Geolnformatica, 1:4, 369-392 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Nearest Neighbor Queries in
Shared-Nothing Environments

APQSTOLOS PAPADOPOULOS apapadop@athena.auth.gr

YANNIS MANOLOPOULOS manolopo@athena.auth.gr
Department of Informatics, Aristotle University, Thessaloniki, 54006 Greece

Received May 16, 1997; Revised May 16, 1997; Accepted August 6, 1997

Abstract

In this paper, we propose an efficient solution to the problem of nearest neighbor query processing in declus-
tered spatial databases. Recently a branch-and-bound nearest neighbor finding (BB-NNF) algorithm has been
designed to process nearest neighbor queries in R-trees. However, this algorithm is strictly serial (branch-and-
bound ariented) and its performance degrades, during processing of a nearest neighbor query, if applied to a parallel
environment, since it does not exploit any kind of parallelization. We develop an efficient query processing strategy
for parallel nearest neighbor finding (P-NNF), assuming a shared nothing multi-processor architecture, where the
processors communicate via a network. In our method, the relevant sites are activated simultaneously. In order
to achieve this goal, statistical information is used. The efficiency measure is the response time of a given query.
Experimental results, based on real-life and synthetic datasets, show that the proposed method outperforms the
branch-and-bound method by factors.

Keywords: spatial databascs, nearest neighbor search, distributed/parallel databases, R-trees, performance eval-
uation

1. Introduction

Spatial data management is an active area of research over the past ten years |29, 20, 13].
Research interests focused mainly on the design of robust and efficient spatial data structures
[14,15, 12,2, 18], the invention of new spatial data models [20], the construction of effective
query languages for spatial data support [7] and the query processing and optimization of
spatial queries [23, 1, 4].

Although nearest neighbor queries are very frequent, research on R-trees has been focused
mainly on range queries [24, 17, 10] and spatial join queries [4, 22, 3]. Recently a branch-
and-bound algorithm based on R-trees has been developed, in order to answer efficiently
nearest neighbor queries [28]. In this paper, we show that this algorithm is not suitable
for parallel environments and we propose an efficient strategy (Parallel Nearest Neighbor
Finding) to process nearest neighbor queries in declustered spatial databases.

Data declustering is a technique used to achieve parallelization in parallel and distributed
databases [33, 6] and a lot of work has been performed in the area. From the access
methods point of view, research performed on spatial data declustering includes: [8] where

370 PAPADOPOULOS AND MANOLOPOULOS

a Cartesian product file is declustered into a set of disks using error correcting codes, [9]
where a Cartesian product file is partitioned using the Hilbert space filling curve, [35, 5]
where new declustering techniques for grid file parallelization are proposed, and [19] where
an R-tree is declustered in a multi-processor multi-disk architecture. From an architectural
point of view, we distinguish previous work in two different declustering schemes:

o Single-proccssor multi-disk declustering [8, 16, 9] where the dataset is partitioned into
sets and each set of objects is stored in a different disk device. The disks are attached
to a single processor.

e Multi-processor multi-disk declustering [19] where each set of objects is assigned to a
different processor which manages its own disk device(s).

In this paper, we focus on multi-processor multi-disk architectures (as in [19]) and we study
the processing of nearest neighbor queries in declustered R-trees. A detailed description of
the data organization in such an environment is presented in a subsequent section.

A very important research direction is the estimation of the performance and the selectivity
of a query. In other words, given a query, the problem is to estimate the query response
time (performance) and the fraction of the objects that fulfill the query versus the total
number of objects (selectivity). Evidently, we want this information available prior to
query processing, so that the query optimizer will determine an efficient access plan. We
show how we can estimate the performance of nearest neighbor queries, based on statistical
information. Then, we use this estimation in order to proceed with the parallel processing
of the query in declustered data efficiently.

The rest of the work is organized as follows: In the next section we present the appropriate
background on the R-tree family of spatial data structures and on declustering spatial data.
Section 3 describes shortly the branch-and-bound algorithm of [28] and presents in detail
the proposed method for parallelizing nearest neighbor query processing. In Section 4 we
describe the cost model and we give the experimental results. Finally, in Section 5 we
conclude the paper and motivate for future research in the area.

2. Background
2.1. R-trees

The R-tree [14] is a hierarchical, height balanced data structure (all leaf nodes appear at the
same level), designed for use in secondary storage, and it is a generalization of the BT -tree
for multidimensional spaces. A 2-d dataset with a corresponding R-tree is presented in
Figurc 1.

The structure handles objects by means of conservative approximations. The most sim-
ple conservative approximation of an object’s shape is the Minimum Bounding Rectangle
(MBR). Each node of the tree corresponds to exactly one disk page. Internal nodes contain
entries of the form (R, child-ptr), where R is the MBR that encloses all the MBRs of its
descendants, and child-ptr is the pointer to the specific child node. Leaf nodes contain
entries of the form (R,object-ptr) where R is the MBR of the object, and object-ptr is the

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 371

Figure 1. A 2-d data set (left) and a possible R-tree organization (right).

pointer to the object’s detailed description. Since MBRs of internal nodes are allowed to
overlap, we may have to follow multiple paths from root to leaves when processing exact-
match queries. This inefficiency triggered the design of the RT-tree [30] which does not
permit overlapping MBRs of the nodes.

One of the most important factors that affects the overall structure performance is the
node split strategy used. In [14] three split policies have been reported, namely exponential,
quadratic and linear. However, more sophisticated policies that reduce the overlap of MBRs
have been reported in [2] (the R*-tree) and in [18] (the Hilbert R-tree). Finally, some R-tree
variants have been designed to support a static or a nearly static database. If the objects
composing the data space are known in advance, we can apply several packing techniques,
based on the spatial proximity of the objects, in order to design a more efficient data structure.
Packing techniques have been proposed in [27, 17].

In this paper, we base our work on the packed R-tree of Kamel and Faloutsos [17]. In
this variant, the Hilbert value of each data object is calculated, and then the whole dataset
is sorted. Next, the leaf level of the tree is formulated, by taking consecutive objects (with
respect to the Hilbert order) and storing them in one data page. The same process is repeated
for the upper levels of the structure. The derived R-tree has little overlap and square-like
MBRs, both being reasonable properties of a “good” R-tree [17, 10, 32].

