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Abstract

Motivated by the way R-trees are implemented in commercial databases systems, in this paper we examine
several deletion techniques for R-trees. In particular, in commercial systems R-tree entries are mapped onto
relational tables, which implement their own concurrency protocols on top of existing table-level concurrency
mechanisms. In analogy, the actual industrial implementations of B-trees do not apply the well-known merging
procedure from textbooks in case of node underflows, but rather they apply the free-at-empty technique. This way,
space is sacrificed for the benefit of faster deletions and less locking operations, whereas the search performance
practically remains unaffected. In this context, we examine the efficiency of modifications to the original R-tree
deletion algorithm, which relax certain constraints of this algorithm and perform a controlled reorganization
procedure according to a specified criterion. We present the modified algorithms and experimental results about
the impact of these modifications on the tree quality, the execution time for the deletion operation and the
processing time of search queries, considering several parameters. The experimental results indicate that the
modified algorithms improve the efficiency of the deletion operation, while they do not affect the quality of the
R-tree and its performance with respect to search operations.
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1. Introduction

Spatial databases are used for the representation, storage and processing of spatial objects
like points, lines or polygons in one, two or more dimensions. Spatial database systems
(SDBSs) find applications in geographical information systems (GIS), CAD or multimedia
databases, and VLSI design. Common tasks for which SDBSs are useful include urban
planning, resource management and geomarketing. SDBSs contain several types of
queries. Among the most common ones are the range query (find all spatial objects within
a given region), join query (find pairs of spatial objects that satisfy a given predicate) and
nearest-neighbor query (find the point that is closest to a given point).

Nowadays, the R-tree [4] is one of the most common spatial access methods (SAMs)
and has been implemented in several commercial databases (e.g., Oracle, Informix). It is a
height-balanced tree and can be considered as an extension of the BT-tree for
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Figure 1. An example of an R-tree.

multidimensional data. Each entry of an internal node contains a pointer to a subtree and
the minimum bounding rectangle (MBR) of this subtree (the MBR that encloses all the
MBRs appearing in the subtree). The leaf entries contain pointers to the actual spatial
objects (examined at the refinement step). Each R-tree node contains at least m and at most
M entries. Hence, minimum utilization can be specified. Unlike a B*-tree, several paths
from the root to the leaves may be examined during a search operation in an R-tree. Figure
1 depicts an example of an R-tree with M equal to four.

Several R-tree variations have been proposed during the previous years. A complete
survey can be found in Gaede and Guenther [5]. The R"-tree [18] guarantees that exactly
one path from the root to a leaf will be followed during a search, under the cost of
redundancy. The R*-tree [2] uses an enhanced split algorithm and the technique of forced
re-insertion. The Hilbert R-tree [8] stores the Hilbert values at the leaf level and ranges of
those values at the upper levels, to facilitate search operations. In a recent effort, the
structure of LR-trees [3] proposes an efficient decomposable R-tree variation, which
comprises of a number of smaller R-trees in a manner similar to binomial queues.

1.1. Motivation

The R-tree and several of its variations (especially the R*-tree) have been implemented in
prototype database systems. However, in implementations of commercial systems [6], [9],
[16], the R-tree is built on top of existing infrastructure suited for relational data, i.e.,
relational tables. Therefore, certain modifications have been carried out, dictated by the
specific context of these implementations. This approach can impact index-update
operations. One reason is that it implements its own concurrency protocols on top of
existing, table-level concurrency mechanisms [9].

What is required, to overcome the aforementioned problem, is the development of
alternative update methods, which will lead to improved execution times. For instance, in
the paradigm of B-tree indexes, their actual industrial implementations do not apply the
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well-known merging procedure from textbooks in case of node underflows, but rather they
apply the free-at-empty technique. According to the latter technique, underflowed nodes
are left without performing any merging until they eventually contain no entries, in which
case they are returned to the garbage collector (except for the root). This way, space is
sacrificed for the benefit of faster operations. The most important reason for coming up
with faster operations is that more efficient locking schemes can be used. Thus, both
deletions and searches are performed more efficiently.

