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Abstract Efficient and effective processing of the distance-based join query (DJQ) is of great importance in
spatial databases due to the wide area of applications that may address such queries (mapping, urban planning,
transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest
Pairs Query (KCPQ) and εDistance Join Query (εDJQ). These spatial queries involve two spatial data sets and
a distance function to measure the degree of closeness, along with a given number of pairs in the final result
(K) or a distance threshold (ε). In this paper, we propose four new plane-sweep-based algorithms for KCPQs
and their extensions for εDJQs in the context of spatial databases, without the use of an index for any of the
two disk-resident data sets (since, building and using indexes is not always in favor of processing performance).
They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets.
Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the
proposed algorithms for KCPQs and εDJQs. This performance study, conducted on medium and big spatial data
sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of
both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms
is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method),
for KCPQs and εDJQs, using the same data sets. This comparison shows that the new algorithms outperform
R-tree based algorithms, in most cases.

Keywords Spatial Databases · Query Processing · Plane-Sweep Technique · Distance-based Join Queries ·
Spatial Query Evaluation

1 Introduction

A Spatial Database is a database system that offers spatial data types in its data model and query language,
and it supports spatial data types in its implementation, providing at least spatial indexing and efficient spatial
query processing [2]. In a computer system, these spatial data are represented by points, line-segments, regions,
polygons, volumes and other kinds of 2-d/3-d geometric entities and are usually referred to as spatial objects.
For example, a spatial database may contain polygons that represent building footprints from a satellite image,
or points that represent the positions of cities, or line segments that represent roads. Spatial databases include
specialized systems like Geographical databases, CAD databases, Multimedia databases, Image databases, etc.
Recently, the role of spatial databases is continuously increasing in many modern applications; e.g. mapping,
urban planning, transportation planning, resource management, geomarketing, environmental modeling are just
some of these applications.

A preliminary partial version of this work appeared in [1].
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The most basic use of such a system is for answering spatial queries related to the spatial properties of the
data. Some typical spatial queries are: point query, range query, spatial join, and nearest neighbor query [3]. One
of the most frequent spatial queries in spatial database systems is the spatial join, which finds all pairs of spatial
objects from two spatial data sets that satisfy a spatial predicate, θ. Some examples of the spatial predicate θ are:
intersects, contains, is enclosed by, distance, adjacent, meets, etc. [4]; and when θ is a distance, we have distance-
based join queries (DJQ). The most representative and studied DJQ in the spatial database field are the K Closest
Pairs Query (KCPQ) and εDistance Join Query (εDJQ). The KCPQ combines join and nearest neighbor queries:
like a join query, all pairs of objects are candidates for the final result, and like a nearest neighbor query, the K
Nearest Neighbor property is the basis for the final ordering [5,6]. The εDJQ, also known as Range Distance Join,
also involves two spatial data sets and a distance threshold ε, and it reports a set pairs of objects, one from each
input set, that are within distance ε of each other. DJQ are very useful in many applications that use spatial data
for decision making and other demanding data handling operations. For example, we can use two spatial data sets
that represent the cultural landmarks and the most populated places of the United States of America. A KCPQ
(K = 10) can discover the 10 closest pairs of cities and cultural landmarks providing an increasing order based
on their distances. On the other hand, a εDJQ (ε = 10) will return all possible pairs (populated place, cultural
landmark) that are within 10 kilometers of each other.

The distance functions are typically based on a distance metric (satisfying the non-negative, identity, symmetry
and ∆-inequality properties) defined on points in the data space. A general distance metric is called Lt-distance
or Minkowski distance between two points, in the d-dimensional data space, Dd. For t = 2 we have the Euclidean
distance, for t = 1 the Manhattan distance and for t = ∞ the Maximum distance. They are the most known
Lt-distances. Often, the Euclidean distance is used as the distance function but, depending on the application,
other distance functions may be more appropriate. The d-dimensional Euclidean space, Ed, is the pair (Dd, L2).
That is, Ed is Dd with the Euclidean distance L2. In the following we will use dist instead of L2 as the Euclidean
distance between two points in Ed and this will be the basis for DJQs studied on this paper.

One of the most important techniques in the computational geometry field is the plane-sweep algorithm which
is a type of algorithm that uses a conceptual sweepline to solve various problems in the Euclidean plane, E2, [7].
The name of plane-sweep is derived from the idea of sweeping the plane from left to right with a vertical line (front)
stopping at every transaction point of a geometric configuration to update the front. All processing is carried out
with respect to this moving front, without any backtracking, with a look-ahead on only one point each time [8].
The plane-sweep technique has been successfully applied in spatial query processing, mainly for intersection joins,
regardless whether both spatial data sets are indexed or not [9]. In the context of DJQ the plane-sweep technique
has been used to restrict all possible combinations of pairs of points from the two data sets. That is, using this
technique instead of the brute-force nested loop algorithm, the reduction of the number of Euclidean distances
computations has been proven [10,6], and thus the reduction of execution time of the query processing.

It is generally accepted that indexing is crucial for efficient processing of spatial queries. Even more, it is well-
known that a spatial join is generally fastest if both data sets are indexed. However, there are many situations
where indexing does not necessarily pay off. In particular, the time needed to build the index before the execution
of the spatial query plays an important role in the global performance of the spatial database systems. For instance,
if the output of a spatial query serves as input to another spatial query, and such an output is not reused several
times for subsequent spatial queries, then it may not be worthwhile to spend the time for building a new index. This
is especially emphasized for spatial intersection joins that make use of indexes which need a long time to be built
(e.g. R*-tree [11]) [12]. For the previous reasons, the time necessary to build the indexes is an important constraint,
especially if the input data sets are not used often for spatial query processing. Thus the main motivation of this
article is to propose new algorithms for DJQs (the KCPQ and εDJQ) on disk resident data, when none inputs are
indexed, and to study their behavior in the context of spatial databases. Our proposal is also motivated by the
work of [13,14] for spatial intersection joins.

Nowadays, the unnecessity of indexes for query processing is not infrequent in practical applications, when the
data sets change at a very rapid rate, or the data sets are not reusable for subsequent queries and the use of indexes
can be omitted. Moreover, disk-based solutions are necessary, since main memory of a computing system is, in many
cases, shared among applications, and it is usually not enough to hold big data (although, main memory increases
in size and decreases in cost, acquired data increase at higher rates than main memory, for example, scientific
data). As a possible application scenario, consider cadastre, or urban planning very big data sets with spatial and
non-spatial characteristics. Big subsets of the data sets may be formed by considering certain (mainly non-spatial)
characteristics of the stored properties, or buildings (like, properties owned by the state, buildings higher than
50 meters, constructions older than 50 years, or built under an obsolete anti-seismic construction standard, non
build-up large areas, etc). These (big and non-storable in main memory) subsets are dynamic, or non-reusable,
in the sense that an engineer, or an official may create them by setting conditions for certain characteristics, use
them to answer a query, modify these conditions (and the created subsets), answer again this query, and so on. In
the process of conducting a study, like an emergency planning study, the DJQ of interest might be to find pairs of
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buildings vulnerable by an earthquake and earthquake-safe public buildings that could temporarily host people,
at a limited distance.

This paper substantially extends our previous work [1] and its contributions are summarized as follows:

1. We present theorems (the proofs of these theorems are included in [15]) regarding the correctness of both algo-
rithms for KCPQ, that is, Classic Circle Plane-Sweep (CCPS) and Reverse Run Circle Plane-Sweep (RCPS)
algorithms. They are the basis of the following algorithms for DJQ, when neither inputs are indexed and the
data are stored on disk.

2. There are many contributions in the context of spatial intersection joins when both, one, or neither inputs are
indexed. For DJQs most of the contributions have been proposed when both inputs are indexed (mainly using
R-trees for KCPQ). For this reason, in this article we propose four algorithms (FCCPS, SCCPS, FRCPS and
SRCPS) for KCPQs and their extensions for εDJQs for performing DJQs, without the use of an index on any of
the two disk-resident data sets. These algorithms employ a combination of the plane-sweep algorithms (CCPS)
and (RCPS) and space partitioning techniques (uniform splitting and uniform filling) to join the disk-resident
data sets.

3. We present results of an extensive experimental study, that compares the performance (in terms of efficiency
and effectiveness) of the proposed algorithms.

4. We also compare the performance (efficiency) of the best of the new algorithms to the best algorithm that is
based on the R-tree (a widely accepted access method).

The rest of this paper is organized as follows. Section 2 defines the KCPQ and εDJQ, which are the queries
studied on this paper, in the context of spatial databases. Moreover a classification of spatial join and distance-
based join queries taking into account whether both, one, or neither inputs are indexed is presented. The Classic
Plane-Sweep algorithm for DJQs is described in Section 3, as well as two improvements to reduce the number
of distance computations. In Section 4, the new plane-sweep algorithm (Reverse Run Plane-Sweep, RRPS) for
KCPQ is presented. In Section 5, we present and analyse the new plane-sweep-based algorithms for the KCPQ
and εDJQ. Section 6 exposes the results of an extensive experimental study, taking into account different parameters
for comparison. Moreover, Secton 6 exposes the results of an extensive experimental comparison between the best
of the new algorithms and the best R-tree based algorithm. Section 7 contains some concluding remarks and makes
suggestions for future research.

2 Preliminaries and Related Work

Given two spatial data sets and a distance function to measure the degree of closeness, DJQs between pairs of
spatial objects are important joins queries that have been studied actively in the last years. Section 2.1 defines
the KCPQ and εDJQ, which are the kernel of this paper. Section 2.2 describes a classification of spatial join and
distance-based join queries taking into account whether both, one, or neither inputs are indexed, along with the
review of other recent contributions related to these DJQs.

2.1 K Closest Pairs Query and εDistance Join Query

In spatial database applications, the nearness or farness of spatial objects is examined by performing distance-
based queries (DBQs). The most known DBQs in the spatial database framework when just a spatial data set
is involved are the range query (RQ) and the K Nearest Neighbors query (KNNQ). When we have two spatial
data sets the most representative DBQ are the K Closest Pairs Query (KCPQ) and the εDistance Join Query
(εDJQ). They are considered DJQs, because they involve two different spatial data sets and use distance functions
to measure the degree of nearness between spatial objects. The former reports only the top K pairs, and the latter,
also known as Range Distance Join, finds all the possible pairs of spatial objects, having a distance between ε1
and ε2 of each other (ε1 ≤ ε2). Their formal definitions for point data sets (the extension of these definitions to
other complex spatial objects is straightforward) are the following:

Definition 1 (K Closest Pairs Query, KCPQ) Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1}
be two set of points in Ed, and a natural number K (K ∈ N,K > 0). The K Closest Pairs Query
(KCPQ)) of P and Q (KCPQ(P,Q,K) ⊆ P × Q) is a set of K different ordered pairs KCPQ(P,Q,K) =
{(pZ1, qL1), (pZ2, qL2), · · · , (pZK , qLK)}, with (pZi, qLi) 6= (pZj , qLj), Zi 6= Zj ∧ Li 6= Lj, such that for any
(p, q) ∈ P × Q − {(pZ1, qL1), (pZ2, qL2), · · · , (pZK , qLK)} we have dist(pZ1, qL1) ≤ dist(pZ2, qL2) ≤ · · · ≤
dist(pZK , qLK) ≤ dist(p, q).
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Definition 2 (εDistance Join Query, εDJQ) Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be two
set of points in Ed, and a range of distances defined by [ε1, ε2] such that ε1, ε2 ∈ R+ and ε1 ≤ ε2. The εDistance
Join Query (εDJQ) of P and Q (εDJQ(P,Q, ε1, ε2) ⊆ P ×Q) is a set which contains all the possible pairs of points
(pi, qj) that can be formed by choosing one point pi ∈ P and one point of qj ∈ Q, having a distance between ε1
and ε2 for each other: εDJQ(P,Q, ε1, ε2) = {(pi, qj) ∈ P ×Q : ε1 ≤ dist(pi, qj) ≤ ε2}.

These two DJQs have been actively studied in the context of R-trees [16,5,10,6]. However, when the data sets
are not indexed they have attracted similar attention.

2.2 Related Work

This section presents a classification of the spatial join and distance-based join queries depending on one, both or
neither inputs are indexed. Moreover, other related DJQ are also revised in the recent literature, in order to show
the importance of this type of query in the context of spatial databases.

2.2.1 Spatial Join

Spatial data processing is well-known to be both data and computing intensive. The spatial join is one of the
most studied spatial query, where given two datasets of spatial objects in Euclidean space, it finds all pairs of
spatial objects satisfying a given spatial predicate, such as intersects, contains, etc [4]. Various techniques, such
as minimizing disk I/O overheads in spatial indexing and the two phase filter-refinement strategy in spatial joins
have been proposed in [9]. During the past decades many algorithms for spatial joins where the datasets reside
on disk have been proposed in the literature [17,18,9] and recently, several contributions in the context of in-
memory spatial join have been proposed. In [19], the authors have developed TOUCH, a novel in-memory spatial
join algorithm, inspired with previous works on disk-based approaches and the requirements of the computational
neuroscientists. It combines hierarchical data-oriented partitioning, batch processing and filtering concepts, with
the target to decrease the number of comparisons, execution time and memory footprint of a spatial join process.
In [20], a thorough experimental performance study of several (ten) spatial join techniques in main memory is
reported. The techniques are first optimized for in-memory performance and then studied in the same framework.
This study suggests that specialized join strategies over simple index structures, such as Synchronous Traversal
over R-trees, should be the methods of choice for the considered cases. In [21], the authors re-implement the worst
performing technique presented in [20] without changing the underlying high-level algorithm and the conclusion
is that the resulting re-implementation is capable of outperforming all the other techniques. It means substantial
performance gains can be achieved by means of careful implementation. Finally, in [22] a thorough review of
a wide range of in-memory data management and processing proposals and systems is presented, including both
data storage systems and data processing frameworks. The authors give a comprehensive presentation of important
technology in memory management, and some key factors that need to be considered in order to achieve efficient
in-memory data management and processing. In this paper, we are going to focus on disk-resident data, new
algorithms for in-memory DJQs is a task for further research.

The spatial join is one of the most related and influential spatial queries with respect to DJQs in spatial
databases and GIS. Depending on the existence of indexes or not, different spatial join algorithms have been
proposed [23]. If both inputs are indexed, several contributions have been proposed, but the most influential one is
the R-tree join algorithm (RJ ) [24], due to its efficiency and the popularity of R-trees [25,11]. RJ synchronously
traverses both trees in a Depth-First order. Two optimization techniques were also proposed, search space restric-
tion and plane-sweep, to improve the CPU speed and to reduce the cost of computing overlapping pairs between
the nodes to be joined, respectively.

Most research after RJ, focused on spatial join processing when one or both inputs are non-indexed. In this
category, the paper that is most closely related to our work is [14], where several spatial joins strategies when only
one input data set is indexed are investigated. The main contribution is a method that modifies the plane-sweep
algorithm. This approach reads the data pages from the index in a one-dimensional sorted order and inserts entire
data pages into the sweep structure (i.e. in this case, one sweep structure will contain objects, while another sweep
structure will contain data pages).

Directly related to this paper, when both data sets are non-indexed, are methods that involve sorting and
external memory plane-sweep [13,12], or spatial hash join algorithms [26], like partition based spatial merge join
[27]. In [13] the Scalable Sweeping-Based Spatial Join, SSSJ, was proposed, that employs a combination of plane-
sweep and space partitioning to join the data sets, and it works under the assumption that in most cases the limit
of the sweepline will fit in main memory. In [27] a hash-join algorithm was presented, so called Partition Based
Spatial Merge Join, that regularly partitions the space, using a rectangular grid, and hashes both inputs data sets
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into the partitions. It then joins groups of partitions that cover the same area using plane-sweep to produce the
join results. Some objects from both sets may be assigned in more than one partitions, so the algorithm needs to
sort the results in order to remove the duplicate pairs. Finally, [12] extends the SSSJ of [13] to process data sets
of any size by using external memory, proposing a new join algorithm referred as iterative spatial join.

2.2.2 KCPQ and εDJQ

The problem of closest pairs has received significant research attention by the computational geometry community
(see [28] for an exhaustive survey), when all data are stored into the main memory. However, when the amount
of data is too large (e.g. when we are working with spatial databases) it is not possible to maintain these data
structures in main memory, and it is necessary to store the data on disk. Here, we are going to review the KCPQ
and εDJQ, focusing on whether the input data sets are indexed or not. We must emphasize that most of the
contributions that have been published until now are focused on the case when both data sets are indexed on
R-trees.