2.2. Declustering Data

Here, we review the R-tree declustering strategy of [19] in a multi-computer environment.
The system architecture is composed of a master processor (primary site) and a number of
slave processors (secondary sites'). All sites (or servers) communicate via an Ethernet net-
work. The allocation of pages to sites is carefully performed, in order to achieve efficiency
in range query processing. The leaves and the corresponding data objects are stored in the
secondary sites, whereas the upper tree levels are maintained in the primary site. Since, the
upper levels occupy relatively little space, they can be maintained in main memory.

Given that the dataset is known in advance, Koudas et. al. suggest sorting the data with
respect to the Hilbert values of the MBRs’ centroid. Then, the leaflevel of the tree is formed,
and the assignment of leaves to sites is performed in a round-robin manner. This method

372 PAPADOPOULQS AND MANOLOPOULOS

guarantees that leaves that contain objects close in the address space will be assigned to
different sites, thus increasing the parallelization during range query processing.

We base our work on the above architecture, in order to study parallelization in nearest
neighbor queries. Other architectures and nctwork topologies could also be used equally
well.

In Figure 2 we present a way to decluster the R-tree of Figure 1 in 3 sites, one primary
and two secondary.

SECONDARY SITE | SECONDARY SITE 2

Figure 2. Declustering an R-tree over three sites. Each disk is attached to a different processor.

We note that the distinction between primary and secondary sites is made for illustration
purposes and does not presume that the two classes of sites have different capabilities.
Any site can handle user queries, as long as it maintains a copy of the internal part of the
R-tree. Concluding this section, and before we go into technical details, we present the
basic symbols used, and the corresponding definitions in Table 1.

3. Processing Nearest Neighbor Queries
3.1. The Branch-and-Bound (BB-NNF) Method

In this subsection we review the branch-and-bound algorithm reported in [28], for answer-
ing nearest neighbor queries in centralized R-trees. It is a modification of the algorithm
reported in [11] for k-d-trees. In order to find the nearest neighbor of a query point, the
algorithm starts form the root of the R-tree and proceeds towards the leaf level. The key
idea of the algorithm is that many tree branches can be discarded according to some basic
rules. Two basic distances are defined in n—d space, between a point P, with coordinates
(p1,Dp2,---,Prn) and a rectangle R with (bottom-left and top-right) corners having coor-
dinates (s1, 59, ..., 5n) and (1,2, ..., tn) respectively. These distances correspond to an
optimistic and a pessimistic approach for the nearest object respectively. Two definitions

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 373

Table 1. Symbols used and corresponding definitions.

Symbol Definition

k Number of nearest neighbors requested.

a1, ..., Qg Sorted sequence of the best k distances from the query point.
F(k) Expected number of data page accesses.

P, A query point in the address space.

Dinin(Py, R) Minimum distance between Py and a rectangle R.
Dminmaz{Py, R) Upperbound of the distance between P, and its NN contained in R.
Dmaz(P,;, R) Maximum distance between a point P, and a rectangle R.
D, A distance from F,, that contains all relevant answers.

B A data page (bucket).

R(B) The MBR corresponding to data page B.

O4p(B) Objects contained in data page B.

Oin () Entries contained in an internal node 7,

Tpage Time to read a disk page.

Toacket Time to transmit a packet.

Tsetup Time to formulate and prepare a packet for transmission.
Toct Time to activate a server.

Tlocal ‘Time for a server to process a request.

Tinter Time to search the internal level of the R-tree.

Tresults Time to send the results to the primary server .

Tresponse Response time for a query.

NSpure Pure network speed (Kbit/msec).

NSy Effective network speed (Kbit/msec).

follow [28]:

Definition 1
The distance Dy, (P, R) between a point P, and a rectangle R, is defined as follows:

n
Dmm(PQs R) = Z lpj - Tj|2
=1
where:
85, Dj < Sj
Ti=9q U P>
p;, otherwise
O
Definition 2

The distance Dpminmaz(Py, R) between a point Py and a rectangle R, is defined as follows:

Dminmam(Pq’ R)= 1T<nki£1n(|Pk —rmg* + Z 'pj - TMj|2)
- 1<7<n, j#k

where:

374 PAPADOPOULOS AND MANOLOPOULOS

1
rmy = 4 Sk P < sedte
tr, otherwise

o > Sitt
rM, =4 % Picz 5
I tj, otherwise

a

Evidently, D,,;,, is the optimistic metric, since it is the minimum possible distance that the
nearest neighbor of P, can reside in the corresponding page. On the other hand, Dinmaz
is the pessimistic metric, since it guarantees that the nearest neighbor of P, lies in a distance
< D, inmas- The above definitions are shown graphically in Figure 3. The three basic

.....

Figure 3. Dnin a0d Diminmag etween a point P, and two rectangles B and Ra.

rules used for pruning the search in the R-tree during traversal follow. Notice that these
rules are applied for k = 1 (i.e. only one nearest neighbor is required).

Rule 1
If an MBR R has Dumn(Py, R) greater than the Dyinmaz(Py, R') of another MBR R/,
then it is discarded because it cannot enclose the nearest neighbor of Fy. O
Rule 2

If an actual distance d from P, to a given object, is greater than the Diinmaz(Pg, R) of
Py to an MBR R, then d is replaced by Dminmaz (g, R) because R contains an object
which is closer to P,.

O
Rule 3
If d is the current minimum distance, then all MBRs R; with Dypin(Py, R;) > d are dis-
carded, because they cannol enclose the nearest neighbor of . a

Upon visiting an internal node of the tree, Rules (1) and (2) are used in order to discard
irrelevant branches. Then, a branch is chosen according to a priority order. Roussopoulos

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 375

et al. suggest that when the overlap is small, the Dy, order should be used since it would
discard more candidate branches. This is also verified in the experimental results of their
work. Therefore, the branch which correspond to the minimum Dyy;, among all node
entries is chosen. Upon returning from the processing of the subtree, Rule (3) is applied in
order to discard other candidates (if there are any). Due to limited space, we are not going
into more details of the algorithm. The reader is prompted to the corresponding reference
[28].

In order to process general k nearest neighbor queries, an ordered sequence of the current
% most promising answers needs to be maintained and the pruning of the MBRs is performed
with respect to the furthest distance. An MBR is discarded if its Dy,in from the query point
is greater than the actual distance from the query point to its k-th nearest neighbor.

