spatial
query processing using MapReduce have appeared during last years. However, our work
is complementary to these, in the sense that we have implemented new approaches and
improvements to solve DBJQs (i.e. KCPQ and εDJQ) for spatial big data.

2.3 Spatial queries in SpatialHadoop

SpatialHadoop is equipped with a several spatial operations, including range query, KNN
and spatial join [23], and other fundamental computational geometry algorithms as poly-
gon union, skyline, convex hull, farthest pair, and closest pair [49]. In [50] a scalable and
efficient framework for skyline query processing that operates on top of SpatialHadoop
is presented, and it can be parameterized by individual techniques related to filtering of
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candidate points as well as merging of local skyline sets. Then, the authors introduce two
novel algorithms that follow the pattern of the framework and boost the performance of
skyline query processing. Recently, a first parallel KCPQ algorithm in MapReduce on big
spatial datasets, adopting the plane-sweep technique, was proposed in [1]. The MapReduce
algorithm was also improved with the computation of an upper bound of the distance value
of the K-th closest pair from sampled data as a global preprocessing phase.

The efficient processing of DBJQs over large-scale spatial datasets using SpatialHadoop
is a challenging task. The improvements of the KCPQ MapReduce algorithm [1] and a
new MapReduce algorithm for εDJQ are the main targets of this work and, as we will
demonstrate, our approaches accelerate the response time by using plane-sweep, specific
spatial partitioning, and determining the needed number of computing nodes depending on
the parallel tasks.

3 Preliminaries and background

We now introduce the details of the semantics of the studied queries, along with the
corresponding notation and processing paradigms. We start with the definitions and char-
acteristics of both DBJQs and then, we review SpatialHadoop, the scalable and distributed
framework for managing spatial data and the steps for spatial query processing.

3.1 Distance-based join queries

A DBJQ is characterized as a join between two datasets based on a distance function, report-
ing a set of pairs according to a given constraint (e.g. a number of desired pairs, a distance
threshold, etc.) over two datasets. The most representative and known DBJQs are the K

Closest Pairs Query (KCPQ) and the ε Distance Join Query (εDJQ).

3.1.1 K Closest pairs query

The KCPQ discovers the K pairs of data formed from the elements of two datasets having
the K smallest respective distances between them (i.e. it reports only the top K pairs). It
is one of the most important spatial operations, where two spatial datasets and a distance
function are involved. It is considered a distance-based join query because it involves two
different spatial datasets and uses distance functions to measure the degree of nearness
between pairs of spatial objects. The formal definition of the KCPQ for point datasets (the
extension of this definition to other, more complex spatial objects – e.g. line-segments,
objects with extents, etc. – is straightforward) is the following:

Definition 1 (K Closest Pairs Query, KCPQ) Let P = {p0, p1, · · · , pn−1} and Q =
{q0, q1, · · · , qm−1} be two set of points in Ed , and a number K ∈ N

+. Then, the result of
the K Closest Pairs Query (KCPQ) is an ordered collection KCPQ(P,Q, K) ⊆ P × Q

containing K different pairs of points from P×Q, ordered by distance, with the K smallest
distances between all possible pairs of points:
KCPQ(P,Q,K) = {(p1, q1), (p2, q2), · · · , (pK, qK)} ∈ (P × Q), such that for any
(p, q) ∈ P × Q \ KCPQ(P,Q,K) we have dist (p1, q1) ≤ dist (p2, q2) ≤ · · · ≤
dist (pK, qK) ≤ dist (p, q).

Note that if multiple pairs of points have the same K-th distance value, more than one
set of K different pairs of points are suitable as a result of the query. It is straightforward to
extend the presented algorithms so as to discover all such sets of pairs.
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This spatial query has been actively studied in centralized environments, regardless
whether both spatial datasets are indexed or not [8, 9, 11, 51–55]. In this context, recently,
when the two datasets are not indexed and stored in main-memory, a new plane-sweep
algorithm for KCPQ, called Reverse Run, was proposed in [9]. Two improvements on the
Classic plane-sweep algorithm for this spatial query were presented as well. Experimen-
tally, the Reverse Run plane-sweep algorithm proved to be faster since it minimized the
number of Euclidean distance computations. However, datasets that reside in a parallel and
distributed framework have not attracted similar attention and this is the main objective of
this work.

3.1.2 ε Distance join query

The ε Distance Join Query (εDJQ) reports all the possible pairs of spatial objects from two
different spatial objects datasets, having a distance smaller than a distance threshold ε [11].
Note that, if ε = 0, then we have the condition of spatial overlap join, which retrieves all
different intersecting spatial object pairs from two distinct spatial datasets [2]. This query
is also related to the similarity join [16], where the problem of deciding if two objects are
similar is reduced to the problem of determining if two high-dimensional points are within a
certain distance threshold ε of each other. The formal definition of εDJQ for point datasets
is the following:

Definition 2 (ε Distance Join Query, εDJQ)
Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be two set of points in Ed , and a
distance threshold ε ∈ R≥0. Then, the result of the ε Distance Join Query (εDJQ) is the set
εDJQ(P,Q, ε) ⊆ P × Q containing all the possible different pairs of points from P × Q

that have a distance of each other smaller than, or equal to ε:
εDJQ(P,Q, ε) = {(pi, qj ) ∈ P × Q : dist (pi, qj ) ≤ ε}

The εDJQ can be considered as an extension of the KCPQ, where the distance threshold
of the pairs is known beforehand and the processing strategy (e.g. plane-sweep technique)
is the same as in the KCPQ for generating the candidate pairs of the final result. On the
other hand, in the case of the KCPQ the distances of the K closest pairs are not known
beforehand and they are updated during the processing of the algorithm.

3.2 SpatialHadoop

SpatialHadoop [23] is a full-fledged MapReduce framework with native support for spa-
tial data. Note that, MapReduce [17] is a scalable, flexible and fault-tolerant programming
framework for distributed large-scale data analysis. A task to be performed using the
MapReduce framework has to be specified as two phases: the map phase, which is specified
by a map function that takes input (typically from Hadoop Distributed File System, HDFS,
files), possibly performs some computations on this, and distributes it to worker nodes; and
the reduce phase that processes these results as specified by a reduce function. An important
aspect of MapReduce is that both the input and the output of the map step are represented as
key-value pairs, and that pairs with same key will be processed as one group by the reducer:
map : (k1, v1) → list (k2, v2) and reduce : k2, list (v2) → list (v3). Additionally, a com-
biner function can be used to run on the output of map phase and perform some filtering or
aggregation to reduce the number of keys passed to the reducer.
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SpatialHadoop [23] is a comprehensive extension to Hadoop that injects spatial data
awareness in each Hadoop layer, namely, the language, storage, MapReduce, and oper-
ations layers. In the Language layer, SpatialHadoop adds a simple and expressive high
level language for spatial data types and operations. In the Storage layer, SpatialHadoop
adapts traditional spatial index structures as Grid, R-tree, R+-tree, Quadtree, etc. to form a
two-level spatial index [56]. SpatialHadoop enriches the MapReduce layer by two new com-
ponents, SpatialFileSplitter and SpatialRecordReader for efficient and scalable spatial data
processing. At the Operations layer, SpatialHadoop is also equipped with a several spatial
operations, including range query, kNN query and spatial join. Other computational geom-
etry algorithms (e.g. polygon union, skyline, convex hull, farthest pair and closest pair) are
also implemented following a similar approach [49]. Finally, we must emphasize that our
contribution for DBJQs is located in the Operations and MapReduce layers.

In general, a spatial query processing in SpatialHadoop consists of four steps [1, 23]:

1. Preprocessing, where data are partitioned according to a specific spatial partitioning
technique (e.g. Grid, STR, Quadtree, Hilbert, etc.) [56], generating a set of partitions,
called cells. Each HDFS block corresponds to a cell, and the HDFS blocks in each file
are globally indexed, generating a spatially indexed file. In the partitioning phase, spa-
tial data locality is obeyed, since spatially nearby objects are assigned to the same cell [23].