Remind that given two spatial data sets P and Q, the KCPQ asks for the K closest pairs of spatial objects
in P × Q. If both P and Q are indexed by R-trees, the concept of synchronous tree traversal and Depth-First
(DF) or Best-First (BF) traversal order can be combined for the query processing [16,5,6]. For a more detailed
explanation of the processing of KCPQ-DF and KCPQ-BF algorithms on two R*-trees from the non-incremental
point of view, see [6,15]. In [16], incremental and non-recursive algorithms based on Best-First traversal using
R-trees and additional priority queues for DJQs were presented. In [10], additional techniques as sorting and
application of plane-sweep during the expansion of node pairs, and the use of the estimation of the distance of
the K-th closest pair to suspend unnecessary computations of MBR distances are included to improve [16]. A
Recursive Best-First Search (RBF) algorithm for DBQ between spatial objects indexed in R-trees was presented
in [29], with an exhaustive experimental study that compares DF, BF and RBF for several distance-based queries
(Range Distance, K-Nearest Neighbors, K-Closest Pairs and Range Distance Join). Recently, in [30], an extensive
experimental study comparing the R*-tree and Quadtree-like index structures for K-Nearest Neighbors and K-
Distance Join queries together with index construction methods (dynamic insertion and bulk-loading algorithm)
is presented. It was shown that when data are static the R*-tree shows the best performance. However, when
data are dynamic, a bucket Quadtree begins to outperform the R*-tree. This is due to, once the dynamic R*-tree
algorithm is used, the overlap among MBRs increases with increasing data set sizes, and the R*-tree performance
degrades.

In the case where just only one data set is indexed, recently in [31] a new algorithm has been proposed for
KCPQs. The main idea is to partition the space occupied by the data set without an index into several cells or
subspaces (according to the VA-File structure [32]) and to make use of the properties of a set of distance functions
defined between two MBRs [6].

To the best og the authors knowledge, there are no papers in the literature of spatial databases that have
addressed the problem of DJQs if both data sets are non-indexed, and for this reason this is the main motivation
of this research work.

εDJQ, also known as Range Distance Join, is a generalization of the Buffer Query, which is characterized by two
spatial data sets and a distance threshold ε, which permits search pairs of spatial objects from the two input data
sets that are within distance ε from each other. In our case, the distance threshold is a range of distances defined
by an interval of distance values [ε1, ε2] (e.g. if ε1 = 0 and ε2 > 0, then we have the definition of Buffer Query and
if ε1 = ε2 = 0, then we have the spatial intersection join, which retrieves all different intersecting spatial object
pairs from two distinct spatial data sets [9]). This query is also related to the similarity join in multidimensional
databases [33], where the problem of deciding if two objects are similar is reduced to the problem of determining if
two multidimensional points are within a certain distance of each other. In [34], the Buffer Query is solved for non-
point (lines and regions) spatial data sets using R-trees, where efficient algorithms for computing the minimum
distance for lines and regions, pruning techniques for filtering in a Depth-First search algorithm (performance
comparisons with other search algorithms are not included), and extensive experimental results are presented. We
must emphasize that there are no contributions in the literature of spatial databases for εDJQ when one or both
inputs are non-indexed.

2.2.3 Other related Distance-Based Join Queries

Several DJQs have been studied in the literature which are related to KCPQ and εDJQ. In [35] a new index
structure, called bRdnn−Tree, to solve different distance-based join queries is proposed. Other variants of KCPQ
have also been studied in the context of spatial databases. More specifically, approximate K closest pairs in high
dimensional data [36,37] and constrained K closest pairs [38] have been presented. In [39] the exclusive closest
pairs problem is introduced (which is a spatial assignment problem) and several solutions that solve it in main
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Strips Points {index, (x, y)}
PS0 {0,(0,4)} {1,(4,15)} {2,(10,21)} {3,(17,2)}
PS1 {4,(19,8)} {5,(20,21)} {6,(22,1)} {7,(23,17)}
PS2 {8,(23,20)} {9,(25,28)} {10,(26,23)} {11,(27,2)}
PS3 {12,(29,9)} {13,(30,10)} {14,(33,28)} {15,(37,18)}

Table 1 The data set P with 16 points in X-sorted order.

memory are proposed, exploiting the space partitioning. In [40] a unified approach that supports a broad class of
top-K pairs queries (i.e. K-closest pairs queries, K-furthest pairs queries, etc.) is presented. And recently, in In [41]
an external-memory algorithm, called ExactMaxRS, for the maximizing range sum (MaxRS) problem is proposed.
The basic processing scheme of ExactMaxRS follows the distribution sweep paradigm, which was introduced as an
external version of the plane-sweep algorithm. Moreover, other related problem, the maximizing circular range sum
(MaxCRS), is also studied and an approximation algorithm is presented, which uses the ExactMaxRS algorithm.

Other complex DJQs using R-trees have been studied in the literature of spatial databases, as Iceberg Distance
Join [42], K Nearest Neighbors Join [43] queries, and closely related to DJQ processing is the All-Nearest-Neighbor
(ANN) query [44]. For a more detailed review of this classification, see [15].

3 Plane-Sweep in Distance-Based Join Queries

An important improvement for join queries is the use of the plane-sweep technique, which is a common technique
for computing intersections [7]. The plane-sweep technique is applied in [8] to find the closest pair in a set of points
which resides in main memory. The basic idea, in the context of spatial databases, is to move a line, the so-called
sweepline, perpendicular to one of the axes, e.g. X-axis, from left to right, and processing objects (points or MBRs)
as they are reached by such sweepline. We can apply this technique for restricting all possible combinations of pairs
of objects from the two data sets. If we do not use this technique, then we must check all possible combinations of
pairs of objects from the two data sets and process them. That is, using the plane-sweep technique instead of the
brute-force nested loop algorithm, the reduction of CPU cost is proven (e.g. for intersection joins [24,13,12] and
KCPQ [10,6]).

3.1 Classic Plane-Sweep Algorithm

In general, let’s assume that the spatial objects are points. The data sets are P and Q and they can be organized as
arrays. Let’s also consider a distance threshold δ, which is the distance of the K-th pair found so far for the KCPQ
(the initial value of δ is∞), or the constant given maximum distance for the εDJQ. The Classic Plane-Sweep (CPS)
algorithm consists of the following steps [1,15]:

1. It sorts the entries of the two arrays of points, based on the coordinates of one of the axes in (e.g. X-axis) in
increasing order.

2. After that, two pointers p and q are maintained initially pointing to the first entry for processing of each sorted
array of points. Let the reference point be the point with the smallest X-value pointed by one of these two
pointers, e.g. P, then as reference point will be defined the p.

3. Afterwards, the reference point must be paired up with the points stored in the other sorted array of points
(called comparison points, q ∈ Q) from left to right, satisfying dx ≡ q.x − p.x < δ, processing all comparison
points as candidate pairs where the reference point is fixed. After all possible pairs of entries that contain the
reference point have been paired up (i.e. the forward lookup stops when dx ≡ q.x − p.x ≥ δ is verified), the
pointer of the reference array is increased to the next entry, the reference point is updated with the point of the
next smallest X-value pointed by one of the two pointers, and the process is repeated until one of the sorted
array of points is completely processed.

Highlight that Classic Plane-Sweep algorithm applies the distance function over the sweeping axis (in this case,
the X-axis, dx) because in the plane-sweep technique, the sweep is only over one axis. Moreover, the search is only
restricted to the closest points with respect to the reference point according to the current distance threshold (δ).
No duplicated pairs are obtained, since the points are always checked over sorted arrays.

Clearly, the application of this technique can be viewed as a sliding vertical area on the sweeping axis with a
width equal to the δ value starting from the reference point (i.e. [0, δ] in the X-axis), where we only choose all
possible pairs of points that can be formed using the reference point and the comparison points that fall into the
current vertical area (see Figure 1). This figure shows the points of the data set P marked with filled circles and
the points of the data set Q marked with empty circles. Their coordinates are shown in, Tables 1 and 2. Note that
the ticks on axes are put every two units of length for both dimensions. In the particular instance on Figure 1,
a reference point is shown, p = {1, (4, 15)}, and it is marked by the horizontal arrow with solid line. All points of
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Strips Points {index, (x, y)}
QS0 {0,(2,20)} {1,(7,16)} {2,(11,4)} {3,(15,27)}
QS1 {4,(18.5,30)} {5,(20,12)} {6,(21,24)} {7,(24,6)}
QS2 {8,(30,9)} {9,(32,10)} {10,(36,25)} {11,(40,6)}

Table 2 The data set Q with 12 points in X-sorted order.

both sets on the left of p are already processed as reference points. The points Q1, Q2 on the right of the reference
point according to the CPS (step 2) satisfy the requirement dx ≡ q.x − p.x < δ (step 3) and they are combined
with p to create candidate pairs: the two empty circles located within the gray area which has a width equal to
threshold δ. The first point of Q to the right of p which has dx-distance from p larger than δ, q = {3, (15, 27)},
is marked by the arrow with dashed line. Once the algorithm reaches this point and calculates the dx-distance it
will stop creating pairs with p and continues with the next iteration, setting as reference point q = {1, (7, 16)}.

Fig. 1 Classic Plane-Sweep Algorithm using sliding vertical area, window and semi-circle.

3.2 Improving the Classic Plane-Sweep Algorithm

The basic idea to reduce even more the CPU cost is to restrict as much as possible the search space near the
reference point in order to avoid unnecessary distance computations (that involve square roots) which are the most
expensive operations for DJQs. The proposed approach makes use of the plane-sweep technique and restricting of
the search space.

The Classic Plane-Sweep algorithm applies the distance function only over the sweeping axis (X-axis) and
for this reason some distances have to be computed even when the points of the other data set are faraway from
the reference, since those points are included in the sliding vertical area with width δ. Here we will propose two
improvements of the Classic Plane-Sweep algorithm over two data sets to reduce the number of Euclidean distance
computations on KCPQ algorithms.

1. An intuitive way to save distance computations is to bound the other axis (not only the sweeping axis) by δ as
is illustrated in Figure 1. In this case, the search space is now restricted to the closest points inside the window
with width δ and a height 2 ∗ δ (i.e. [0, δ] in the X-axis and [−δ, δ] in the Y-axis, from the reference point).
Clearly, the application of this technique can be viewed as a sliding window on the sweeping axis with a width
equal to δ (starting from the reference point) and height equal to 2 ∗ δ. And we only choose all possible pairs
of points that can be formed using the reference point and the comparison points that fall into the current
window. For example in Figure 1 it is shown the point q = {2, (11, 4)} is outside this window and will not be
paired with the reference point p.

2. If we try to reduce even more the search space, we can only select those points inside the semi-circle centered
at the reference point with radius δ (remember that the equation of all points t = (t.x, t.y) ∈ E2 that fall
completely inside the circle, centered at the reference point reference = (reference.x, reference.y) ∈ P with
radius δ is circle(reference, t, δ) ≡ (reference.x− t.x)2 + (reference.y− t.y)2 < δ2). See Algorithm 1 at lines
11 and 23. For this reason we call this variant Classic Circle Plane-Sweep algorithm, CCPS for short. And the
application of this new improvement can be viewed as a sliding semi-circle with radius δ along the sweeping
axis and centered on the reference point, choosing only the comparison points that fall inside that semi-circle.
See in Algorithm 1 how this improvement works on two X-sorted arrays of points PS.P ∈ P and QS.P ∈ Q,
considering the sweeping axis the X-axis. When a new pair of points (p, q) is chosen, we have to determine
whether it will be inserted in the MaxKHeap or not. If the MaxKHeap is not full, we calculate the distance
between (p, q) and insert (dist, p, q) unconditionally (lines 6,7 or 18,19). If the MaxKHeap is full, we check



8 G. Roumelis, A. Corral, M. Vassilakopoulos, & Y. Manolopoulos

the following condition dx ≡ q.x− p.x ≥ δ. If it is true, the process will stop and the new reference point must
be defined next (lines 9,10 or 21,22). If not, we check the placement of q. If q is inside the circle (p, δ) the pair
is inserted into the heap. The insertion process (lines 11-13 or 23-25) consists of (1) removing the pair with
the maximum distance (keydistofMaxKHeaproot ≡ δ), (2) adding the newPair and reorganizing the data
structure to restore the (binary) max-heap property based on dist and (3) updating the value of δ with the
new keydistofMaxKHeaproot. See in Figure 1, the semi-circle, in light grey color, centered at the reference
point p. This point p will be paired only with the point q = {1, (7, 16)}. As a conclusion of this improvement
is that the smaller the δ value the greater the power of discarding unnecessary comparison points to pair up
with the reference point for computing the DJQ.

The PS and QS structures contain the information needed for processing the P and Q data sets in strips,
respectively. PS = {first, start, end, P [0..n − 1]} and QS = {first, start, end, P [0..m − 1]}, where P [· · · ] is a
sorted (according to the sweeping axis) array of the maximum number of points per strip, that is, of n and m
points of the P and Q sets, respectively. We note that n and m values depend on the size of page which may
be different for the two sets. The array P [· · · ] may hold one or more pages of points read from the secondary
memory; first is the absolute (in relation to the respective data set) index of the first point of this array (used
in the algorithms of Section 5); start and end specify the part of this array that forms the current strip of the
respective data set on which a plane sweep algorithm is applied.

In [15], we provide a proof of the correctness of the Classic Circle Plane-Sweep algorithm for KCPQ (CCPS)
algorithm (Algorithm 1) through the Theorem 1.

Theorem 1 (Correctness) Let PS.P [PS.start · · · PS.end] and QS.P [QS.start · · ·QS.end] be two arrays of
points in E2, sorted in ascending order of X-coordinate values (i.e. X-axis is the sweeping axis), the sweeping
direction is from left to right, and MaxKHeap is an initially empty binary max-heap storing K pairs of points,
where K is a natural number (K ∈ N, 0 < K ≤ |PS.P | × |QS.P |). The CCPS Algorithm outputs K closest pairs
of points from PS.P and QS.P correctly and without any repetition.

Moreover, as we know from [24], the plane-sweep algorithm for intersection of MBRs from two sets R and S
of MBRs can be performed in O(|R| + |S| + kX), where |R| and |S| are the numbers of MBRs of both sets, and
kX denotes the numbers of pairs of intersecting intervals creating by projecting the MBRs of R and S onto the
X-axis. Following the same idea, CCPS can be performed in O(|PS.P |+ |QS.P |+ kSA), where kSA denotes the
number of candidate closest pairs generated by the reference points from PS.P and QS.P on the sweeping axis
(e.g. X-axis).

Algorithm 1 CCPS
Input: PS,QS: structures representing current strips of the X-sorted arrays of points. MaxKHeap: Max-Heap storing K > 0

pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between PS.P and QS.P
1: Set pointers p, q at to the starting points of PS.P , QS.P
2: while last point of PS.P and QS.P not reached do
3: if p is on the left of q then . p : reference point
4: for t = q to the last point of QS.P do . get comparison points from QS
5: if MaxKHeap is not full then
6: dist =

√
(p.x− t.x)2 + (p.y − t.y)2

7: Insert pair (p, t) with key dist into MaxKHeap
8: else
9: if t.x− p.x ≥ key dist of MaxKHeap root then

10: break
11: if (p.x− t.x)2 + (p.y − t.y)2 < δ2 then . key dist of MaxKHeap root ≡ δ
12: dist =

√
(p.x− t.x)2 + (p.y − t.y)2

13: Remove root of MaxKHeap insert pair (p, t) with key dist into MaxKHeap and update δ

14: Move p at the next point of PS.P
15: else . p ≥ q and q: reference point
16: for t = p to the last point of PS.P do . get comparison points from PS
17: if MaxKHeap is not full then
18: dist =

√
(t.x− q.x)2 + (t.y − q.y)2

19: Insert pair (t, q) with key dist into MaxKHeap
20: else
21: if t.x− q.x ≥ key dist of MaxKHeap root then
22: break
23: if (t.x− q.x)2 + (t.y − q.y)2 < δ2 then . key dist of MaxKHeap root ≡ δ
24: dist =

√
(t.x− q.x)2 + (t.y − q.y)2

25: Remove root of MaxKHeap insert pair (t, q) with key dist into MaxKHeap and update δ

26: Move q at the next point of QS.P
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3.3 Extension to εDistance Join Query

The adaptation of the CCPS algorithm from KCPQs to εDJQs is not so difficult, and we get the Classic Circle
Plane-Sweep algorithm for εDJQ (εCCPS). If we have two sorted sets of points, we only select the pairs of points
in the range of distances [ε1, ε2] for the final result (lines 11 and 23: if (dist ≥ ε1 and dist ≤ ε2)). This means
the result of this query must not be ordered and the MaxKHeap is unnecessary (lines 5, 6, 7 and 8; and lines 17,
18, 19, and 20), since in the case of εDJQ we do not know beforehand the exact number of pairs of points that
belong to the result. And now, the distance threshold will be ε2 instead of key dist of MaxKHeap root (line 9 :
if (t.x − p.x ≥ ε2), line 21 : if (t.x − q.x ≥ ε2), line 11 : if ((p.x − t.x)2 + (p.y − t.y)2 < (ε2)2) and line 23 : if
((t.x− q.x)2 + (t.y− q.y)2 < (ε2)2)). Therefore, the data structure that holds the result set will be a file of records
(resultFile), with three fields (dist, p, q). The modifications of this storing are in lines 13 and 25, where we have to
replace them by resultF ile.write(newPair). To accelerate storing on the resultFile we maintain a buffer on main
memory (BresultFile), and when it is full, its content is flushed to disk. If the distance threshold for the query (ε2)
is large enough, the compact representation of the join result can be applied [45]. It consists of reporting groups
of nearby pairs of points instead of every join link separately. This phenomenon is known as output explosion [45]
and it can appear when data density of the sets of points is locally very large compared to the range of distances
(distance threshold, ε2), and the output of the distance-based joins becomes unwieldy. In fact, the output can
become quadratic rather than linear in the total number of data points. Finally, the proof of the correctness of
εCCPS algorithm is similar to the proof of Theorem 1 for the CCPS algorithm (KCPQ).