3.2. Performance Estimation

In this subsection we show how we can estimate the number of leaf accesses involved due
to the processing of a k nearest neighbor query. In [25] we gave average upper and lower
bounds in the number of leaf accesses for k=1 nearest neighbor queries only, assuming
that the query points are allowed to “land” on actual data points only. In this paper, the
query model differs and assumes a uniform distribution of the query points over the whole
address space. The latter model, even if it does not reflect reality always, it is used by many
researchers in the access methods area [10, 18, 32]. Here we try to estimate this number as
precisely as possible, using statistical information that we assume are available. The esti-
mation of the number of leaf accesses is based on the following basic observation to which
we have concluded after conducting a series of experiments. The analytical derivation of
a closed formed formula in order to verify the validity of this observation is an issue for
further research.

Basic Observation
If the query points follow a uniform distribution over the 2-d data space, then the averuge
number of R-tree leaf accesses involved when we process a k nearest neighbor query, using
the branch-and-bound algorithm, grows almost linearly with respect to k. O

This linearity property allow us to approximate the expected number of leaf accesses
using a linear equation of the form:

Fk)=axk+b @))]

wisere k is the number of nearest neighbors, F (k) the expected number of leaf accesses,
a the slope of the curve and b a real positive constant. The main problem is to calculate
a and b. We can base the calculation on statistical information available. Let us assume
that we have the expected number of leaf accesses F(k1) and F'(kz) for k1 and ko nearest
neighbors, respectively. It is evident that:

F(kz) — F(k1)

a = —kQ___-k—l_—’ kl#kg (2)

376 PAPADOPOULOS AND MANOLOPOULOS

w [ua
T T TR T T T
Estimated w— . -
£ e o e ; Y .
£ . g o
2 = : - g
k-] a
& oaf : 3 =
Y. -
15 f £ 13
) / ; *
10 ¢
5(/ _
N i i HE
0 100 300 400 B0 A 700 8OO 800 1000
Nsarest Neighbors Requestad
(8:] <P
&% {— L am—— s0 —— . T
a5 [S— i 45 - : e
: 4 H
Wl Measured-e— o i o - R R i | R R e
Estimated -*— // or T ///
s L. b b e d o . 1 : i
: h 2 T
2 [R : -4 T
2 I H S 2N & s} Gl i / e d
= : : r1 R /
= . v
3 3 : j
15 <
v
10 -
5
o i i ; i .
o 100 200 300 400 500 600 YOO 800 90O 1000
Nearasi Neighbor Recquested
s8
45 T T T T T
g
H
g g
& k]
& &
3
H 2
H £
<€ 2

o 100 200 300 400 500 600 700 800 SO0 100D
‘Nearest Neighbors Requested

Figure 4. Measured and Estimated number of leaf accesses versus the number & of nearest neighbors.

and
b=F(k1) —axk (3)

Using sample values for k; and k2 we can measure the values F'(k;) and F'(k2). From
Equations (2) and (3) we obtain the values for a and b respectively. Substituting in Equation
(1) we have a formula to estimate the expected number of leaf accesses. The values k;
and ks can be selected by the database administrator or can be adjusted by the statistical
module. In our framework we used the values ¥, = 10 and k&, = 500.

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 377

The graphs of Figure 4 show the measured and estimated number of leaf accesses versus
the number & of nearest neighbors. The datasets used are described in Appnedix A. For
each graph 100 nearest neighbor queries were generated uniformly over the data space and
the average number of leaf accesses was calculated. It is evident that the approximation is
reasonably accurate (the maximum and mean errors are around 20% and 10% respectively)
and therefore it can be used for estimation purposes. We also studied a regression based
approximation using several sample values of k (k1, k3, ..., k5). Although a more accurate
estimation was obtained on average, the practical impact on the performance of the proposed
algorithm (see Subsection 3.4) was negligible.

3.3. Adapting BB-NNT in Declustered R-trees

In order to apply the BB-NNF method in a declustered R-tree, some modifications need to
be considered. Recall that the data pages are searched one-by-one and consequently, each
server is activated one-by-one. Because the determination of the best answers is performed
through successive refinement, every time a new data page is searched, the current sct of
nearest neighbors is updated accordingly?. This behavior results in two alternatives to
process nearest neighbor queries over a network.

BB-NNF-1
In this approach, when a new scrver is activated, the primary server sends the query point
together with the currently best k distances. In this way, the corresponding secondary
server can determine the absolutely necessary number of objects to transmit back.
However, for large values of k, the network consumption can increase considerably and
the benefits of this approach may be loosed.

BB-NNF-2
In this approach, only the distance to the k-th currently best nearest neighbor of the
query point is transmitted along with the query point itself. The advantage is that only
few bytes are needed in order to activate a secondary site. On the other hand, the pruning
that the activated secondary site can perform is limited, since the selection of the objects
is performed with only one reference distance. Therefore, there is high probability that
among the transmitted objects some of them are not necessary.

It is evident, that there is a trade off that need to be further investigated by means of
experimental evaluation. In this respect, we consider both variants of BB-NNF in order
for the comparison to be complete. The two approaches are based on the same concept but
they differ in the implementation. In the sequel, when we mention BB-NNF we mean any
of the two variants, if this does not pose confusion in readability.

3.4. The Parallel Nearest Neighbor Finding (P-NNF)} Method

The main drawback of BB-NNF method is that due to its serial nature, query processing is
not affected by the number of secondary sites available and therefore, no parallelization is

378 PAPADOPOULOS AND MANOLOPOULOS

exploited. Moreover, a particular site may be accessed several times, each time processing
a different data page. Evidently, we would like to have more control on the processing
strategy. Also, we would like to exploit parallelization as much as possible, thus speeding
up processing. In this subsection we present and study the P-NNF method, suitable for
answering NN queries in a declustered environment. In Figure 5, we illustrate the basic
difference of the two methods.

Activation Phase
Local Processing Phase

Result Transmission Phase

BB-NNF
mcthod
Sitc A Site B Site C

PNNF) : : : :

time
Figure 5. Basic difference between BB-NNF and P-NNF methods.