2. Pruning, when the query is issued, the master node examines all partitions and prunes
by a filter function those ones that are guaranteed not to include any possible result of
the spatial query. Note that, SpatialHadoop enriches traditional Hadoop systems in this
step with the SpatialFileSplitter component, that is, an extended splitter that exploits
the global index(es) on input file(s) to prune easily file cells/partitions not contributing
to the answer. The two steps (Preprocessing and Pruning) can be seen in [1] and in the
Fig. 1.

Fig. 1 Schema for computing β by global sampling
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3. Local Spatial Query Processing, where local spatial query processing is performed
on each non-pruned partition in parallel on different machines (map tasks). Note that
SpatialHadoop also enriches traditional Hadoop systems in this step by the Spatial-
RecordReader, which reads a split originating from the spatially indexed input file(s)
and exploits local index(es) to efficiently processes the spatial queries. In this step, if
we do not want to use the SpatialRecordReader component (for example, to use the
plane-sweep technique) and exploit the advantages of the local index(es), we just use
a RecordReader that extracts records as key-value pairs which are passed to the map
function. We can see this option in Fig. 2, between SSR and map function.

4. Global Processing, where the results are collected from all machines in the previous
step and the final result of the concerned spatial query is computed (reduce tasks). A
combine function may be applied in order to decrease the volume of data that is sent
from the map task. The reduce function is omitted when the results from the map phase
are final. See Fig. 2 to observe these last two steps, MapReduce query processing in
SpatialHadoop.

Next we are going to follow this query processing scheme to include DBJQs into
SpatialHadoop.

4 DBJQs algorithms in spatialHadoop

In this section, we will state our algorithmic approaches for DBJQs algorithms on top of
SpatialHadoop. First, we present the KCPQ MapReduce algorithm using the plane-sweep
technique for each map task and next, we will extend such MapReduce algorithm to design
the distributed algorithm for εDJQ in SpatialHadoop.

4.1 KCPQ algorithms in spatialHadoop

In this subsection, we describe our approach to KCPQ algorithms on top of SpatialHadoop.
This can be described as a generic top-K MapReduce job that takes one of the specific
KCPQ algorithms as a parameter. In general, our solution scheme is similar to how the

Fig. 2 MapReduce query processing in SpatialHadoop
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distributed join algorithm [23] is performed in SpatialHadoop, where combinations of cells
from each dataset are the input for each map task, when the spatial query is performed. Then
the reducer emits the top-K results from all mapper outputs. In particular, our approach
makes use of plane-sweep KCPQ algorithms for main-memory resident datasets [9].

The plane-sweep technique [57] has been successfully used in spatial databases to report
the result of KCPQ for two indexed datasets [8, 51, 53, 58], whereas it has been improved
recently for non-indexed sets of points [9, 11]. In this paper we will use the algorithms
presented in [9, 11] and their improvements to adapt them to MapReduce versions in Spa-
tialHadoop. When the partitions are locally indexed by R-trees, we will adapt algorithms
proposed in [8] to KCPQ to the distributed join algorithm [23] to compare them with our
KCPQ MapReduce algorithms based on plane-sweep technique.

In [9, 11], the Classic Plane-Sweep for KCPQ [8, 53] was reviewed and two new
improvements were also presented to reduce the search space, when the point datasets reside
in main memory. In general, if we assume that the two point sets are P and Q, the Clas-
sic PS algorithm consists of the two following steps: (1) sorting the entries of the two
point sets, based on the coordinates of one of the axes (e.g. X) in increasing order, and
(2) combining one point (reference) of one set with all the points of the other set satisfy-
ing point.x − ref erence.x ≤ δ (point.x − ref erence.x is called dx distance function
on the X-axis), where δ is the distance of the K-th closest pair found so far, and choosing
those pairs with point distance (dist) smaller than δ. The algorithm chooses the reference
point from P or Q, following the order on the sweeping axis. We notice that the search
space is only restricted to the closest points with respect to the reference point, according to
the current distance threshold (δ) on the sweeping axis, and this is called sliding strip. No
duplicated pairs are obtained, since the points are always checked over sorted sets.

In [9, 11], a new plane-sweep algorithm for KCPQ was proposed for minimizing the
number of distance computations. It is called Reverse Run Plane-Sweep algorithm and is
based on the concept of run, which is a continuous sequence of points of the same set that
doesn’t contain any point from the other set. Each point used as a reference forms a run
with other subsequent points of the same set. During the algorithm processing, for each set,
we keep a left limit, which is updated (moved to the right) every time that the algorithm
concludes that it is only necessary to compare with points of this set that reside on the right
of this limit. Each point of the active run (reference point) is compared with each point of
the other set (comparison point) that is on the left of the first point of the active run, until the
left limit of the other set is reached. And the reference points (and their runs) are processed
in ascending X-order (the sets are X-sorted before the application of the algorithm). Each
point of the active run is compared with the points of the other set (comparison points) in
the opposite or reverse order (descending X-order). Moreover, for each point of the active
run being compared with a current comparison point, there are two cases: (1) if the distance
between this pair of points in the sweeping axis (dx) is larger than or equal to δ, then there is
no need to calculate the distance (dist) of the pair; thus, we avoid this distance computation,
and (2) if the distance (dist) between this pair of points (reference, comparison) is smaller
than the δ distance value, then the pair will be considered as a candidate for the result. For
more details of the algorithm see [9, 11].

The two improvements of the plane-sweep technique for KCPQs presented in [9, 11] for
reducing the search space, called Sliding Window and Sliding Semi-Circle, can be applied
both in Classic and Reverse Run algorithms. The general idea of Sliding Window consists
in restricting the search space to the closest points inside the window with width δ and a
height 2 ∗ δ (i.e. [0, δ] in the X-axis and [−δ, δ] in the Y -axis, from the reference point).
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The core idea of the Sliding Semi-Circle improvement consists in reducing the search space
even more; by select only those points inside the semi-circle (or half-circle) centered in the
reference point with radius δ.

Processing the KCPQ in MapReduce [1] adopts the top-K MapReduce methodology.
The basic idea is to partition P and Q by some method (e.g., Grid) into n and m cells of
points and generate n × m possible pairs of cells to possibly combine. Then, every suitable
pair of cells (one from P and one from Q) is sent as the input for the map phase. Each mapper
reads the points from the pair of cells and performs a plane-sweep (Classic or Reverse Run)
KCPQ algorithm (PSKCPQ) between the points inside that pair of cells. That is, it finds the
K closest pairs between points in the local cell from P and in the local cell from Q using a
plane-sweep KCPQ algorithm (PSKCPQ). To this end, each mapper sorts the points inside
the pair of cells from P and Q in one axis (e.g., X axis in ascending order) and then applies
a plane-sweep KCPQ algorithm. The results from all mappers are sent to a single reducer
that will in turn find the global top-K results of all the mappers. Finally, the results are
written into HDFS files, storing only the point coordinates and the distance between them.

In Algorithm 1 we can see our proposed solution for KCPQ in SpatialHadoop which con-
sists of a single MapReduce job. The map function aims to find the K closest pairs between
the local pair of cells from P and Q with a particular plane-sweep (Classic or Reverse Run)
KCPQ algorithm (PSKCPQ). KMaxHeap is a max binary heap [59] used to keep record of
local selected top-K closest pairs that will be processed by the reduce function. The out-
put of the map function is in the form of a set of DistanceAndPair elements (called D in
Algorithm 1), i.e. pairs of points from P and Q and their distances. As in every other top-
K pattern, the reduce function can be used in the combiner to minimize the shuffle phase.
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The reduce function aims to examine the candidate DistanceAndPair elements and return
the final set of the K closest pairs. It takes as input a set of DistanceAndPair elements from
every mapper and the number of pairs. It also employs a max binary heap, called Candi-
dateKMaxHeap, to calculate the final result. Each DistanceAndPair element is inserted into
the heap if its distance value is less than the distance value of the heap root. Otherwise, that
pair of points is discarded. Finally, candidate pairs which have been stored in the heap are
returned as the final result and stored in the output file.