As mentioned and induced from Ravada and Sharma [16], in this context the reinsertion
procedure may not comprise a wishful solution, due to the concurrency control operations
that are required in commercial database systems. Thus, here we present in detail some
variations of the original R-tree deletion algorithm [4] having in mind this specific context,
i.e., the actual implementation in commercial database systems. In this context, we
examine the efficiency of modifications to the original R-tree deletion algorithm, which
relax certain constraints of this algorithm and perform a controlled reorganization
procedure according to a specified criterion.

The importance of the deletion operation in spatial databases evidently depends on the
particular application. For instance, if the indexed objects correspond to landscape entities
(e.g., lakes), then deletions are uncommon. However, there exist several application
domains where spatial deletions occur more frequently. Object-relational DBMSs
(ORDBMSs) comprise one such emerging domain. ORDBMSs provide an extensible
architecture, which may involve tables with both relational and spatial attributes, where
the latter ones can be indexed with R-trees [6], [9]. In this case, deletions from a spatial
index can be the result of deleting records from a table according to its relational (i.e., non
spatial) attributes. Apparently, such deletions can occur quite frequently. Assume, for
instance, a large corporation that hires persons to work as agents with limited-time
contracts. Also, assume that the agents are geographically distributed around the country.
The corporate’s database can contain a table with the IDs of the agents, whereas their
spatial location (so as to be able to identify those that are, e.g., nearest to a given location)
could be indexed with an R-tree. When an agent stops working for the corporate, s/he has
to be deleted from the table. To keep the database consistent, the corresponding entry has
to be removed from the R-tree as well. As mentioned, this is an example where deletion is
not performed according to the spatial attribute (the deletion is done with the agent’s ID),
but it leads to a deletion from the spatial index. Nevertheless, one can also find several
applications where deletions yield directly from spatial attributes. For instance, in the
previous setting, the corporate may want to close a specific branches, thus a deletion can
be done for all agents within a region of, say, 100 miles from the location of the branch.

Moreover, deletions can result from update operations to existing entries. In general, the
update of the primary-key for an existing entry is handled with a combination of a deletion
and an insertion (i.e., delete the entry with the old key and insert an entry with the new
key). For spatial indexes, this corresponds to an update of the spatial coordinates of an
existing entry, a case that may occur frequently in several applications. Therefore, the
performance of the deletion operation can also affect the performance of the update
operation. For the case of updating existing entries in B-tree structures through a
combination of a deletion and an insertion, it has been found that the free-at-empty
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deletion method leads to low space utilization (39%) [7]. Therefore, in the case of spatial
indexes, it worths examining alternatives to the free-at-empty deletion method.

1.2.  Contribution and paper organization

The main contributions of this paper are the detailed examination of alternative deletion
algorithms and related reorganization procedures plus a thorough experimental study,
which assesses the impact of these approaches on the tree quality, the execution time for
the deletion operation and the processing time of search queries. The experimental results
indicate that the presented alternatives (i) improve the efficiency of the deletion operation,
(i1) do not affect the quality of the R-tree and its performance with respect to search
operations, for a mixed workload that contains a significant portion of deletion operations,
whereas (iii) the total required time is reduced significantly.

The rest of this paper is organized as follows. Section 2 presents related work and
Section 3 describes the alternative deletion algorithms and their complete algorithmic
description. The experimental results are reported in Section 4. Finally, Section 5 draws
the conclusions and future work.

2. Background and related work
2.1. Lazy and deferred methods

Several papers in the literature describe dynamic data structures (such as variations of B-
trees and dynamic hashing schemes), which are maintained by ‘‘lazy’’ algorithms.
Similarly, another used term is ‘‘deferred’’. Both these expressions mean that during the
execution of an operation, a specific constraint is relaxed and a certain action is postponed
for the future.

For example, imagine that after an insertion and an overflow, we do not split the leaf and
recursively all the nodes along the path to the root. This way, we hope that a subsequent
deletion of an entry residing in the same leaf will lead the structure to the previous
situation and absorb locally the side-effects without affecting the nodes along the path to
the root. The opposite strategy could be followed in case of a deletion, i.e., no merge after
an underflow, in anticipation of a future insertion.