In the top of the figure, we see how the BB-NNF method proceeds with the execution of
a query. Each time a secondary server S; is activated, the primary server must wait until
the S; transmits all the results. Then the primary server may proceed with the activation
of another secondary server. All three phases, namely activation phase, local processing
phase and result transmission phase, appear in a strict sequence and no parallel processing
is achieved. On the other hand, as we present in the bottom of Figure 5, we would like to
exploit parallelization during the local processing phase, reducing the query response time.
Generally, each secondary server neither processes the same amount of data, nor transmits
the same number of objects. The exact calculation of the response time and the description
of the cost model is presented in Subsection 4.2.
Definition 3
The distance Do, between a query point Fy and an MBR R, is the distance from P to the
furthest vertex of R and equals:

Dmaz(an R) =

lej -y

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 379

where:

. Ss+1;
= tj, p] s 7.2 <
J sj, otherwise
O
To distinguish between the three distances (Dpin, Dminmaz and D,,,,) We present an

example in Figure 6.

Dm L
Do aeenes- »
amax
Doy e >
2
\\\ - /,
- . -
\\\ //
\\\‘ 4/
Ry ~o -~
S -~ Ry
\\\ //
-~ td
\\\ ‘o /’
Pk

Figure 6. Dpmins Dminmaz and Dimax between a point P and two rectangles) and Rs.

The main goal of the proposed method is to determine the secondary sites that are going
to be activated simultaneously. The algorithm comprises of three different steps. First, we
start at the primary site and we search the R-tree with respect to the Dyni, measure from
the query point, until the final internal level of the tree (the “father” level of the data pages)
is reached. In the second step, a radius D, is determined which guarantees that all the
qualifying objects (and other objects as well) are falling in the circle with center the query
point and radius D,.. Then, a range query is performed with respect to this circle and a set of
data pages MBRs is gathered, by inspecting the MBRs of the last internal level. In the last
step, the first F'(k) data pages (with respect to the Drin metric) are visited and the relevant
answers are collected. To guarantee the avoidance of dismissals, the rest of the gathered
MBRs must be checked for relevance. Bellow we analyze each step of the algorithm in
detail:

Algorithm P-NNF

Input: a query point P, and the number & of nearest neighbors requested.
Output: a sorted sequence of distances aj, ..., ax of the k nearest neighbors of P,.

Step 1
Let the k nearest neighbors be requested with respect to a query point P. The R-tree
is traversed top-down with respect to the D, metric. This means that, in each node
we take the branch that corresponds to the MBR with the minimum D;n with respect
to the query point P. The traversal stops at the last internal level of the R-tree. Keep
in mind also, that all upper levels are stored at the primary site, and all data pages are
distributed in the available secondary sites. In this step no data pages are visited.

380 PAPADOPOULOS AND MANOLOPOULQS

Step 2

Assume that the internal node [has been reached in Step 1. Let this node contain
e = Oy, () entries, pointing to e data pages. We sort these pages in increasing order,
with respect to the Dy, 45 metric and obtain the sorted sequence By, ..., B.. Each data
page B; contains Og,(B;) objects, where 1 < j < e and corresponds to a region
R(Bjy) that encloses all the objects. Note that from node I at most 3 5—1 Oap(B;)
data objects can be accessed. Although we will generalize later, for the time being let
k< E‘;T:l Ogp(Bj). We determine the smallest positive integer ¢, 1 < ¢ < e, such
that the circle with center P and radius D, = D, (P, R(B.) contain at least &
objects. More formally:

c c—1

> 0a(B;) 2 k>3 Ow(B)

j=1 i=1

fl

A range query is performed in the R-tree, using the circle with center P, and radius
D, and a set of data page MBRs is collected. Again, in this step, no data pages are
accessed.

Step 3

Assume that M data page MBRs have been collected from the previous step. In general,
this number is greater than the number of data pages we really need in order to obtain the
answer. Here, we use the estimation for the expected number of leaf accesses illustrated
in the previous subsection (see Equation 1). Therefore, from the M/ MBRs we choose
the first m=F (k) with respect to the D,,,,, metric. The appropriate secondary sites are
activated simultaneously, and the k£ most promising answers are collected. If after the
collection of the answers there are still MBRs, among the A, that may contain relevant
objects, we must process them too®. Therefore, the D,y,;,, of the rest data page MBRs
are compared with the k-th nearest neighbor of F,. If for an MBR R the value of
Dinin(Py, R) is greater than the distance from P, to its k-th nearest neighbor obtained
so far, then R is rejected from consideration, since it is impossible to contain any of the
nearest neighbors of F,.

In Step 2 of the algorithm, we assumed that & < ijl Ogp(B;). In other words, from
the first father node f; we visit, we can access at least k objects. However, it is possible that
f1 do not have enough occupied entries in order to cover k. The number of objects that are
contained in each data page is recorded in the father node. Therefore, we know how many
objects a data page contains, before visiting the page. The solution to this problem is very
simple though. All we need is to visit another father f;, with respect to the D,,;,, of the
query point, such that the sum of the objects we can access from both f and f5, exceeds
k. Evidently, this process can be continued with more father nodes, until the condition is
satisfied.

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 381

3.5. When Statistics are not Available

In the previous subsections, we explained how the statistical information is exploited, in
order to process a nearest neighbor query. However, statistics are not always available, and
therefore there is a need to devise a modified P-NNF method, in order to exploit paral-
lelization, when statistics on the expected number of data page accesses are not available.
The only difference of the new method (P-NNF-2) with P-NNF appcars in Step 3. Recall
that the number F' (k) (expected number of data page accesses) is used as an estimation for
the relevant data pages, during searching for the k£ nearest neighbors of a query point F,.
However, in this case, the F'(k) value is not available, and some other starting point should
be defined. Recall that, after the completion of Step 2 of P-NNF algorithm, the M relevant
MDBRs of the data pages arc sorted with respect to the Dy, distance from the query point.
We determine an integer m;, such that:

mE mg—1

> Oup(Bj) 2 k> > Oup(By)
=1 i=1

In other words, we keep on investigating the sorted list, until the current sum of objects
exceed the number k. Note that something similar has been performed in Step 2 in order
to determine the D, distance. These first m;, data pages are guaranteed to contain at least
k objects, but it is too optimistic to declare that all of the best objects will be among them.
However, we hope that at least some of them will participate in the final answer, and that
the rest will not be too far away from the query point, enabling effective pruning.

After the determination of my, the my, data pages are accessed, and a sorted sequence
a1, ..., ax of the k best matches is formulated. Then, we check the M-m;, remaining MBRs
in order to determine if some of them need to be accessed. Therefore, all MBRs M; where
Dpin(FPy, M;) < ag, should be investigated further. For this purpose, the primary site
sends the sequence ay, ..., ax to the relevant secondary sites, and collects the results. The
primary server determines the best & objects, and formulates the final answer set of nearest
neighbors.