To compare the plane-sweep-based KCPQ MapReduce algorithms, an implementation
using the local indices provided by SpatialHadoop similarly to distributed join algorithm
[23] has been made. When a spatial dataset is partitioned using a partitioning technique (e.g.
Grid, Str, etc.), SpatialHadoop generates only a global index of the data. However, if a file
is partitioned using Str or Str+ there is the option to generate a local index in the form of
one R-tree for each of the partitions/cells that are part of the previous global index. The new
distributed KCPQ algorithm follows the same scheme presented in Algorithm 1, consisting
of a single MapReduce job whose only difference is the processing performed in the map
function, keeping the reduce function unmodified. In this case, the map function applies
a plane-sweep algorithm over the nodes of the R-trees as described in [8]. This algorithm
consists in traversing both R-trees in a best-first order, keeping a global min binary heap [59]
prioritized by the minimum distance between the considered pairs of MBRs. When dealing
with leaf nodes, a plane-sweep algorithm is applied to the elements that are contained on
them, whereas the δ value is updated appropriately. In the case of internal nodes, plane-
sweep is also applied for processing two internal nodes; the MBR pairs with minimum
distance greater than δ are pruned. We have chosen the best-first traversal order for the
combination of the two R-trees, since it is the fastest algorithm for processing of KCPQs
according to [8].

4.2 εDJQ in spatialHadoop

Processing the εDJQ in MapReduce adopts the map phase of the join MapReduce method-
ology. The basic idea is to have P and Q partitioned by some method (e.g., Grid) into two
set of cells, CP and CQ, with n and m cells of points, respectively. Then, every possible pair
of cells (one from CP and one from CQ) is sent as input for the filter phase. The CELLS-
FILTER function takes as input, combinations of cells in which the input set of points are
partitioned and a distance threshold ε, and it prunes pairs of cells which have minimum dis-
tances larger than ε. Using SpatialHadoop built-in function MinDistance we can calculate
the minimum distance between two cells, i.e. this function computes the minimum distance
between the two MBRs, Minimum Bounding Rectangles, of the two cells (each of the two
MBRs covers the points of a different cell). That is, if we find a pair of cells with points
which cannot have a distance value smaller than ε, we can prune this pair.

On the map phase each mapper reads the points of a pair of cells and performs a
plane-sweep (Classic or Reverse Run) εDJQ algorithm (PSεDJQ) between the points inside
that pair of cells from CP and CQ. That is, it computes the εDJQ between points in the
local cell of CP and in the local cell of CQ using a plane-sweep εDJQ algorithm (vari-
ation of the plane-sweep-based KCPQ algorithm [11]). To this end, each mapper sorts
the points inside the pair of cells from CP and CQ in one axis (e.g., X axis in ascending
order) and then applies a particular plane-sweep (Classic or Reverse Run) εDJQ algorithm
(PSεDJQ). The results from all mappers are just combined in the reduce phase and writ-
ten into HDFS files, storing only the pairs of points with distance up to ε, as we can see
in Algorithm 2.
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In addition, we can use the local indices provided by SpatialHadoop to obtain improve-
ments in the performance of the previous εDJQ MapReduce algorithm. This new algorithm
follows the same scheme of a single MapReduce job whose only difference is the process-
ing that is realized in the map function, maintaining the function CELLSFILTER without
any modification. In this case, we have locally indexed the data in each partition by R-tree
structures that we can use to process the query. The algorithm consists of performing a
iterative depth-first search over the R-trees (this is used for the implementation of the dis-
tributed join algorithm [23]). That is, for each pair of internal nodes, one from each index,
the minimum distance between their MBRs is calculated; if it is larger than ε, then this pair
is pruned. Otherwise, the children of the nodes will be checked in the next step following
a depth-first order. When the leaf nodes are reached, the same plane-sweep algorithm as
the one without local indices is applied. We have chosen the iterative depth-first traversal
order for the combination of two R-trees and not the best-first one, because, if ε is large
enough, the global min binary heap can grow very quickly and exceed the available main
memory and, thus management of secondary memory is needed and the response time of
the algorithm execution will be notably extended.

5 Improvements for KCPQ in spatialHadoop

It can be clearly seen that the performance of the proposed solution of the KCPQ MapRe-
duce algorithm (Algorithm 1) will depend on the number of cells in which the two
sets of points are partitioned. That is, if the set of points P is partitioned into n cells
(the set CP) and the set of points Q is partitioned in m cells (the set CQ), then we obtain
n × m combinations of cells or map tasks. On the other hand, we know that plane-sweep-
based KCPQ algorithms use a pruning distance value, which is the distance value of the
K-th closest pair found so far, to discard those combinations of pairs of points that are not
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necessary to consider as a candidate of the final result. As suggested in [1], we need to find
in advance an upper bound distance of the distance value of the K-th closest pair of the
joined datasets, called β. The computation of β can be carried out (a) by sampling glob-
ally both big datasets and executing a PSKCPQ algorithm over the two samples, or (b) by
appropriately selecting a specific pair of cells to which the two big datasets are partitioned
and either (b1) by sampling locally the cells of this pair and executing a PSKCPQ algo-
rithm over the two samples, or (b2) by applying an approximate variation of a plane-sweep
KCPQ algorithm over the entries of the cells of this pair. In the following subsections we
will see all these methods.

5.1 Computing β by global sampling

The first method of computing β can be seen in Algorithm 3 (computing β by global sam-
pling algorithm), where we take a small sample from both sets of points (P and Q) and
calculate the K closest pairs using a plane-sweep-based KCPQ algorithm (PSKCPQ [11])
that is applied locally. Then, we set β equal to the distance of the K-th closest pair of the
result and use this distance value as input for mappers. This β value guarantees that there
will be at least K closest pairs if we prune pairs of points with larger distances in every map-
per. Figure 1 shows the general schema of computing β (upper bound of the distance of the
K-th closest pair) using global sampling, which is used to filter only pairs of cells/partitions
with minimum distance of their MBRs smaller than or equal to β.
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Furthermore, we can use this β value in combination with the features of the global
indexing that SpatialHadoop provides to further enhance the pruning phase. Before the map
phase begins, we exploit the global indices to prune cells that cannot contribute to the final
result. CELLSFILTER takes as input each combination of pairs of cells in which the input
set of points are partitioned. Using SpatialHadoop built-in function MinDistance, we can
calculate the minimum distance between two MBRs of the cells. That is, if we find a pair
of cells with points which cannot have a distance value smaller than or equal to β, we
can prune this combination of pairs of cells. Using different percentages of samples of
the input datasets in Algorithm 3, we have obtained results with a significant reduction of
execution time as explained later in the section of experimentation. Note that to obtain a
sample from each dataset, we use a SpatialHadoop built-in MapReduce function, called
SampleMR, which extracts a percentage of samples (sampling ratio ρ in %, 0.0 < ρ ≤
100.0) following a sampling Without Replacement (WoR) pattern [60].

5.2 Computing β by local processing

Analyzing the above method for the β calculation, it is clearly observed that the greatest
time overhead occurs in the execution of the two calls to the SampleMR function, since they
are complete MapReduce jobs. Therefore, to try to improve the previous algorithm and avoid
to call the SampleMR function, we are looking to take advantage of the information provided
by the indices and other features of SpatialHadoop, and, thus, to make faster the β computation.

Global indices in SpatialHadoop provide the MBR of index cells, as well as the number
of elements contained in them, so that we can get an idea of the distribution of data into
each cell. To simplify the sampling process we will find a suitable pair of cells, that by their
characteristics, may contain K closest pairs with a β value as small as possible. Then we
can sample locally those cells without having to execute a MapReduce job (as SampleMR).

Since we are looking for the K closest pairs, the search for the most suitable pair of
cells can be reduced to look for the pair of cells with an MBR containing them that has
the highest density of points and whose intersection is the largest. The larger the area of
intersection of two cells, the larger the probability that points in one set are near points
in the other set. If the density is also higher, the distances between points are smaller and
therefore we will be able to obtain better candidate pairs of cells. Let c ∈ CP and d ∈ CQ

be a pair of cells from two global indices generated in SpatialHadoop from P and Q, |c| is
the number of elements inside cell c (cardinality of c), Area(c ∪ d) is the area of the MBR
that covers both MBRs of cells c and d (union MBR), and Area(c ∩ d) is the area of the
intersection MBR of both MBRs of cells c and d . Then, by PDDAI(c,d) we denote a metric
that expresses the suitability, based on data density and area intersection, of these two cells
to allocate K closest pairs with as small distances as possible (PDDAI is the acronym of
Pair Data Density Area Intersection).

