
Yours Truly

Graph-Based Social Media
Analysis

Contents

1 Matrix and Tensor Factorization with Applications 1

1.1 Introduction . 1
1.2 Singular Value Decomposition on Matrices for recommender

systems . 3
1.2.1 Applying the SVD and Preserving the Largest Singular

Values . 4
1.2.2 Generating the Neighborhood of Users/Items 5
1.2.3 Generating the Recommendation List 6
1.2.4 Inserting a Test User in the c-dimensional Space . . . 6
1.2.5 Other Factorization Methods 7

1.3 Higher Order Singular Value Decomposition (HOSVD) on Ten-
sors . 8
1.3.1 From SVD to HOSVD 9
1.3.2 HOSVD for Recommendations in Social Tagging Sys-

tems (STSs) . 12
1.3.3 Handling the Sparsity Problem 16
1.3.4 Inserting new users, tags, or items 17

1.3.4.1 Update by folding-in 17
1.3.4.2 Update by Incremental SVD 20

1.3.5 Other Scalable Factorization Models 21
1.4 A Real Geo-Social System based on HOSVD 22

1.4.1 GeoSocialRec Web Site 23
1.4.2 GeoSocialRec Database and Recommendation Engine 25
1.4.3 Experiments . 25

1.5 Conclusion . 28

Bibliography 29

Index 33

iii

Chapter 1

Matrix and Tensor Factorization
with Applications

Abstract . 1
1.1 Introduction . 1
1.2 Singular Value Decomposition on Matrices for recommender

systems . 2
1.2.1 Applying the SVD and Preserving the Largest Singular

Values . 4
1.2.2 Generating the Neighborhood of Users/Items 5
1.2.3 Generating the Recommendation List 6
1.2.4 Inserting a Test User in the c-dimensional Space 6
1.2.5 Other Factorization Methods . 7

1.3 Higher Order Singular Value Decomposition (HOSVD) on
Tensors . 8
1.3.1 From SVD to HOSVD . 9
1.3.2 HOSVD for Recommendations in Social Tagging

Systems (STSs) . 12
1.3.3 Handling the Sparsity Problem . 16
1.3.4 Inserting new users, tags, or items . 17

1.3.4.1 Update by folding-in . 17
1.3.4.2 Update by Incremental SVD 20

1.3.5 Other Scalable Factorization Models . 21
1.4 A Real Geo-Social System based on HOSVD 22

1.4.1 GeoSocialRec Web Site . 23
1.4.2 GeoSocialRec Database and Recommendation Engine . 25
1.4.3 Experiments . 25

1.5 Conclusion . 28

Abstract

Representing data in lower dimensional spaces has been extensively used in
many disciplines such as natural language and image processing, data mining
and information retrieval [DDF+90]. Recommender systems deal with chal-
lenging issues such as scalability, noise, and sparsity and thus, matrix and

1

2 Graph-Based Social Media Analysis

tensor factorization techniques appear as an interesting tool to be exploited.
Symeonidis et al. [SNPM06, Sym07], for example, used SVD for the predic-
tion of items/ratings in recommender systems. They assumed that there is
only a small number of factors influencing the users’ preferences, and that a
user’s preference for an item is determined by how each factor applies to the
user and the item. More recently, due to the Netflix challenge1, research on
matrix factorization methods, a class of latent factor models, gained renewed
momentum in the recommender systems literature, given that many of the
best performing methods on the challenge were based on matrix factorization
techniques [Kor08, SM08, Kor09]. In this chapter we describe matrix and ten-
sor factorization techniques (i.e. SVD on matrices and HOSVD on tensors) in
recommender systems and social tagging systems, respectively. In addition, we
present a real-world recommender system for Location-Based Social Networks,
which employs tensor decomposition techniques.

1.1 Introduction

While technology is developed fast, data become larger as well, and as
the size of data grows so does the difficulty of processing it. One way to
view and process data easily is as a matrix, which is a rectangular array of
numbers. However, matrices suffer from big data as well. The dimensions of
matrices keep on growing fast and this fact make analysts’ job more difficult.
The problem of dimensionality reduction appears when data are in fact of a
higher dimension than being manageable. Dimensionality reduction attempts
to reduce the dimensionality of data to manageable size, while keeping as
much of the original important information as possible.

The “information overload” problem affects our everyday experience while
searching for knowledge on a topic. To overcome this problem, we often rely on
suggestions from others who have more experience on the topic. In Web, this
is attained with the usage of Collaborative Filtering (CF), which provides rec-
ommendations based on the suggestions of users who have similar preferences.
Since CF is able to capture the particular preferences of a user, it has become
one of the most popular methods in recommender systems. The classic CF
(i.e., user-based CF and item-based CF) methods are also known as memory-
based methods and constitute the first subgroup of the categorization of CF
systems. Memory-based methods firstly load into the main memory the rat-
ing matrix and afterwards provide recommendations based on the relationship
between user-item pair and the rest of the rating matrix.

1The Netflix challenge was a competition for the best recommender system algo-
rithm to predict user ratings for movies. The competition was held by Netflix (http:
//www.netflixprize.com/), an on-line DVD-rental service.

Matrix and Tensor Factorization with Applications 3

The second main category of CF algorithms is known as model-based al-
gorithms, which recommend by first developing a model of user ratings for
items. These methods fit a parameterized model to the given rating matrix
and provide recommendations based on the fitted model. It has been shown
that, model-based algorithms can efficiently handle scalability and improve
accuracy of recommendations in large data sets. Model-based approaches can
combine the effectiveness of the nearest-neighbor CF algorithms in terms of
accuracy, with the efficiency in terms of execution time.

Towards this direction, SVD is a technique that has been extensively used
in informational retrieval. It detects latent relationships between documents
and terms. In CF, SVD can be used to form users’ trends from individual pref-
erences, by detecting latent relationships between users and items. Therefore,
with SVD, a higher level representation of the original user-item matrix is pro-
duced, which presents a three-fold advantage: (i) it contains the main trends
of users’ preferences, (ii) noise is removed, (iii) it is much more condensed
than the original matrix, thus it favors scalability.

In the following, we describe matrix and tensor factorization techniques in
Sections 1.2 and 1.3, respectively. Finally, in Section 1.4, we present a real-
world recommender system, which is based on HOSVD.

1.2 Singular Value Decomposition on Matrices for rec-
ommender systems

A well-known latent factor model for matrix decomposition is singular
value decomposition. The singular value decomposition (SVD) [Str06] of a
matrix AI1×I2 can be written as a product of three matrices, as shown in
Equation 1.1:

AI1×I2 = UI1×I1 · SI1×I2 · V >I2×I2, (1.1)

where U is the matrix with the left singular vectors of A, V ′ is the transpose
of the matrix V with the right singular vectors of A, and S is the diagonal
matrix of ordered singular values 2 of A.

By preserving only the largest c < min{I1, I2} singular values of S, SVD
results in matrix Â, which is an approximation of A. In information retrieval,
this technique is used by LSI [FDD+88], to deal with the latent semantic
associations of terms in texts and to reveal the major trends in A.

To perform the SVD over a user-item matrix A, we tune the value of pa-
rameter c, of singular values (i.e., dimensions) with the objective to reveal
the major trends. The tuning of c is determined by the rank of matrix A. A
rule of thumb, for defining parameter c is to compute the sum of elements in

2The singular values determined by the factorization of Equation 1.1 are unique and
satisfy σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σI2 ≥ 0.

4 Graph-Based Social Media Analysis

the main diagonal of S matrix (also known as the nuclear norm). Next, we
preserve a sufficient percentage of this sum for the creation of an approxima-
tion of the original matrix A. If we have the allowance to use less information
percentage with the similar results, we just have to reduce the value of c and
sum the corresponding elements of the main diagonal of S matrix. Therefore,
a c-dimensional space is created and each of the c dimensions corresponds
to a distinctive rating trend. Next, given the current ratings of the target
user u, we enter pseudo-user vector in the c-dimensional space. Finally, we
find the k nearest neighbors of pseudo user vector in the c-dimensional space
and apply either user- or item-based similarity to compute the top-N rec-
ommended items. Conclusively, the provided recommendations consider the
existence of user rating trends, as the similarities are computed in the reduced
c-dimensional space, where dimensions correspond to trends.

To ease the discussion, we will use the running example illustrated in
Figure 1.2.1 where I1−4 are items and U1−4 are users. As shown, the example
data set is divided into training and test set. The null cells(no rating) are
presented as zeros.

I1 I2 I3 I4
U1 4 1 1 4

U2 1 4 2 0

U3 2 1 4 5

(a)

I1 I2 I3 I4
U4 1 4 1 0

(b)

FIGURE 1.2.1: (a) Training Set (3× 4), (b) Test Set (1× 4).

1.2.1 Applying the SVD and Preserving the Largest Singu-
lar Values

Initially, we apply the SVD to a n×m matrix A (i.e., the training data of
our running example) that produces the decomposition shown in Equation 1.2.
The matrices of our running example are shown in Figure 1.2.2.