3.6. Correctness of P-NNF Algorithms

One can observe that both P-NNF algorithms are correct. In other words, the methods
determine a sorted list of object distances from the query point F,, such that all k nearest
neighbors of P, are included. Let a1, ..., ax be the sorted list of distance values. Without
loss of generality, let a; # a;, 1 < 4,5 < kand 4 # j. Assume that there is an object
distance a that is not contained in the answer set, but for some j the following holds:
az < a5, 1 < j < k. This means that we have a falsc dismissal, because an object that
should be returned as one of the nearest neighbors, does not appear in the final answer. This
can happen only due to one of the following reasons:

(i) The circular range query that is performed with respect to ;. distance does not cover
all the best distances, or

382 PAPADOPOULOS AND MANOLOPOULOS

(i) A data page B; is not visited, although Dp,;n(FPy, R(B;)) < aj, where aj, is the
currently best distance from F; to its k-th nearest neighbor.

Case (i) is avoided, since IJ,. is selected in a way that encloses at least k ohjects. Case (ii)
is avoided, since after the first formulation of the best distances a1, ..., a},, the remaining
candidate data pages are checked with respect to the D,,;, and a). Therefore, any data
page that may contain answers is accessed. Thus the following holds:

Proposition 3.6
Algorithms P-NNF-1 and P-NNf-2 are correct since they return at least k object distances
ai, ..., ar, with respect to the query point Py, and no distance smaller than ay, is left out. O

4. Performance Evaluation
4.1. Preliminaries

We implemented the Hilbert-packed R-tree, the branch-and-bound (BB-NNF) and the par-
allel nearest neighbor (P-NNF) algorithms in the C programming language under UNIX
and simulate the parallel environment on a SUN Sparcstation 4. The fanout of the tree is
set to 50 and therefore, each node contains at most 50 entries.

The pure network speed, N Spyre, is set to 10Mbps. In order to investigate the behavior of
the methods under different network loads, we make use of a variable netload by which we
divide the pure network speed and we get the effective network speed : NSerr = nﬁfgg; .
Due to the CSMA/CD protocol, many sites may try to transmit simultaneously, resulting in
a collision. The net effect of the collisions is that there is a delay in transmitting a frame
from source to destination. Therefore, the netload variable reflects exactly this delay. We
used the frame layout of the IEEE 802.3 CSMA/CD bus standard, presented in Appendix
B for reference. Finally, the datasets used for the experiments are illustrated in Appendix

A.

4.2. The Cost Model

Recall that the architecture we study in this paper, assumes a network capable of performing
multi-casting. Also, we agree that when a server wants to transmit data and the network
media is available (no other server is currently using it) then the server will send the data
immediately.

In Figure 7 above, we present an example of how the response time of a query can be
calculated. Assume that the primary server initiates a nearest neighbor query, and that the
qualifying servers are S1, Sy and S3. Each one of the servers will perform some local
computations and local I/O, in order to process its portion of the answer. Also, each one
of the activated servers must transmit the results back to the primary server. In time point
A, the primary server has searched the upper levels of the tree. Immediately, transmits a

NEAREST NEICHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 383

D Local Processing Time

. Result Transmission Time

- Server Activation Time

J— o]
Tinter Tt
Primary -
Server H g
L Vot Tnsotss
Toeat Vel ;
5] A B C D E F G I

Time

Figure 7. Calculation of the Response Time of 2 query.

packet in order to activate the relevant servers. In time point B, all servers have received the
request, and they start the local processing phase which includes retrieving and inspecting
the corresponding data pages. In time point C, server S; completes its local processing
phase, and since the network media is free, starts the transmission of the results to the
primary server. Although server S5 completes its processing at time point D, it can not
transmit the data because the network media is occupied by S;. Eventually, 51 completes
the transmission of the results and therefore S3 may commence the data delivery. Finally,
server Sy starts the transmission at time point G and at time point H the whole process is
completed. Therefore, the response time ranges from the beginning of processing, until
time point H.

We assume that a disk access of a page (either internal or leaf) has a cost of Typqge = 10ms.
The total time Tpaeker to transmit a packet that contains b bytes equals:

Tpn.r:k:r—zt = ﬁ + Tset'u.p

where N S is the network speed in bytes/second and 7., is the time overhead required
to prepare the packet and is set to Sms. A similar approach has been followed in [34, 21].

4.3. Experiment Series

We conducted several series of experiments in order to test our proposed method and its
behavior under different settings.

384 PAPADOPOULOS AND MANOLOPOULOS

¢ In the first series of experiments, we compare the P-NNF and BB-NNF methods using
all datasets. In Figure 8 we present the response times for the two methods using 10
secondary sites and high network speed (10Mbps). The value of & ranges between 1
and 1000.

¢ Inthe second series of experiments, we measure the number of frames transmitted over
the network, the number of objects transmitted by each method and the time required to
search the upper levels of the R-tree on the primary server. These results are illustrated
in Figure 9 for the LB data set. Again, the value of k ranges between 1 and 1000.

o In the third series of experiments, we use sample values for the number k of nearest
neighbors and test the changes in the response time with respect to the number of
secondary sites (Figure 10) and the effective network speed (Table 2). The data set
used is the LB. Three values of k are used, k1=10, k2=100 and k3=200. In Figure
10, the number of secondary servers ranges between 1 and 30. In Tables 2, 3 and 4
the number of secondary servers is fixed to 10 and the effcctive network speed ranges
between 10Kbit/sec to 10Mbit/sec.

Since the behavior of the methods is similar for all datasets, in the second and third series of
experiments we present results for the LB set only. All results are obtained after applying
each nearest neighbor query 100 times and taking the average.

Table 2. Response Time vs. network speed (Secondary sites=10, Nearest
Neighbors requested = 10, 100 and 200).