PDDAI (c, d) = |c| + |d|
Area(c ∪ d)

× (1 + Area(c ∩ d))

We will select the pair of cells with the maximum value of this metric, so that we will have
the pair with the larger combination of density of points and area of intersection. In the case
of pairs of cells that do not intersect only the data density is taken into count.

5.2.1 Computing β by local sampling

The new method of computing β can be seen in Algorithm 4 (computing β by local sam-
pling algorithm), which follows a scheme similar to that of global sampling. There is a new
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step, the SELECTCELLS function, in which the pair of cells (c and d) having the highest
value for the PDDAI(c,d) metric is obtained. To do this, the cells of the two global indices
are joined by calculating the PDDAI metric for each combination. Then the candidate pair
of cells is sampled by recalculating the sampling ratio ρ, since we are dealing with a subset
of elements and we want to obtain the same number of elements as for the case of global
sampling. Once the samples are obtained locally and verified that they reside in memory, a
local plane-sweep-based KCPQ algorithm (PSKCPQ) is applied to obtain β. Finally, this
value is used in the CELLSFILTER function just as in Algorithm 3.
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5.2.2 Computing β by local approximate methods

Several approximation techniques (ε-approximate, α-allowance, N -consider and Time-
consider) have been proposed for distance-based queries using R-trees in [61]. These
techniques can be also used to obtain approximate solutions with a faster execution time,
trying to find a balance between computational cost and accuracy of the result. N -consider
is an approximate technique that depends on the quantity of points to be combined and Time-
consider depends only on the time for query processing. On the other hand, ε-approximate
and α-allowance are distance-based approximate techniques, and can be used for adjust-
ment of quality of the result (KCPQ). For this reason, we will consider them as candidates
for application in our problem. Since ε ≥ 0 values are unlimited, according to the conclu-
sions of [10, 61], it is not easy to adjust the β value (upper bound of the distance value of
K-th closest pair). For this reason, here we will choose the α-allowance technique, where
α is a bounded positive real number (0 ≤ α ≤ 1). With this approximate method we can
easily adjust the balance between execution time of the KCPQ algorithm and the accuracy
of the final result. Notice that this α-allowance technique can be easily transformed to the
ε-approximate technique with α = 1/(1 + ε) [10].

According to [61], we can apply the α-allowance approximate technique in plane-sweep-
based KCPQ algorithms (PSKCPQ) [9, 11] and the three sliding variants (Strip, Window
and Semi-Circle) to adjust the final result. It can be carried out by multiplying δ by (1 − α),
giving rise to αPSKCPQ, since it is a distance-based approximate technique. In this case,
when α = 0 we will get the normal execution of the plane-sweep PSKCPQ algorithm,
when α = 1 we will invalidate the δ value (it will be always 0) and no pair of points will
be selected for the result. Finally, when 0 < α < 1, we can adjust the sizes of the strip,
the window and the semi-circle over the sweeping axis, since all of them depend on the δ

value. Therefore, the smaller α value, the larger the upper bound of the δ value (i.e. more
points will be considered and fewer points will be discarded); on the other hand, the larger
α value, the smaller the upper bound of the δ value (i.e. fewer points will be considered and
more points will be discarded).

The schema to compute β by using the α-allowance approximate technique with a plane-
sweep-based KCPQ algorithm (αPSKCPQ) is very similar to the schema of computing β

by local sampling illustrated in the right diagram of Fig. 3. The difference is essentially
that sampling is not used in the selected pair of cells and all points from the two cells are
combined by the αPSKCPQ algorithm, obtaining a β value in a faster way if the α value is
large enough.

Fig. 3 Schema for computing β. Global sampling vs. local sampling (with Grid partitioning technique)
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The adaptation of the previous Algorithm 4 to local approximate is straightforward. The
CALCULATEβ function no longer accepts ρ as parameter, since we do not perform a sam-
pling of the input datasets, but for each set we get a number of elements that allow us to work
with in main memory. Furthermore we have a new α parameter and the function PSKCPQ
is replaced by the new αPSKCPQ function that takes this new parameter for the adjustment
of the approximate technique. The next steps of the algorithm remain unmodified.

6 Performance evaluation

This section provides the results of an extensive experimental study aiming at measuring
and evaluating the efficiency of the algorithms proposed in Section 5. In particular, Section 6.1
describes the experimental settings. Section 6.2 shows experimentally the advantages
of using the proposed techniques to compute β and use this upper bound distance for KCPQ
in SpatialHadoop. Section 6.3 compares different plane-sweep techniques and the use of
local indices. Section 6.4 shows the effect of using different spatial partitioning techniques
included in SpatialHadoop. Sections 6.5 and 6.6 examine the effect of incrementing the K

values for KCPQ and the ε values for εDJQ, respectively. Section 6.7 shows the scalabil-
ity of the proposed DBJQ MapReduce algorithms, varying the number of computing nodes.
Finally, in Section 6.8 a summary from the experimental results is reported.

6.1 Experimental setup

For the experimental evaluation, we have used real 2d point and synthetic (clustered)
datasets to test our DBJQ MapReduce algorithms in SpatialHadoop. For real-world datasets
we have used three datasets from OpenStreetMap:2 BUILDINGS which contains 115M
points (25 GB) of buildings, LAKES which contains 8.4M points (8.6 GB) of water areas,
and PARKS which contains 10M points (9.3 GB) of parks and green areas [23].

For synthetic datasets, we have created clustered data, since data in real-world are often
clustered or correlated; in particular, real spatial data may follow a distribution similar to
the clustered one. We have generated several files of different sizes using our own gener-
ator of clustered distributions, implemented in SpatialHadoop and with a similar format to
the real data. The sizes of the datasets are 25M (5.4 GB), 50M (10.8 GB), 75M (16.2 GB),
100M (21.6 GB) and 125M points (27 GB), with 2500 clusters in each dataset (uniformly
distributed in the range [(−179.7582155, −89.96783429999999) - (179.84404100000003,
82.51129005000003)]), which is the MBR of BUILDINGS), where for a set having N

points, N/2500 points were gathered around the center of each cluster, according to Gaus-
sian (normal) distribution with mean 0.0 and standard deviation 0.2 as in [49]. For example,
for an artificial dataset of 100M of points, we have 2500 clusters uniformly distributed, and
for each cluster we have generated 40000 points according to Gaussian distribution with
(mean = 0.0, standard deviation = 0.2). In Fig. 4, we can observe a small area of a clustered
dataset. We made 5 combinations of synthetic datasets by combining two separate instances
of datasets, for each of the above 5 cardinalities (i.e. 25MC1×25MC2, 50MC1×50MC2,
75MC1 × 75MC2, 100MC1 × 100MC2 and 125MC1 × 125MC2).

Moreover, to experiment with the biggest real dataset (BUILDINGS, which contains
115M points) for DBJQ MapReduce algorithms, we have created a new big quasi-real

2http://spatialhadoop.cs.umn.edu/datasets.html

http://spatialhadoop.cs.umn.edu/datasets.html
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Fig. 4 Synthetic dataset. Small area from a clustered dataset

dataset from LAKES (8.4M), with a similar quantity of points. The creation process is as fol-
lows: taking one point of LAKES, p, we generate 15 new points gathered around p (i.e. the
center of the cluster), according to the Gaussian distribution described above, resulting in a
new quasi-real dataset, CLUS LAKES, with around 126M of points (27.5 GB). This dataset
has the same shape as LAKES, but with more dense areas along the world.

To study the performance DBJQ MapReduce algorithms where two datasets are involved,
we experimented using the above datasets and the most representative spatial partitioning
techniques (Grid, Str, Quadtree and Hilbert) provided by SpatialHadoop, according to [56].
In our case, STR is equivalent to STR+ because we are working with points.