An×m = Un×n · Sn×m · V >m×m (1.2)

It is possible to reduce the n×m matrix S to have only c largest singular
values. Then, the reconstructed matrix is the closest rank-c approximation of
the initial matrix A, as it is shown in Equation 1.3 and Figure 1.2.3:

A∗n×m = Un×c · Sc×c · V >c×m (1.3)

We tune the number, c, of singular values (i.e., dimensions) with the objec-
tive to reveal the major trends. The tuning of c is determined by the informa-
tion percentage that is preserved compared to the original matrix. Therefore,
a c-dimensional space is created and each of the c dimensions corresponds

Matrix and Tensor Factorization with Applications 5

4 1 1 4

1 4 2 0

2 1 4 5

-0.61 0.28 -0.74

-0.29 -0.95 -0.12

-0.74 0.14 0.66

An×m Un×n

8.87 0 0 0

0 4.01 0 0

0 0 2.51 0

-0.47 -0.28 -0.47 -0.69

0.11 -0.85 -0.27 0.45

-0.71 -0.23 0.66 0.13

-0.52 0.39 -0.53 0.55

Sn×m V′m×m

FIGURE 1.2.2: Example of: An×m (initial matrix A), Un×m (left singular
vectors of A), Sn×m (singular values of A), V′m×m (right singular vectors of
A).

2.69 0.57 2.22 4.25
0.78 3.93 2.21 0.04

3.17 1.38 2.92 4.78

-0.61 0.28
-0.29 -0.95

-0.74 0.14

A∗n×i Un×c

8.87 0

0 4.01

-0.47 -0.28 -0.47 -0.69

0.11 -0.85 -0.27 0.45

Sc×c V′c×m

FIGURE 1.2.3: Example of: A∗n×m (approximation matrix of A), Un×c
(left singular vectors of A∗), Sc×c (singular values of A∗), V′c×m (right sin-
gular vectors of A∗).

to a distinctive rating trend. We have to notice that in the running example
we create a 2-dimensional space using 83,7% of the total information of the
matrix (12,88/15,39) 3.

1.2.2 Generating the Neighborhood of Users/Items

Having a reduced dimensional representation of the original space 4, we
form the neighborhoods of users/items in that space. In particular, there are

315,39 is the sum of elements in the main diagonal of Sc×c (singular values of A∗)
4The original space consists of two subspaces:

- range of (A) whose U (see Fig. 1.2.3) is an orthonormal basis. This vector space is the
column space of A referred to users.

6 Graph-Based Social Media Analysis

two subspaces: The first is the range of A, whose matrix Un×c is its orthonor-
mal basis. This vector space is the column space of A and refers to users. The
second is the range of AT , whose matrix Vm×c is its orthonormal basis. This
vector space is the row space of A and refers to items.

A user-based approach relies on the predicted value of a rating that a user
gives on an item Ij . This value is computed as an aggregation of the ratings of
the user’s neighborhood (i.e., similar users) on this particular item. Whereas,
an item-based approach takes under consideration only the user-item rating
matrix (e.g., a user rated a movie with a rate of 3).

For the user based approach, we find the k nearest neighbors of pseudo
user vector in the c-dimensional space. The similarities between training and
test users can be based on Cosine Similarity. First, we compute the matrix
Un×c · Sc×c and then we perform vector similarity among rows. This n × c
matrix is the c-dimensional representation for the n users.

For the item based approach, we find the k nearest neighbors of item
vector in the c-dimensional space. First, we compute the matrix Sc×c · V >c×m
and then we perform vector similarity among columns. This c ×m matrix is
the c-dimensional representation for the m items.

1.2.3 Generating the Recommendation List

The most often used technique for the generation of the top-N list of rec-
ommended items, is the one that counts the frequency of each item inside the
found neighborhood, and recommends the N most frequent ones. Henceforth,
this technique is denoted as Most-Frequent item recommendation (MF). Based
on MF, we sort (in descending order) the items according to their frequency
in the found neighbourhood of the target user, and recommend the first N of
them.

As another method, someone could use the predicted values for each item
to rank them. This ranking criterion, denoted as Highest Predicted Rated
item recommendation (HPR), is influenced by the the Mean Absolute Error
(MAE) between the predicted and the real preferences of a user for an item.
5. HPR opts for recommending the items that are more probable to receive a
higher rating. Notice that HPR presents poor performance for the classic CF
algorithms. However, it has very good results when it is used in combination
with SVD. The reason is that in the latter it is based only on the major trends
of users.

As another method, we can sum the positive rates of the items in the
neighborhood, instead of just counting their frequency. This method is denoted
as highest sum of rates item recommendation (HSR). The top-N list consists
of the N items with the highest sum. The intuition behind HSR is that it takes

- range of (A>) whose V (see Fig. 1.2.3) is an orthonormal basis. This vector space is the
row space of A referred to items.

5MAE = 1
n

∑n
i=1 |fi − yi| : The Mean Absolute Error (MAE) is the average of the

absolute errors ei = fi − yi, where fi is the prediction and yi the true value.

Matrix and Tensor Factorization with Applications 7

into account both the frequency (as MF) and the actual ratings, because it
wants to favor items that appear most frequently in the neighborhood and
have the best ratings. Assume, for example, an item Ij that has just a smaller
frequency than an item Ik. If Ij is rated much higher than Ik, then HSR will
prefer it from Ik, whereas MF will favor Ik.

1.2.4 Inserting a Test User in the c-dimensional Space

Related work [SKKR00] has studied SVD on CF considering the test data
as apriori known. It is evident that, for user-based approach, the test data
should be considered as unknown in the c-dimensional space. Thus a special-
ized insertion process should be used. Given the current ratings of the test
user u, we enter pseudo-user vector in the c-dimensional space using the fol-
lowing Equation 1.4 [FDD+88]. In the current example,we insert U4 into the
2-dimensional space, as it is shown in Figure 1.2.4:

unew = u · Vm×c · S−1c×c (1.4)

-0.23

-0.89

1

4

1
0

-0.47 0.11

-0.28 -0.85

-0.47 -0.27
-0.69 0.45

0.11 0

0 0.25

unew u Vm×c S−1c×c

FIGURE 1.2.4: Example of: unew (inserted new user vector), u (user vector),
Vm×c (two right singular vectors of V), S−1c×c (two singular values of inverse
S).

In Equation 1.4, unew denotes the mapped ratings of the test user u,
whereas Vm×c and S−1c×c are matrices derived from SVD. This unew vector
should be added in the end of the Un×c matrix which is shown in Figure 1.2.3.

Notice that the inserted vector values of test user U4 are very similar to
these of U2 after the insertion, as shown in Figure 1.2.5.

This is reasonable, because these two users have similar ratings as it is
shown in Figure 1.2.1 (a) and Figure 1.2.1 (b).

-0.61 0.28

-0.29 -0.95

-0.74 0.14

-0.23 -0.89

FIGURE 1.2.5: The new Un+1,c matrix containing the new user (unew) that
we have added.

8 Graph-Based Social Media Analysis

1.2.5 Other Factorization Methods

There are many methods on how to decompose a matrix in order to deal
with a high-dimensional data set. Principal-Component Analysis or simply
PCA is a data mining technique that replaces the high-dimensional original
data by its projection onto the most important axes. It’s a simple method,
which is based on eigenvalues and eigenvectors of a matrix and it’s quite
effective.

Another useful decomposition method is UV decomposition. UV is an
instance of SVD decomposition and its philosophy is that the original matrix
is actually the product of two long “thin” matrices, U and V . UV ’s most often
problem is overfitting. To address this problem, we can extend UV with L2
regularization, which is also known as Tikhonov regularization. That is, since
the basic idea of the UV decomposition is to minimize an element-wise loss on
the elements of the predicted/approximation matrix by optimizing the square
loss, we can extend it with L2 regularization terms. After the application of
a regularized optimization criterion the possible overfitting can be reduced.

Another widely known method in dimensionality reduction and data anal-
ysis is Non-Negative Matrix Factorization (NMF). The non-negative matrix
factorization (NMF), also known as non-negative matrix approximation, is a
group of algorithms in multivariate analysis and linear algebra where a matrix
A is factorized into (usually) two matrices U and V , with the property that
all three matrices have no negative elements. This non-negativity makes the
resulting matrices easier to inspect. Since the problem is not exactly solvable
in general, it is commonly approximated numerically [BBL+06].

Assume that ai,...,aN are N non-negative input vectors and we organize
them as the columns of non-negative data matrix A. Non-negative matrix fac-
torization seeks a small set of K non-negative representative vectors vi,...,vK
that can be non-negatively combine to approximate the input vectors ai.

A ≈ U × V (1.5)

and

ai ≈
K∑
k=1

uknvk, 1 ≤ n ≤ N (1.6)

where the combining coefficients ukn are restricted to be non-
negative.[DS05] There are several ways in which the U and V may be found.
The main equation we presented before (see Eq.:1.5) is the most popular
method to find U and V matrices.

Another method used for the decomposition of a matrix is the CUR
decomposition[MD09], which presents good properties over SVD in some
cases. As it is already described, SVD is able to reduce dimensions with-
out losing approximation accuracy. However, many times in high-dimensional
data sets, the produced SVD matrices are tend to be very dense, which makes
their process a big challenge. In contrast, CUR decomposition confronts this

Matrix and Tensor Factorization with Applications 9

problem as it decomposes the original matrix into two sparse matrices C, R
and only one dense matrix U , whose size is quite small and doesn’t affects
much the time complexity of the method. Another difference between SVD
and CUR decompositions, is that CUR gives an exact decomposition no mat-
ter how large is the rank of the original matrix, whereas in SVD the k largest
singular values shall be at least as great as the rank of the original matrix.