4 Reverse Run Plane-Sweep Algorithm for Distance Join Queries

An interesting improvement of the Classic Plane-Sweep algorithm is the Reverse Run Plane-Sweep algorithm,
RRPS for short [1]. The main characteristics of this new algorithm are the use of the concept of run and, as
long as the reference points are considered in an order (e.g. ascending order), processing of the comparison points
in reverse order (e.g. descending order) until a left limit is reached, in order to generate candidate pairs for the
required result.

4.1 Reverse Run Plane-Sweep Algorithm for KCPQs

The Reverse Run Plane-Sweep (RRPS) algorithm [1] is based on two concepts, illustrated in Figure 2. First,
every point that is used as a reference point forms a run with other subsequent points of the same set. A run
is a continuous sequence of points of the same set that doesn’t contain any point from the other set. For each
set, we keep a left limit, which is updated (moved to the right) every time that the algorithm concludes that it is
only necessary to compare with points of this set that reside on the right of this limit. Each point of the active
run (reference point) is compared with each point of the other set (current comparison point) that is on the left
of the first point of the active run, until the left limit of the other set is reached. Second, the reference points
(and their runs) are processed in ascending X-order (the sets are X-sorted before the application of the RRPS
algorithm). Each point of the active run is compared with the points of the other set (current comparison points)
in the opposite or reverse order (descending X-order). Figure 2 depicts a particular instance of the algorithm. We
see the data sets P,Q with the points of Tables 1 and 2. The current reference point is q = {6, (21, 24)}, and
it is marked by an arrow with solid line. All points of both sets on the left of q have already been processed as
reference points. The points P5, P4 and P3 on the left of the reference point according to the RRPS satisfy the
requirement dx ≡ q.x − p.x < δ and they are combined with q to create candidate pairs: the three full circles
located within the gray area which has a width equal to threshold δ. The first point of P to the left of q which has
dx-distance from q larger than δ, p = {2, (10, 21)}, is marked by the arrow with dashed line. Once the algorithm
reaches this point and calculates the dx-distance it will stop creating pairs with q also it will update the leftlimit
of the data set P with the point p = {2, (10, 21)}. The algorithm will continue with the next iteration, setting as
reference point p = {6, (22, 21)}.

The Reverse Run Circle Plane-Sweep algorithm for the KCPQ (RCPS) is depicted in Algorithm 2: this is the
RRPS algorithm with the sliding semi-circle improvement. Again, a binary max-heap (keyed by pair distances,
dist), MaxKHeap, that keeps the K closest point pairs found so far is used. For each point of the active run
(reference point) being compared with a point of the other set (current comparison point) there are 2 cases.

Case 1: If the pair of points (reference point, comparison point) is inside the circle centered at the refer-
ence point with radius δ, then this pair with its distance dist is inserted in the MaxKHeap (rule 1).
The insertion process (lines 23-25 or 39-41) consists of (1) removing the pair with the maximum distance
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Fig. 2 Reverse Run Plane-Sweep algorithm using sliding strip, window and semi-circle.

(keydistofMaxKHeaproot ≡ δ), (2) adding the newPair and reorganizing the data structure to restore the (bi-
nary) max-heap property based on dist and (3) updating the value of δ with the new keydistofMaxKHeaproot.
In case the heap is not full (it contains less than K pairs), the pair will be inserted in the heap, regardless of
the pair distance, dist.

Case 2: If the distance between this pair of points in the sweeping axis (e.g. X-axis) dx is larger than or equal
to δ, then there is no need to calculate the distance dist of the pair (rule 2). The left limit of the comparison
set must be updated at the point being compared (a comparison with a previous point of the the updated left
limit will have X-distance larger than dx and is unnecessary).

Moreover, if the rightmost current comparison point is equal to the left limit of its set, then all the points of the
active run will have larger dx from all the current comparison points of the other set and the relevant pairs need
not participate in calculations, i.e. the algorithm advances to the start of the next run (rule 3).

The RCPS algorithm (Algorithm 2) is an enhanced version of Algorithm 1 of [1]. Since the present paper focuses
on disk resident data that are gradually transferred and processed in RAM, the RCPS algorithm is applied on
strips (sorted subarrays) of data and not on the whole arrays of data, like Algorithm 1 of [1]. In Algorithm 2, p,
q are pointers to the current points, and leftp and leftq hold the left limits of the two strips, respectively (in
the algorithms of Section 5, gleftp and gleftq are analogous variables that hold the left limits of the whole two
data sets, respectively); stop run stores the end-limit of the X-coordinates of the current run of the PS, or QS
strip. run setP is set to false when p.x < q.x (then the current active run will get reference points from the
QS.P , starting from q, and the comparison points will come from the PS.P , starting from the previous point of
p). Analogously, run setP is set to true when q.x ≤ p.x (then the current active run will get reference points
from the PS.P , starting from p, and the comparison points will come from the QS.P , starting from the previous
point of q). Note that, since active runs always alternate between the data sets, in Algorithm 2, there is no need
for an Else block to follow the If block of lines 11-26 (the execution of code in lines 11-26 should be followed by
execution of code in lines 27-42).

In [15], we provide a proof of the correctness of the Reverse Run Circle Plane-Sweep algorithm for KCPQ
(RCPS) algorithm (Algorithm 2) through the Theorem 2.

Theorem 2 (Correctness) Let PS.P [PS.start · · · PS.end] and QS.P [QS.start · · ·QS.end] be two arrays of
points in E2, sorted in ascending order of X-coordinate values (i.e. X-axis is the sweeping axis), the sweeping
direction is from left to right, and MaxKHeap is an initially empty binary max-heap storing K pairs of points,
where K is a natural number (K ∈ N, 0 < K ≤ |PS.P | × |QS.P |). The RCPS Algorithm outputs K closest pairs
of points from PS.P and QS.P correctly and without any repetition.

In [15], an example illustrating the operation of the RCPS algorithm is included (not included here, to limit
the size of the present article). Note that, the CCPS algorithm always processes pairs from left to right, even
when the distance of the reference point to its closest point of the other array is large (this is likely, since, runs
of the two arrays can be in general interleaved). On the contrary, RCPS processes pairs of points in opposite
X-orders, starting from pairs consisting of points that are the closest possible, avoiding further processing of pairs
that is guaranteed not to be part of the result and substituting distance calculations by simpler dx calculations,
when possible. This way, δ is expected to be updated more fastly and the processing cost of RCPS to be lower.
This is verified in the specific example appearing in [15].
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Algorithm 2 RCPS
Input: PS,QS: structures representing current strips of the X-sorted arrays of points. MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between PS.P and QS.P
1: Set pointers p, q and local left limits at the staring points of PS.P and QS.P
2: Define as sentinels the first points of the next strips of the X-sorted arrays of points QS.P , PS.P
3: Initialize the sentinels to ∞
4: if p.x < q.x then . find the most left point of two data Sets
5: Initialize p at the first point of QS.P that satisfies p.x ≥ q.x
6: stop run = p.x run SetP = FALSE . stop the run of QS.P Set at the start of the 2nd run of the PS.P
7: else
8: Initialize q at the first point of PS.P that satisfies q.x > p.x
9: stop run = q.x run SetP = TRUE . stop the run of PS.P Set at the start of the 2nd run of the QS.P

10: while last point of PS.P or QS.P not reached do
11: if run SetP = TRUE then . the active run is from the PS Set
12: while p.x < stop run do . while active run unfinished. p: reference point
13: if previous point of q is equal to leftq then . q: last current comparison point - rule 3
14: Move p up to the next PS.P -run and break . while

15: for t = q to the next point of leftq do . t: current comparison point
16: if MaxKHeap is not full then

17: dist =
√

(p.x− t.x)2 + (p.y − t.y)2

18: Insert pair (p, t) with key dist into MaxKHeap
19: else
20: if p.x− t.x ≥ key dist of MaxKHeap root then . dx ≥ δ - rule 2
21: Update the local and global left limitq up to t
22: break . for
23: if (p.x− t.x)2 + (p.y − t.y)2 < δ2 then . key dist of MaxKHeap root ≡ δ - rule 1

24: dist =
√

(p.x− t.x)2 + (p.y − t.y)2

25: Remove root of MaxKHeap insert pair (p, t) with key dist into MaxKHeap and update δ

26: Move p on the next point of PS.P

27: Set sentinelP .x to a value larger than the x-value the last point of QS.P stop run = p.x . now the active run is from the QS
28: while q.x ≤ stop run do . while active run unfinished. q: reference point
29: if previous point of p is equal to leftp then . p: last current comparison point - rule 3
30: Move p up to the next QS.P -run and break . while

31: for t = p to to the next point of leftp do . t: current comparison point
32: if MaxKHeap is not full then

33: dist =
√

(t.x− q.x)2 + (t.y − q.y)2

34: Insert pair (t, q) with key dist into MaxKHeap
35: else
36: if q.x− t.x ≥ key dist of MaxKHeap root then . dx ≥ δ - rule 2
37: Update the local and global left limitp up to t
38: break . for
39: if (t.x− q.x)2 + (t.y − q.y)2 < δ2 then . key dist of MaxKHeap root ≡ δ - rule 1

40: dist =
√

(t.x− q.x)2 + (t.y − q.y)2

41: Remove root of MaxKHeap insert pair (t, q) with key dist into MaxKHeap and update δ

42: Move q on the next point of QS.P

43: sentinelP .x =∞
44: stop run = q.x run SetP = TRUE

4.2 Extension to εDistance Join Query

Like adapting CCPS to εDJQs (εCCPS), the adaptation of the RCPS algorithm from KCPQs to εDJQs
(εRCPS) is quite straightforward. If we have two sorted arrays of points, we only select the pairs of points
in the range of distances [ε1, ε2] for the final result (lines 23 and 39: if (dist ≥ ε1 and dist ≤ ε2)). Since, the result
of this query need not be ordered, MaxKHeap is unnecessary (lines 16, 17, 18 and 19; and lines 32, 33, 34, and
35 can be omitted). Now the distance threshold will be ε2 instead of key dist of MaxKHeap root (lines 20, 36, 23
and 39). Like εCCPS, the data structure that holds the result set will be a file of records (resultFile), with three
fields (dist, PS.P [i], QS.P [j]) and lines 25 and 41 should be replaced by resultF ile.write(newPair). Finally, the
proof of the correctness of εRCPS algorithm is similar to the proof of Theorem 2 for the RCPS algorithm.

5 External Sweeping-Based Distance Join Algorithms

Firstly, we present in this section four new algorithms to solve the problem of finding the KCPQ when neither
of the inputs are indexed, following similar ideas proposed in [13,14] for spatial intersection join. We combine
plane-sweep and space partitioning to join the data sets and report the required result. These new algorithms
extend the CCPS and RRPS algorithms to solve the KCPQ where the two set of points are stored on separate
data files on disk. Moreover, we will also extend them to solve the εDistance Join Query (εDJQ).
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5.1 The External Sweeping-Based KCPQ Algorithms

In general, the External Sweeping-Based KCPQ algorithms sort the data files containing the sets of points, then
perform the Plane-Sweep-Based KCPQ algorithm on the two sorted disk-resident data files and, finally, return
the K closest pairs of points in maxKHeap data structure.

Sorting each data file by the values of the sweeping axis can be done with the classical external sort/merge
algorithm [46]. For instance, to sort P on the X-axis, first P is partitioned in dP/Be runs (where B is the size
of a buffer in main memory); each run is sorted in main memory; and finally the runs are recursively merged in
larger runs, obtaining the sorted file P.

The External Sweeping-Based KCPQ algorithms start with the two sorted data files (P and Q) and then, as in
the Scalable Sweeping-Based Spatial Join [13,14], divide the sweeping axis on a set of strips. As is defined Section
3.2, we maintain two strips, PS and QS, one for each file, in main memory, for applying the Plane-Sweep-Based
KCPQ algorithm (CCPS or RRPS) and return the K closest pairs of points from P and Q on the maxKHeap
data structure. While strips are filled with data reading the pre-defined number of pages of points from secondary
memory into PS.P and QS.P arrays, the External Sweeping-Based KCPQ algorithms call repetitively CCPS /
RCPS with a possibly non empty heap and with, in general, different PS.start / PS.end and QS.start / QS.end
limits and different PS.P and QS.P arrays. At the end of all such calls, the heap will host K closest pairs formed
from the two data sets.

Once the data sets are sorted, one can think about: (i) partitioning policies on the sweeping axis and (ii) the
appropriate number of strips (numOfStrips). We could consider two basic strategies for partitioning the sweeping
axis:

1. Uniform Filling. A strip hosts a number of points that fit in one or more disk-pages. Using the disk-page size,
we calculate the number of points that fit in each strip and divide the data of each set into equally populated
numOfStrips (= data file size / strip size) strips (with a possibly underfilled last strip). Thus, numOfStrips is
different for each set.

2. Uniform Splitting. We partition the sweeping axis to a number of strips (or intervals) covering, every time,
the same interval on the sweeping axis for both data sets. To accomplish this, we use a part of main memory
as a buffer for PS.P and QS.P arrays (equal to a pre-defined number of disk pages for each set) and load it
with points. Next, a synchronization process takes place. We compare the X coordinates (w.l.o.g. we consider
that X is the sweeping axis) of the last points of the two arrays of the sets. The smallest coordinate is set as
the right border of the current two strips and the points of the other set (not the one where the point with the
smallest X coordinate belongs) that are located after the right border (have greater value of X coordinate) are
left to be examined and processed in the future. Thus, the strip for each set contains the points of this set up
to the right border. In this way, after the first iteration, the data examined are located in an X interval with
specified limits. Subsequently, we process the points residing in the two strips. Next, we load from secondary to
main memory data points from any of the sets which does not have any points left unprocessed and we repeat
the synchronization between the points of the two sets that are located in main memory. Of course, null strips
could be created in some cases, but only for one of the two data sets at every iteration. This situation is not
problematic, however. It helps prune pairs that will not be part of the result.

As we can see in Figures 3 and 7, for each set, the search space is partitioned to non-overlapping vertical
strips, whatever the partition policy. We assign each point of P and Q to one (and only one) strip. This is a very
important condition for the correctness of the algorithms, because, in this way, the same pair cannot be generated
twice.

5.2 Algorithms using Uniform Filling

5.2.1 The FCCPS Algorithm

Following the Uniform Filling partitioning policy, the two sorted data sets P and Q are partitioned in strips
equally full. W.l.o.g let’s consider strips and pages that have equal sizes, as we can see in Figure 3. The first sorted
set (P) is partitioned in four strips (PS0, PS1, PS2, and PS3). The second sorted set (Q) is partitioned in three
strips (QS0, QS1, and QS2).

The FCCPS algorithm, see Algorithm 3, requires every time two strips, one from each data set, to be present
in the main memory. Starting the first iteration of the algorithm we load one page from each set, P and Q. Since
every strip corresponds to a page, we have the two strips PS0 and QS0 in main memory. These two strips are the
current strips. One of the current strips will be set as the reference strip, that is, the strip with the leftmost first
point; and the other one as a comparison strip.
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Fig. 3 Applying the FCCPS algorithm on two data sets partitioned in strips equally full (4 points/strip).

The process is starting by loading the first two strips PS0 and QS0. In the first step we set the leftmost strip
(PS0) as the reference strip, the other strip (QS0) as a comparison strip (as it is shown in Figure 3; lines 6 and
20 of Algorithm 3). Next we examine the K closest pairs in these strips by using the ClassicP laneSweep (CCPS)
algorithm at lines 8 and 22, during the first iteration of while-loop at lines 7 and 21, respectively, of Algorithm 3.