The question is what should be done algorithmically instead of a node split or a merge of
two nodes. Under a lazy approach, in the case of insertion-overflow, it has been proposed
to apply other techniques, such as the use of elastic buckets, chaining or lazy parent split
[1], [11]-[13], [17], [19], [21]. In the context of the present paper where we examine the
case of deletions-underflows, we notice that, in general, three methods may be followed to
handle underflows [10]: merge-at-half, reinsertion and free-at-empty. The avoidance of
dynamic underflow handling excludes the use of re-insertion. Therefore, during a deletion
operation, only one path, i.e., from the root to the leaf that contains the deleted entry, will
be active. In the sequel, we examine such lazy approaches for deletions in R-trees.
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Algorithm Delete (R-tree node Root, entry e)

Find the leaf that includes e;

Remove ¢ from the leaf;

IF the leaf underflows THEN
Remove from the parent node the pointer to the leaf;
Adjust the upper levels up to the root;
Reinsert the orphaned entries;

Figure 2. Original R-tree deletion algorithm.

2.2. R-tree deletion

According to the original deletion algorithm [4], to delete an entry from an R-tree, the tree
is traversed, the appropriate leaf is located, and the specific entry is removed. Then, in case
the leaf remains with no less than m entries (the minimum allowed number of entries), the
leaf MBR is calculated and if it should be modified, then all the necessary modifications
are propagated up to the root. Alternatively, if the leaf underflows after the entry deletion
(i.e., contains less than m entries), then all its entries, called orphaned, are removed and the
leaf is deleted. In the sequel, the deletion procedure is applied recursively in the parent
node, in order to delete the corresponding entry of the leaf. Thus, there is a case where the
parent node (lying one level up) may also become underflowed. In this case, the previous
procedure is applied, too. When the recursion reaches the root, then all orphaned entries,
from all levels, are re-inserted. The R-tree deletion algorithm is illustrated in figure 2.
Therefore, a node underflow is handled as soon as it occurs and is treated dynamically
by deleting the node and reinserting its remaining entries. This guarantees the minimum
utilization (m) in each node but may require significant total execution time, since the
reinsertion is a high cost procedure. Hence, if a dataset is rather dynamic and deletions
occur quite frequently, then a significant portion of the total time for the R-tree
maintenance will be required for reinsertion. Moreover, the overall performance depends
on the type of workload. If the number of deletion queries is significant with respect to the
overall number of queries, then the total completion time may be impacted significantly.

2.3. Commercial implementations

The R-tree has been implemented in commercial database systems (Oracle, Informix,
Illustra, Post gress). In several cases the implementation is carried out on the top of
relational tables [6], [9]. This is done by adopting an extensible indexing framework,
which is illustrated in figure 3.! Data are stored in base tables, e.g., in an object-relational
table as shown in the figure. The spatial column of this table contains the spatial attributes,
from which MBRs are extracted and stored in the R-tree. The nodes of the R-tree
correspond to tuples of an index table (i.e., a relation dedicated for the R-tree), and their
entries are organized within these tuples. In addition, metadata for the R-tree (e.g., root
address, number of nodes, etc.) are stored as a row in a separate metadata table.
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In prototype research systems, efficient R-tree variations are usually implemented (the
R*-tree in particular). However, the re-insertion technique is not used neither during
insertion, nor during deletion [16]. Although re-insertion [2] is an enhancement over the
original insertion algorithm and can be considered as optional, the same does not apply for
the deletion algorithm because the underflow is handled only with re-insertion [4]. Thus,
the need again arises for alternative deletion algorithms.

It has been proposed that tree nodes should only be deleted in the course of a reorganize
operation.”? Following such a policy, underflow is not handled dynamically. Instead, when
a node underflows, it continues to remain underflowed. Periodically, a criterion is tested
and if it is fulfilled, a global reorganization is applied that eliminates all underflowed nodes
and re-inserts all the orphan entries.

Besides the issues regarding the implementation over existing infrastructure, the
representation of R-tree nodes as tuples within relations and the avoidance of dynamic
reorganization has the advantage of simplest concurrency control, which is an important
aspect in all commercial database systems. Effective concurrency control techniques have
been developed for traditional indexes, like the B -tree [15]. Similar approaches have
also been proposed for the R-tree, like the R'" -tree [14], but have not been implemented
yet in commercial or prototype systems. The difference from traditional indexes is that
during deletion (and insertion) several paths may be concurrently active, due to
reinsertion. For more information on concurrency issues in access methods, see Chapter 12
of Manolopoulos et al. [10].