In Figs. 5 and 6 (as an example) we show the effect of the partitioning phase using the
STR technique [56] for PARKS and BUILDINGS, respectively. It is evident that each cell
contains points which are close in space. If fact, all the partitioning methods respect spatial
locality and distribute the points of a dataset to cells, considering (each method in a different
way) spatial locality of these points. Since, processing of a pair of cells in a computing node
during the map phase is only done if the spatial distance between these cells is below a

Fig. 5 Real-world dataset. PARKS (10M records of parks) with STR partitioning



Geoinformatica

Fig. 6 Real-world dataset. BUILDINGS (115M records of buildings) with STR partitioning

threshold (avoiding unnecessary computations), the MapReduce algorithms we study take
advantage of spatial locality.

To further study the spatial locality characteristics of the different spatial partitioning
techniques, in Table 1, for each such technique, we show the number of cells generated by
SpatialHadoop, the average of the number of points per cell and the standard deviation, for
all real datasets. From this table, we can deduce that:

– The number of cells created by Quadtree partitioning is larger than the other methods
[56] and this has as a result a smaller average number of points per cell.

– The standard deviation of the number of points per cell of Quadtree partitioning is larger
than STR and Hilbert. This is explained by the fact that Quadtree partitioning divides
space regularly, along fixed lines (the middle axes of the current subspace): an over-
flown area (quadrant) that is divided to four subquadrants may result to non-overflown

Table 1 Number of cells
generated by SpatialHadoop,
average and standard deviation of
the spatial partitioning
techniques for all real datasets

# of Cells Grid Str Quadtree Hilbert

LAKES 6 3 7 3

PARKS 6 3 13 3

BUILDINGS 24 28 78 27

CLUS LAKES 36 45 115 42

Average Grid Str Quadtree Hilbert

LAKES 1403216 2806432 1202756 2806432

PARKS 2846245 3320619 766296 3320619

BUILDINGS 4783185 4099873 1471749 4251720

CLUS LAKES 3508040 2806432 1098169 3006891

Stdev Grid Str Quadtree Hilbert

LAKES 1774152 6917 1192916 596

PARKS 2974069 6345 1109663 30441

BUILDINGS 12393021 20098 1190434 21064

CLUS LAKES 8095904 14628 805211 16175
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cells (subquadrants) with uneven numbers of points. This area would probably be
divided by STR or Hilbert to cells with borders not falling on the middle axes of the
current subspace, but with almost equal numbers of points.

– The standard deviation of the number of points per cell of Quadtree partitioning is
smaller than Grid, since Grid partitioning is not guided by data distribution.

These observations, along with the principles guiding the different partitioning tech-
niques, lead to following conclusions regarding trends of query processing performance:

– The larger number of cells of Quadtree partitioning permits finer pruning of pairs of
cells based on the distance between them (i.e. the pruning is more selective).

– Quadtree, STR and Hilbert partitioning produce cells that adapt to the data distribution,
contrary to Grid. This improves distance-based pruning of pairs of cells.

– Note that, when processing a pair of cells, the possible pairs of points that can be
formed from these cells affects the necessary number of calculations during plane-
sweep for this pair, but this is not the only such factor. The current distance threshold
and the distribution of each dataset within the cell also affect the number of calculations.
Depending on the distributions of the specific datasets involved, having larger collec-
tions of cells with varying numbers of points in Quadtree partitioning, or having smaller
collections of cells with similar numbers of points in STR or Hilbert partitioning may
favor load balancing between nodes.

To find out the actual effect of these trends on query processing performance, we performed
extensive experimentation.

All experiments were conducted on a cluster of 12 nodes on an OpenStack environment.
Each node has 4 vCPU with 8GB of main memory running Linux operating systems and
Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores for MapReduce2 / YARN use.

The main performance measure that we have used in our experiments has been the total
execution time (i.e. response time); this measurement is reported in seconds (sec) and rep-
resents the overall CPU time spent, as well as the I/O time needed by the execution of each
DBJQ MapReduce algorithm in SpatialHadoop.

Table 2 summarizes the configuration parameters used in our experiments (sampling
ratio values express % of the whole datasets). Default parameters (in parentheses) are used
unless otherwise mentioned.

Table 2 Configuration
parameters used in our
experiments

Parameter Values (default)

K 1, 10, (102), 103, 104, 105

ε (×10−4) 2.5, 5, 7.5, 12.5, (25), 50

α 0.0, 0.25, 0.50, (0.75), 0.85, 0.95

Sampling ratio, ρ 0.005, 0.01, 0.05, (0.1), 0.5, 1, 5, 10

% Dataset, γ 25, 50, 75, (100)

Number of nodes 1, 2, 4, 6, 8, 10, (12)

Type of partition Grid, (Str), Quadtree, Hilbert

PS algorithms Classic, (Reverse Run)

PS improvements Strip, Window, (Semi-Circle)
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6.2 The effect of applying the β computation

Our first experiment is to examine the use of β distance value for KCPQ MapReduce algo-
rithms in SpatialHadoop (computed by global sampling (Algorithm 3), by local sampling
(Algorithm 4) or by using the α-allowance approximate technique) as the upper bound of
the distance value of the K-th closest pair.

As shown in Fig. 7, upper chart, for large real datasets LAKES × PARKS (Grid) and
different sampling ratios (ρ), the execution time is almost constant for the three methods.
This trend in the results is mainly due to the fact that there is a trade-off between the time of
sampling and β calculation with the one of the individual MapReduce tasks. With a larger
sampling ratio ρ, a better β is obtained, which in turn improves the final PSKCPQ execution
time. However, increasing the value of ρ also increases the time to calculate β. The use of β

values accelerates the answer of the KCPQ and using the method of local sampling reduces
the response time by around 22 times; whereas for the global sampling, the reduction is
around 4 times faster than without β computation. This means that the use of local sampling
shortens notably the execution time because by selecting suitably two cells for each dataset
and applying sampling over this pair of cells reduces the computed β values and increases
the power of pruning when it is passed to the mappers. For instance, for a sampling ratio
(ρ) equal to 0.1%, the β values obtained by global sampling is 0.0144191, whereas by local
sampling it is 0.0054841.

Fig. 7 KCPQ cost without and
with β computation (large
datasets)
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In the lower chart of Fig. 7, we see a different behavior if we apply the STR partitioning
technique for the same large datasets. We observe that the use of global sampling for the
computation of β is more expensive than without β values in the preprocessing phase; this is
due to the fact that with the dataset sizes and the used partitioning technique (STR), the time
spent to perform the MapReduce sampling jobs (SampleMR) produces an overhead much
higher than the improvement in response time that can be obtained. On the other hand, the
use of local sampling to get the KCPQ is faster than the other two alternatives, because the
time required to perform the local sampling is very small and the use of β improves the time
of the individual map tasks. In addition, a similar trend is observed between global and local
sampling that confirms that the improvement comes actually from reducing as much as pos-
sible the time required to obtain β. Finally, when comparing both charts, STR outperforms
Grid due to the fact that STR is a partitioning technique based on how the data is distributed;
therefore, partitions/cells with more uniform numbers of elements are produced, improving
distance-based pruning of pairs of cells and load balancing between nodes. However, the
Grid partitioning is based on a uniform division of space without taking into account the
data; therefore, it produces some partitions with much more elements than others. so that
certain map tasks can delay the total response time of the query. Note that, we have chosen
for this first experiment the GRID and STR partitioning techniques, because they are used
in [23] for performance comparison of the spatial queries and, GRID is the simplest (uni-
form grid of 
√n� × 
√n� grid cells, where n is the desired number of partitions) and STR
corresponds to R-trees which are widely used (this technique bulk loads a random sample
of the dataset into an R-tree using the STR algorithm [62] and the capacity of each node is
set to k/n�, where k is the sample size).

Figure 8 illustrates the same type of experiment (reporting the total execution times),
but now for the biggest real datasets BUILDINGS × PARKS. In the upper chart we
can see the same trend for Grid partitioning as in Fig. 7, where the preprocessing phase for
computing β with local sampling is 2.7 times faster than using global sampling (whereas
without the preprocessing phase needed around 21900 seconds and it is not depicted in the
figure). In the lower chart, STR is faster than Grid (e.g. for ρ = 0.1% and global sampling,
STR is 2.7 times faster than Grid), and the use of local sampling is also 80 seconds faster
than global sampling for computing β for the same reasons explained previously. Notice
that without the computation of β, around 2900 seconds to carry out the KCPQ were needed
(not depicted in the figure). Again, comparing both charts, STR outperforms Grid according
to the same reasons exposed above.