1.3 Higher Order Singular Value Decomposition (HOSVD)
on Tensors

HOSVD is a generalization of singular value decomposition and has been
successfully applied in several areas. In this section, we summarize the HOSVD
procedure, apply HOSVD for recommendations in Social Tagging Systems
(STSs), combine HOSVD with other methods and study the limitations of
HOSVD.

1.3.1 From SVD to HOSVD

Formally, a tensor is a multi-dimensional matrix. A N -order tensor A is
denoted as A ∈ RI1...IN , with elements ai1,...,iN . The high-order singular value
decomposition [LMV00] generalizes the SVD computation to tensors. To apply
HOSVD on a 3-order tensor A, three matrix unfolding6 operations are defined
as follows [LMV00]:

A1 ∈ RI1×(I2I3), A2 ∈ RI2×(I1I3), A3 ∈ R(I1I2)×I3 (1.1)

where A1, A2, A3 are called the mode-1, mode-2, mode-3 matrix unfolding
of A, respectively. The unfoldings of A in the three modes are illustrated in
Figure 1.3.6.

In the following, we will present an example of tensor decomposition
adopted from [LMV00]:

Example 1.3.1 Define a tensor A ∈ R3×2×3 by a1,1,1 = a1,1,2 = a2,1,1 =
−a2,1,2 = 1, a2,1,3 = a3,1,1 = a3,1,3 = a1,2,1 = a1,2,2 = a2,2,1 = −a2,2,2 =
2, a2,2,3 = a3,2,1 = a3,2,3 = 4, a1,1,3 = a3,1,2 = a1,2,3 = a3,2,2 = 0. The
tensor and its mode-1 matrix unfolding A1 ∈ RI1×I2I3 are illustrated in
Figure 1.3.7.

6We define as “matrix unfolding” of a given tensor the matrix representations of that
tensor in which all the column (row, . . .) vectors are stacked one after the other.

10 Graph-Based Social Media Analysis

FIGURE 1.3.6: Visualization of the three unfoldings of a 3-order tensor.

1 2

1 2

2 4

0

2 4

2 4

1

-1 -2

0 0

2

0

1 1 0 2 2 0
1 -1 2 2 -2 4
2 0 2 4 0 4

A1 =

FIGURE 1.3.7: Visualization of tensor A ∈ R3×2×3 and its mode-1 matrix
unfolding.

Next, we define the mode-n product of a N -order tensor A ∈ RI1×···×IN by
a matrix U ∈ RJn×In , which is denoted as A×n U . The result of the mode-n
product is an (I1 × I2 × · · · × In−1 × Jn × In+1 × · · · × IN)-tensor, the entries
of which are defined as follows:

Matrix and Tensor Factorization with Applications 11

(A×n U)i1i2...in−1jnin+1...iN =
∑
in

ai1i2...in−1inin+1...iNujn,in (1.2)

Since we focus on 3-order tensors, n ∈ {1, 2, 3}, we use mode-1, mode-2,
and mode-3 products.

In terms of mode-n products, SVD on a regular two-dimensional matrix
(i. e., 2-order tensor), can be rewritten as follows [LMV00]:

F = S ×1 U
(1) ×2 U

(2) (1.3)

where U (1) = (u
(1)
1 u

(1)
2 . . . u

(1)
I1

) is a unitary (I1 × I1)-matrix 7, U (2) =

(u
(2)
1 u

(2)
2 . . . u

(2)
I1

) is a unitary (I2 × I2)-matrix, and S is a (I1 × I2)-matrix
with the properties of:

i. pseudo-diagonality: S = diag(σ1, σ2, . . . , σmin{I1,I2})

ii. ordering: σ1 ≥ σ2 ≥ · · · ≥ σmin{I1,I2} ≥ 0.

By extending this form of SVD, HOSVD of a 3-order tensor A can be
written as follows [LMV00]:

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3) (1.4)

where U (1), U (2), U (3) contain the orthonormal vectors (called the mode-
1, mode-2 and mode-3 singular vectors, respectively) spanning the column
space of the A1, A2, A3 matrix unfoldings. S is called core tensor and has the
property of “all orthogonality”.8 This decomposition also refers to a general
factorization model known as Tucker decomposition [Tuc66].

In the following, we provide a solid description of the tensor reduction
method with an outline of the algorithm for the case of social tagging systems,
where we have three participatory entities (user, item, tag). In particular,
we provide details on how HOSVD is applied to tensors and how item/tag
recommendation is performed based on the detected latent associations.

The tensor reduction approach initially constructs a tensor, based on usage
data triplets {u, i, t} of users, item and tag. The motivation is to use all three
objects that interact inside a social tagging system. Consequently, we proceed
to the unfolding of A, where we build three new matrices. Then, we apply

7An n× n matrix U is said to be unitary if its column vectors form an orthonormal set
in the complex inner product space Cn. That is, UTU = In.

8All- orthogonality means that the different “horizontal matrices” of S (the first index
i1 is kept fixed, while the two other indices, i2 and i3, are free) are mutually orthogonal
with respect to the scalar product of matrices (i. e., the sum of the products of the corre-
sponding entries vanishes); at the same time, the different “frontal” matrices (i2 fixed) and
the different “vertical” matrices (i3 fixed) should be mutually orthogonal as well. For more
information, see [LMV00].

12 Graph-Based Social Media Analysis

SVD in each new matrix. Finally, we build the core tensor S and the resulting
tensor Â. The six steps of the HOSVD approach are summarized as follows:

• Step 1: The initial tensor A construction, which is based on usage data
triplets (user, item, tag).

• Step 2: The matrix unfoldings of tensor A, where we matricize the tensor
in all three modes, creating three new matrices (one for each mode). (see
eq: 1.1)

• Step 3: The application of SVD in all three new matrices, where we keep
the c-most important singular values for each matrix.

• Step 4: The construction of the core tensor S, that reduces the dimen-
sionality. (see eq: 1.3)

• Step 5: The construction of the Â tensor, that is an approximation of
tensor A. (see eq: 1.4)

• Step 6: Based on the weights of the elements of the reconstructed tensor
Â, we recommend item/tag to the target user u.

Steps 1 − 5 build a model and can be performed off-line. The recommen-
dation in Step 5 is performed on-line, i.e., each time we have to recommend a
item/tag to a user, based on the built model.

1.3.2 HOSVD for Recommendations in Social Tagging Sys-
tems (STSs)

In this subsection, we elaborate on how HOSVD can be employed for
computing recommendations in STS and present an example on how one can
recommend items according to the detected latent associations. Although we
illustrate only the recommendation of items, once the approximation Â is
computed the recommendation of users or tags is straightforward [SNM10].

The ternary relation of users, items and tags can be represented as a third-
order tensor A, such that tensor factorization techniques can be employed in
order to exploit the underlying latent semantic structure in A. While the
idea of computing low rank tensor approximations has already been used for
many different purposes [LMV00, SH05, KS08, WA08, CWZ07, SZL+05], just
recently it has been applied for the problem of recommendations in STS.
The basic idea is to cast the recommendation problem as a third-order tensor
completion problem — completing the non-observed entries in A.

Formally, a social tagging system is defined as a relational structure F :=
(U, I, T, Y) in which

• U , I, and T are disjoint non-empty finite sets, whose elements are called
users, items, and tags, respectively, and

Matrix and Tensor Factorization with Applications 13

• Y is the set of observed ternary relations between them, i. e., Y ⊆ U ×
I × T , whose elements are called tag assignments.

• A post corresponds to the set of tag assignments of a user for a given
item, i. e., a triple (u, i, Tu,i) with u ∈ U , i ∈ I, and a non-empty set
Tu,i := {t ∈ T | (u, i, t) ∈ Y }.

In the following we present several approaches for recommending in STS
based on tensor factorization.

Y which represents the ternary relation of users, items and tags can be
depicted by the binary tensor A = (au,i,t) ∈ R|U |×|I|×|T | where 1 indicates
observed tag assignments and 0 missing values, i. e.,

au,i,t :=

{
1, (u, i, t) ∈ Y
0, else

Now, we express the tensor decomposition as

Â := Ĉ ×u Û ×i Î ×t T̂ (1.5)

where Û , Î, and T̂ are low-rank feature matrices representing a mode (i. e.,
user, items, and tags, respectively) in terms of its small number of latent
dimensions kU , kI , kT , and Ĉ ∈ RkU×kI×kT is the core tensor representing
interactions between the latent factors. The model parameters to be optimized
are represented by the quadruple θ̂ := (Ĉ, Û , Î, T̂) (see Figure 1.3.8).