Also, avoiding dynamic reorganization can significantly simplify the procedure of
recovery. For instance, in the Informix database, the R-tree secondary access method
creates its own logical records (logging) so as to recover from deletion operations from the
leaf nodes [6] (for deletions from internal nodes an extensible log manager is used).
Evidently, the design of a roll-back operation is much more complex when taking into
account the reinsertion of entries for almost every deletion, since this can yield to roll-
backs from numerous insertions.

Finally, consider the case of deletions that affect many rows. For example, assume that
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we delete a large number of records from a table that contains a spatial attribute indexed
with an R-tree, whereas the deletion is performed according to a non-spatial attribute (i.e.,
the where-clause of the deletion query does not involve the indexed spatial attribute).
Therefore, the corresponding entries have to be removed from the R-tree as well. In
commercial R-tree implementations (e.g., the R-tree secondary access method in Informix
DBMS), this case is handled by first searching each entry that will be deleted (the
searching values are the ones of the spatial attributes of the deleted rows), since there is no
other way to find them [6]. Hence, according to Informix Corp. [6], ‘‘a delete affecting
many rows may execute slowly due to the presence of an R-tree’’. If to this cost we add the
cost of dynamic reinsertions, then in some cases this operation may be rendered infeasible.
In contrast, by avoiding dynamic reinsertions, the cost of deleting multiple rows can be
kept at a logical level.

3. Lazy R-tree deletion methods

When a node underflows, the original R-tree deletion algorithm [4] forces the reinsertion
of its remaining entries. Underflow is determined by the minimum allowed number of
entries, m, which for the R*-tree is set to 40% of the maximum node capacity [2]. As
described, the reinsertion operation is costly and does not permit simple locking schemes
to be developed. To overcome the aforementioned problems, lazy deletion methods can be
applied. Their objective is to defer the costly operation of reinsertion, without degrading
performance.
Two general categories can be considered for lazy deletion methods:

Local. The methods in this category are restricted in each single node, trying to postpone
the reinsertion of its contents, when it underflows.

Global. The methods in this category have a global perspective, maintaining statistics for
the tree nodes, upon which they postpone the reinsertion of the contents of all
underflowed nodes.

The above categorization is general. According to the particular approaches that can be
followed for each category, different methods can be developed. In the following, we
focus on developing such specific methods for each category.

3.1. Local methods

The most direct way of deferring the reinsertion for a node with less than m entries, is to
allow it to have a number of entries, which is less than the prespecified value m. Therefore,
for the case of R *-tree for which m is 40% of the maximum capacity, the lower limit could
be set, e.g., to 30%, 20%, or even less.

For the special case where the lower limit is 0%, the operation of reinsertion is never
applied. Instead, a node is allowed to become empty, and after this, it is removed by
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deleting the respective entry from the parent node. It has to be noticed that the latter
procedure may need to be applied recursively, up to the root. This scheme has been also
applied to other structures, like the B-tree, and is called free-at-empty technique [7]
(henceforth, this technique is denoted as FE).

Evidently, by lowering the minimum allowed number of node contents, the average
node utilization is expected to decrease. This corresponds to an increase of space cost.
Also, the query performance can be influenced for the same reason. However, such local
methods opt to a small degradation of query performance and a significant improvement of
the deletion cost, due to the deferring of the costly reinsertion operation. The
aforementioned issues are examined experimentally in the following.

Besides the minimum allowed number of node entries, other criteria may be followed as
well. For instance, the reinsertion of an underflowed node’s entries can be postponed until
the dead space within the node is larger than a given threshold. We have developed several
such criteria, but their experimental evaluation did not show significant difference
compared to the criterion of lowering the minimum number of entries. However, the main
drawback of these criteria is that they cannot be tuned easily. Therefore, in the following,
we do not consider any further instantiations of lazy deletion methods besides that of
lowering the minimum allowed number of node entries.