In the second step we must examine the points near the border (i.e. the coordinate on the sweeping axis of
the last point of the current comparison strip) with the next comparison strip. If maxKHeap is not full, all the
points of the reference strip (PS0) must be joined with the next comparison strip (QS1). If maxKHeap is full,
we must check the points of the reference strip which have dx distance from the border smaller than the key dist
of maxKHeap root. In Figure 3 we can see the border after the join between PS0 and QS0, and the points of
the reference strip (the two last points) which are near the border in the dark gray area. Then we load in main
memory the next comparison strip (QS1) to continue searching the K closest pairs between the PS0 and QS1.
After the join between the reference strip (PS0) and the comparison strip (QS1) we update the border with a
new value, because of a new last point of the current comparison strip. The process will continue by loading a
new comparison strip (QS2) as long as we have strips in the comparison set (Q) and the maxKHeap is not full
or there is at least one point of the reference strip near the border. This step is implemented by lines 7-17 and
21-31 in the Algorithm 3.

In the third step, we will load in main memory the next page which corresponds to the next strip PS1 of the
reference set P as one of the current strips. The pair of current strips in the new iteration will consist of PS1

and QS0 and the process will be restarted (from the first step) by examining which of the two current strips of
the sets is the left most one. This step is implemented at lines 18 and 32 in the Algorithm 3.

We must also highlight that in Algorithm 3, TS is a temporary strip which sometimes is loaded with points of the
P set and other times of the Q set. We use this strip to read the sequence of the next (for the CCPS algorithm) or
the previous (for theRRPS algorithm) points of the current strip which must give us comparison points. Moreover,
the function check near border(border, reference strip) discovers the first point of the reference strip which has
dx smaller than δ from the (right) border, for a more detailed algorithmic presentation see [15].

5.2.2 The FRCPS Algorithm

For the FRCPS algorithm, see Algorithm 4, we scan the strips in a different order to the previous algorithm
(FCCPS). The reference strips are scanned in the same order in which the points of the data sets are sorted (i.e.
in ascending order in X-axis), but the comparison strips are scanned in the opposite order (i.e. in descending order
in X-axis). In this way, we continue to apply the basic concept of the RRPS algorithm. If A is a reference point
from the one data set and B, C (with B.x > C.x) are comparison points from the other data set and moreover: (i)
A.x > B.x, that is the reference points are always on the right of the comparison points (ii) The points B and C
are adjacent to the X-axis (no other item of the same set lies between them), then we first calculate the distance
of the pair (A,B) and next the distance of the pair (A,C). Unlike the previous algorithm (FCCSP ), now we have
every time in main memory four strips, two from each data set. The leftmost strip of each data set will be defined
as current and the other as next (of the current strip). So we have two pairs of strips, the current pair and the
next pair.
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Algorithm 3 FCCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS,QS, TS
2: border is a local variable to hold the right border of the calculated strip so far
3: Read from LRU Buffer pages for the first strips of P,Q into PS.P , QS.P . a strip corresponds to one or more pages
4: while both sets have points not processed do
5: if first point of PS.P is on the left of first point of QS.P then
6: TS ← QS . temporary strip TS is loaded with current strip of Q
7: while TRUE do
8: CCPS(PS, TS)
9: if all the points of Q are not processed then

10: Update border with x-value of the last point of TS.P
11: check near border(border, PS)
12: if points of PS.P reside near the border then
13: Read from LRU Buffer pages for the next strip of Q into TS.P
14: else
15: break . all the rest points are too far from the border

16: else
17: break . end of the set Q
18: Read from LRU Buffer pages for the next strip of P into PS.P
19: else . first point of QS.P has x-coordinate equal or smaller than the first point of PS.P
20: TS ← PS . temporary strip TS is loaded with current strip of P
21: while TRUE do
22: CCPS(TS,QS)
23: if all the points of set P are not processed then
24: Update border with x-value of the last point of TS
25: check near border(border,QS)
26: if points of QS.P reside near the border then
27: Read from LRU Buffer pages for the next strip of P into TS.P
28: else
29: break . all the rest points are too far from the border

30: else
31: break . end of the set P
32: Read from LRU Buffer pages for the next strip of set Q into QS.P

Fig. 4 Applying the FRCPS algorithm on two data sets partitioned in strips equally full (4 points/strip).

As it shown in Figure 4, during the execution of the algorithm, we can have as current pair the strips PS1

and QS1 and next pair the strips PS2 and QS2 (denoted by nPS and nQS, respectively, in Algorithm 4).

In the first step of this iteration, we join the strips of the current pair (PS1 and QS1). From the current pair,
we will set as reference strip, the strip which has the rightmost first point (PS1) and the other strip will be set
as comparison strip (QS1). This step is implemented by lines 13-18 and 25-30 of Algorithm 4.

In the second step, while the left limit is outside of the comparison strip, we will load the previous strip (QS0)
of the current comparison strip and we make the join between the strips PS1 and QS0. This loop will continue
until the left limit will be reached inside the comparison strip. This step is implemented by lines 19-23 and 31-35
of Algorithm 4.

The third step is to prepare the new pair of the current strips. One of the strips of the current pair will be
replaced by one strip of the next pair. The leftmost of the strips of the next pair will moved from the next pair
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to the current pair, and this strip will be replaced by a new strip which will be loaded from secondary memory.
This step is implemented by lines 36-47 of the Algorithm 4.

We must also highlight that in Algorithm 4, gleftp and gleftq are variables that hold global left limits for the
sorted sets P and Q. leftlim is local variable that saves the old values of gleftp and gleftq (previous strips). nPS
and nQS are the next strips of (the current strips) PS and QS. For a more detailed presentation of Algorithm 4,
see [15].

Algorithm 4 FRCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS,QS, TS, nPS, nQS
2: Initialize the left limits at a non existing point on the left of two sets
3: Read from LRU Buffer pages for the first strips of sets P,Q into PS.P,QS.P
4: if the first point of PS.P is on the left of the first point of QS.P then
5: while all the points of set P are not processed and the last point of PS.P is on the left of the first point of QS.P do
6: Read from LRU Buffer pages for the next strip of set P into PS.P

7: else
8: while all the points of set Q are not processed and the last point of QS.P is on the left of the first point of PS.P do
9: Read from LRU Buffer pages for the next strip of set Q into QS.P

10: Read from LRU Buffer pages for the next strips of sets P,Q into nPS.P, nQS.P
11: while gleftp differs to the last point of P and gleftq differs to the last point of Q do
12: if first point of PS.P is on the left of first point of QS.P then
13: if gleftp is on the right of the first point of PS.P then
14: Update PS.start with the index of the next point of gleftp
15: if PS.start ≤ PS.end then
16: RCPS(PS,QS)

17: else
18: RCPS(PS,QS)
19: leftlim = gleftp Update the first point of TS.P with the first point of PS.P
20: while (MaxKHeap is not full or (dx-distance b/t first points of QS.P, TS.P < key dist of MaxKHeap root)) do
21: Read from LRU Buffer pages for the previous strip of set P into TS.P
22: RCPS(TS,QS)

23: gleftp = leftlim

24: else . first point of PS.P is not the left of first point of QS.P
25: if gleftq is on the right of the first point of QS then
26: Update QS.start with the index of the next point of gleftq
27: if QS.start ≤ QS.end then
28: RCPS(PS,QS)

29: else
30: RCPS(PS,QS)
31: leftlim = gleftq Update the first point of TS.P with the first point of QS.P
32: while (MaxKHeap is not full or (dx-distance b/t first points of PS.P, TS.P < key dist of MaxKHeap root)) do
33: Read from LRU Buffer pages for the previous strip of set Q into TS.P
34: RCPS(PS, TS)

35: gleftq = leftlim

36: if all the points of set P are processed then
37: if all the points of set Q are processed then
38: break . end of sets, terminate the process

39: QS ← nQS . the next strip of Q becomes current
40: Read from LRU Buffer pages for the next strip of set Q into nQS.P
41: else . all the points of set P are not processed
42: if nQS.first 6= M and first point of QS.P is on the left of first point of nPS then
43: QS ← nQS . the next strip of Q becomes current
44: Read from LRU Buffer pages for the next strip of set Q into nQS.P
45: else
46: PS ← nPS . the next strip of Q becomes current
47: Read from LRU Buffer pages for the next strip of set P into nPS.P

Now, we are going to show a step-by-step example of the application of the FRCPS algorithm to find the
K(=3) closest pair of the data sets P and Q having 16 and 12 points, respectively. We also consider that the
maximum number of points per strip is 4 and every page from disk can host the same number of points (4). The
data sets and the separation into strips are shown in Tables 1 and 2 and in Figure 3.

The FRCPS algorithm firstly reads the strips: PS0{first = 0, start = 0, end = 3, P [0,1,2,3]}, QS0{first =
0, start = 0, end = 3, P [0,1,2,3]} as current strips and PS1{first = 4, start = 0, end = 3, P [4,5,6,7]},
QS1{first = 4, start = 0, end = 3, P [4,5,6,7]} as next strips (see Figure 5). Both left limits (leftp and leftq) are
initialized to non existing point on the left of two sets: leftp = lefpq = {−1, (−1, 0)}.

The function using the algorithm RCPS executes the K(=3)CPQ for the strips PS0 and QS0. Finishing this
join the maxKHeap has the pairs {(dist(P2, Q1) = 5.831), (dist(P1, Q0) = 5.385), (dist(P1, Q1) = 3.162)}, where
dist(Pi, Qj) is the distance dist between the points (P [i] and Q[j]) from sets P and Q, having absolute indexes
in their sets i and j respectively (regardless of the strip in which they are located), and values for left limits
leftp = P1, leftq = Q2.
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Fig. 5 Join of strips PS0 and QS0 using the FRCPS algorithm.

Fig. 6 Join of strips PS1 and QS1 using the FRCPS algorithm.

In this first iteration there are no strips on the left of the current strips, so we skip the second step and we
are going to execute the third step of the algorithm. In order to prepare the next cycle, the algorithm compares
the X-coordinates of the first points of the next strips PS1.P [4].x = 19 and QS1.P [4].x = 18.5. Since the point
QS1.P [4] is on the left, the strip QS2 is read.

For the second iteration, we have that PS0{first = 0, start = 2, end = 3, P [0, 1,2,3]}, QS1{first = 4, start =
0, end = 3, P [4,5,6,7]} are the current strips, and PS1{first = 4, start = 0, end = 3, P [4,5,6,7]}, QS2{first =
8, start = 0, end = 3, P [8,9,10,11]} are the next strips.

The RCPS executes the K(=3)CPQ for the current strips. Note that the current strip PS0 is starting from
the point PS0.P [2] because of the leftp = P1 value from the previous iteration. Exiting from RCPS function, no
new pair is inserted into maxKHeap, but the left limits are updated to leftp = P3, leftq = Q2. In order to prepare
the next cycle, the algorithm compares the first points of the next strips, PS1.P [4].x = 19 and QS2.P [8].x = 30.
Since the point PS1.P [4] is on the left, the strip PS2 is read.

For the third iteration, we have that PS1{first = 4, start = 0, end = 3, P [4,5,6,7]}, QS1{first = 4, start =
0, end = 3, P [4,5,6,7]} are the current strips, and PS2{first = 8, start = 0, end = 3, P [8,9,10,11]}, QS2{first =
8, start = 0, end = 3, P [8,9,10,11]} are the next strips (see Figure 6).

The RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS function, the maxKHeap has
now the pairs {(dist(P4, Q5) = 4.123), (dist(P5, Q6) = 3.162), (dist(P1, Q1) = 3.162)} and leftp = P4, leftq = Q4.
Since the dx distance between points PS1.P [4] and QS1.P [4] is dx(P4, Q4) = 19−18.5 = 0.5 < 4.123, the algorithm
continues checking the points near the left border. The RCPS is called to join the strips PS1 and QS0. No new
pair is inserted into maxKHeap. Since the point PS2.P [8] is on the left of the point QS2.P [8], the strip PS3 is
read.
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For the forth iteration, we have that PS2{first = 8, start = 0, end = 3, P [8,9,10,11]}, QS1{first =
4, start = 0, end = 3, P [4,5,6,7]} are the current strips, and PS3{first = 12, start = 0, end = 3, P [12,13,14,15]},
QS2{first = 8, start = 0, end = 3, P [8,9,10,11]} are the next strips.

The RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS function, the maxKHeap has
no changes, but the left limit of the Q set is updated to leftq = Q6. Since the dx distance between the (first)
points PS2.P8 and QS1.P4 is dx(P8, Q4) = 23 − 18.5 = 4.5 > 4.123, the algorithm has no need to continues
checking the points near the left border.

Now, the data set P has no next strip (it is finished) and, then the status for the fifth cycle is as follow:
PS2{first = 12, start = 0, end = 3, P [12,13,14,15]}, QS1{first = 4, start = 3, end = 3, P [4, 5, 6,7]} are the
current strips and only QS2{first = 8, start = 0, end = 3, P [8,9,10,11]} is the next strip.

The RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS function, the maxKHeap
has no changes, but the left limit of the Q set is updated to leftq = Q7. The data set P has no next strip (it is
finished), then the status for the sixth cycle is as follows: PS2{first = 12, start = 0, end = 3, P [12,13,14,15]},
QS2{first = 8, start = 0, end = 3, P [8,9,10,11]} are the current strips and there is not any next strip.

Finally, the RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS function, the
maxKHeap has new pairs {(dist(P12, Q8) = 1.000), (dist(P13, Q8) = 1.000), (dist(P13, Q9) = 2.000)} and the
left limits are updated to leftp = P15 and leftq = Q9. Since the dx distance between points PS3.P12 and QS2.P8

is dx(P12, Q8) = |29 − 30| = 1 < 2.0, the algorithm will continue by checking the points near the left border
between the strips PS2 and QS2. But, no new pair is found and the algorithm is finished.

As a summary, the pages which are read from disk were 9, the pairs involved in calculations were 57, the dx
calculations were 89 and the complete dist-calculations were 10.

5.3 Algorithms using Uniform Splitting

5.3.1 The SCCPS Algorithm

Following the Uniform Splitting partitioning policy, the first sorted set (P) is partitioned in five strips (PS0, PS1,
PS2, PS3 and PS4). The second sorted set (Q) is partitioned in seven strips (QS0, QS1, QS2, QS3, QS4 and
QS5).

The SCCPS algorithm, see Algorithm 5, requires two strips, one of each data set, to be present in main
memory. We define the width of a strip as the distance between the leftmost (first) and rightmost (last) points of
the strip on the sweeping axis. After loading a buffer of disk pages from secondary memory with points from the
two data sets into strip arrays P, we have to execute a synchronization process (through sync queues function).
This process determines the points in the two arrays that form the respective two strips. Note that every point
between the leftmost and rightmost points of both strips has been read from secondary memory. The coordinate
of the rightmost point of the strips is defined as border.

We examine the coordinates on the sweeping axis (i.e. X-axis) of the last points of the current arrays PS.P and
QS.P . As it is shown in Figure 7 the strip PS0 has the array of points with indexes P = [0, 1, 2, 3] which are depicted
with filled circles. The strip QS0 has the array of points with indexes P = [0, 1, 2, 3] which are depicted with empty
circles. The last point QS0.P [3] is on the left of the last point PS0.P [3] (QS0.P [QS0.end].x < PS0.P [PS0.end]).
Since, it is not known if the first point of the Q set next to the last point of the QS0 strip (the point QS1.P [4])
is on the left or on the right of the last point of the current PS0 page, we set as right border the coordinate on
the sweeping axis of the last point of the QS page (QS0.P [3].x). In this way, at least one strip (QS0) will have
the maximum number of points per strip while the other strip (PS0) will have points from zero to the maximum
number of points per strip (as we can see in Figure 7 the PS0 strip has three points).

The process starts loading pages of points into PS0.P and QS0.P . After the synchronization process we have
two strips and the value of the border = border1. If both strips have some points (are not empty) we examine the K
closest pairs of points inside these strips by using the Classic Plane Sweep (CCPS). This first step is implemented
by lines 5-6 of Algorithm 5.

The second step is to examine in any not empty strip, first PS and next QS the points near the border. If the
maxKHeap is full only the points that reside near the border, having dx-distance from the border smaller than
the key dist of maxKHeap root, will be selected for joins. If the maxKHeap is not full all the points of the current
strips will be eligible for joins. First, we must join the points of the PS strip near the border with the points of
the QS strip that have not been joined with the points of the PS strip in the previous first step. Then we must
update the value of the border with the coordinate of the last point of the QS0 strip, find the eligible points of
the PS0 strip taking into account the new value of the border. If there are some points left, we must continue by
loading the next page of the Q set (QS1). The process will continue as long as we have a strip in the comparison
set (Q) and there is at least one point of the reference strip (PS0) near the current value of the border. This
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Fig. 7 Applying the SCCPS algorithm on two data sets partitioned in strips of variable width.

second step will be executed setting as reference strip the QS0 and comparison strips the rest of the points of
PS0, PS1, · · · . This step is implemented by lines 7-39 of Algorithm 5.