The basic idea of the HOSVD algorithm is to minimize an element-wise
loss on the elements of Â by optimizing the square loss, i. e.,

argmin
θ̂

∑
(u,i,t)∈Y

(âu,i,t − au,i,t)2

After the parameters are optimized, predictions can be done as follows:

â(u, i, t) :=

kU∑
ũ=1

kI∑
ĩ=1

kT∑
t̃=1

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i · t̂t,t̃ (1.6)

where Û = [ûu,ũ]u=1,...,U
ũ=1,...,kU

, Î = [̂ii,̃i]
i=1,...,I

ĩ=1,...,kI
, T̂ = [t̂t,t̃]

t=1,...,T

t̃=1,...,kT
and indices

over the feature dimension of a feature matrix are marked with a tilde, and
elements of a feature matrix are marked with a hat (e. g., t̂t,t̃).

Example 1.3.2 The HOSVD algorithm takes A as input and outputs the
reconstructed tensor Â. Â measures the strength of associations between
users, items, and tags. Each element of Â can be represented by a quadru-
plet {u, i, t, p}, where p measures the likeliness that user u will tag item i
with tag t. Therefore, items can be recommended to u according to their
weights associated with the {u, t} pair.

14 Graph-Based Social Media Analysis

I

T
T

kT

kT

kI

kU

Â Ĉ

T̂

Û

Î

U
kU

U

I

kI

=

FIGURE 1.3.8: Tensor decomposition in STS. Figure adapted
from [RMNST09].

In this subsection, in order to illustrate how HOSVD for item recommenda-
tion works, we apply HOSVD to a toy example. As illustrated in Figure 1.3.9,
three users tagged three different items (web links). In Figure 1.3.9, the part
of an arrow line (sequence of arrows with the same annotation) between a
user and an item represents that the user tagged the corresponding item, and
the part between an item and a tag indicates that the user tagged this item
with the corresponding tag. Thus, the annotated numbers on the arrow lines
gives the correspondence between the three types of objects. For example,
user u1 tagged item i1 with tag “BMW”, denoted as t1. The remaining tags
are “Jaguar”, denoted as t2, “CAT”, denoted as t3.

1 1,J2

2

33

4 4

u1

u2

u3

t1

t2

t3

i1

i2

i3

http://www.cars.com

http://www.automobiles.com

http://www.animals.com

BMW

CAT

JAGUAR

FIGURE 1.3.9: Usage data of the running example.

From Figure 1.3.9, we can see that users u1 and u2 have common interests
on cars, while user u3 is interested in cats. A 3-order tensor A ∈ R3×3×3,
can be constructed from the usage data. We use the co-occurrence frequency

Matrix and Tensor Factorization with Applications 15

(denoted as weights) of each triplet user, item, and tag as the elements of
tensor A, which are given in Table 1.3.1. Note that all associated weights are
initialized to 1. Figure 1.3.10 presents the tensor construction of our running
example.

TABLE 1.3.1: Associations of the running example.
Arrow Line User Item Tag Weight

1 u1 i1 t1 1
2 u2 i1 t1 1
3 u2 i2 t2 1
4 u3 i3 t3 1

users

items

tags

FIGURE 1.3.10: The tensor construction of our running example.

After performing the tensor reduction analysis, we can get the recon-
structed tensor of Â, which is presented in Table 1.3.2, whereas Figure 1.3.11
depicts the contents of Â graphically (the weights are omitted). As shown in
Table 1.3.2 and Figure 1.3.11, the output of the tensor reduction algorithm
for the running example is interesting, because a new association among these
objects is revealed. The new association is between u1, i2, and t2. This asso-
ciation is represented with the last (bold faced) row in Table 1.3.2 and with
the dashed arrow line in Figure 1.3.11).

If we have to recommend to u1 an item for tag t2, then there is no direct
indication for this task in the original tensor A. However, we see that in
Table 1.3.2 the element of Â associated with (u1, i2, r2) is 0.44, whereas for u1
there is no other element associating other tags with i2. Thus, we recommend
item i2 to user u1, who used tag t2. For the current example, the resulting Â
tensor is presented in Figure 1.3.12.

The resulting recommendation is reasonable, because u1 is interested in
cars rather than cats. That is, the tensor reduction approach is able to capture

16 Graph-Based Social Media Analysis

1 1,J2

2

33

4 4

u1

u2

u3

t1

t2

t3

i1

i2

i3

http://www.cars.com

http://www.automobiles.com

http://www.animals.com

BMW

CAT

JAGUAR 5

5

FIGURE 1.3.11: Illustration of the tensor reduction algorithm output for
the running example.

TABLE 1.3.2: Associatings derived on the running example.
Arrow Line User Item Tag Weight

1 u1 i1 t1 0.72
2 u2 i1 t1 1.17
3 u2 i2 t2 0.72
4 u3 i3 t3 1
5 u1 i2 t2 0.44

users

items

tags

FIGURE 1.3.12: The resulting Â tensor for the running example.

the latent associations among the multi-type data objects: user, items, and
tags. The associations can then be used to improve the item recommendation
procedure.

Matrix and Tensor Factorization with Applications 17

1.3.3 Handling the Sparsity Problem

Sparsity is a severe problem in 3-dimensional data, and it can affect the
outcome of SVD. To address this problem, instead of SVD we can apply
kernel-SVD [CSS06, CST04] in the three unfolded matrices. Kernel-SVD is
the application of SVD in the Kernel-defined feature space. Smoothing with
kernel SVD is also applied by Symeonidis et al. in [SNM10].

For each unfolding Ai (1 ≤ i ≤ 3) we have to non-linearly map its contents
to a higher dimensional space using a mapping function φ. Therefore, from
each Ai matrix we can derive an Fi matrix, where each element axy of Ai is
mapped to the corresponding element fxy of Fi, i.e., fxy = φ(axy). Next, we
can apply SVD and decompose each Fi as follows:

Fi = U (i)S(i)(V (i))T (1.7)

The resulting U (i) matrices are then used to construct the core tensor.
Nevertheless, to avoid the explicit computation of Fi, all computations

must be done in the form of inner products. In particular, as we are interested
to compute only the matrices with the left-singular vectors, for each mode i
we can define a matrix Bi as follows:

Bi = FiF
T
i (1.8)

As Bi is computed using inner products from Fi, we can substitute the com-
putation of inner products with the results of a kernel function. This technique
is called the “kernel trick” [CST04] and avoids the explicit (and expensive)
computation of Fi. As each U (i) and V (i) are orthogonal and each S(i) is
diagonal, it easily follows from Equations 1.7 and 1.8 that:

Bi = (U (i)S(i)(V (i))T)(U (i)S(i)(V (i))T)T = U (i)(S(i))2(V (i))T (1.9)

Therefore, each required U (i) matrix can be computed by diagonalizing each
Bi matrix (which is square) and taking its eigen-vectors.

Regarding the kernel function, in our experiments we use the Gaussian

kernel K(x, y) = e−
||x−y||2

c , which is commonly used in many applications of
kernel SVD. As Gaussian Kernel parameter c, we use the estimate for standard
deviation in each matrix unfolding.

1.3.4 Inserting new users, tags, or items

As new users, tags, or items are being introduced to the system, the
tensor Â, which provides the recommendations, has to be updated. The
most demanding operation is the updating of the SVD of the correspond-
ing mode in Equations 1.7 & 1.9. As we would like to avoid the costly batch
recomputation of the corresponding SVD, we can consider incremental so-
lutions [SKR02, Bur02]. Depending on the size of the update (i.e., number

18 Graph-Based Social Media Analysis

of new users, tags, or items), different techniques have been followed in re-
lated research. For small update sizes we can consider the folding-in tech-
nique [FDD+88, SKR02], whereas for larger update sizes we can consider
Incremental SVD techniques [Bur02]. Both techniques are described next
[SNM10].

1.3.4.1 Update by folding-in

Given a new user, we first compute the new 1-mode matrix unfolding A1.
It is easy to see that the entries of the new user result to the appending of
new row in A1. This is exemplified in Figure 1.3.13. Figure 1.3.13a shows the
insertion of a new user in the tensor of the current example (the new values
are presented with red color). Notice that to ease the presentation, the new
user’s tags and items are identical with those of user U2.

1 0

1 0

0 0

0

0 0

0 0

0 0

0 1

0 0

0

0

0

0

0

0

0

0

0

1

1 0 0

0 1 0

0 0 0

(a)

 1 0 0 0 0 0 0 0 0

A1 = 1 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0

(b)

FIGURE 1.3.13: Example of folding in a new user: a) the insertion of a new
user in the tensor, b) the new 1-mode unfolded matrix A1.

Let u denote the new row that is appended to A1. Figure 1.3.13b presents
the new A1, i.e., the 1-mode unfolded matrix, where it is shown that the
contents of u (highlighted with red color) have been appended as a new row
in the end of A1.

Since A1 changed, we have to compute its SVD, as given by Equation 5.

To avoid batch SVD recomputation, we can use the existing basis U
(1)
c1 of left

singular vectors, to project the u row onto the the reduced c1-dimensional

Matrix and Tensor Factorization with Applications 19

space of users in the A1 matrix. This projection is called folding-in and is
computed by using the following Equation 1.10 [FDD+88]:

unew = u · V (1)
c1 · (S

(1)
c1)−1 (1.10)

In Equation 1.10, unew denotes the mapped row, which will be appended

to U
(1)
c1 , whereas V

(1)
c1 and (S

(1)
c1)−1 are the dimensionally reduced matrixes

derived when SVD was originally applied to A1, i.e., before the insertion of
the new user. In the current example, the computation of unew is described
in Figure 1.2.4.