NS¢y in Kbit/sec BB-NNF-1 BB-NNF-2 P-NNF-1 P-NNF-2

Nearest Neighbors 10

10000 91.35 91.37 67.25 84.27

1000 95.43 95.64 72.96 90.10
200 112.60 113.53 88.95 104.54
100 137.38 139.30 100.00 118.93
10 593.15 612.36 443.92 514.47

Ncarest Ncighbors 100

10000 175.97 178.43 82.94 108.33
1000 199.58 224.90 100.69 130.31
200 273.97 387.72 179.02 220.18

100 404.69 649.52 297.99 373.64
10 2597.12 5103.60 2427.55 3043.70
Nearest Neighbors 200

10000 226.63 234.12 80.56 110.31
1000 273.55 353.18 107.70 145.04
200 410.21 792.25 239.47 314.64

100 584.58 1355.55 408.39 543.78

10 3978.71 11974 357812 4398.77

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 385

8an 800 ———— 1
700 - 700 -
500 ;; ,.; 600 |- -BE-NNF. i H X
= NNF-2 o = BE-NNF-2 5 H
g RNNF- 1 ¥ ENNF-S 4 : -
i $ s - ; e A
: £
= § %00 |-
g s
§ g 300 b
-4 L4
200
100
L]

o
0 100 200 300 400 500 600 700 BOO SO0 1000
Nearest Neighbors Requasted

Rasponse Time (msecs)
Response Tima (mascs)

: . H H i] wl T + g
T mﬁ._.. : SN ——
I SU S S o i — b

° i H . i
o 100 200 300 400 500 60D 700 800 SO0 1000 o 100 200 300 400 500 600 700 800 900 1000
Nearast Neighbors Requested Nearent Neighoors Requasted
Su S8
T T T T T T T T 200 Y T T T T T
700 - +
- - B '
g £ s} NNE-t B -
H H BE-NNF.2 +—
E £ FoNNFL e
2 g @ FENNF2 -m
= =
2 e aal
é g fad
200 |
100 L
° i L i i i i i 1 o i L
0 100 200 300 400 600 600 700 8OO 90 1000 0 100 200 300 400 500 600 TJOD BOD SO0 1000
Neargst Naighbors Fequestsd Nearax! Naiphbors Racuested

Figure 8. Response time (in msecs) versus k (secondary sites=10, NS 5 5 = 10Mbit/sec).

4.4. Interpretation of Results

The first observation derived from Figure 8 is that P-NNF-1 method is superior to BB-
NNF-1, BB-NNF-2 and P-NNF-2 methods in a parallel environment. The response time of
a nearest neighbor query is decreased drastically. In some cases, for small values of & (e.g.
k < 5) the cost at the primary site may dominate and BB-NNF may be better. However,
with the use of buffering, most of the internal nodes of the tree will be maintained in main

386 PAPADOPOULOS AND MANOLOPOULOS

i@
B
3
ittt

Time to Process s Uppar Levals (ascs}

Nurnber of Tnamitted Framea
8

i _4_——’—’

i i i H R
0 100 200 300 400 SO0 600 700 80D 900 100¢
Nearast Nelghors Requarisd

-1

Number of Trarsmitted Objecls
§
1

AN

° S S R : H
o 100 200 300 400 500 600 OO 800 900 1003
Naarasi Naghbors Requested

Figure 9. Number of transmitted frames, time to process the upper R-tree levels and number of transmitted objects,
versus k (secondary sites=10, NSqrr = 10M bit/sec).

memory, eliminating this problem. The general observation obtained from Figure 8 is that
the performance gain of P-NNF over BB-NNF increases as k increases.

By inspecting Figure 9, we observe that P-NNF-1 transmits the smallest number of
network frames (packets). Therefore, the probability of collisions is reduced in comparison
to all other methods. However, P-NNF-1 transmits more objects than the other approaches.
This is the price we pay in order to exploit parallelization. At the bottom of Figure 9 we
observe that BB-NNF-2 transmits the smallest number of objects, since each time a new
data page is accessed and a server is activated, the currently best k distances are transmitted
as well.

With respect to the overhead to search the upper levels of the R-tree, that are stored on the
primary server, we can state that BB-NNF methods process fewer number of nodes than
P-NNF. The increased number of nodes processed in P-NNF methods is due to the circular
range query applied (see Subsection 3.4). Since the primary site stores only the upper R-tree
levels, these could be maintained in main memory and therefore the processing cost would
be very small.

In the P-NNF method, as the number of secondary sites increases, the response time
decreases. However, the degree of parallelization is a function of the values of £ and the
number of secondary sites. On the other hand, the response time in BB-NNF-1,2 methods

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 387

115 ¥ LB. Nearent Neighbor: 10, Eaciva Hatwork Spaed: 10Meitac o Sel: LB, Nanses! Naighbora: 100, Etisctive Nebwori Speed: 10Mbissc
T T T T T v T T T T
BB-NNE2 w— a0 “EEMNEE
LTr3 S W e . PNNE a— P P-NNF-1, s
PINNF2 — 200 |- . HURTRRN BEREEE U .
= 100 b SR | 7
g $ woh
£ e »\ - : g
o
S I
£ 6 . &
FrY O
o5 ; i + : 50 ; ; i

° B 10 15 20 26 3 o s 10 15 20 25 30
Number of Saconcary Servars Number o1 Secondary Servers
ST LB, Nearest Nelghbors: 200, Effecthie Network. Spead: |OMN/sec
350 T T T T T

BBNNF-] B
HBNNFZ w—
300 % £-NNE-
\ PANNFZ —
§ a0t . .
X
i \
f o B ,
s
= s
. H i i . L
° s 25 30

10 15 20
Number o Secondary Servers

Figure 10. Response time (in msecs) versus number of secondary servers.

remains constant since the method does not exploit any parallelization. These remarks are
illustrated in Figure 10.

The network load has a very strong impact on the performance of both methods as is shown
in Table 2. In fact, under high network loads, the gain of P-NNF over BB-NNF decreases.
This is an expected outcome, since the network usage time outperforms by factors the local
processing time at each site and therefore, the benefits of parallel processing are no more
existent. However, since fiber optics technology is becoming more and more available,
reaching speeds of 1000Mbps, the use of P-NNF is recommended.

5. Concluding Remarks and Future Work

In this paper, we study the performance of nearest neighbor queries in multi-disk multi-
processor architectures. We assume that data objects are stored in an R-tree and the whole
structure is distributed over a number of servers, each with a single processor and a single
disk attached. The basic motivation behind this work is the fact that the branch-and-bound
algorithm of Roussopoulos et. al. [28] is strictly serial and therefore, cannot be applied
directly in a parallel environment. We use statistical information to estimate the number
of leaf accesses introduced due to the processing of a & nearest neighbor query and we use

388 PAPADOPOULOS AND MANOLOPOULOS

this estimation, in order to provide an efficient execution strategy. As long as the number
of objects inserted or deleted is small, the statistical information need not be updated. The
renewal of statistical data would be necessary after a large number of insertions/deletions.