The third step is to prepare the next pair of strips (PS1 and QS1) by loading pages of points from secondary
memory into arrays P, synchronizing them and continuing from the first step as long as we have points for both
strips. This step is implemented by lines 40-44 of Algorithm 5.

We must also highlight that in Algorithm 5, the function sync queues(PS,QS) finds which of the last points
of the two strips is the leftmost one. Then it sets the value of the right border equal to the X-coordinate of this
point. Finally, it returns the value of the right border. border is a variable that holds the right border of the
current strips. cur border is a local variable of the if -structure in lines 7-23 that holds the updated value of the
current border of the current comparison strip. For the other if -structure in lines 24-39 the variable border holds
the updated value of the current border. For a more detailed presentation of Algorithm 5, see [15].

5.3.2 The SRCPS Algorithm

The SRCPS algorithm, see Algorithm 6, requires two strips, one of each data set, to be present in main memory.
Before the main process of this algorithm and for the leftmost set we reach either the first strip which has overlap
with the first strip of the other set, or the last strip (which has no overlap with the first strip of the other set);
lines 5-12 of Algorithm 6.

The first step is to synchronize the current strips (if both are not empty) and afterwards the RRPS algorithm
is called to join the points between them. This step is implemented by lines 14-15 and 16-19 of Algorithm 6.

The second step consists of two parts. In the first part, we examine three conditions: (1) if the strip of the first
set P has at least one point in the area on left of the right border (see section 5.3.1), (2) if the current strip of
the other set Q has points on the left of its starting point (in the same strip or in previous strips), and (3) if the
maxKHeap is not full or if the first point of the PSi strip has a distance on the sweeping axis (dx) from the left
border (the coordinate of the last point of the previous strip of QSj) less than the key dist of maxKHeap root (line
16 of Algorithm 6). If all conditions are true then we call the subroutine srcps on border (Algorithm is presented
in [15]). In this subroutine we join the points of the strip PS and all points of the set Q which are on the left of
the starting point of the current QS strip. This process continues while the maxKHeap is not full or the points
have dx distance from the left border smaller than the key dist of maxKHeap root. For each set, we keep a left
limit (leftp, leftq), which is updated (moved to the right) every time that the algorithm concludes that it is only
necessary to compare with points of this set that reside on the right of this limit. In Figure 8 we can see the dx
distance of the first point of the PS1 strip from the lborderq which is smaller than the key dist of maxKHeap
root. In the second part, we swap the roles between PS and QS and we execute the same process as in the first
part. This step is implemented by lines 24-27 of Algorithm 6.
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Algorithm 5 SCCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS,QS, TS
2: Read from LRU Buffer pages for the first strips of sets P,Q into PS.P,QS.P
3: border = sync queues(PS,QS) . determine the points in the arrays that form the respective strips
4: while TRUE do
5: if both strips PS,QS have points up or on the left of the border then
6: CCPS(PS,QS)

7: if points of strip PS reside near the border then
8: cur border = border
9: check near border(cur border, PS)

10: if points of strip PS reside near the border then
11: TS ← QS . the next strip of Q becomes current
12: Update the strip TS to join with the rest points of QS
13: while TRUE do
14: CCPS(PS, TS)
15: if all the points of set Q are not processed then
16: Update cur border with the x-coordinate of the last point of TS.P
17: check near border(cur border, PS)
18: if points of strip PS near the border then
19: Read from LRU Buffer pages for the next strip of set Q into TS.P
20: else
21: break . all points are too far from the border

22: else
23: break . end of the set P
24: if points of strip QS reside near the border then
25: check near border(border,QS) . cur border instead of border
26: if points of strip QS reside near the border then
27: TS ← PS . the next strip of P becomes current
28: Update the strip TS to join with the rest points of PS
29: while TRUE do
30: CCPS(TS,QS)
31: if all the points of set P are not processed then
32: Update border with the x-coordinate of the last point of TS.P
33: check near border(border,QS)
34: if points of strip QS reside near the border then
35: Read from LRU Buffer pages for the next strip of set P into TS.P
36: else
37: break . all points are too far from the border

38: else
39: break . end of the set Q
40: Read from LRU Buffer pages for the next strips of sets P,Q into PS.P,QS.P
41: if both strips are not empty then
42: border = sync queues(PS,QS) . determine the points in the arrays that form the respective strips
43: else
44: break . terminate the process

The third step is to prepare the next iteration from the beginning by updating the values of the borders and
loading the next of the current strips of both sets. This step is implemented by lines 30-47 of Algorithm 6. We
must also highlight that in Algorithm 6, lborderp and lborderq are variables that store the current left borders of
the sorted sets P and Q. For a more detailed presentation of Algorithm 6, see [15].

Next, we are going to show a step-by-step example for the SRCPS algorithm, using the same input data sets
as in the previous example (for FRCPS). The query is also the same, that is, we are looking for the K(=3) closest
pairs in the data sets P and Q. As in the previous example,we define that disk-page and array P in the strip have
the same size, enough to fit four points. The data sets and the separation into strips, having variable width, are
shown in the Figure 8.

The algorithm SRCPS firstly reads the pages with the points [0,1,2,3] of the P set and P[0,1,2,3] of the Q
set. After the synchronization process the current strips are PS0{first = 0, start = 0, end = 2, P [0,1,2, 3]} and
QS0{first = 0, start = 0, end = 3, P [0,1,2,3]} (see Figure 9). Both left limits (leftp and leftq) are initialized
to non existing point on the left of two sets: leftp = lefpq = {−1, (−1, 0)}. In the first step, the algorithm
RCPS executes the K(=3)CPQ for the strips PS0 and QS0. Finishing this task the maxKHeap has the pairs
{(dist(P2, Q1) = 5.831), (dist(P1, Q0) = 5.385), (dist(P1, Q1) = 3.162)} and the values for left limits are leftp =
P1, leftq = Q0. Since there are no strips on the left of the current strips, we must skip the second step and
continue with the third one, in which the algorithm must prepare the next iteration. Therefore, the array PS0.P
will remain in main memory. Setting the values of the indexes start and end to the value 3, PS1{first = 0, start =
3, end = 3, P [0, 1, 2,3]} will be created and the next page, containing points [4,5,6,7], will be read from disk into
array QS1.P .

For the second iteration and after the synchronization process, the current strips are PS1{first = 0, start =
3, end = 3, P [0, 1, 2,3]} andQS1{first = 4, start = 0, end = −1, P [4, 5, 6, 7]} (see Figure 10). The value ofQS1.end
is smaller than QS1.start and the first step (join between current strips PS1 and QS1) will be omitted (line 16 of the
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Fig. 8 Applying the SRCPS algorithm on two data sets partitioned in strips of variable width.

Fig. 9 Join of strips PS0 and QS0 using the SRCPS algorithm.

Algorithm 6). The current strip PS1 has the point PS1.P [3] which is at the right border (PS1.start = PS1.end),
the starting point of the current strip QS1 is not the first point of the set Q. The task will continue with the second
step by comparing the dx distance between the starting point of the current PS1 strip (PS1.P [3].x = 17) and the
value of lborderq which is equal to the value of the last point of the previous strip QS0 (QS0.P [3].x = 15). Thus
it is possible to find closest pairs comparing the point PS1.P [3] with the points of the strip QS0. The second part
of the second step will not be executed since the current strip QS1 is empty (QS1.start > QS1.end). Finishing
this step, the maxKHeap has not been updated with new pairs, but the left limit leftq = Q2. In the third step,
the algorithm must prepare the current strips for the next iteration. Therefore, the page of P points [4,5,6,7] is
read and the array QS1.P is kept in main memory for the next iteration.

For the third iteration and after the synchronization process, the current strips are PS2{first = 4, start =
0, end = 3, P [4,5,6,7]} and QS1{first = 4, start = 0, end = 2, P [4,5,6, 7]} (see Figure 10). In the first step, the
RCPS executes the K(=3)CPQ for the current strips. Exiting from the RCPS function, maxKHeap has new
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Algorithm 6 SRCPS
Input: Two X-sorted files of points P and Q, |P| = N , |Q| = M . MaxKHeap: Max-Heap storing K > 0 pairs
Output: MaxKHeap: Max-Heap storing the K closest pairs between P and Q
1: Allocate memory for strips PS,QS
2: Initialize the left limits at a non existing point on the left of two sets
3: Read from LRU Buffer pages for the first strips of sets P,Q into PS.P,QS.P
4: Initialize lborderp, lborderq with the x-coordinates of the first points of PS.P,QS.P
5: if the first point of the strip PS is on the left of left point of the strip QS then
6: while all the points of set P are not processed and the last point of PS.P is on the left of the first point of QS.P do
7: Initialize lborderp with the x-coordinate of the last point of PS.P
8: Read from LRU Buffer pages for the next strip of set P into PS.P

9: else . if first point of the PS.P is not on the left of first of the QS.P
10: while all the points of set Q are not processed and the last point of QS.P is on the left of the first point of PS.P do
11: Initialize lborderq with the x-coordinate of the last point of QS.P
12: Read from LRU Buffer pages for the next strip of set Q into QS.P

13: while TRUE do
14: if both strips PS,QS are not empty then
15: sync queues(PS,QS) . determine the points in the arrays that form the respective strips
16: if both strips PS,QS have points up or on the left of the border then
17: gleftp = oleftp gleftq = oleftq
18: RCPS(PS,QS)
19: swap(gleftp, oleftp), swap(gleftq, oleftq)

20: if the strip PS is not empty and the strip QS is not the first one and (MaxKHeap is not full or (dx-distance b/t first point of
PS and lborderq < key dist of MaxKHeap root) then

21: srcps on border(PS,QS, lborderq,Q, gleftq,MaxKHeap) . CurS, ComS, lborder, X, left, MaxKHeap
22: if gleftq > oleftq then
23: oleftq = gleftq

24: if the strip QS is not empty and the strip PS is not the first one and (MaxKHeap is not full or (dx-distance b/t first point of
QS and lborderp < key dist of MaxKHeap root) then

25: srcps on border(QS, PS, lborderp,P, gleftp,MaxKHeap) . CurS, ComS, lborder, X, left, MaxKHeap
26: if gleftp > oleftp then
27: oleftp = gleftp

28: if oleftp differs to the last point of P or oleftq differs to the last point of Q then
29: break
30: if the strip PS is not empty then
31: Update lborderp with the x-coordinate of the last point of PS.P
32: if all points of the strip PS are not processed then
33: Update the end of strip PS with the |PS.P |
34: else
35: Read from LRU Buffer pages for the next strip of set P into PS.P
36: if the strip PS is empty then
37: if all the points of Q are processed or (MaxKHeap is full and dx-distance b/t first point of QS and lborderp ≥ key

dist of MaxKHeap root) then
38: break . terminate the process

39: if the strip QS is not empty then
40: Update lborderq with the x-coordinate of the last point of QS.P
41: if all points of the strip QS are not processed then
42: Update the end of strip QS with the |QS.P |
43: else
44: Read from LRU Buffer pages for the next strip of set Q into QS.P
45: if the strip QS is empty then
46: if all the points of P are processed or (MaxKHeap is full and dx-distance b/t first point of PS and lborderq ≥ key dist

of MaxKHeap root) then
47: break . terminate the process

values {(dist(P4, Q5) = 4.123), (dist(P5, Q6) = 3.162), (dist(P1, Q1) = 3.162)}, and the left limits have values
leftp = P1, leftq = Q4. The current strip PS2 has points (all points) at, or on the left of, the right border,
the starting point of the current strip QS1 is not the first point of the set Q and the difference PS2.P [4].x −
lborderq = 19 − 15 = 4 < 4.123. Therefore, the second step will continue by checking the strips PS2 and QS0

(previous strip of the current strip QS1). The current strip QS1 has (three) points at, or on the left of, the
right border, the starting point of the current strip PS2 is not the first point of the set P and the difference
QS1.P [4].x− lborderp = 18.5− 17 = 1.5 < 4.123. Therefore, the second step will continue by checking the strips
QS1 and PS1 (previous strip of the current strip PS2). The maxKHeap is not updated with new pairs, but the
left limits of the sets are updated to the new values leftp = P2 and leftq = Q4. In the third step, the algorithm
must prepare the current strips for the next iteration. Therefore, the page of P points [8,9,10,11] is read and the
array QS1.P remains in main memory for next iteration.

For the forth iteration and after the synchronization process, the current strips are PS3{first = 8, start =
0, end = 0, P [8, 9, 10, 11]} and QS2{first = 4, start = 3, end = 3, P [4, 5, 6,7]}. In the first step, the RCPS
executes the K(=3)CPQ for the current strips. Exiting from the RCPS function, the maxKHeap has not been
updated with new values, and the left limits keep the same values leftp = P2, leftq = Q4. The current strip PS3

has (one) point at or on the left of the right border, the starting point of the current strip QS2 is not the first
point of the set Q and the difference PS3.P [8].x− lborderq = 23− 21 = 2 < 4.123. Therefore, the second step will
continue by checking the strips PS3 and QS1 (previous points of the starting point of the current strip QS2). The
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Fig. 10 Join of strips PS1 and QS1 using the SRCPS algorithm.

current strip QS2 has (one) point at, or on the left of, the right border, the starting point of the current strip
PS3 is not the first point of the set P and the difference QS2.P [7].x− lborderp = 24− 23 = 2 < 4.123. Therefore,
the second step will continue by checking the strips QS2 and PS2 (previous strip of the current strip PS3). The
maxKHeap is not updated with new pairs, but the left limits of the sets are updated to the new value leftp = P4.
In the third step, the algorithm must prepare the current strips for the next iteration. Therefore, the array PS2.P
is kept and the page of Q points [8,9,10,11] is read from the disk for next iteration.

For the fifth iteration and after the synchronization process, the current strips are PS4{first = 8, start =
1, end = 3, P [8,9,10,11]} and QS3{first = 8, start = 0, end = −1, P [8, 9, 10, 11]}. The value of index QS3.end is
smaller than the index QS3.start and the first step (join between current strips PS4 and QS3) will be omitted
(lines 16-19 of the Algorithm 6). The current strip PS4 has three points at, or on the left of, the right border, the
starting point of the current strip QS3 is not the first point of the set Q and the difference PS4.P [9].x−lborderq =
25−24 = 1 < 4.123. Therefore, the second step will continue by checking the strips PS4 and QS2 (previous points
of the starting point of the current strip QS3). The second part of the second step will not be executed since the
current strip QS3 has no points at, or on the left of, the right border (QS3.end < QS3.start). The maxKHeap is
not updated with new pairs, but the left limit of the set Q updated to the new value leftq = Q6. In the third step,
the algorithm must prepare the current strips for the next iteration. Therefore, the page of P points [12,13,14,15]
is read and the array QS2.P is kept in main memory for the next iteration.

For the sixth iteration and after the synchronization process, the current strips are PS5{first = 12, start =
0, end = 3, P [12,13,14,15]} and QS3{first = 8, start = 0, end = 2, P [8,9,10, 11]}. In the first step, the RCPS
executes the K(=3)CPQ for the current strips. Exiting from RCPS function, the maxKHeap has new values
{(dist(P13, Q9) = 2), (dist(P13, Q8) = 1), (dist(P12, Q8) = 1)}, and the left limits have values leftp = P14,
leftq = Q9. The current strip PS5 has all its four points at, or on the left of, the right border, the starting point of
the current strip QS3 is not the first point of the set Q but the difference PS5.P [12].x−lborderq = 29−24 = 5 > 2.
Therefore, the first part of the second step will be skipped. The current strip QS3 has three points at, or on the
left of, the right border, the starting point of the current strip PS5 is not the first point of the set P but the
difference QS3.P [8].x− lborderp = 30− 27 = 3 > 2. Therefore, the second part of the second step will be skipped.
In the third step, the algorithm must prepare the current strips for the next iteration. Therefore, the strip PS5

is finished and will be updated to the following values PS5{first = 12, start = 4, end = −2, P [12, 13, 14, 15]} and
the array QS2.P is kept in main memory for the next iteration.

In the last iteration (seventh), the first step and the first part of the second step are skipped because the set
P is finished (PS5.end = −2 < 0). The current strip QS4 has only one point that resides at the right border, the
starting point of the current strip PS5 is not the first point of the set P but the difference QS4.P [11].x−lborderp =
40 − 37 = 3 > 2. Therefore, the second part of the second step will be skipped. In the third part, the algorithm
must prepare the current strips for the next iteration. For this, the strips PS and QS do not need any update
because they have finished their points from the two sets and the algorithm is terminated.
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As a summary, the pages which are read from the disk were 12, the pairs involved for calculations were 52, the
dx calculations were 84 and the complete dist-calculations were 10.