From these experiments we can conclude that the use of local sampling for computing
β (Algorithm 4) generates smaller β values (e.g. BUILDINGS × PARKS (STR) and
ρ = 0.1%, the β value obtained by global sampling is 0.00211, whereas for local sampling
it is 0.00050) and then this is more effective than global sampling when it is passed to the
mappers. Moreover, the partitioning technique is an important factor to take into account
for this kind of distance-based join; in particular STR outperforms Grid in all cases. Finally,
the value of ρ (sampling ratio) is an important parameter to be considered, and we have to
find a trade-off between the time of sampling and the value of β computation (the smaller
β value, the larger the time of sampling). Therefore, we have chosen ρ = 0.1% as the value
for the remaining experiments, due to its excellent results.

Interesting results are also shown in Table 3, where all possible pairs of cells/partitions
are shown, considering different percentages (γ ) of the datasets (BUILDINGS ×
CLUS LAKES (STR)) and, with (GS ≡ using global sampling and LS ≡ using local
sampling) or without using the computation of β for K = 100 (for other K values the per-
centage of reduction was similar). We can extract three interesting conclusions from this
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Fig. 8 KCPQ cost without and
with β computation (big datasets)

table: (1) with the use of β, we reduce significantly the number possible pairs of cells to
be joined (e.g. using the complete datasets, only 120 out of 1260 possible pairs of cells are
considered), (2) the β value returned by global or local sampling is not that determinant for
the reduction of the number of pairs of cells to be combined (i.e. a smaller β value does not
imply the reduction of the number of considered pairs of cells) as one can see in the two
right columns; (3) the percentage of datasets to be joined is related with the number of con-
sidered pairs of cells when a β value is applied for the STR partitioning technique (e.g. the
75%, 50% and 25% of 120 are very close to 85, 55 and 32).

In Fig. 9 we study the behavior of the KCPQ MapReduce algorithm in SpatialHadoop
with respect to the total execution time, when β is computed locally from a suitable pair of

Table 3 Number of considered
pairs of cells without or with
(global sampling (GS) or local
sampling (LS)) β computation

γ (%) Without β β GS β LS

25 120 32 32

50 315 55 55

75 672 85 84

100 1260 120 120
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Fig. 9 KCPQ cost using local
sampling and α-allowance
approximate technique for β

computation

cells by local sampling or by using the α-allowance approximate technique for the combi-
nation of the biggest datasets (real and artificial) and by using two partitioning techniques
(Grid and STR). In the upper chart, one can see the trends for different sampling ratios (ρ).
Again the STR partitioning reduces significantly the response time for real datasets (2.6
times faster when ρ = 0.1%) with respect to Grid, but for the combination of synthetic data
the reduction is smaller (1.3 times faster when ρ = 0.1%); even for ρ = 1.0%, ρ = 5.0%
and ρ = 10.0% the execution times are almost the same. Moreover, notice that when ρ is
larger than 0.5% the execution time with local sampling is increased slightly, since the time
needed to compute β increases with the increment of the sampling ratio. In the lower chart,
one can see the effect of applying the αPSKCPQ algorithm to the two selected cells for com-
puting β by using different α values (0.0, 0.25, 0.50, 0.75, 0.85 and 0.95) to report the results
of KCPQ. The response time is stable for all α values when the partitioning technique is
Grid (real and synthetic) and STR (synthetic), but for BUILDINGS × CLUS LAKES

(STR) the reduction from α = 0.95 to α = 0.0 is around 580 sec. Taking into account this
result, we can deduce that the use of this approximate technique is useful for computing β,
using high values of α. Moreover, for this case, the difference between α = 0.75, α = 0.85
and α = 0.95 is very small. This behavior could be due to the fact that at the beginning of
the αPSKCPQ processing, this algorithm gets quickly a small β value and then it is executed
very fast. Finally, if we compare both charts of Fig. 9, we can conclude that both techniques
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Fig. 10 KCPQ cost of different phases in the execution of KCPQ MapReduce algorithm in SpatialHadoop

are very suitable to compute β and get the result of KCPQ in SpatialHadoop very fast, in
particular when ρ ∈ [0.1%, 1.0%] and α ∈ [0.75, 0.95].

Figure 10 shows the time spent in each phase that processing of the KCPQ in Spa-
tialHadoop is split, when the three approaches to compute β are applied in the pruning
step according to Fig. 2. The configuration for this experiment is BUILDINGS ×
CLUS LAKES, STR, ρ = 0.1, K = 100. The three phases are: preprocessing, filtering
and MapReduce. The time spent in the preprocessing phase (STR) is the same for the three
bars (498 sec), whereas the times spent for the filtering phase are different depending on the
technique (global sampling, local sampling or approximate) applied for computing β. By
using the local sampling, we get the smallest time spent (7 sec), next the approximate (40
sec) and the largest execution time is for global sampling (106 sec). When the filtering phase
is ended, a β value is passed to the next phase; the smaller the β value, the faster the next
phase (MapReduce). With this in mind, the time spent in the last phase for the three tech-
niques are: global β = 578.498 sec (β = 0.00157), local β = 575.854 sec (β = 0.00062)
and approximate β = 559.254 sec (β = 0.00013).

6.3 Comparison of different plane-sweep algorithms and the use of local indices

This experiment aims to find the combination of one of the two different plane-sweep-based
KCPQ algorithms (Classic and Reverse Run) and an improvement (Sliding Strip, Windows,
or Semi-Circle) that has the best performance. As we can see in Table 4, the total execution
times obtained do not show significant improvements between the different plane-sweep
algorithms and variants. This is due to various factors such as reading disk speed, network
delays, the time for each individual task, etc. As shown in this table, the difference between
them is not quite significant (mainly for large datasets LAKES × PARKS (LxP)), the
Semi-Circle Reverse Run algorithm being the fastest in all cases, and the Classic Strip the
slowest variant (with the largest execution time). This is due to the fact that the Reverse Run
algorithm has been specifically designed to reduce the number of distance computations
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Table 4 Total execution time (in
seconds) spent by each KCPQ
algorithm, plane-sweep without
indices and with local indices
(R-tree)

KCPQ Algorithm LxP BxP

Classic Strip 126.871 293.852

Classic Window 124.661 283.441

Classic Semi-Circle 121.263 267.171

Reverse Strip 123.013 276.398

Reverse Window 121.768 230.390

Reverse Semi-Circle 120.648 229.226

Local indices (R-tree) 147.023 318.450

[9, 11]. For this reason we have chosen the Semi-Circle Reverse Run as the plane-sweep
algorithm for all our experiments.

Finally, since our framework to perform DBJQs in SpatialHadoop can utilize local
indices (R-trees), we have used this possibility to execute the KCPQ to compare it with the
plane-sweep algorithms (without indices). To achieve this, we have adapted the distributed
join algorithm [23] to perform the distributed KCPQ using the Reverse Run plane-sweep
technique in each combination of pairs of nodes, in a similar way that the Classic one is used
in [8]. The running time is shown in the last row of Table 4, and it is slower than the exe-
cution times of the plane-sweep-based algorithms without using the local indices (R-trees).
The reason why the use of local indices is slower is the fragmentation of the data produced
by the R-tree’s own structure. When no local indices are used, all elements present in the
corresponding cells are loaded into main memory, and then the appropriate plane-sweep-
based KCPQ algorithm is performed. However, when using R-tree structures the data are
finally stored in the leaves and the number of leaves is determined by the degree of the tree.
This degree, for the node size and configuration used for the experiments, is 26 (suggested
by [23]). When finally it is necessary to compare leaf nodes, multiple PSKCPQ algorithms
with small quantities of data are performed. The sum of execution times of these tasks
becomes greater than working with all the data in the cells directly in main memory. We can
see this behavior when two big datasets are combined, BUILDINGS × PARKS (BxP),
where Reverse Run Semi-Circle is around 30% faster than using the local indices (R-trees).