-0.85 0

unew

= 1 0 0 0 1 0 0 0 0

u

×

×

-0.85 0

0 0

0 0

0 0

-0.53 0

0 0

0 0

0 0

0 1

V
(1)
c1

× 0.62 0

0 1

(S
(1)
c1)−1

FIGURE 1.3.14: The result of folding-in for the current example.

The unew vector should be appended in the end of the U
(1)
c1 matrix. For

the current example, appending should be done to the previously U
(1)
c1 matrix.

Notice that in the example, unew is identical with the second column of the

transpose of U
(1)
c1 . The reason is that the new user has identical tags and

items with user U2 and we mapped them on the same space (recall that the
folding-in technique maintains the same space computed originally by SVD).

Finally, to update the tensor Â, we have to perform the products given in
Equation 1.7. Notice that only U (1)c1 has been modified in this equation. Thus,
to optimize the insertion of new users, as mode products are interchangeable,

we can perform this product as
[
S ×2 U

(2)
c2 ×3 U

(3)
c3

]
×1 U

(1)
c1 , where the left

factor (inside the brackets), which is unchanged, can be pre-stored so as to
avoid its recomputation. For the current example, the resulting Â tensor is
shown in Figure 1.3.15.

20 Graph-Based Social Media Analysis

0.72
0

1.17
0

0 0

0

0 0

0 0

0 0.44

0
0.72

0 0

0

0

0

0

0

0

0

0

0

 1

0

0

0 0 0

1.17 0

0.72 0

FIGURE 1.3.15: The resulting Â tensor of the running example after the
insertion of the new user.

Analogous insertion procedure can be followed for the insertion of a new
item or tag. For a new item insertion, we have to apply Equation 1.10 on the 2-
mode matrix unfolding of tensorA, while for a new tag we apply Equation 1.10
on the 3-mode matrix unfolding of tensor A.

1.3.4.2 Update by Incremental SVD

Folding-in incrementally updates SVD but the resulting model is not a
perfect SVD model, because the space is not orthogonal [SKR02]. When the
update size is not big, loss of orthogonality may not be a severe problem in
practice. Nevertheless, for larger update sizes the loss of orthogonality may
result to an inaccurate SVD model. In this case we need to incrementally
update SVD so as to ensure orthogonality. This can be attained in several
ways. Next we describe the approach proposed by Brand [Bur02].

Let Mp×q be a matrix, upon we which apply SVD and maintain the first
r singular values, i.e.,

Mp×q = Up×rSr×rV
T
r×q (1.11)

Assume that each column of matrix Cp×c contains the additional elements.
Let L = U\C = UTC be the projection of C onto the orthogonal basis of U .
Let also H = (I − UUT)C = C − UL be the component of C orthogonal to
the subspace spanned by U (I is the identity matrix). Finally, let J be an
orthogonal basis of H and let K = J\H = JTH be the projection of C onto
the subspace orthogonal to U . Consider the following identity:

[U J]

[
S L
0 K

] [
V 0
0 I

]T
=
[
U(I − UUT)C/K

] [S UTC
0 K

] [
V 0
0 I

]T
=
[
USV T C

]
= [M C]

Like an SVD, the left and right matrixes in the product are unitary and
orthogonal. The middle matrix, denoted as Q, is diagonal. To incrementally
update the SVD, Q must be diagonalized. If we apply SVD on Q we get:

Matrix and Tensor Factorization with Applications 21

Q = U ′S′(V ′)T (1.12)

Additionally, define U ′′, S′′, V ′′ as follows:

U ′′ = [U J]U ′, S′′ = S′, V ′′ =

[
V 0
0 I

]
V ′ (1.13)

Then, the updated SVD of matrix [M C] is:

[M C] = [USV T C] = U ′′S′′(V ′′)T (1.14)

This incremental update procedure takes O((p+ q)r2 + pc2) time.
Returning to the application of incremental update for new users, items,

or tags, as described in Section 1.3.4.1, in each case we result with a number
of new rows that are appended in the end of the unfolded matrix of the
corresponding mode. Therefore, we need an incremental SVD procedure in
the case where we add new rows, whereas the aforementioned method works
in the case where we add new columns. In this case we simply swap U for V
and U ′′ for V ′′.

1.3.5 Other Scalable Factorization Models

The HOSVD approach has two important drawbacks:

Modeling: The runtime complexity is cubic in the size of the latent di-
mensions. This can be seen in Equation 1.6, where three nested sums
have to be calculated just for predicting a single (user, item, tag)-
triple. There are several approaches to improve the efficiency of HOSVD
[KS08, Tur07, DM07].

Learning: HOSVD is optimized for least-squares on the whole tensor A.
However, recommendation is a ranking task not a regression task and
also the non-observed posts are not taken into account by HOSVD.

We will study both issues next.
The limitation in runtime of HOSVD stems from its model which is the

Tucker Decomposition. In the following, we will discuss a second factorization
model (i.e., PARAFAC) that has been proposed for tag recommendation. We
investigate its model assumptions, complexity and its relation with HOSVD.

The underlying tensor factorization model of HOSVD is the Tucker Decom-
position (TD) [Tuc66]. As noted before, for tag recommendation, the model
reads:

Â := Ĉ ×u Û ×i Î ×t T̂ (1.15)

The reason for the cubic complexity (i. e., O(k3) with k := min(kU , kI , kT))
of TD is the core tensor.

22 Graph-Based Social Media Analysis

T̂Û ÎĈ xU xI xT

(a) TD

T̂Û ÎxU xI xT
0

0
0

0

0

1
1

(b) PARAFAC

FIGURE 1.3.16: Relationship between Tucker Decomposition and Parallel
Factor Analysis (PARAFAC).

The Parallel Factor Analysis (PARAFAC) [Har70] model aka canonical
decomposition [CC70] reduces the complexity of the TD model by assuming
a diagonal core tensor.

cũ,̃i,t̃
!
=

{
1, if ũ = ĩ = t̃

0, else
(1.16)

which allows to rewrite the model equation:

âu,i,t =

k∑
f=1

ûu,f · îi,f · t̂t,f (1.17)

In contrast to TD, the model equation of PARAFAC can be computed in
O(k). In total, the model parameters θ̂ of the PARAFAC model are:

Û ∈ R|U |×k, Î ∈ R|I|×k, T̂ ∈ R|T |×k (1.18)

The assumption of a diagonal core tensor is a restriction of the TD model.
A graphical representation of Tucker Decomposition (TD) and Parallel

Factor Analysis (PARAFAC) shown in Figure 1.3.16. It can be seen that any
PARAFAC model can be expressed by a TD model (with diagonal core tensor).

Let M be the set of models that can be represented by a model class. In
[Ren10] it is shown that for tag recommendation

MTD ⊃MPARAFAC (1.19)

This means that any PARAFAC model can be expressed with a TD model but
there are TD models that cannot be represented with a PARAFAC model. In
[RST10, Ren10] it was pointed out that this does not mean that TD is guar-
anteed to have a higher prediction quality than PARAFAC. On the contrary,
as all model parameters are estimated from limited data, restricting the ex-
pressiveness of a model can lead to higher prediction quality if the restriction
is in line with the true parameters.

Matrix and Tensor Factorization with Applications 23

1.4 A Real Geo-Social System based on HOSVD

This section presents a real-world recommender system for Location-Based
Social Networks (LBSNs)9. GeoSocialRec allows to test, evaluate and com-
pare different recommendation styles in an online setting, where the users of
GeoSocialRec actually receive recommendations during their check-in process.

The GeoSocialRec recommender system consists of several components.
The system’s architecture is illustrated in Figure 1.4.17, where three main
sub-systems are described: (i) the Web Site, (ii) the Database Profiles and
(iii) the Recommendation Engine. In the following sections, we describe each
sub-system of GeoSocialRec in detail.

FIGURE 1.4.17: Components of the Geo-social recommender system.

9“A LSBN does not only mean adding a location to an existing social network so that
people in the social structure can share location-embedded information, but also consists
of new social structure made up of individuals connected by the interdependency derived
from their locations in the physical world as well as their location-tagged media content,
such as photos, videos and texts”, Microsoft Research: Location-Based Social Networks,
www.research.microsoft.com

24 Graph-Based Social Media Analysis

1.4.1 GeoSocialRec Web Site

The GeoSocialRec system uses a web site 10 to interact with the users.
The web site consists of four subsystems: (i) the friend recommendation, (ii)
the location recommendation, (iii) the activity recommendation, and (iv) the
check-in subsystem. The friend recommendation subsystem is responsible for
evaluating incoming data from the Recommendation Engine of GeoSocialRec
and providing updated friend recommendations. We provide friend, location
and activity recommendations, where new and updated location and activity
recommendations are presented to the user as new check-ins are stored in the
Database profiles. Finally, the check-in subsystem is responsible for passing
the data inserted by the users to the respective Database profiles.

FIGURE 1.4.18: Friend recommendations provided by the GeoSocialRec
system.