5.4 Analysis

The proofs of the correctness of the External Sweeping-Based KCPQ algorithms (FCCPS, FRCPS, SCCPS
and SRCPS) are similar to the proofs of CCPS and RRPS given by the Theorems 1 and 2, respectively. Since
the latter are the kernel for the query processing of the former. To extend that proof we must take into account the
split of the sweeping axis into strips and the processing strategy of those strips. To see that External Sweeping-
Based KCPQ algorithms report the K closest pairs correctly and without any repetition, one key property is that
each point (from P or Q) is assigned to one and only one strip, hence a same pair of points cannot be generated
twice. And taking into account the treatment on the borders of the strips, the External Sweeping-Based KCPQ
algorithms guarantee that all possible candidate pairs of points are considered and no duplicates are generated.

The I/O cost of the External Sweeping-Based KCPQ algorithms can be estimated, following a similar reasoning
as in [14]:

1. The cost of sorting each data set can be expressed as 2m×P, where m represents the number of merge levels
and is logarithmic in |P| [47], and the constant factor 2 accounts for reading and writing P at each merge level.

2. The cost of the External Sweeping-Based KCPQ algorithms depends of the number of strips that must be read
from disk (sr). Let MRmax the maximum value of MR (memory requirements) during the execution of a plane-
sweep-based algorithm, the sr can be estimated by: sr w numOfStrips×dmax{(MRmax/M), 0}e, where M is
the available main memory size. Each point belonging to one of the strips must be read just once. Therefore, the
I/O cost of the External Sweeping-Based KCPQ algorithms can be estimated as (|P|+|Q|)×sr/numOfStrips.

In summary, the I/O cost of the External Sweeping-Based KCPQ algorithms can be estimated as:

2m× (P +Q) + (P +Q)× sr/numOfStrips

In the best case (M > MRmax), sr = numOfStrips and the cost is 2m× (P +Q) + (P +Q). In the worst case
(M ≤MRmax), additional readings are necessary to complete the processing for each strip as we have mentioned
above.

5.5 Extension to εDistance Join Query

The adaptation of the External Sweeping-Based KCPQ algorithms from KCPQ to εDJQ is not difficult. As we
know, for εDJQ, we have two sets of points P and Q as input, and the pairs of points in the range of distances
[ε1, ε2] are selected for the final result and stored in a file of records (resultFile) with three fields (dist, P [i], Q[j]),
where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ M − 1. The MaxHKeap data structure is not needed. The modifications
are related to the file operations on resultFile and instead of calling to CCPS or RCPS, the algorithms should
call to εCCPS or εRCPS, respectively. Moreover, instead of calling check near border(border, reference strip),
the algorithm will call the function εcheck near border(border, reference strip), which will do the same func-
tionality, discovering the first point of the reference strip which has dx smaller than ε2 from the (right) border.
More specifically, from FCCPS to get εFCCPS we should call εCCPS instead of CCPS at lines 8 and 22, and
εcheck near border(border, reference strip) should be called at lines 11 and 25.
From SCCPS to get εSCCPS we should call εCCPS instead of CCPS at lines 6, 14 and 30, and
εcheck near border(border, reference strip) should be called at lines 9, 17, 25 and 33.
From FRCPS to get εFRCPS we should call εRCPS instead of RCPS at lines 16, 22, 28 and 34. Line 20 should
be replaced by while(dx-distance b/t first points of QS.P, TS.P ≤ ε2) and line 32 bywhile(dx-distance b/t first
points of PS.P, TS.P ≤ ε2).
And from SRCPS to get εSRCPS we should call εRCPS instead of RCPS at line 18. Line 20 should be replaced
by if (the strip PS is not empty and the strip QS is not the first one and (dx-distance b/t first point of PS and
lborderq ≤ ε2)) and line 24 by if (the strip QS is not empty and the strip PS is not the first one and (dx-distance
b/t first point of QS and lborderp ≤ ε2)). Finally, we have to replace RCPS by εRCPS in line 18, maxKHeap
is not used at all, εsrcps on border is called in lines 21 and 25.

6 Performance Evaluation

This section provides the results of an extensive experimental study a) aiming at measuring and evaluating the
efficiency of the new algorithms proposed in Section 5 (Sections 6.2-6.6) and effectiveness of these algorithms
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(Section 6.7), and b) the comparison of the new algorithms proposed in Section 5 and four algorithms that process
the same queries on R-trees (Section 6.8). Section 6.1 presents the experimental setup that is common for parts
(a) and (b).

6.1 Experimental Setup

In order to evaluate the behavior of the proposed algorithms, we have used four real spatial data sets of North
America, representing cultural landmarks (NAcl) consisting of 9203 points and populated places (NApp) consisting
of 24491 points, roads (NArd) consisting of 569082 line-segments, and railroads (NArr) consisting of 191558 line-
segments. To create sets of points, we have transformed the MBRs of line-segments from NArd and NArr into points
by taking the center of each MBR. Moreover, in order to get the double amount of points from NArr and NArd
we choose the two points (min, max) of the MBR of each line-segment. The data of these 6 files were normalized
in the range [0, 1]2. We have also created 6 combinations of input sets (NAppN × NArrN , NAppN × NArdN ,
NArrN ×NArdN , NArrN ×NArdND, NArrND×NArdN and NArrND×NArdND) for query processing.
We have also used big real spatial data (retrieved from http://spatialhadoop.cs.umn.edu/datasets.html) to justify
the use of spatial query algorithms on disk-resident data instead of using them in-memory. They represent water
resources (Water) consisting of 5836360 line-segments, parks or green areas (Park) consisting of 11504035 polygons
and world buildings (Build) consisting of 114736611 polygons. To create sets of points, we have transformed the
MBRs of line-segments from Water into points by taking the center of each MBR and we have considered the
centroid of polygons from Park and Build. We have also created 3 combinations of input sets (Water × Park,
Water ×Build, Park ×Build) for query processing.

We have also created synthetic clustered data sets of 125000, 250000, 500000 and 1000000 points, with 125
clusters in each data set (uniformly distributed in the range [0, 1]2), where for a set having N points, N/125 points
were gathered around the center of each cluster, according to Gaussian distribution. We made 4 combinations of
synthetic data sets by combining two separate instances of data sets, for each of the above 4 cardinalities (i.e.
125KC1N × 125KC2N , 250KC1N × 250KC2N , 500KC1N × 500KC2N , and 1000KC1N × 1000KC2N) and 1
combination of synthetic data sets by combining two data sets of different cardinalities (500KC2N×1000KC1N).

All experiments were performed on a PC with Intel Core 2 Duo, 2.2 GHz CPU with 4 GB of RAM and 2TBs
of secondary storage, with Ubuntu Linux v. 14.04 LTS (Linux OS), using the GNU C/C++ compiler (gcc).

In our previous paper [1], it is shown that the semi-circle variant of both Classic Plane-Sweep and Reverse Run
Plane-Sweep algorithms has the highest execution-time efficiency, for the KCPQ. Therefore, all experiments were
executed using CCPS and RCPS. For the KCPQ and for all (4) algorithms we study how the value of K, disk
page size, size of the strips and size of the LRU buffer affects efficiency, by executing experiments for the previous
14 combinations of data sets. As efficiency measures we used:

1. The overall execution time (i.e. response time); this measurement is reported in milliseconds (ms) and represents
the overall CPU time consumed, as well as the I/O time needed by each algorithm.

2. The number of X-axis distance calculations (dx).
3. The number of disk accesses (disk-pages read).

To measure the effectiveness of the new algorithms, we can use the selection ratio, which is defined as the
fraction of pairs considered by the algorithms for processing over the total number of possible pairs. This is just
the opposite to the pruning ratio, and a pair selection occurs when a candidate pair from two strips is considered
for processing according to its dx distance.

6.2 The effect of the number of pairs (K)

In order to examine the effect of the number of pairs (K) on the new algorithms, K is set equal to 1, 10, 100, 1000
and 10000; the size of disk page equals to 4 KBytes; the size of strip is 16 KBytes; and there is no LRU buffer (its
size is 0).

6.2.1 The execution time

The results for execution time are similar for all input data sets. Table 3 shows the execution time in ms when
KCPQ is processed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms on the NArrN×NArdND data sets.
As the value of K increases, the execution time increases, but the rate of the increment gets higher as K increases.
For example, using the FCCPS algorithm, from K = 1 to K = 10 the time increased by 0%, from K = 10 to
K = 102 by 3%, from K = 102 to K = 103 by 16% and from K = 103 to K = 104 by 29%.
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K FCCPS SCCPS FRCPS SRCPS Total

1 41.48 34.84 24.03 22.14 122.49
10 41.31 33.70 23.38 21.30 119.69
100 42.44 35.22 24.17 22.67 124.50
1000 49.07 45.89 29.97 32.68 157.61
10000 63.12 62.33 42.51 50.59 218.55

Table 3 Execution time in ms for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×NArdND, in relation to K.
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Fig. 11 Fractions of execution time for KCPQ, using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×NArdND, in relation
to K.

K FCCPS SCCPS FRCPS SRCPS Total

1 3.17 2.06 0.99 0.99 7.11
10 5.80 4.69 3.61 3.61 17.72
100 12.45 11.34 10.23 10.23 44.26
1000 33.82 32.73 31.48 31.46 129.48
10000 101.46 100.40 98.46 98.31 398.63

Table 4 Number of dx distance calculations is millions (×106) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN×
NArdND, in relation to K.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS 58-12 times and FRCPS
overcomes SRCPS 36-34 times. Comparing the best result among FCCPS and SCCPS (variants of Classic Plane-
Sweep algorithm) and the best result among FRCPS and SRCPS (variants of Reverse Run Plane-Sweep algorithm)
for every combination of data sets, we conclude that Reverse Run algorithms are faster in all cases (70-0).

Figure 11 shows the execution time of each algorithm for KCPQ as a fraction of the total time consumed by
all algorithms(represented by the respective bar). It is shown that the SRCPS (line with down facing triangles as
markers) was the fastest for K = 1, 10, 100, while FRCPS (line with up facing triangles as markers) was the fastest
for K = 1000, 10000. This situation is dominating in most data set combinations.

6.2.2 The number of the dx distance calculations

The results with respect to the number of dx distance calculations are similar for all input data sets. Table 4
shows the values of this metric when KCPQ is processed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms
on the NArrN × NArdND data sets. As the value of K increases, the number of dx distance calculations also
increases. However, while the number of K increases geometrically with a ratio of 10, the number of dx distance
calculations increases with a ratio ranging between 1.83 and 2.66. For example, using the SRCPS algorithm from
K = 1 to K = 10 the number of dx distance calculations increased by 266%, from K = 10 to K = 102 by 183%,
from K = 102 to K = 103 by 207% and from K = 103 to K = 104 213%.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS 49-21 times and SRCPS
overcomes FRCPS 61-9 times. Comparing the best result among FCCPS and SCCPS and the best result among
(the almost identical results of) FRCPS and SRCPS for every combination of data sets, we conclude that Reverse
Run algorithms need fewer dx distance calculations in all cases (70-0).

Figure 12 shows the number of dx distance calculations of each algorithm for KCPQ as a fraction of the total
number of dx distance calculations performed by all algorithms (represented by the respective bar). It is shown
that the SRCPS (line with down-facing triangles as markers) took from 13.7% up to 24.7% of the total number
of dx distance calculations needed to execute the queries. The FRCPS algorithm has almost equal number of dx
distance calculations so its line (with up-facing triangles as markers) is overwritten from the line of the SRCPS
(note that overlapping down-facing and up-facing triangles appear as stars). RR algorithms need fewer dx distance
calculations in all cases.
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Fig. 12 Fractions of the number of dx distance calculations for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×
NArdND, in relation to K.

K FCCPS SCCPS FRCPS SRCPS Total

1 13340 13991 7824 9136 44291
10 13340 16455 7828 11928 49551
100 13348 18495 7856 14252 53951
1000 13388 19387 7940 15364 56079
10000 13540 19583 8232 15772 57127

Table 5 Number of disk accesses for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×NArdND, in relation to
K.
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Fig. 13 Fractions of number of disk accesses for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×NArdND, in
relation to K.

6.2.3 The number of the disk accesses (pages read)

The results for number of disk accesses are similar for all input data sets and this performance measure proved
to be the most important factor that shaped the results. Table 5 shows the values of this metric when KCPQ is
processed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms on the NArrN ×NArdND data sets. As the
value of K increases, the number of disk accesses increases slightly, or marginally. While K increases geometrically
with a ratio of 10, the number of pages read increases, for example, in the FRCPS algorithm, by 0.051%, 0.358%,
1.069%, and 3.678%.

Considering all experiments and all data sets, we find that FCCPS overcomes SCCPS 68-2 times and FRCPS
overcomes SRCPS 70-0 times. Comparing the best result among FCCPS and SCCPS and the best result among
FRCPS and SRCPS for every combination of data sets, we conclude that Reverse Run algorithms need fewer disk
accesses in all cases (70-0).

Figure 13 shows the number of disk accesses of each algorithm for KCPQ as a fraction of the total number of
disk accesses needed by all algorithms (represented by the respective bar).

Summarizing the results of experiments on the effect of K, we note that: (1) The exponential growth of K
causes (non geometrical) increase in the execution time. (2) The exponential growth of K causes increase in the
number of dx-distance calculations with a lower ratio (up to 3 for most datasets and up to 7 for the biggest data
set combination). (3) The number of disk accesses required by FCCPS and FRCPS algorithms increases marginally
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pg FCCPS SCCPS FRCPS SRCPS Total

1 136.85 141.50 113.74 144.13 536.22
2 119.73 123.98 105.02 126.90 475.63
4 114.44 116.96 100.49 117.62 449.51
8 112.13 111.93 98.86 112.87 435.79
16 111.52 112.03 100.84 112.70 437.09

Table 6 Execution times in ms for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N × 1000KC2N , in relation
to pg.
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Fig. 14 Fractions of execution time for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N × 1000KC2N , in
relation to pg.

with the growth of K, unlike SCCPS and SRCPS where the increment is more pronounced. Moreover, (4) the
fastest algorithm proved to be the SRCPS for small values of K, while FRCPS is the fastest for large values of K.
Finally, (5) SRCPS was slightly the most economical algorithm in terms of dx distance calculations.

6.3 The effect of the disk page size (pg)

In order to examine the effect of the disk page size (pg) on the new algorithms, the size of disk pages (pg) is set
equal to 1, 2, 4, 8 and 16 KBytes; K = 1000; the size of strips is 16 KBytes; and there is no LRU buffer (its size
is 0).

6.3.1 The execution time

The results for execution time are similar for all input data sets. Table 6 shows the execution time in ms when
KCPQ is executed by the algorithms FCCPS, SCCPS, FRCPS and SRCPS on the 1000KC1N ×1000KC2N data
sets. As the page size increases the execution time is reduced, but the rate of decrement continuously decreases.
For example, using SRCPS algorithm from pg = 1KB to pg = 2KB the time decreased by 12%, from pg = 2KB
to pg = 4KB by 7.3%, from pg = 4KB to pg = 8KB by 4% and from pg = 8KB to pg = 16KB by 0.15%.

Figure 14 shows the execution time of each algorithm values as a fraction of the total execution time consumed
by all algorithms (represented by the respective bar). Considering all experiments and all data sets, we find that
SCCPS overcomes FCCPS 54-16 times and FRCPS overcomes SRCPS 51-19 times. Comparing the best result
among FCCPS and SCCPS and the best result among FRCPS and SRCPS, for every combination of data sets,
we conclude that Reverse Run algorithms are the fastest in all cases. In Figure 14, it is shown that the increment
of the disk page size for sizes larger than 8 KB, does not give any advantage in query execution for any algorithm.
Experiments with page sizes larger than 32 KB show that the execution becomes slightly slower.

6.3.2 The number of dx distance calculations

The results of the number of dx distance calculations are similar for all input data sets. In Table 7, we can see
the values of this metric when KCPQ is executed by the algorithms FCCPS, SCCPS, FRCPS and SRCPS on the
1000KC1N×1000KC2N data sets. As the value of disk page size increases, the number of dx distance calculations
stays almost constant.
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pg FCCPS SCCPS FRCPS SRCPS Total

1 528.0 554.6 381.0 380.4 1844.0
2 529.3 554.8 381.8 381.0 1846.9
4 529.3 554.8 381.8 381.0 1846.9
8 529.5 554.9 382.0 381.4 1847.8
16 529.5 554.9 382.0 381.4 1847.8

Table 7 Number of dx distance calculations in millions (×106) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on
1000KC1N × 1000KC2N , in relation to pg.
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Fig. 15 Fractions of number of dx distance calculations for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N ×
1000KC2N , in relation to pg.

pg FCCPS SCCPS FRCPS SRCPS Total

1 63044 96126 53988 105668 318826
2 31178 47453 26594 52082 157307
4 15590 23729 13298 26042 78659
8 7802 11806 6678 13032 39318
16 3902 5905 3340 6517 19664

Table 8 Number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N×1000KC2N ,
in relation to pg.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS 45-25 times and SRCPS
overcomes FRCPS 58-12 times. Comparing the best result among FCCPS and SCCPS and the best result among
FRCPS and SRCPS, for every combination of data sets, we conclude that Reverse Run algorithms need fewer dx
calculations in all cases (70-0).