3.2. Global methods

With global lazy deletion methods, unlike the original and local methods, underflowed
nodes are not treated independently. Instead, underflowed nodes (with less than m entries,
or possibly empty) remain intact in the tree. The contents of these nodes are collected and
reinserted altogether, during a global reorganization operation (the empty nodes are
simply removed from the tree).

The reorganization procedure is required to maintain the quality of the tree, since the
existence of underflowed nodes affects space overhead and query performance. Clearly,
there is a tradeoff between the frequency with which the reorganization procedure is
invoked (due to its significant time overhead) and the tree quality, which may decrease
substantially if reorganization is not performed. Therefore, what is required is criteria to
determine if (and when) reorganization should be applied. Such criteria are discussed in
the following.

Regarding the locking of nodes during the deletion of an entry, first the leaf that contains
the entry to be deleted, is located. At this step no locking is required. The entry is removed
from the leaf and the deletion propagates up the tree. Each time, the nodes are locked for
the update. To simplify further the locking scheme, a simple policy can be followed: when
possible, the corresponding MBR of ancestor nodes are not updated. Therefore, fewer
node updates are required, thus fewer node lockings are applied. Additionally, this policy
is expected to further reduce the cost of the deletion operation, without significantly
impacting query performance. The aforementioned policy is examined experimentally in
the sequel.
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3.2.1. Criteria for reorganization. A specified criterion should point out when
reorganization has to be applied. This decision has to be based on measures of tree
quality. Since we want the reorganization to be bound with the deletion operation, we
examine the reorganization criterion only after each deletion. However, the statistics that
the criterion will be based on are maintained and updated from other operations also (e.g.,
insertion).

In general, the tree quality can be measured according to space and time overhead that
the underflowed (or empty) nodes produce. For instance, reorganization can be applied
when:

e A substantial fraction of tree nodes are underflowed.

e A substantial fraction of tree nodes are ineffective. This is due to the fact that large
MBRs may be stored for nodes that contain few, scattered rectangles. Thus, the
selectivity of the tree is reduced significantly.

In the following, we focus on the first option, which we call global-reorganization
deletion method (henceforth, this method is denoted as GL). Therefore, a counter of the
underflowed nodes should be maintained. During a deletion, several nodes may become
underflowed, thus the counter should be increased by their number. Also, an insertion may
turn several nodes to stop being underflowed.

We have also examined several criteria for the second option. Example by measuring
the average node utilization, the dead space within nodes, or the spatial distribution of
node contents (i.e., their deviation from the center of their MBR). Therefore, we could
apply a reorganization when the aforementioned values exceed a specified threshold.
However, the experimental evaluation of these criteria did not show significant
improvement compared to the criterion that is based on the fraction of underflowed
nodes (first option), neither their tuning is easy.

3.2.2. GL method. In this section we describe the GL method in more detail, and give
the corresponding algorithm. Let U denote the number of underflowed nodes. After
deletion of an entry, if the fraction of U over the total number of nodes N, is equal or larger
than a maximum value max U, then a tree reorganization takes place. Table 1 summarizes
the parameters that play a role in the experimentation part.

Table 1. Parameters and explanation.

m Minimum number of entries in a node
M Maximum number of entries in a node
N Number of nodes

U Number of underflowed nodes

maxU Threshold ratio U/N

mm Ratio m/M

r Ratio of the number of deletes over the number of queries
w Size of the square window query
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For a deletion of an entry, first the leaf containing the entry is identified and then the
entry is removed from the leaf. If the node underflows, then U is increased by one.
Reinsertion of node entries is not applied, but, instead, the node continues to be
underflowed. Depending on the policy to (or not to) update the upper levels, when the
node’s MBR is shrunk, the respective adjustment is done (not done) in the parent node.
Regardless of this policy, no other node at the upper levels will become underflowed since
no other deletion takes place (as it would be the case if the underflowed node was
removed). Therefore, only leaves may underflow after a deletion. Since nodes remain
underflowed, there is a chance that a leaf becomes completely empty after a deletion;
however, even in this case, the node is not removed during the deletion operation.

U is increased only at the time that a node becomes underflowed, i.e., when a node with
exactly m entries remains with m — 1 entries after a deletion. Further deletions of entries
from an underflowed node do not increase U. In an analogous manner, U is decreased
when an insertion of a new entry takes place in a node that contains exactly m — 1 entries.
At this time the node stops being underflowed. This is the only required modification to the
insertion operation.