For the εDJQ we have designed and executed the same type of experiment as the one
for the KCPQ, to detect which is the best variant of plane-sweep algorithm. Table 5 shows
these results, and we can observe that the Strip variant of Classic and Reverse Run is the
slowest, but Window and Semi-Circle have very close execution times, the Classic Semi-
Circle being slightly the fastest. Moreover, as for the KCPQ, we have adapted the distributed

Table 5 Total execution time (in
seconds) spent by each εDJQ
algorithm, plane-sweep without
indices and with local indeces
(R-tree)

εDJQ Algorithm LxP BxP

Classic Strip 275.701 2798.069

Classic Window 98.024 418.473

Classic Semi-Circle 91.923 391.612

Reverse Strip 268.777 2506.165

Reverse Window 99.150 437.814

Reverse Semi-Circle 98.981 434.038

Local indices (R-tree) 2129.338 9748.563
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join algorithm [23] to implement a distributed εDJQ algorithm using the Classic plane-
sweep technique in each combination of pairs of nodes of local R-trees. The total execution
time is shown in the last row of Table 5, which it is much slower than the execution times of
the plane-sweep-based algorithms without using the local indices (R-trees). The justification
of this behavior is very similar to the one exposed above for the KCPQ. We can highlight
that when two large datasets, LAKES × PARKS (LxP), are combined, the Classic Semi-
Circle is around 23 times faster than using the local indices, while for the join of two big
datasets, BUILDINGS × PARKS (BxP), Classic Semi-Circle is around 25 times faster.

6.4 The effect of using different spatial partitioning techniques

In [56], seven different partitioning techniques are presented, and an extensive experimen-
tal study on the quality of the generated index and the performance of range and spatial
join queries is reported. These seven partitioning techniques are classified in two categories
according to boundary object handling: replication-based techniques (Grid, Quadtree,
STR+ and K-d tree) and distribution-based techniques (STR, Z-Curve and Hilbert-Curve)
[56]. The distribution-based techniques assign an object to exactly one overlapping cell and
the cell has to be expanded to enclose all contained records. The replication-based tech-
niques avoid expanding cells by replicating each record to all overlapping cells) but the
query processor has to employ a duplicate avoidance technique to account for replicated
elements (in accordance to the literature, we follow this naming of techniques, although,
in the case of points no replication takes place). The most important conclusions in [56]
for distributed join processing, using the overlap spatial predicate, are the following: (1)
the smallest running time is obtained when the same partitioning technique is used for
the join processing (except for Z-Curve, that reports the worst running times), and (2) the
Quadtree outperforms all other techniques with respect to the running time, since it mini-
mizes the number of overlapping partitions between the two files by employing a regular
space partitioning. According to the first conclusion, we are going to experiment with the
DBJQ MapReduce algorithms, where both datasets are partitioned with the same tech-
nique. Finally, the partitioning techniques that we have chosen are: Grid, STR, Quadtree
and Hilbert-Curve, because they showed the best performance for distributed overlap join
in [56].

As shown in the upper part of Fig. 11 for the KCPQ of real datasets (LAKES ×
PARKS, BUILDINGS ×PARKS and BUILDINGS ×CLUS LAKES), the choice
of a partitioning technique clearly affects the execution time. For instance, Quadtree is the
fastest (445 sec), the STR is the second (642 sec), the third is Hilbert (884 sec) and the slow-
est is the Grid (1667 sec), for the combination of the biggest real datasets, BUILDINGS×
CLUS LAKES (BxC L). Moreover, we can see that the influence of the partitioning tech-
nique is less for the combination of the smallest datasets, LAKES × PARKS (LxP),
where the execution times are almost the same (e.g. Quadtree is only 32 sec faster than
STR). The behavior for synthetic datasets is different (see the lower chart of Fig. 11),
due to the nature of the data distribution (uniform distribution of the centers of the clus-
ters) and the type of partitioning technique (replication-based and distribution-based). The
trends of replication-based techniques (Quadtree and Grid) are very similar, as is the case
for distribution-based (STR and Hilbert). Moreover, for the combination of the biggest syn-
thetic datasets, 125MC1 × 125MC2 (125M), the fastest partitioning technique is Quadtree
(534 sec), and STR has a very close running time (only 2 sec slower), Grid takes 651 sec
and Hilbert is the slowest with 757 sec. Note that, a label like 25MC on x-axis of the chart
for synthetic datasets signifies the combination 25MC1 × 25MC2.



Geoinformatica

Fig. 11 KCPQ cost considering
different partition techniques in
SpatialHadoop

As we have just seen for KCPQ, the choice of a partitioning technique clearly affects
the execution time of εDJQ, regardless of whether the datasets are real or synthetic.
For instance, for real datasets (see the upper chart of Fig. 12), for the combination of
large datasets, LAKES × PARKS (LxP), Hilbert partitioning is slightly faster than
the other techniques (e.g. it is 11 sec faster than STR, which is the second), but for
BUILDINGS × PARKS (BxP), Quadtree is the fastest (82 sec faster than the second,
STR), and for the big datasets, BUILDINGS × CLUS LAKES (BxC L), STR is the
fastest (324 sec faster than Quadtree). From these results with real data, we can conclude
that the bigger the datasets, the better the performance of STR for εDJQ. The behavior for
synthetic dataset is also different (see the lower chart of Fig. 12), mainly due to the nature of
the data distribution and the type of partitioning technique. In the same way as for KCPQ,
the trends of replication-based techniques (Quadtree and Grid) are very similar, as the case
for distribution-based (STR and Hilbert), with small gaps between them. Moreover, for the
combination of large synthetic datasets, 25MC1 × 25MC2 (25M), again Hilbert is slightly
the fastest (only 2 sec faster than Quadtree). The Quadtree is the fastest for the combination
of 50MC1 × 50MC2 (50M) and 75MC1 × 75MC2 (75M), while STR is the fastest for
the biggest synthetic datasets (e.g. for 125MC1 × 125MC2 (125M), STR is 28 sec faster
than Quadtree, which is the second). In the same way as for real datasets, we can conclude
for synthetic data that the bigger the datasets, the better the performance of STR for εDJQ.
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Fig. 12 εDJQ cost considering
different partition techniques in
SpatialHadoop

Note as well that, when we write on the x-axis of the chart for synthetic datasets 25MC, we
really mean 25MC1 × 25MC2.

Last, it is very important to highlight the behavior of Quadtree partitioning technique,
that reports the smallest execution times in most of the cases (mainly for real datasets
and KCPQ), as in [56] for distributed overlap join. This will be the partitioning tech-
nique to apply in the remainder experiments, together with STR, which shows an excellent
performance for εDJQ using big datasets.

6.5 The effect of the increment of K values

This experiment studies the effect of increasing of the K value for the combination of the
biggest datasets (real and artificial). The upper chart of Fig. 13 shows the total execution
time for real datasets (BUILDINGS × CLUS LAKES) grows slowly as the number
of results to be obtained (K) increases, until K = 104, but for K = 105 the increment
is larger mainly for STR (around 850 sec). The Quadtree reports the best execution times,
even for large K values (e.g. K = 105). This means that the Quadtree is less affected by
the increment of K , because Quadtree employs regular space partitioning depending on the
concentration of the points. For the combination of synthetic datasets (125MC1×125MC2)
in the lower chart, for small K values the Quadtree is slightly faster than STR, but for larger
K values the roles are swapped and STR is faster than Quadtree.
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Fig. 13 KCPQ cost (execution
time) vs. K values

The main conclusions that we can extract for this experiment are: (1) the Quadtree again
satisfies KCPQ in the fastest way, mainly for real datasets, and (2) the higher the K values,
the greater the possibility that pairs of cells are not pruned, more map tasks could be needed
and more total execution time is needed.

6.6 The effect of the increment of ε for εDJQ

In this experiment we study the effect of increasing of the ε value in εDJQ MapReduce
algorithm in SpatialHadoop for the combination of the biggest datasets (real and syn-
thetic). As shown in the upper chart of Fig. 14, the total execution time for real datasets
(BUILDINGS × CLUS LAKES) grows as the ε value increases. Both partitioning
techniques (Quadtree and STR) have similar performance for all ε values, except for
ε = 50 × 10−4, where STR outperforms Quadtree (i.e. STR is 295 sec faster). For the com-
bination of synthetic datasets (125MC1 × 125MC2) in the lower chart, for small ε values
both techniques (Quadtree and STR) have the same performance, but for larger ε values
Quadtree is faster than STR (e.g. Quadtree is 65 sec faster for ε = 25 × 10−4).