Figure 15 shows the number of dx distance calculations of each algorithm as a fraction of the total number
of dx distance calculations needed by all algorithms (represented by the respective bar). SRCPS (line with down-
facing triangles as markers) needed 20.63% up to 20.64% of the total number of dx distance calculations needed
to execute the queries. FRCPS has almost equal numbers of dx distance calculations, so its line (with up-facing
triangles as markers) is overwritten by the line of the SRCPS. The Reverse Run algorithms need fewer dx distance
calculations in all cases.

6.3.3 The number of the disk accesses (pages read)

The results for the number of disk accesses (pages read) are similar for all input data sets and this performance
measure proved to be the most important factor that shaped the results. Table 8 shows the values of this metric
when KCPQ is executed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms on the 1000KC1N×1000KC2N
data sets. As the disk page size (pg) increases, the number of disk accesses decreases. The rate of this decrement is
quite stable. While the disk page size increases geometrically with a ratio of 2, the number of pages read decreases
smoothly, for example, in the FRCPS algorithm steps by 50.74%, 50.00%, 49.78%, 49.99%.

Considering all experiments and all data sets, we find that FCCPS overcomes SCCPS 64-6 times and FRCPS
overcomes SRCPS 70-0 times. Comparing the best result among FCCPS and SCCPS and the best result among
FRCPS and SRCPS for every combination of data sets, we conclude that FRCPS needs fewer disk accesses in all
cases (70-0). Figure 16 shows the values of the number of disk accesses of each algorithm as a fraction of the total
number of disk accesses needed by all algorithms (represented by the respective bar).

Summarizing the results of experiments on the effect of disk page size, pg, we note that: (1) Doubling the size
of pg causes decrease in execution time not larger than 20% on real and synthetic data sets and not larger than
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Fig. 16 Fractions of number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N×
1000KC2N , in relation to pg.

ss FCCPS SCCPS FRCPS SRCPS Total

2 963.56 753.53 582.91 666.26 2966.26
4 841.25 636.73 511.40 570.36 2559.74
8 801.21 592.29 484.13 534.10 2411.73
16 802.37 586.02 484.95 527.10 2400.44
32 652.37 579.34 487.89 526.44 2246.04

Table 9 Execution time in ms for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water × Park, in relation to ss.

30% on the big real data sets. (2) As pg increases, the number of disk accesses required by the FCCPS and FRCPS
algorithms decreases significantly, but for the SCCPS and SRCPS algorithms this decrease is limited. (3) The
number of dx distance calculations remains quite stable (not affected by pg). Moreover, (4) the fastest algorithm
proves to be FRCPS, while SRCPS proves to be quite economical in terms of dx distance calculations.

6.4 The effect of the size of strips (ss)

In order to examine the effect of the size of the strips (ss) in terms of performance of the new algorithms, we set
the value of K = 1000; pg = ss (size of disk page = size of strip), the size of strip (ss) = 2, 4, 8, 16 and 32 KBytes;
and there is no LRU buffer (its size is 0). In the previous section 6.3.1 it was proved that the page size, having
constant the size of strip (but larger than the disk page size), affects the execution time up to 20% in some cases.
In order to neutralize this effect of page size with respect to the execution time, we set equal size for pg and ss.

6.4.1 The execution time

The results for execution time are similar for all input data sets. Table 9 shows the execution time in ms when
KCPQ is executed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms on the Water × Park data sets. As
the strip size increases, the execution time is reduced, with a decreasing rate. For example, using SCCPS, from
ss = 2KB to ss = 4KB the time decreased by 15.5%, from ss = 4KB to ss = 8KB by 7%, from ss = 8KB to
ss = 16KB by 1% and from ss = 16KB to ss = 32KB by 1%. The Reverse Run algorithms are shown to be
faster than the Classic ones.

Figure 17 shows the execution time of each algorithm as a fraction of the total execution time consumed by
all algorithms (represented by the respective bar). Considering all experiments and all data sets, we find that
SCCPS overcomes FCCPS 54-16 times and FRCPS overcomes SRCPS 52-18 times. Comparing the best result
among FCCPS and SCCPS and the best result among FRCPS and SRCPS for every combination of data sets,
we conclude that Reverse Run algorithms are the fastest in most cases (68-2). In Figure 17, it is shown that the
increment of the strip size, for sizes larger than 32 KB does not give advantage in query execution time for any
algorithm. Experiments with strip sizes larger than 32 KB show that execution becomes slower. The Reverse Run
algorithms are faster and the best strip size is 8 or 16 KB for all types of data sets, which, in all cases, is larger
than the physical I/O unit.
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Fig. 17 Fractions of execution time for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water × Park, in relation to ss.

ss FCCPS SCCPS FRCPS SRCPS Total

2 497.47 481.46 469.63 469.52 1918.07
4 497.54 479.69 469.55 469.49 1916.27
8 498.09 478.17 469.53 469.47 1915.25
16 498.46 476.74 469.49 469.46 1914.15
32 490.56 476.24 469.48 469.45 1905.73

Table 10 Number of dx distance calculations in millions (×106) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on
Water × Park, in relation to ss.
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Fig. 18 Fractions of number of dx distance calculations for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water×Park,
in relation to ss.

6.4.2 The number of dx distance calculations

The results for the number of dx distance calculations are similar for all input data sets. Table 10 shows the
values of this metric when KCPQ is executed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms on the
Water×Park data sets. As the value of strip size increases the number of dx distance calculations remains almost
constant.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS 45-25 times and SRCPS
overcomes FRCPS 49-21 times. Comparing the best result among FCCPS and SCCPS and the best result among
FRCPS and SRCPS for every combination of data sets, we conclude that the Reverse Run algorithms need fewer
dx calculations in all cases (70-0).

Figure 18 shows the number of dx distance calculations of each algorithm as a fraction of the total number of
dx distance calculations of all algorithms (represented by the respective bar). It is shown that FRCPS (line with
up-facing triangles as markers) needed from 24.48% up to 24.63% of the total number of dx distance calculations.
The SRCPS algorithm has almost equal number of dx distance calculations so its line (with down-facing triangles
as markers) is overwritten from the line of the FRCPS. The Reverse Run algorithms need fewer dx distance
calculations in all cases.
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ss FCCPS SCCPS FRCPS SRCPS Total

2 373,962 345,686 236,166 346,931 1,302,745
4 182,414 164,051 110,000 159,128 615,593
8 89,871 81,247 52,843 77,217 301,178
16 44,678 40,583 25,902 38,079 149,242
32 16,199 20,263 12,822 18,902 68,186

Table 11 Number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water × Park, in
relation to ss.
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Fig. 19 Fractions of number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water×Park,
in relation to ss.

6.4.3 The number of the disk accesses (pages read)

The results for the number of disk accesses (pages read) are similar for all input data sets and this performance
measure proved to be the most important factor that shaped the results. Table 11 shows the values of this metric
when KCPQ is executed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms on the Water×Park data sets.
As the strip size (ss) increases the number of disk accesses decreases. The rate of this decrement is quite stable.
While the strip size increases geometrically with a ratio of 2, the number of pages read decreases, for example, in
the SRCPS algorithm, by 54.13%, 51.47%, 50.69% and 50.36%.

Considering all experiments and all data sets, we find that FCCPS overcomes SCCPS 62-8 times and FRCPS
overcomes SRCPS 70-0 times. Comparing the best result among FCCPS and SCCPS and the best result among
FRCPS and SRCPS for every combination of data sets, we conclude that FRCPS needs fewer disk accesses in all
cases (70-0). Figure 19 shows the number of disk accesses of each algorithm as a fraction of the total number of
disk accesses needed by all algorithms (represented by the respective bar).

Summarizing the results of experiments on the effect of strip size, ss, we note that: (1) The exponential growth
of ss causes decrease in the execution time not larger than 15% for all, real and synthetic data sets. (2) As ss
increases, the number of disk accesses needed by each of the algorithms decreases notably, but the best behaviour
for this performance measure is for FRCPS. (3) The number of dx distance calculations remains quite stable
(not affected by ss). Moreover, (4) the fastest algorithm proves to be FRCPS, while SRCPS proves to be quite
economical in terms of dx distance calculations.

6.5 The effect of the LRU buffer

In order to examine the effect of the size of the LRU buffer on the performance of the new algorithms, we examined
several LRU buffer sizes. Although, one might expect that, as a result of finding in RAM (and not reading from
disk) some of the strips needed for processing, the execution time would be possibly reduced, in fact, the cost for
the management of the LRU-buffer proved to overcome any such reduction and the execution time increased when
the LRU buffer size increased. For all LRU buffer sizes, FRCPS proved to be faster than the SRCPS algorithm in
double the cases (47-23), and the one with the smallest number of strips found in the buffer (the fastest execution
of FRCPS was the one without any buffering). Moreover, the LRU-buffer does not have any effect on the number
of dx distance calculations, since this performance measure is not affected whether the data are in RAM or in disk.
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ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS Total

0.00 2.85 2.54 1.77 1.51 8.67
1.25 6.33 6.85 5.13 5.83 24.14
2.50 9.40 10.04 8.16 8.97 36.57
5.00 15.50 16.34 14.25 15.12 61.21
10.00 27.62 28.98 26.35 27.69 110.65

Table 12 Execution time in s for εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS on Park ×Build, in relation to ε.

ε× 10−3 εFCCPS εSCCPS εFRCPS εSRCPS

0.00 32.89% 29.31% 20.43% 17.37 %
1.25 26.23% 28.36% 21.25% 24.16%
2.50 25.71% 27.47% 22.31% 24.52%
5.00 25.33% 26.69% 23.28% 24.70%
10.00 24.96% 26.19% 23.82% 25.03%

Table 13 Fractions of execution time of each algorithm over the total execution time for εDJQ using εFCCPS, εSCCPS, εFRCPS
and εSRCPS on Park ×Build, in relation to ε.

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS Total

0.00 0.237 0.120 0.018 0.018 0.393
1.25 2.884 2.767 2.666 2.666 10.982
2.50 5.530 5.415 5.313 5.313 21.572
5.00 10.823 10.711 10.608 10.608 42.750
10.00 21.409 21.303 21.198 21.198 85.108

Table 14 Number of dx distance calculations in billions (×109) for εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS on
Park ×Build, in relation to ε.

6.6 Experimental results for εDJQ

In this section, we study the effect of the increment of the distance threshold (ε) on the εDJQ. In order to examine
the effect of ε on the εDJQ algorithms, ε1 is set equal to 0 and ε2 = ε. ε = 0, 1.25 × 10−5, 2.5 × 10−5, 5 × 10−5

and 10× 10−5 for medium real and synthetic data, and ε = 0, 1.25× 10−3, 2.5× 10−3, 5× 10−3 and 10× 10−3 for
big real data. pg = 4 KBytes, ss = 16 KBytes and there is no LRU buffer (its size is 0).

6.6.1 The execution time

The results for execution time are similar for all input data sets. Table 12 shows the execution time in s when the
εDJQ is processed by the εFCCPS, εSCCPS, εFRCPS and εSRCPS algorithms on Park × Build data sets. As
the value of ε increases the execution time grows, and the rate of the increment continuously grows (after the first
non zero value of the maximum distance ε). The εFRCPS algorithm is shown to be faster in the most cases.

Considering all experiments and all data sets, we find that εFCCPS overcomes εSCCPS 52-18 times and
εFRCPS overcomes εSRCPS 50-20 times. Comparing the best result among εFCCPS and εSCCPS and the best
result among εFRCPS and εSRCPS for every combination of data sets, we conclude that ε Reverse Run algorithms
are faster in the most cases (67-3).

Table 13 shows the values of the execution time of each algorithm as a fraction of the total time consumed by
all algorithms on Park ×Build data sets. It is shown that the εFRCPS needed from 20.43% up to 23.82% of the
total time to execute the queries and it is the fastest algorithm for all values of ε > 0. For, ε = 0 the εSRCPS
algorithm was faster, since its fraction of time was 17.37%.

6.6.2 The number of dx distance calculations

The results for the number of dx distance calculations are similar for all input data sets. Table 14 shows the
values of this metric when εDJQ is processed by the εFCCPS, εSCCPS, εFRCPS and εSRCPS algorithms on
Park×Build data sets. As the value of ε increases the number of dx distance calculations also increases. However,
while the value of ε increases geometrically with a ratio of 2, the number of dx distance calculations increases to
a same ratio near to 2.

Considering all experiments and all data sets, we find that εSCCPS overcomes εFCCPS 70-0 times and εFRCPS
overcomes εSRCPS 35-29 times. Comparing the best result among εFCCPS and εSCCPS and the best result among
εFRCPS and εSRCPS for every combination of data sets, we conclude that Reverse Run algorithms need fewer
dx distance calculations in all cases (70-0).

Table 15 shows the number of dx distance calculations of each algorithm as a fraction of the total number of
dx distance calculations needed by all algorithms on Park×Build data sets. It is shown that the εFRCPS needed
4.63% for the case of ε = 0 and for the other cases from 24.21% up to 24.91% of the total number of dx distance
calculations. The εSRCPS algorithm has a little fewer dx distance calculations than εFRCPS only in the case
ε = 0 and in all other cases the number of dx distance calculations is almost equal. The Reverse Run algorithms
need fewer dx calculations in all cases.



New Plane-Sweep Algorithms for DJQ in Spatial Databases 33

ε× 10−3 εFCCPS εSCCPS εFRCPS εSRCPS

0.00 60.31% 30.49% 4.63% 4.58 %
1.25 26.26% 25.20% 24.27% 24.27%
2.50 25.64% 25.10% 24.63% 24.63%
5.00 25.32% 25.05% 24.81% 24.81%
10.00 25.15% 25.03% 24.91% 24.91%

Table 15 Fraction of number of dx distance calculations of each algorithm over the total number of dx distance calculations for
εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS on Park ×Build, in relation to ε.

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS Total

0.00 1354.9 1348.9 742.6 742.6 4189.0
1.25 1360.7 1905.9 754.2 1370.2 5391.0
2.50 1366.4 1956.1 765.7 1434.5 5522.7
5.00 1377.8 2015.0 788.7 1517.5 5699.0
10.00 1400.9 2390.0 834.4 1938.4 6563.7

Table 16 Number of disk accesses (pages read) in thousands (×103) for εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS
on Park ×Build, in relation to ε.

ε× 10−5 εFCCPS εSCCPS εFRCPS εSRCPS

0.00 32.34% 32.20% 17.73% 17.73 %
1.25 25.24% 35.35% 13.99% 25.42%
2.50 24.74% 35.42% 13.86% 25.97%
5.00 24.18% 35.36% 13.84% 26.63%
10.00 21.34% 36.41% 12.71% 29.53%

Table 17 Fraction of number of disk accesses of each algorithm on the total number of disk accesses for εDJQ using εFCCPS,
εSCCPS, εFRCPS and εSRCPS on Park ×Build, in relation to ε.

6.6.3 The number of the disk accesses (pages read)

The results for the number of disk accesses (pages read) are similar for all input data sets and this performance
measure proved to be the most important factor that shaped the results. Table 16 shows the values of this metric
when εDJQ is executed by the εFCCPS, εSCCPS, εFRCPS and εSRCPS algorithms on Park ×Build data sets.
As the value of ε increases, the number of disk accesses increases. But the rate of this increment is too small for
the Reverse Run algorithms and bigger for the Classic ones. While ε increases geometrically with a ratio of 2,
the number of pages read increases with a lower ratio, for example, the number of pages read for the εFRCPS
algorithm increases by 1.57%, 1.51%, 3.00% and 5.80%.

Considering all experiments and all data sets, we find that εFCCPS overcomes 63-7 times εSCCPS and εFRCPS
overcomes 57-0 times εSRCPS (there are 13 cases of tie). Comparing the best result between εFCCPS and εSCCPS
and the best result between εFRCPS and εSRCPS for every combination of data sets, we can conclude that ε
Reverse Run algorithms need fewer disk accesses in all cases (70-0). Table 17 shows the values of the number of
disk accesses of each algorithm as a fraction of the total number of disk accesses needed by all algorithms.

Summarizing the results of experiments on the effect of ε, note that: (1) the geometrical growth of ε causes a
non-geometrical increase of execution time. (2) the exponential growth of ε causes an increase in the number of
dx distance calculations with a lower ratio (ranging very close to 2). (3) The number of disk accesses required by
εFCCPS and εFRCPS algorithms increases marginally with the growth of ε, unlike εSCCPS and εSRCPS, where
the increment is more pronounced. Moreover, (4) faster algorithm proves to be the εFRCPS than εSRCPS (50-20),
while εFRCPS proves to be more economical in terms of dx distance calculations than εFRCPS (35-29).