Figure 1.4.18 presents a scenario where the GeoSocialRec system recom-
mends four possible friends to user Panagiotis Symeonidis. As shown, the first
table recommends Anastasia Kalou and Ioanna Kontaki, who are connected
to him with 2-hop paths. The results are ordered based on the second to

10http://delab.csd.auth.gr/geosocialrec

Matrix and Tensor Factorization with Applications 25

last column of the table, which indicates the number of common friends that
the target user shares with each possible friend. As shown in Figure 1.4.18,
Anastasia Kalou is the top recommendation because she shares 3 common
friends with the target user. The common friends are then presented in the
last column of the table. The second table contains two users, namely Mano-
lis Daskalakis and George Tsalikidis, who are connected to the target user
via 3-hop paths. The last column of the second table indicates the number
of found paths that connect the target user with the recommended friends.
Manolis Daskalakis is now the top recommendation, because he is connected
to Panagiotis Symeonidis via three 3-hop paths. It is obvious that the second
explanation style is more analytical and detailed, since users can see, in a
transparent way, the paths that connect them with the recommended friends.

Figure 1.4.19a shows a location recommendation, while Figure 1.4.19b de-
picts an activity recommendation. As shown in Figure 1.4.19a, the target user
can provide to the system the activity she wants to do and the place she is (i.e.
Bar in Athens). Then, the system provides a map with bar places (i.e. place
A, place B, place C, etc.) along with a table, where these places are ranked
based on the number of users’ check-ins and their average rating. As shown
in Figure 1.4.19a, the top recommended Bar is Mojo (i.e. place A), which is
visited 3 times (from the target user’s friends) and is rated highly (i.e. 5 stars).
Regarding the activity recommendation, as shown in Figure 1.4.19b, the user
selects a nearby city (i.e. Thessaloniki) and the system provides activities that
she could perform. In this case, the top recommended activity is sightseeing
the White Tower of Thessaloniki, because it is visited 14 times and has an
average rating of 4.36.

1.4.2 GeoSocialRec Database and Recommendation Engine

The database that supports the GeoSocialRec system is a MySQL(v.5.5.8) 11

database. MySQL is an established Database Management System (DBMS),
which is widely used in on-line, dynamic, database driven websites.

The database profile sub-system contains five profiles where data about
the users, locations, activities and their corresponding ratings are stored. As
shown in Figure 1.4.17, this data are received by the Check-In profile and along
with the Friendship profile, they provide the input for the Recommendation
Engine sub-system. Each table field represents the respective data that is
collected by the Check-In profile. User-id, Location-id and Activity-id refer to
specific ids given to users, locations and activities respectively.

The recommendation engine is responsible for collecting the data from the
database and producing the recommendations, which will then be displayed
on the web site. As shown in Figure 1.4.17, the recommendation engine con-
structs a friends similarity matrix based on FriendLink [APM11] algorithm.
The average geographical distances (in kilometres) between users’ check-ins

11http://www.mysql.com

26 Graph-Based Social Media Analysis

(a)

(b)

FIGURE 1.4.19: Location and activity recommendations made by the Geo-
social recommender system.

are used as link weights. To obtain the weights, we calculate the average
distance between all pairs of Points Of Interests (POIs) that two users have
checked-in. The recommendation engine also produces a dynamically analyzed
3-order tensor, which is firstly constructed by the HOSVD algorithm and is

Matrix and Tensor Factorization with Applications 27

then updated using incremental methods [Bra02, SKKR02], both of which are
explained previously in Sections 1.2.4 and 1.3.4, respectively.

1.4.3 Experiments

In this section, we study the performance of FriendLink [APM11] algorithm
and HOSVD method in terms of friend, location and activity recommenda-
tions. To evaluate the aforementioned recommendations we have chosen two
real data sets. The first one, denoted as GeoSocialRec data set, is extracted
from the GeoSocialRec site 12. It consists of 102 users, 46 locations and 18
activities. The second data set, denoted as UCLAF [ZCZ+10], consists of
164 users, 168 locations and 5 different types of activities, including “Food
and Drink”, “Shopping”, “Movies and Shows”, “Sports and Exercise”, and
“Tourism and Amusement”.

The numbers c1, c2, and c3 of left singular vectors of matrices U (1), U (2),
U (3) for HOSVD, after appropriate tuning, are set to 25, 12 and 8 for the
GeoSocialRec dataset, and to 40, 35, 5 for the UCLAF data set. Due to lack
of space we do not present experiments for the tuning of c1, c2, and c3 param-
eters. The core tensor dimensions are fixed, based on the aforementioned c1,
c2, and c3 values.

We perform 4-fold cross validation and the default size of the training set
is 75% (we pick, for each user, 75% of his check-ins and friends randomly).
The task of all three recommendation types (i.e. friend, location, activity) is
to predict the friends/locations/activities of the user’s 25% remaining check-
ins and friends, respectively. As performance measures we use precision and
recall, which are standard in such scenarios. For a test user that receives a list
of N recommended friends/locations/activities

Next, we study the accuracy performance of HOSVD in terms of precision
and recall. This reveals the robustness of HOSVD in attaining high recall with
minimal losses in terms of precision. We examine the top-N ranked list, which
is recommended to a test user, starting from the top friend/location/activity.
In this situation, the recall and precision vary as we proceed with the exam-
ination of the top-N list. In Figure 1.4.20, we plot a precision versus recall
curve.

As it can be seen, the HOSVD approach presents high accuracy. The reason
is that we exploit altogether the information that concerns the three entities
(friends, locations, and activities) and thus, we are able to provide accurate
location/activity recommendations. Notice that activity recommendations are
more accurate than location recommendations. A possible explanation could
be the fact that the number of locations is bigger than the number of activities.
That is, it is easier to predict accurately an activity than a location. Notice
that for the task of friend recommendation, the performance of Friendlink is
not so high. The main reason is data sparsity. In particular, the friendship

12http://delab.csd.auth.gr/\∼symeon

28 Graph-Based Social Media Analysis

FIGURE 1.4.20: Precision-recall diagram of HOSVD and FriendLink for
activity, location and friend recommendations on the GeoSocialRec data set.

network has average nodes’ degree equal to 2.7 and average shortest distance
between nodes 4.7, which means that the friendship network can not be con-
sider as a “small world” network and friend recommendations can not be so
accurate.

For the UCLAF data set, as shown in Figure 1.4.21, the HOSVD algorithm
attains analogous results. Notice that the recall for the activity recommenda-
tions, reaches 100% because the total number of activities is 5. Moreover,
notice that in this diagram, we do not present results for the friend recom-
mendation task, since there is no friendship network in the corresponding
UCLAF data set.

FIGURE 1.4.21: Precision-recall diagram of HOSVD for activity and loca-
tion recommendations on the UCLAF data set.

Matrix and Tensor Factorization with Applications 29

1.5 Conclusion

In this chapter, we described matrix and tensor factorization techniques in
recommender systems and social tagging systems, respectively. In addition, we
presented a real-world recommender system for location-based social networks,
which employs tensor decomposition techniques. As shown, matrix and tensor
decompositions are suitable for scenarios in which the data is extremely large,
very sparse, and too noisy, since the reduced representation of the data can
be interpreted as a de-noisified approximation of the “true” data.

Bibliography

[APM11] P. S. A. Papadimitriou and Y. Manolopoulos. Friendlink: Link
prediction in social networks via bounded local path traversal. In
In Proceedings of the 3rd Conference on Computational Aspects
of Social Networks (CASON’2011), 2011.

[BBL+06] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and
R. J. Plemmons. Algorithms and applications for approximate
nonnegative matrix factorization. In Computational Statistics
and Data Analysis, pages 155–173, 2006.

[Bra02] M. Brand. Incremental singular value decomposition of uncer-
tain data with missing values. In Proceedings of the 7th Euro-
pean Conference on Computer Vision (ECCV), pages 707–720,
Copenhagen, Denmark, 2002.

[Bur02] R. Burke. Hybrid recommender systems: Survey and experi-
ments. User Modeling and User-Adapted Interaction, 12(4):331–
370, 2002.

[CC70] J. Carroll and J. Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of eckart-
young decomposition. Psychometrika, 35:283–319, 1970.

[CSS06] T. Chin, K. Schindler, and D. Suter. Incremental kernel svd for
face recognition with image sets. In In Proc. FGR Conf., pages
461–466, 2006.

[CST04] N. Cristianini and J. Shawe-Taylor. Kernel methods for pattern
analysis. Cambridge University Press, 2004.

[CWZ07] S. Chen, F. Wang, and C. Zhang. Simultaneous heterogeneous
data clustering based on higher order relationships. In Proceed-
ings of the Seventh IEEE International Conference on Data Min-
ing Workshops, ICDMW ’07, pages 387–392, Washington, DC,
USA, 2007. IEEE Computer Society.

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of
the American Society for Information Science, 41(6):391–407,
1990.

31

32 Bibliography

[DM07] P. Drineas and M. W. Mahoney. A randomized algorithm for a
tensor-based generalization of the svd. Linear Algebra and Its
Applications, 420(2–3):553–571, 2007.

[DS05] I. S. Dhillon and S. Sra. Generalized nonnegative matrix approx-
imations with bregman divergences. In In: Neural Information
Proc. Systems, pages 283–290, 2005.