If after a deletion operation the fraction U/N is equal or larger than max U, then
reorganization is applied. A post order traversal of the tree is performed, i.e., the leaves are
examined first. Each underflowed leaf is removed from the tree and its orphaned entries are
collected in a list. Then, for each removed entry the corresponding entry in its parent node
is also removed, reducing U (and N as well) by one since the underflowed node does not
exist any more. If the parent becomes underflowed after this removal (i.e., it contained
exactly m entries before the removal), in its turn it is considered as underflowed and the
same procedure is applied for it. At the end of the reorganization, all the collected
orphaned entries are reinserted. This procedure is done with the same reinsertion
procedure that is used by the original R-tree deletion algorithm.

An example of the reorganization procedure is depicted in figure 4. The left part of the
figure illustrates an R-tree with M equal to 2 and m equal to 2. Also, it is assumed that
max U is equal to 0.5. If entry G is removed, then the middle leaf will become underflowed
(i.e., it will contain less than m entries). Currently, U is equal to 0.25, i.e., only one out of
four nodes in total is underflowed. Thus, G is removed but no reorganization takes place.
Then, if the J entry is deleted, the right-most leaf becomes underflowed. In this case U
becomes equal to 0.5 and, thus, reorganization is performed. The result of the
reorganization is depicted at the right part of figure 4. As illustrated, the orphaned entries
H and ] are inserted in the middle node, whereas the right-most leaf has been deleted along
with the corresponding entry, C, in the parent node.

[lE[F[ ] [c[a[ T[] [T [plefe[ | [mr] | |

Figure 4. Left: Before deletions of G and J; Right: After reorganization.
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Algorithm GL (Node Root, entry e) Procedure Reorganize
BEGIN BEGIN
Find the leaf that includes e; Find all nodes with less than m entries;
Remove e from the leaf; Remove these nodes from the tree;
IF the leaf underflows THEN Collect orphaned entries;
U=U+1,; Delete from parent nodes the pointers to the removed nodes;
IF the leaf MBR changes THEN Reinsert all the orphaned entries;
Depending on the policy, Update U and N values;
adjust the upper levels; END
IF % <maxU THEN Reorganize;
END

Figure 5. Left: GL algorithm. Right: The Reorganization procedure.

Now, we present the algorithmic description of the GL method, which is based on the
ideas discussed above. The left part of figure 5 illustrates the algorithm. As depicted, the
main difference in comparison to the original R-tree deletion algorithm (figure 2) is that
when a node underflows, only the U counter is updated and, depending on the policy about
updating upper-level nodes, adjustments of MBRs are propagated up to the root. The other
difference is in the last step of GL where, depending on U/N, a reorganization is
performed. Thus, this test implements the criterion for reorganization. The procedure for
reorganization is depicted in the right part of figure 5 and it is based on the description
made above.

4. Performance results

This section contains the experimental results on the performance of the described deletion
techniques. To evaluate their impact on the cost of deletion operation and query
performance, we examine workloads that consist of a mixture of such operations (i.e.,
range search queries and deletions). In the following, we first describe in more detail the
experimental setup, and next we give the experimental results.

4.1. Experimental setup

We have implemented all the examined deletion methods and the R-tree structure in
C+-+, under the Windows 2000 operating system.” Following the approach of Ravada and
Sharma [16], for fair comparison, we used the R*-tree variation but we used forced
reinsertion (for the insertion) only for the case of the original algorithm and local methods.
For GL, insertions are done without forced reinsertion.

For searching we use the range search query, since it is one of the most basic search
queries in spatial databases. The mixture of deletion and search queries is formed as
follows. First, all entries are inserted in the tree. Next, we perform a series of deletions and
range queries. We keep track of the ratio of the number of points that have been removed
divided by the number of points that have been searched. Both deletion and searching are
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done for square regions of size w. More precisely, a range search finds all points that reside
within a square of length w and a deletion removes all points that reside within a square of
length w. These squares are generated randomly within the data space. According to the
current value of the ratio, if it is smaller than a specified value, r, deletion is performed.
Otherwise, a range search is performed. Thus, r determines the formation of the workload
(the lower r is, the more the workload is dominated by search queries and less by
deletions). The whole procedure is repeated until the R-tree contains less than half of the
points that were initially inserted.