Similar conclusions to the KCPQ can be extracted for the εDJQ: (1) the Quadtree out-
performs STR for the εDJQ mainly for synthetic datasets (for real datasets, except for large
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Fig. 14 εDJQ cost (execution
time) vs. ε values

ε values) and (2) the higher the ε values, the greater the possibility that pairs of cells are not
pruned, more map tasks are needed and more total execution time is needed.

6.7 The speedup of the algorithms

This experiment aims to measure the speedup of the DBJQ MapReduce algorithms (KCPQ
and εDJQ), varying the number of computing nodes (n). We have used the Quadtree as the
partitioning technique, but STR follows the same trend. The upper chart of Fig. 15 shows the
impact of different number of computing nodes on the performance of parallel KCPQ algo-
rithm, for BUILDINGS×PARKS with the default configuration values. From this chart,
it could be concluded that the performance of our approach has direct relationship with
the number of computing nodes. It could also be deduced that better performance would
be obtained if more computing nodes are added. However, when the number of computing
nodes exceeds the number of map tasks, no improvement for the whole job is obtained. In
the lower chart of Fig. 15, we can observe a similar trend for εDJQ MapReduce algorithm
with less execution time, and we can extract the same conclusions.
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Fig. 15 Query cost with respect
to the number of computing
nodes n

6.8 Conclusions from the experiments

We have experimentally demonstrated the efficiency (in terms of total execution time) and
the scalability (in terms of K and ε values, sizes of datasets and number of computing nodes)
of the proposed parallel algorithms for DBJQs (the KCPQ and εDJQ) in SpatialHadoop.
By studying the experimental results, we can extract several conclusions that are shown
below:

– The algorithm proposed in [1] for the KCPQ is significantly improved by utilizing
alternative methods for the computation of an upper bound β of the distance of the K-th
closest pair. More specifically, we proposed new such methods that use a local prepro-
cessing phase and are based either on sampling, or on the α-allowance approximate
technique, and, through an extensive set of experiments, we have shown the improved
efficiency of the new methods.

– Alternative plane-sweep-based algorithms (Classic and Reverse Run) in the MapRe-
duce implementation have similar performances, in terms of execution time, although
they are faster than using local indices (R-trees) in each map task.

– The Quadtree, or the STR spatial partitioning technique included in SpatialHadoop
(instead of the Grid or Hilbert ones) improves notably the efficiency of the parallel
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DBJQs algorithms. This is due to the partition of space according to the data distribution
(the concentration of the cells depends on the concentration of points) [56].

– The larger the K or ε values, the larger the probability that pairs of cells are not pruned,
more map tasks will be needed and more total execution time is spent for reporting the
final result.

– The larger the number of computing nodes (n), the faster the DBJQ MapReduce algo-
rithms are, but when n exceeds the number of map tasks, no improvement for the whole
job is obtained.

7 Concluding remarks and future work

DBJQs (the KCPQ and εDJQ) are operations widely adopted by many spatial and GIS
applications. Both operations are costly, especially in large-scale datasets, since the com-
bination (Cartesian Product) of two spatial datasets is coupled with additional constraints.
These DBJQs have been actively studied in centralized environments. However, for par-
allel and distributed frameworks they have not attracted similar attention. For this reason,
here we studied the problem of processing the most representative DBJQs (the KCPQ and
εDJQ) in SpatialHadoop, an extension of Hadoop supporting spatial operations efficiently.

To achieve this, we have proposed new MapReduce algorithms in SpatialHadoop on big
spatial datasets, adopting the plane-sweep technique. For the KCPQ, we have improved the
MapReduce algorithm presented in [1], regarding the computation of an upper bound (β) of
the distance value of the K-th closest pair, by using a local preprocessing phase based either
on sampling, or on approximate techniques. We have shown experimentally the efficiency of
such improvements, taking into account different comparison parameters and performance
measures. We have also proposed the first MapReduce algorithm in SpatialHadoop for the
εDJQ. More specifically, we have implemented the Reverse Run plane-sweep algorithm [9,
11] for the εDJQ, following a similar scheme to that for the KCPQ. The result is achieved
in competitive response times to the response times obtained with an alternative method,
the distributed εDJQ computation using local R-trees indices.

We performed a detailed performance comparison of the proposed algorithms in various
scenarios with big synthetic and real-world points datasets. The execution of such exper-
iments has demonstrated the efficiency (in terms of total execution time) and scalability
(in terms of K and ε values, sizes of datasets, number of computing nodes, etc.) of our
proposals.

As part of our future work, we are planning to extend the current results in several contexts:

– implement other DBJQs in SpatialHadoop, like the KNN join query framework [15]
and distance join queries with spatial constraints [63],

– implement other complex spatial queries in SpatialHadoop, like multi-way spatial joins
[64] and multi-way distance joins queries [65],

– implement other partitioning techniques [66, 67] in SpatialHadoop, because this is an
important factor for processing distance-based join queries, as we have demonstrated.

– implement KCPQs and εDJQs in Spark-based distributed spatial data management
systems, like LocationSpark [31].

Acknowledgements Work of all authors funded by the MINECO research project [TIN2013-41576-R].
We would like to thank Prof. Goce Trajcevski for providing us interesting comments to enrich the article, and
we would like also thank the anonymous reviewers for their constructive remarks.



Geoinformatica

References

1. Garcı́a-Garcı́a F, Corral A, Iribarne L, Vassilakopoulos M, Manolopoulos Y (2016) Enhancing spatial-
hadoop with closest pair queries. In: ADBIS Conference, pp 212–225

2. Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall, New Jersey
3. Samet H (1990) Applications of Spatial Data Structures: Computer Graphics, Image Processing, and

GIS. Addison-Wesley, Boston
4. Schiller JH, Voisard A (eds) (2004) Location-Based Services. Morgan Kaufmann, Burlington
5. Rigaux P, Scholl M, Voisard A (2002) Spatial databases - with applications to GIS. Elsevier, San

Francisco
6. Leong Hou U, Mamoulis N, Yiu ML (2008) Computation and monitoring of exclusive closest pairs.

Trans Knowl Data Eng 20(12):1641–1654
7. Ahmadi E, Nascimento MA (2016) K-closest pairs queries in road networks. In: MDM Conference,

pp 232–241
8. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2004) Algorithms for processing k-

closest-pair queries in spatial databases. Data Knowl Eng 49(1):67–104
9. Roumelis G, Corral A, Vassilakopoulos M, Manolopoulos Y (2014) A new plane-sweep algorithm for

the k-closest-pairs query. In: SOFSEM Conference, pp 478–490
10. Gao Y, Chen L, Li X, Yao B, Chen G (2015) Efficient k-closest pair queries in general metric spaces.

VLDB J 24(3):415–439
11. Roumelis G, Vassilakopoulos M, Corral A, Manolopoulos Y (2016) New plane-sweep algorithms for

distance-based join queries in spatial databases. GeoInformatica 20(4):571–628
12. Zhang C, Li F, Jestes J (2012) Efficient parallel kNN joins for large data in MapReduce. In: EDBT

Conference, pp 38–49
13. Lu W, Shen Y, Chen S, Ooi BC (2012) Efficient processing of k nearest neighbor joins using

MapReduce. PVLDB 5(10):1016–1027
14. Wang K, Han J, Tu B, Dai J, Zhou W, Song X (2010) Accelerating spatial data processing with

MapReduce. In: ICPADS Conference, pp 229–236
15. Nodarakis N, Pitoura E, Sioutas S, Tsakalidis AK, Tsoumakos D, Tzimas G (2016) kdann+: A rapid

aknn classifier for big data. Trans Large-Scale Data-Knowl-Centered Syst 24:139–168
16. Silva YN, Reed JM (2012) Exploiting mapreduce-based similarity joins. In: SIGMOD Conference,

pp 693–696
17. Dean J, Ghemawat S (2004) Mapreduce: Simplified data processing on large clusters. In: 137–150
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