[FDD+88] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer,
R. A. Harshman, L. A. Streeter, and K. E. Lochbaum. Infor-
mation retrieval using a singular value decomposition model of
latent semantic structure. In Proceedings of the 11th annual in-
ternational ACM SIGIR conference on Research and develop-
ment in information retrieval, SIGIR ’88, pages 465–480, New
York, NY, USA, 1988. ACM.

[Har70] R. Harshman. Foundations of the parafac procedure: models
and conditions for an ’exploratory’ multimodal factor analysis.
In UCLA Working Papers in Phonetics, pages 1–84, 1970.

[Kor08] Y. Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD ’08: Proceeding of the 14th
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 426–434. ACM, 2008.

[Kor09] Y. Koren. Collaborative filtering with temporal dynamics. In
KDD ’09: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages
447–456. ACM, 2009.

[KS08] T. G. Kolda and J. Sun. Scalable tensor decompositions for
multi-aspect data mining. In ICDM ’08: Proceedings of the 8th
IEEE International Conference on Data Mining, pages 363–372.
IEEE Computer Society, December 2008.

[LMV00] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear
singular value decomposition. SIAM Journal on Matrix Analysis
and Applications, 21(4):1253–1278, 2000.

[MD09] M. W. Mahoney and P. Drineas. Cur matrix decompositions for
improved data analysis. Proceedings of the National Academy of
Sciences, 106(3):697–702, 2009.

[Ren10] S. Rendle. Context-Aware Ranking with Factorization Models.
Springer Berlin Heidelberg, 1st edition, November 2010.

[RMNST09] S. Rendle, L. B. Marinho, A. Nanopoulos, and L. Schimdt-
Thieme. Learning optimal ranking with tensor factorization for
tag recommendation. In KDD ’09: Proceedings of the 15th ACM

Bibliography 33

SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 727–736. ACM, 2009.

[RST10] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor
factorization for personalized tag recommendation. In WSDM
’10: Proceedings of the Third ACM International Conference on
Web Search and Data Mining. ACM, 2010.

[SH05] A. Shashua and T. Hazan. Non-negative tensor factorization
with applications to statistics and computer vision. In ICML ’05:
Proceedings of the 22nd International Conference on Machine
Learning, pages 792–799. ACM, 2005.

[SKKR00] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of
dimensionality reduction in recommender system - a case study.
In Proceedings of the ACM SIGKDD Workshop on Web Mining
for E-Commerce - Challenges and Opportunities (WEBKDD),
Boston, MA, 2000.

[SKKR02] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental
singular value decomposition algorithms for highly scalable rec-
ommender systems. In Proceedings 5th International Conference
on Computer and Information Technology (ICCIT), pages 27–28,
Dhaka, Bangladesh, 2002.

[SKR02] B. Sarwar, J. Konstan, and J. Riedl. Incremental singular value
decomposition algorithms for highly scalable recommender sys-
tems. In International Conference on Computer and Information
Science, 2002.

[SM08] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In ICML ’08: Pro-
ceedings of the 25th International Conference on Machine Learn-
ing, pages 880–887. ACM, 2008.

[SNM10] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. A unified
framework for providing recommendations in social tagging sys-
tems based on ternary semantic analysis. IEEE Transactions on
Knowledge and Data Engineering, 22(2), 2010.

[SNPM06] P. Symeonidis, A. Nanopoulos, A. Papadopoulos, and
Y. Manolopoulos. Collaborative filtering based on users
trends. In Proceedings of the 30th Conference of the German
Classification Society (GfKl’2006), Berlin, 2006.

[Str06] G. Strang. Linear Algebra and Its Applications. Thomson
Brooks/Cole, 2006.

34 Bibliography

[Sym07] P. Symeonidis. Content-based dimensionality reduction for rec-
ommender systems. In Proceedings of the 31st Conference of the
German Classification Society (GfKl’2007), Freiburg, 2007.

[SZL+05] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a
novel approach to personalized web search. In Proceedings of the
14th international conference on World Wide Web, WWW ’05,
pages 382–390, New York, NY, USA, 2005. ACM.

[Tuc66] L. Tucker. Some mathematical notes on three-mode factor anal-
ysis. Psychometrika, pages 279–311, 1966.

[Tur07] P. Turney. Empirical evaluation of four tensor decomposition
algorithms. Technical Report (NRC/ERB-1152), 2007.

[WA08] H. Wang and N. Ahuja. A tensor approximation approach to
dimensionality reduction. Int. J. Comput. Vision, 76:217–229,
March 2008.

[ZCZ+10] V. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collabo-
rative filtering meets mobile recommendation: A user-centered
approach. In Proceedings of the 24th AAAI Conference on Arti-
ficial Intelligence (AAAI), pages 236–241, Atlanta, GA, 2010.

Index

K-way partitioning, 303
δ-regular hypergraph, 287
κ-uniform hypergraph, 278, 284

adjacency hypermatrix, 285
adjacency hypermatrix

H-eigenpair, 286
adjacency hypermatrix

Z-eigenpair, 287
degree hypermatrix, 287
Laplacian hypermatrix, 287
unsigned Laplacian

hypermatrix, 287

adjacency hypermatrix
for bibliometric data, 312

adjacency matrix, 283
agglomerative clustering, 67
algebraic connectivity, 56
alpha-centrality, 111
ALS, 45
Alternating Directions Method, 309
Alternating Least Squares, 45, 314
anchor tag, 100
anchor text, 100
Apache

Hadoop, 19
Spark, 20
Storm, 20

approximate isolation principle, 124
arbitrary hypergraphs, 279
attribute augmented graph, 455, 456
attributed graph, 28
authority matrix, 312

bag of words, 96, 418
basis images, 38
basis vectors, 38

Baum-Eagon inequality, 288
Baum-Eagon theorem, 279, 290
betweenness, 67, 108
BFS, 76
bibliometrics, 312
Big Data

ADMM, 353, 367
Association networks, 385
Cascades, 383
Centrality, 355
Closeness centrality, 359
Community identification, 373
Contagions, 383
Dictionary learning, 369
Endogenous factors, 385
Exogenous factors, 385
Graph anomaly detection, 363
Graph Laplacian matrix, 370
In-network processing, 365
ISTA, 389
Kernel K-means, 375
Local linear embedding, 355
MapReduce, 377
Mental map, 361
Missing data, 369
Multidimensional scaling, 355
Network-process prediction, 372
Nuclear norm, 364
Nyström method, 377
Online learning, 353
Random projections, 377
Random sampling, 377
Random sketching, 378
Randomized factorizations, 280
Robust kernel PCA, 380
Robust PCA, 364
Semi-supervised learning, 369

35

36 Index

SEMs, 385
Sketching and Validation, 378
SkeVa, 378
Sparse representation, 370
Spectral clustering, 374
Tomographic inference, 385

bilateral filters, 524
bipartite, 29
blind relevance feedback, 104
Bonacich centrality, 111
boolean retrieval model, 99
Breadth First Search, 76

CANDECOMP, 44
canonical decomposition, 44
Canonical Decomposition/Parallel

Factor Analysis, 314
centrality, 59, 106
centralization, 106
Cholesky decomposition, 35
Cholesky factorization, 35
Cholesky triangle, 35
circulant hypergraph, 287
Clique Percolation Method, 71
closeness, 107
cluster, 288

external criterion, 288
internal criterion, 288

clustering coefficient, 61
collapsed Gibbs sampling (CGS), 430
community detection, 59, 412
compact support, 514
complete graph, 28
Connected Iterative Scan, 72
content link clustering, 133
cosine similarity, 99
CPM, 71
cross entropy, 420
CUR approximation, 37

DAG, 20
DBMS architectures

adjacency matrix, 487
horizontal scaling, 482, 497
index-free adjacency, 487

path index, 488
structure index, 487

DCT, 68
dead ends, 113
degree centrality, 107
Depth First Search, 76
determinant, 33
DFS, 76
diffusion kernel, 30
digraph, 27
directed, 27
Directed Acyclic Graph, 20
directed links, 312
Dirichlet prior, 429
Discrete Cosine Transform, 68
divisive clustering, 67
dominant heavy link, 78
doubly semi-stochastic, 318
Dryad, 20
dual of hypergraph, 282

egonet, 80
eigendecomposition, 33, 55
eigenvalue, 33, 55

algebraic multiplicity, 55
eigenvalue decomposition, 514
eigenvector, 33, 55
eigenvector centrality, 110
EM algorithm, 419
Erdös-Rényi method, 61
Euclidean distance, 38
Evidence Lower BOund (ELBO), 430
expanded query, 101

feature matching, 317
Fiedler vector, 70
frequent subgraph mining, 76
frequent subtree mining, 76
Frobenius norm, 32, 420
FSM, 76
full rank, 32
fuzzy incidence matrix, 327

game-theoretic equilibrium, 278
Gamma function, 429

Index 37

Generalized Expectation
Maximization, 421

geo-location prediction, 322
GeoNames, 324
GFS, 19
Good-Turing estimate, 427
Google