We have examined several real and synthetic data sets. Henceforth, for brevity, we
present results for the North-East data set,* which contains 123,593 points representing
postal addresses of three metropolitan areas (New York, Philadelphia and Boston), since
the other examined data sets gave no qualitative different results. The page size was set to
4K and the buffer size to 20% of the data set size. The main performance measure is the
total number of disk accesses, i.e., the number of disk accesses required for the completion
of the given workload. The reason that we examined this measure instead from the average
response time is that the deletion and searching queries in R-trees are I/O bounded, thus
the number of disk accesses safely characterizes query performance.’ Also, we wanted to
more clearly examine the impact of different deletion methods on the R-tree independently
from the particular implementation.

4.2. Results

4.2.1. Local method. Frst we examined the local deletion method. We varied the
lower threshold mm for the number of node contents, beyond which the node is considered
underflowed. We used a workload for which w was set to 0.05 and r was set to 0.1. The
results with respect to the aforementioned threshold mm (e.g., mm equal to 0.2 means 20%
of the node capacity) are depicted in figure 6(a). The total number of disk accesses
required for deletions and range queries are denoted separately. In this figure, the threshold
value 0.4 corresponds to the standard R*-tree [2], whereas the value 0 corresponds to the
FE technique.

180,000 0.7
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120,000 1
100,000 1
80,000 +
60,000 -
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20,000 17
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Figure 6. Local deletion method w.r.t. minimum underflow threshold. Left: number of disk accesses. Right:
average node utilization.
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As shown, the number of disk accesses (for the entire workload) for deletions is reduced
significantly with reduced threshold values. This is expected (see Section 3.1), since
reinsertion is applied less frequently. On the other hand, the number of disk accesses for
range queries (again for the entire workload) is increased slightly when reducing the
threshold value. This can be explained by the decrease in the average node utilization with
respect to reduced threshold values, which is illustrated in figure 6(b). Clearly, with a
reduction of node utilization, more nodes are probable to be fetched during a range query.
Nevertheless, considering the entire workload, the small increase in the number of disk
accesses due to range queries is by far compensated by the reduction in the number of disk
accesses due to deletions. Clearly, the total number of disk accesses, shown in Figure 6(a),
illustrate that the FE method (i.e., threshold value equal to 0) attains the best performance
for the given workload. For this reason, FE is henceforth the only local deletion method
that is examined in the following.

4.2.2. Tuning of the GL method. As described, for the GL (global) method we can
follow the policy of, when possible, not updating the MBRs of the upper-level nodes. This
leads to a reduced number of required locking operations, and also to a reduction in the
cost of deletions. Herein, we first examine this policy, compared to the case where update
is performed normally. We used a workload for which r was set to 0.1. The max U
parameter was set to 0.3. The total number of disk accesses (i.e., both for deletions and
range queries during the entire workload) are given in figure 7 with respect to query
window size w. In this figure, “‘w/0’” (‘‘w/’’) denotes the policy that performs deletions
without (with) updating the upper-level nodes.

Evidently, both cases lead to similar performance. This is explained as follows. Without
the updating of the upper-level nodes the query cost increases (due to the not updated
MBRs). However, this increase is compensated by the reduction in the cost of deletions
(due to less I/O for the node updating).® Therefore, in the following we use the policy of
not updating the upper-level nodes, since it does impact the overall performance and leads
to simpler locking schemes.

The value of maxU (the threshold for the number of underfilled nodes) is significant for
the tuning of GL, since it determines how frequently reorganization is applied. We
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Figure 7. Examination of the policy for GL method.
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Figure 8. GL method w.r.t. ratio of underflowed nodes threshold (maxU). Left: Number of disk accesses.
Right: Average node utilization.

measured its impact by using a workload for which w was set to 0.05 and r to 0.1. The
results are depicted in figure 8(a), where the total number of disk accesses for deletions and
range queries are denoted separately.