Moreover, we present a modified algorithm, in order to process nearest neighbor queries
in parallel, when statistical data are not available, Experimental results based on real-life
and synthetic datasets show that the proposed P-NNF algorithms outperform the BB-NNF
algorithms by factors. The efficiency measure is the response time of the query, which
contains communication cost and local processing cost at each server. We test our method
for light-loaded and heavy-loaded networks, different number of servers, different data
populations and distributions and we observe that the response time is decreased drastically.

With respect to the generalization to higher dimensional spaces, the basic linearity ob-
servation stated in Subsection 3.4, may no longer hold, due to increased overlap between
node MBRs. In this case, we need to estimate the number of data page accesses either using
higher-order regression models, or accurate closed formed formulae.

Although we focused on packed R-trees, the method can equally well be applied in
dynamic environments. In such an environment, packed R-trees are not recommended
because the structure characteristics change rapidly due to insertions and deletions of data.
Instead, another variant should be used (e.g. R*-tree [2], dynamic Hilbert R-tree [18]), that
is better equipped to handle the dynamic behavior. Future research may include:

e The derivation of analytical results on the performance of nearest neighbor queries,
e The testing of the algorithm in a real network of workstations and on a parallel machine,

e Studying the parallelization of other costly operations such as spatial joins, closest pair
queries and other proximity queries [26] that are not yet studied in the R-tree context,

e The study of other declustering strategies, more suitable for nearest neighbor queries,
without degrading the performance of range query processing,

e Investigating the impact of object replication on the performance of nearest neighbor
queries in parallel/distributed systems.

Appendix A

In this appendix, we give a short description of the datasets used for experimentation. We
have used real-life data from the TIGER project (MG and LB sets), the Sequoia 2000
benchmark (CP set) and from NASA (IUE set). Also, we have used synthetic datasets
based on uniform (SU set) and skew (SS set) distributions. The datasets are described in
Table 3 and are shown graphically in Figure 11.

Appendix B

Here we give a description of the 802.3 frame specification. This layout is used in all our
experiments in order to exchange messages between the primary and secondary sites.

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 389

Table 3. Description of datasets.

Dataset Population Description

IUE 15,100 Star coordinates from International Ultraviolet Explorer (NASA).
MG 27,000 Road segment intersections in Montgomery County (TIGER).
LB 57,000 Road segment intersections in Long Beach County (TIGER).

CP 62,000 Coordinates of various places in California (Sequoia 2000).

SU 100,000 Synthetic dataset with uniform distribution.

SS 100,000 Synthetic dataset with skew distribution.

(a) TUE

&) CP (e) SU ' {fHss

Figure 11. Graphical representation of datasets used for experimentation.

Each frame starts with a 7 byte preamble used for synchronization between the transmitter
and the receiver, a start of frame of 1 byte, the addresses for the source and destination nodes
(6 bytes each), 2 bytes containing the length of the data being transmitted, the data from 0 to
1500 bytes, a pad of 46 bytes and a checksum used for error detection/correction. The 802.3
frame layout is presented graphically in Figure 12. The pad portion is used to guarantee
that the length of the data is at least 46 bytes. More details about the 802.3 standard can be
found in specialized books in computer networks (e.g. [31]) and it is out of the scope of
the paper to discuss them here.

We note that, the 1500 bytes are adequate for small numbers of k. However, for large
numbers of k& and small number of secondary sites, the P-NNF method may need to transmit
many more bytes, and therefore more frames are needed.

390

PAPADOPOULOS AND MANOLOPOULOS

| I S N

b

Preamble Source Address Dest. Address Data Checksum
7 bytes & bytes 6 bytes {1 - 1500 bytes 4 bytes
Start of frame delimiter Data Length Pad
1 byte 2 bytes 0 - 46 bytes

Figure 12, The ILLE 802.3 (CSMA/CD bus) framc layout.

Acknowledgments

Work supported by the Furopean Union’s TMR program (CHOROCHRONOS project,
contract number ERBFMRX-CT96-0056 (DG 12 - BDCN)) and by the national programs
PENED (project “Organization and Processing of Image Databases™) and EPET (project
“MANNET”). A preliminary version of this paper has been presented in the 4-th ACM
Workshop in Advances in Geographical Information Systems (ACM-GIS96) under the title
“Parallel Processing of Nearest Neighbor Queries in Declustered Spatial Data”.

Notes

1. The word secondary does not presume that the servers are used for backup or similar purposes. We use it just
to differentiate the functionality of the servers.

2. Although, in some rare cases, a retrieved page may have no contribution at all.

3. However, since the P-NNF method performs a global selection with respect to the Dy, i5 metric, this happens
rarely.

References

1.

W. Aref. “Query Processing and Optimization in Spatial Databases”, Technical Report CS-TR-3097, De-
partment of Computer Science, University of Maryland at College Park, MD, 1993.

N. Beckmann, H.P. Kriegel and B. Seeger. “The R*-tree: an Efficient and Robust Method for Points and
Rectangles”, Proceedings of the 1990 ACM SIGMOD Conference, pp.322-331, Atlantic City, NJ, 1990.

A. Belussi and C. Faloutsos. “Estimating the Selectivity of Spatial Queries Using the ‘Correlation” Fractal
Dimension”, Proceedings of the 21th VLDB Conference, pp.299-310, Zurich, Switzerland, 1995.

T. Brinkhoff, H-P. Kriegel and B. Seeger. “Efficient Processing of Spatial Join Using R-trees”, Proceedings
of the 1990 ACM SIGMOD Conference, pp.237-246, Washington DC, 1993.

P. Ciaccia and A. Veronezi. “Dynamic Declustering Methods for Parallel Grid Files”, Proceedings of the
Austrian Center for Parallel Computation Conference (ACPC’96), 1996.

D. DeWitt and P. Valduriez. “Parallel Database Systems: The Future of High Performance Database Sys-
tems”, Communications of the ACM, vol .6, no.6, pp.85-98, 1992.

M. Egenhofer. “Spatial SQL: a Query and Presentation Language”, IEEE Transactions on Knowledge and
Data Engineering, vol.6, no.1, pp.86-95, 1994.

NEAREST NEIGHBOR QUERIES IN SHARED-NOTHING ENVIRONMENTS 391

20.

21.

22.

23,

24.

25.

26.

27,

28.

29.
30.

31.
32.

33.