File System, 19
Google matrix, 312
GPUs, 449
graph, 27

adjacency matrix, 295
cover time, 76
incidence matrix, 295
Laplacian, 295
normalized Laplacian, 295
scale-free, 61
unnormalized Laplacian, 295

graph anomaly detection, 59
Graph clustering, 455

Inc-Cluster algorithm, 455, 459
SA-Cluster algorithm, 455, 457

graph clustering, 58
graph cut, 66
graph database, 477

dynamic graph, 497
graph DBMS, 477
graph-enabled database, 477
native graph database, 477

graph databases
graph database schema, 483

graph Fourier transform, 515
graph matching, 58, 317
graph querying, 478

conjunctive query, 479
conjunctive regular path query,

480
regular path query, 480
similarity subgraph matching,

479
subgraph query, 479

graph spectrum, 55
graph-frequencies, 514
graph-signal, 512
Group Lasso regularization, 308

Hadamard product, 31, 315
Hadoop, 19

File System, 19
HDFS, 20
heat kernel, 30
heavy vicinity, 78
heavy-tailed distribution, 61
heterogeneous information network,

126
Higher Order SVD, 45
HITS, 115, 312
homogeneous polynomial, 279, 285
hub matrix, 312
hubs and authorities, 115
hyperedge, 281
hyperedge degree, 283
hyperedges, 30, 278
hypergraph, 30, 281

incidence matrix construction,
320, 322, 330

hypergraph adjacency matrix, 30
hypergraph anti-rank, 283
hypergraph clustering game, 288

payoff function, 288
evolutionary stable strategy, 289
expected payoff, 289
growth transformation, 290
Nash equilibrium, 289
players, 288
strategy profiles, 288

hypergraph Laplacian, 279, 301
hypergraph matching, 317
hypergraph normalized cut criterion,

279, 299
hypergraph rank, 283
hypergraph soft clustering, 304
hypergraph to graph transformation,

296
(Zhou) normalized hypergraph

Laplacian, 302
Bolla Laplacian, 299
clique expansion, 296
hyperedge expansion, 304
Rodriguez Laplacian, 299
star expansion, 297

38 Index

vertex expansion, 304
hyperlink structure, 311
hyperlinks, 94, 100
hypermatrices, 412, 438
hypermatrix, 278, 284
hypermatrix sketches, 338
hyperpath, 282

identity matrix, 29
idf, 97
image annotation, 329
image tagging, 322
implicit relevance feedback, 104
in links, 94
in-degree, 27
incidence matrix, 282
incidence vector/matrix, 435
incident to, 30
index terms, 99
indirect relevance feedback, 104
Infomap, 73
information centrality, 109
inverse document frequency, 97
inverse matrix, 33
inverted index, 96
invertible, 32
isolates, 27
Iterative Scan, 72

KASP algorithm, 449
Katz centrality, 111
Khatri-Rao product, 32, 315
Kronecker multiplication, 62
Kronecker product, 32, 315
Kullback-Leibler divergence, 38, 420

label propagation, 413, 454
Incremental LPA (ILPA), 454
Label Propagation Algorithm

(LPA), 454
labeled multigraph, 30
Lanczos/Arnoldi factorization

ARPACK, 451
Laplace-Beltrami operator, 295
Laplacian regularization, 371

Latent Dirichlet Allocation (LDA),
102, 123, 413, 428

Approximate Distributed LDA
(AD-LDA), 447

Async-LDA, 447
Dirichlet Compound

Multinomial LDA
(DCM-LDA), 447

incremental LDA, 432
mini-batch online VB-LDA, 432
MPI-PLDA, 448
o-LDA, 432
online LDA, 431
Online VB for LDA, 431
online VB-LDA, 432
PLDA, 448
PLDA+, 449

latent semantic analysis, 316
Latent Semantic Analysis (LSA),

412, 414
folding-in, 415
folding-up, 417
Incremental LSI (ILSI), 417
QR decomposition, 415
recomputing the SVD, 415
SVD updating, 415

Latent Semantic Indexing (LSI), 97,
102

Latent variable models, 414
least squares solution, 35
lexical ambiguity, 101
link analysis, 105
link farm, 124
link graph, 119
link spamming, 124
link-based topic affinity, 122
low-rank approximation, 334

MACH-HOSVD, 339
MapReduce, 446
Markov Chain Monte Carlo

(MCMC), 430
matricization, 42
matrix product, 31
matrix rank, 32

Index 39

maximum rank, 44
Message Passing Interface, 19
Message Passing Interface (MPI),

446
mixing rate, 76
mode, 40
Moore-Penrose pseudoinverse, 35
MPI, 19
multi-hypergraph, 281
multimedia social search, 277
multiplicative update rules, 39
multiset, 281
music recommendation, 319
music tagging, 319

natural vibration modes, 514
near clique, 78
near star, 78
NetClus, 131
network centralization, 109
NMF, 38
Non-negative Matrix Factorization,

38
Non-Negative Tensor Factorization,

46
non-singular, 32
normalized graph Laplacian, 434
normalized Laplacian, 434
NTF, 46
null space, 32
Nyström method, 337
Nyström approximation, 449

ObjectRank, 127
online clustering, 66
OOV word, 426
OpenMP, 446
orthogonal matrix, 34
out links, 94
out-degree, 27

PageRank, 111, 312
PageRank complexity, 114
PageRank damping factor, 114
PARAFAC, 44
PARAFAC decomposition, 452

PARPACK, 451
Partial Singular Value

Decomposition (PSVD),
414

personalization vector, 113, 121
pivotal, 425
point-clouds, 509
PopRank, 128
positive-definite matrix, 33
power law, 61
power method, 114
powerset, 281
preferential attachment, 62
prestige, 106
Principal Component Analysis

(PCA), 97, 438
Probabilistic Latent Semantic

Analysis, 329
Probabilistic Latent Semantic

Analysis (PLSA), 412, 418
incremental PLSA, 421
MAP PLSA, 422
on-line Probabilistic Latent

Semantic Analysis
(oPLSA), 424

PLSA folding-in, 420
Quasi-Bayes (QB) PLSA, 422

pseudo-relevance feedback, 104
pseudoinverse, 35

quadratic assignment problem, 73
query expansion, 101

random graph generation, 58
random projection, 450
random walk, 59
random walks on hypergraphs, 300
randomized algorithms, 334

structured random matrix, 337
subsampled random Fourier

transform, 337
range, 32
rank, 32, 110
rank deficient, 32
rank leaks, 113

40 Index

Rank Removal, 72
rank sinks, 113
rank-r decomposition, 43
RankClus, 129
ranking, 278
RASP algorithm, 449
RDDs, 20
recomendation systems, 59
recommendation, 308
recommender systems, 413
regular, 27
relevance feedback, 104
Resilient Distributed Datasets, 20

SALSA, 118
SCP, 72
Sequential Clique Percolation, 72
similarity measure, 29
SimRank, 119
Simulated Annealing, 68
singular, 33
Singular Value Decomposition, 33
singular value decomposition, 97
Singular Value Decomposition

(SVD), 412
singular vectors, 34
sink, 27
small world phenomenon, 61
social image search, 326
soft-thresholding operator, 309
source, 27
Spark, 20
sparsification, 449
spatial localization, 513
SPD, 35
spectral clustering, 412, 433

Efficient Spectral Clustering on
Graphs (ESCG), 450

Incremental Approximate
Spectral Clustering, 437

incremental spectral clustering,
434

Landmark-based spectral
clustering, 450

spectral hypergraph clustering, 279,
296

spectrum, 515
spider traps, 113
Spouts, 20
standard simplex, 289
statistical topic modeling, 123
status, 110
Storm, 20
Streaming Pattern Discovery in

Multiple Time-series
(SPIRIT) algorithm, 440

sub-arrays, 40
subgraph, 28, 282

induced, 28
suffix tree clustering, 133
SVD, 33
svd, 97
symmetric matrix, 28
symmetric normalized Laplacian, 434

teleportation, 113
tensor, 40, 284

fiber, 40
inner product, 41
inner product (over indices), 41
order, 40
rank, 43
rank-one, 43
simple, 43
slice, 40

tensor analysis
Dynamic Tensor Analysis

(DTA), 439
GIGATENSOR, 452
Incremental Tensor Analysis

(ITA), 439
Independent-Window Tensor

Analysis (IWTA), 443
Moving-Window Tensor

Analysis (MWTA), 443
Offline Tensor Analysis (OTA),

438
Streaming Tensor Analysis

(STA), 439

Index 41

Window-based Tensor Analysis
(WTA), 439

tensors, 412, 438
core tensors, 438
tensor sequences, 438
tensor streams, 438
tensor window, 442

term clustering, 102
term document matrix, 96
term frequency, 96
text-based topic affinity, 121
tf-idf weighting, 97
TKC effect, 118
topic drift, 118
topic sensitivity, 120
topic-sensitive PageRank, 121
total variation, 306
tourism recommendation, 329
tourist place of interest, 329
TrustRank, 124
tube, 40
Tucker decomposition, 45
TwitterRank, 122
two-colorable graphs, 516
typical rank, 44

undirected, 27
undirected links, 312
unfolding, 42
unified neighborhood random walk

distance matrix, 456
uniform hypergraph, 283
unnormalized graph Laplacian, 434
usage-based topic affinity, 122

Variational Bayesian Inference (VB),
430

variational inference, 430
vector outer product, 42
vector space model, 99
vertex, 281
vertex access time, 76
vertex degree, 283
vertex incident to a hyperedge, 282

Watts-Strogatz method, 62

weight matrix, 28
weight value, 28
weighted hypergraph, 283