As shown, maxU equal to 0.1 leads to the maximum number of disk accesses for
deletion, since the reorganization is applied more often. However, it requires the minimum
number of disk accesses for range queries, due to better tree quality that is achieved. With
increasing maxU, the total number disk accesses for deletion is reducing, until when
maxU is equal to 0.3. On the other hand, the number of disk accesses for the range queries
increases slightly with increasing maxU. This is explained by figure 8(b), which shows the
average node utilization during the execution of the mixture of operations. As expected,
with increasing maxU, node utilization decreases, since more underflowed nodes occur
(i.e., reorganizations are applied less often). From the total number of disk accesses (for
the entire workload) shown in figure 8(a), it is illustrated that the best performance is
achieved when maxU is equal to 0.3, since this presents a medium ground between the cost
of more often reorganizations and retaining tree quality. For this reason, this value is used
henceforth in the following experiments.

4.2.3. Comparison of all methods. Finally, we compared FE (best local), GL (global)
and the original deletion algorithm that is used by the R*-tree. We used w equal to 0.05,
and we varied r to get different types of workloads. The results are depicted in figure 9. In
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Figure 9. Comparison of all methods. Left: Number of disk accesses for deletion. Right: Number of disk
accesses for range queries.
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Figure 10. Average node utilization for all compared methods.

particular, figure 9(a) shows the total number of disk accesses (for the entire workload)
required by deletions, whereas figure 9(b) those by range queries.

Evidently, the original deletion algorithm (denoted as R™) requires by far the most disk
accesses for deletions in all cases (with a slight increase with increasing r). FE requires the
least, but GL presents comparable performance to FE. On the other hand, as expected, the
original deletion algorithm presents the best query performance, whereas FE the worst,
being clearly outperformed by GL. FE results to more underflowed nodes that impact
query performance. This can also be explained by figure 10, which depicts the average
node utilization during the execution of the mixture of operations. As expected, FE has the
worst utilization and is outperformed by GL, whereas the original deletion algorithm
attains the best node utilization.

From the above, it can be induced that FE represents the one extreme point that reduces
the cost of deletions, by deferring as much as possible the reinsertions, leading however to
the worst query performance. The original deletion algorithm represents the other extreme
point that achieves the best query performance, but it requires the largest cost for deletions
due to the large number of reinsertions. Therefore, GL represents a medium ground
between these two points, trying to reduce the cost of deletions without severely impacting
query performance.

5. Conclusions

We have presented a performance evaluation of lazy R-tree deletion methods. Their
objective is the reduction of the cost required for the deletion operation by the original R-
tree deletion algorithm. They defer the costly operation of reinsertion for underflowed
nodes.

We have considered two categories of lazy deletion algorithms: (i) local, (ii) global. The
local methods are restricted in each single node, treating it independently from the others.
In contrast, global methods do not treat underflowed nodes independently and are based on
a reorganization procedure. Reorganization is applied according to specified criteria, that
are also discussed.
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The lazy methods and the original deletion algorithm are examined experimentally. We
used workloads consisting of range search queries and deletions. The results indicate that:

e The best local method is the free-at-empty, which allows for a node to have no entries
before it is removed.

e The performance of the policy of not propagating the updates to the upper-level nodes
for the global method, for mixed workloads, is as good as of the case of propagating
updates. Moreover, the former leads to simpler locking schemes.

e The global method represents a medium ground between the original deletion
algorithm and the FE method, trying to reduce the cost of deletions without severely
impacting query performance.

Future work may include the examination of other reorganization criteria and the
development of bulk-loading methods for the reinsertion of orphaned entries after the
reorganization procedure.

Notes

1. A similar figure was presented during the talk related to Ravada and Sharma [16] (it does not appear in the
published paper, however).

2. During the talk related to Ravada and Sharma [16].

3. Since the evaluation was not performed via a real-system, the locking behavior could not be analyzed
thoroughly.

4. Available at www.unipi.gr/ ~ ytheod

5. This is the reason why query optimization in R-trees is done according to the estimated number of disk
accesses [20].

6. It has to be noticed that the total number of disk accesses are reduced with increasing w because with larger w
more deletions take place at the same time, so the workload terminates more early. However, we are
interested in a comparative examination between the two methods, which is not affected by the
aforementioned issue.
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