C. Faloutsos and D. Metaxas. “Disk Allocation Methods Using Error Correcting Codes”, JEEE Transactions
on Computers, vol.40, no.8, 1991.

C. Faloutsos and P. Bhagwat. “Declustering Using Fractals”, Proceedings of the 2nd International Conference
on Parallel and Distributed Information Systems (PDIS’93), pp.18-25, 1993.

C. Faloutsos and . Kamel. “Beyond Uniformity and Independence: Analysis of R-trees Using the Concept
of Fractal Dimension”, Proceedings of the 13th ACM SIGA CT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS *94), pp.4-13, Minneapolis, MN, 1994.

. 1.H. Friedman, J.L. Bentley and R.A. Finkel. “An Algorithm for Finding the Best Matches in Logarithmic

Expected Time”, ACM Transactions on Mathematical Software, vol.3, pp.209-226, 1977.

. O. Guenther. “The Design of the Cell-tree: an Object-Oriented Index Structure for Geometric Databases”,

Proceedings of the 5th IEEE Conference on Data Engineering, pp.598-615, Los Angcles, CA, 1989,

R.H. Guting. “An Introduction to Spatial Database Systems”, The VLDB Journal, vol.3, no.4, pp.357-399,
1994.

A. Guttman. “R-trees: a Dynamic Index Structure for Spatial Searching™, Proceedings of the 1984 ACM
SIGMOD Conference, pp.47-57, Boston, MA, 1984.

A. Henrich, H.W. Six and P. Widmayer. “The LSD-tree: Spatial Access to Multidimensional Point and
Non-Point Objects”, Proceedings of the 15th VLDB Conference, pp.435-53, Amsterdam, Netherlands, 1989.
I. Kamel and C. Faloutsos. “Parallel R-trees”, Proceedings of the 1992 ACM SIGMOD Conference, pp.195-
204, 1992.

L. Kamel and C. Faloutsos. “On Packing R-trees”, Proceedings of the 2nd Conference on Information and
Knowledge Management (CIKM), Washington DC, 1993.

1. Kamel and C. Faloutsos. “Hilbert R-tree: an Improved R-tree Using Fractals™, Proceedings of the 20th
VLDB Conference, pp.500-509, Santiago, Chile, 1994.

N. Koudas, C. Faloutsos and 1. Kamel. “Declustering Spatial Databases on a Multi-Computer Architecture”,
Proceedings of the Extending Database Technology Conference (EDBT96), 1996.

R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems, Academic Press, London,
1992.

1. Liebeherr, E.R. Omiecinski and F. Akyildiz. “The Effect of Index Partitioning Schemes on the Performance
of Distributed Query Processing”, IEEE Transactions on Knowledge and Data Engineering, vol.5, no.3,
pp.510-522, 1993.

M.-L. Lo and C. V. Ravishankar. “Spatial Joins Using Seeded Trees”, Proceedings of the 1 994 ACM SIGMOD
Conference, pp.209-220, Minneapolis, MN, 1994.

J. Orenstein. “Spatial Query Processing in an Object-Oriented Database System”, Proceedings of the 1986
ACM SIGMOD Conference, pp.326-336, Washington DC, 1986.

B.U. Pagel, H.W. Six, H. Toben and P. Widmayer. “Towards an Analysis of Range Query Performance in
Spatial Data Structures”, Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ’93), pp.214-221, Washington DC, 1993.

A. Papadopoulos and Y. Manolopoulos. “Performance of Nearest Neighbor Queries in R-trees”, Proceedings
of the 6th International Conference on Database Theory (ICDT 97), pp.394-408, Delphi, Greece, January
1997.

F. P. Preparata and M. 1. Shamos. Computational Geometry: an Introduction, Springer-Verlag, New York,
1985.

N. Roussopoulos and D. Leifker. “Direct Spatial Search on Pictorial Databases Using Packed R-trees”,
Proceedings of the 1985 ACM SIGMOD Conference, pp.17-31, Austin, TX, 1985.

N. Roussopoulos, S. Kelley and F. Vincent. “Nearest Neighbor Queries”, Proceedings of the 1995 ACM
SIGMOD Conference, pp.71-79, San Jose, CA. 1995.

H. Samet. The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.

T. Sellis, N. Roussopoulos and C. Faloutsos. “The R+ -tree: a Dynamic Index for Multidimensional Objects”,
Proceedings of the 13th VLDB Conference, pp.507-518, Brighton, UK, 1987.

A. Tanenbaum. Computer Networks, Prentice-Hall, 1989.

Y. Theodoridis and T. Sellis. “A Model for the Prediction of R-tree Performance”, Proceedings of the I5th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS ’96), Montreal,
Canada, 1996.

T. Ozsu and P. Valduriez. Principles of Distributed Database Systems, Prentice Hall, 1991.

392 PAPADOPOULOS AND MANQLOPOULOS

34. R. Williams et al. “R*: An Overview of the Architecture”, JBM Research Report, San Jose, Calif., RJ3325,
1981.

35. Y. Zhou, 8. Shekhar and M. Coyle. “Disk Allocation Methods for Parallelizing Grid Files™, Proceedings of
the 10th International Conference on Data Engineering, pp.243-252, 1994.

Apostolos Papadopoulos received his five-year diploma degree in Computer Engineering and In-
formatics from the University of Patras, Greece, in 1994, In 1995 he joined the Department of
Informatics of Aristotle University, Thessaloniki, Greece, in order to perform his Ph.D. studies. His
main research interests include physical database design, multimedia and spatial databases, query
processing and optimization techniques for non-traditional databases. He is a member of the ACM,
IEEE Computer Society and the Technical Chamber of Greece.

Yannis Manolopoulos received his tive-year diploma in electrical engineering and his Ph.D. degree
in computer engineering from the Aristotle University in Thessaloniki, Greece, in 1981 and 1986
respectively. He has been on the academic staff at Aristotle University since 1987 and is currently
an associate professor with the Department of Informatics. He spent two sabbatical years at the
University of Toronto, Canada, and the University of Maryland at College Park. He is co-author of
more than 50 articles in refereed journals and conference proceedings. He is also the author of two
textbooks (in Greck) on data structures and file structures which are recommended in the vast majority
of Computer Science/Engineering departments in Greece. His research interests include multimedia,
spatial, temporal and text databases. He is a member of the ACM, IEEE Compute Society, Greck
Computer Society and Technical Chamber of Greece.