The experiments were continued in the same manner as in sections 6.3, 6.4 and 6.5 for KCPQ, in order to
study the effect of the disk page size, the strip size and the size of the LRU-buffer. In general, the results are
similar between KCPQ and εDJQ. The fastest in execution time and reading fewer pages from the disk proved to
be the εFRCPS algorithm. We note only that, for the case of ε = 0, SRCPS is slightly better than FRCPS. For
the cases where ε > 0, the results for εFRCPS are not as good as the ones of FRCPS. This is explained, since the
most important factors that improve the performance of an algorithm for the KCPQ are (1) how quickly pairs
with very small distances will enter the maxKHeap, and (2) how efficiently the algorithm will manage the largest
distance of these pairs. In contrast to KCPQ, εDJQ does not need the fast finding of pairs with small distance,
since the maximum acceptable distance is consistently defined by the user beforehand (ε). Only the smart and
economical management of the given distance affects the final performance of an algorithm.

6.7 Effectiveness study

To study the effectiveness of the proposed algorithms we will use the selection ratio, that is, the fraction of pairs
considered by the new algorithms for processing over the total number of possible pairs (a pair is selected for
processing if its dx distance is smaller than the distance of the K-th closest pair found so far). This effectiveness
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K FCCPS SCCPS FRCPS SRCPS

1 12.72% 7.67% 3.00% 2.99%
10 18.75% 13.70% 9.01% 9.01%
100 33.98% 28.94% 24.19% 24.18%
1000 82.96% 77.96% 72.89% 72.84%
10000 237.97% 233.17% 226.47% 226.12%

Table 18 Fraction of pairs (×10−6) processed over the total number of possible pairs (selection ratio) for KCPQ using FCCPS,
SCCPS, FRCPS and SRCPS on NArrN ×NArdND.

K FCCPS SCCPS FRCPS SRCPS

1 1.85% 1.61% 1.13% 1.21%
10 32.66% 29.66% 23.65% 23.68%
100 85.20% 88.43% 67.62% 66.83%
1000 266.13% 278.41% 191.37% 190.96%
10000 691.96% 699.59% 509.33% 510.08%

Table 19 Fraction of pairs (×10−6) processed over the total number of possible pairs (selection ratio) for KCPQ using FCCPS,
SCCPS, FRCPS and SRCPS on 1000KC1N × 1000KC2N .

K FCCPS SCCPS FRCPS SRCPS

1 5.51% 3.16% 0.98% 0.97%
10 43.33% 27.40% 12.60% 12.58%
100 64.64% 48.70% 33.78% 33.76%
1000 137.71% 121.45% 105.65% 105.51%
10000 459.94% 442.55% 421.18% 418.22%

Table 20 Average fraction of pairs (×10−6) processed over the total number of possible pairs (selection ratio) for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for all real data sets.

K FCCPS SCCPS FRCPS SRCPS

1 3.76% 3.80% 2.74% 2.73%
10 75.68% 77.67% 62.26% 59.76%
100 189.65% 203.28% 171.06% 165.91%
1000 573.11% 587.07% 462.33% 462.16%
10000 1456.99% 1485.84% 1252.13% 1253.75%

Table 21 Average fraction of pairs (×10−6) processed over the total number of possible pairs (selection ratio) for KCPQ using
FCCPS, SCCPS, FRCPS and SRCPS for all synthetic data sets.

measure is the opposite to the pruning ratio, and therefore the smaller the selection ratio, the higher the power of
pruning of the algorithm.

We are going to focus on the increment of K. Tables 18 and 19 report the effect of K on the selection ratio for
real and synthetic data, respectively. In order to extract conclusions from the tables, we have to take into account
that for the specific combination of real data there are 191, 558 × 1, 134, 164 = 217,258,187,512 possible pairs
(2.17 × 1011) and for the specific synthetic data there are 1012 possible pairs. We can observe that an increasing
K makes the selection ratio of the proposed algorithms to increase continuously. Therefore, the effectiveness of
our algorithms degrades as K turns to be too large, due to the increase of the distance of the K-th closest pair.
And, the larger the K value, the smaller the difference between Reverse Run algorithms and Classic plane-sweep
algorithms (we mainly observe this fact on real data) in terms of selection ratio. From these tables, we observe that
SRCPS is the winner in most of the cases, but FRCPS is very close to it (being the winner in the remaining cases).
This means that FRCPS sacrifices slightly effectiveness for efficiency, in the use of the partitioning technique.
An interesting conclusion from this effectiveness measure is that the best algorithms in pruning are the Reverse
Run ones and this conclusion is in accordance to efficiency. Moreover, since the selection ratio depends on the dx
distance, it is the most representative measure for pruning and for effectiveness.

We note that the average performance in pruning, for all combinations of real and synthetic data, follows the
same trend. This behaviour is shown in Tables 20 and 21, where SRCPS is the winner in most of the cases, but
FRCPS is very close to it.

6.8 Performance Comparison to R-trees

In order to examine the performance of the new algorithms in comparison to a widely accepted access method,
like R-trees, we have performed experiments for measuring:

– The creation time of the sorted files needed for the new algorithms and the creation time of the R-tree structure.
In the case of the new algorithms, we used external merge sort with 16 buffers of 16KB and in the case of the
R-tree, we used advanced bulk loading [48] (using code available form http://libspatialindex.org), to reduce
the time needed for tree construction.
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R-tree new algorithms
tree
file

length

cre-
ation
time

bin file
length

cre-
ation
time

data set
name

number
of

objects
(×103)

(MB) (s) (MB) (s)

NarrN 191.6 16.7 0.6 4.4 0.2
NarrND 383.2 33.2 1.2 8.8 0.3
500KC1N 500.0 43.4 1.7 11.4 0.4
500KC2N 500.0 43.4 1.7 11.4 0.4
NardN 569.1 49.3 1.9 13.0 0.5
1000KC1N 1000.0 86.6 4.8 22.9 0.8
1000KC2N 1000.0 86.6 4.8 22.9 0.8
NardND 1138.2 98.7 7.0 26.1 0.9
Water 5836.4 505.9 39.8 133.6 5.4
Park 11504.0 997.0 81.7 263.3 10.6
Build 114736.6 9943.8 1104.0 2626.1 128.5

Table 22 Creation time of R-tree structures and sorted data files used by the new algorithms, for several data sets.

query execution creation + query
time (ms) execution time (s)

K CCPS-BF FRCPS CCPS-BF FRCPS

1 467.81 31.99 8.698 1.421
10 473.99 32.44 8.704 1.422

100 481.24 34.27 8.711 1.423
1000 496.50 44.53 8.727 1.434

10000 586.10 66.24 8.816 1.455

Table 23 Query execution time(ms) and total time(s) (creation+execution) of CCPS-BF and FRCPS for NArdN × NArdND
data sets.

– The execution time and number of disk accesses for processing the KCPQ and εDJQ.

The experiments were run for the following data set combinations: NArrN ×NArdN , NArrND×NArdND,
500KC1N × 500KC2N , 500KC2N × 1000KC1N , 1000KC1N × 1000KC2N , Water×Park, Water×Build and
Park ×Build.

6.8.1 Experimental results for KCPQ

Table 22 shows the name and the number of objects for each data set in ascending order of size. It also shows the
sizes and creation times of the R-tree structure and sorted data files used by the new algorithms. It is obvious
that the size of the files used by the new algorithms is approximately 3.7 times smaller than the size of the R-tree
structure. The time for the creation of files for the new algorithms ranges from 3.9 up to 8.6 times smaller than
the time for the R-tree structure.

The 8 combinations of data sets were chosen in order to take measurements between small and big data sets
and also between real and synthetic data sets. We have chosen the fastest algorithm executing the KCPQ with
R-trees, the CCPS-BF. It is the algorithm which scans the nodes of the R-tree in Best First manner (using one
global minimum heap to sort the pairs of the nodes reached so far with minmin distance) and when a pair of
leafs is reached, the pairs of points are processed using the classic plain sweep algorithm. On the other hand we
have chosen to compare to the FRCPS algorithm executing the same KCPQs because it is faster than SRCPS
algorithm in more cases (36-34) of all combinations and all K values. The smaller number of total pairs was for
the combination NArrN ×NArdN having a total number of pairs equal to 191, 558× 569, 082, while the biggest
number of total pairs was for the combination Park × Build data sets having a total number of pairs equal to
11, 504, 035× 114, 736, 611. Observing the values of the metrics of experiments on real and synthetic data for the
first 5 combinations we see that the FRCPS was the absolute winner for all values of K and for all metrics. Table
23 shows both the values of query time and total time (creation + query) needed by the CCPS-BF and FRCPS
algorithms to execute the KCPQ on NArdN × NArdND data sets. As the value of K increases, the relative
difference of execution time between the two algorithms is slightly reduced (gain by 93.16%, 93.16%, 92.88%,
91.03% and 88.70%). The total time, creation and query execution time showcased similar behavior with an even
smaller reduction. FRCPS needs less total time by gain by 83.61%.

In Table 24 (second and third columns) we can see the number of disk accesses when the KCPQ is executed by
the CCPS-BF and FRCPS algorithms on NArdN ×NArdND data sets. The increment of K didn’t significantly
affect the number of needed disk accesses for both algorithms. FRCPS again proved to be more efficient than
CCPS-BF by an average gain of 88.73%.

Table 25 shows the values of query time and total time (creation + query) when the KCPQ is executed by the
CCPS-BF and FRCPS algorithms on the combination of big data sets Water×Build. As the value of K increases,
the relative difference of execution time between the two algorithms didn’t showcase a clear pattern. The FRCPS
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number of disk accesses
NArdN ×NArdND Water × Build

K CCPS-BF FRCPS CCPS-BF FRCPS

1 80,562 8,955 813,256 709,320
10 80,582 8,967 813,386 709,592

100 80,616 8,987 813,786 710,464
1000 80,784 9,095 815,094 712,796

10000 81,290 9,519 819,130 720,012

Table 24 Number of disk accesses of CCPS-BF and FRCPS algorithms for NArdN ×NArdND and Water ×Build data sets.

query execution creation + query
time (s) execution time (s)

K CCPS-BF FRCPS CCPS-BF FRCPS

1 3.577 3.256 1,147.371 137.094
10 3.607 1.646 1,147.401 135.484

100 3.596 1.829 1,147.391 135.667
1000 3.619 2.319 1,147.413 136.157

10000 3.810 5.302 1,147.605 139.140

Table 25 Query execution time(s) and total time(s) (creation+execution) of CCPS-BF and FRCPS for Water×Build data sets.

query execution creation + query
time (s) execution time (s)

ε× 10−3 εCCPS-BF εFRCPS εCCPS-BF εFRCPS

0.00 127.9 1.770 1,314 140.8
1.25 158.3 5.129 1,344 144.2
2.50 159.4 8.157 1,345 147.2
5.00 161.1 14.249 1,347 153.3
10.0 164.2 26.354 1,350 165.4

Table 26 Query execution time(s) and total time(s) (creation+execution) of εCCPS-BF and εFRCPS for Park×Build data sets.

remained faster for all K values smaller than 10.000 while CCPS-BF was faster for the last value of K. The relative
differences (gain) are as follows: 8.99%, 54.35%, 49.14%, 35.93% and −39.13%. For positive (negative) values the
FRCPS is faster (slower). FRCPS was also faster for all K values of the total time, creation and query execution
time. FRCPS needs less total time by 88.09%. In Table 24 (forth and fifth columns) we can see the number of disk
accesses in relation to K values for the same data sets combination. The increment of K didn’t significantly affect
the number of needed disk accesses for both algorithms. FRCPS again proved to be more efficient than CCPS-BF
by an average gain of 12.58%.

Considering all experiments and all data sets, we find that FRCPS overcomes CCPS-BF 38-2 times for query
execution time, 40-0 for total time and 38-2 times for disk accesses.

6.8.2 Experimental results for εDJQ

The same 8 combinations of data sets were used in order to take measurements while executing the εDJQs with
ε = 0, 1.25 × 10−5, 2.5 × 10−5, 5 × 10−5 and 10 × 10−5 for the first 5 combinations (medium real and synthetic
data), and with ε = 0, 1.25 × 10−3, 2.5 × 10−3, 5 × 10−3 and 10 × 10−3 between the last 3 combinations (big
real data). We have chosen the fastest algorithm for executing εDJQ with R-trees: the εCCPS-BF. On the other
hand we have chosen to compare to the εFRCPS algorithm executing the same εDJQs because it is faster than
εSRCPS algorithm in more cases (50-20) of all combinations and all ε values. Observing the values of the metrics
of experiments on real and synthetic data, small or big data sets for all the 8 combinations we see that the εFRCPS
was the absolute winner for all values of ε and for all metrics. Table 26 shows both the values of query time and
total time (creation + query) needed by the εCCPS-BF and εFRCPS algorithms to execute the εDJQ on the
biggest combination, Park×Build data sets. As the value of ε increases, the relative difference of execution time
between the two algorithms was slightly reduced (gain by 98.62%, 96.76%, 94.88%, 91.16% and 83.95%). The
total time, creation and query execution time showcased similar behavior with an even smaller reduction. εFRCPS
needs less total time gain of 88.80%.

In Table 27 we can see the number of disk accesses when εDJQ is executed by the εCCPS-BF and εFRCPS
algorithms on Park × Build data sets. The increment of ε didn’t significantly affect the number of needed disk
accesses for both algorithms. εFRCPS again proved to be more efficient than εCCPS-BF by an average gain of
89.46%.

Considering all experiments and all data sets, we find that εFRCPS overcomes εCCPS-BF in all cases of ε
values and for all data sets in all performance metrics.
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number of disk accesses

ε× 10−3 εCCPS-BF εFRCPS

0.00 7,347,596 742,593
1.25 7,356,476 754,233
2.50 7,365,108 765,657
5.00 7,382,220 788,657
10.0 7,416,790 834,369

Table 27 Number of disk accesses of εCCPS-BF and εFRCPS algorithms for Park ×Build data sets.

6.9 Conclusions from the experiments

In our previous work [1], it was shown that the Reverse Run PS algorithms are faster than the Classic ones for
the KCPQ, when the data is stored and processed in main memory. Classic PS algorithms always process data
sets from left to right and the runs of the two sets are generally interleaved. On the other hand, RR PS algorithms
process pairs of points in opposite sweeping order, starting from pairs of points that are the closest possible to
each other, avoiding further processing of pairs that is guaranteed not to be part of the final result and restricting
the search space by using dx distance values on the sweeping axis. Due to these, the pruning distance (key dist of
MaxKHeap root) is expected to be updated more quickly and the query processing cost of RR PS algorithms is
expected to be smaller.

From the experiments presented previously, when the data are stored on disk, we conclude that the main
factors that determine the execution time are: (1) The number of operations and comparisons; (2) The number of
pages that are transferred from disk to main memory; (3) The volume of memory required and its management;
and (4) How quickly maxKHeap is filled up with pairs having small distances and how fast the pruning distance
is reduced (it is important for the KCPQ, unlike the εDJQ), because the lower its value is, the greater the power
of pruning. Each of these factors affects differently the final result. FRCPS is faster in more cases, considering
different values of K, disk page size (pg), size of strips (ss) and size of LRU buffer (bs), although SRCPS requires
less memory in comparison to FRCPS.

With respect to the number of dx distance calculations, the SRCPS algorithm seems to be better (lower
number of calculations) in most cases, although FRCPS is quite close (i.e. the difference compared to SRCPS
in total calculations is rather small). This is due to the fact that for the RR PS algorithms, if we ignore the
non-sweeping dimension, the number of calculations can be proved to be optimal, since we always start with the
closest pair of points.

With respect to the number of disk accesses, FRCPS needs the least disk accesses in all experiments (considering
different values of K, pg and ss). This is due to the combination of RR PS processing and the uniform filling
technique, since, for uniform filling, the number of strips is predefined beforehand and it is smaller than for uniform
splitting (higher non-uniformity of data leads to larger difference between the two techniques). This means that the
number of strips read from disk, or the number of disk accesses, is smaller. In addition, the number of disk accesses
seems to be the most influential factor governing an algorithm’s efficiency in execution time, and the difference
between SRCPS and FRCPS becomes significant for this performance measure: FRCPS is totally dominating, and
thus, faster.

In conclusion, FRCPS is the best algorithm for all performance or efficiency measures for the following reasons:

1. a smaller number of strips partition the space,
2. a smaller number of strips are read from disk,
3. a more consistent application of RR PS processing is applied in the management of strips.

Moreover, this work emphasizes on the effective use of dx distance for pruning, considering the selection ratio
as the effectiveness measure. The main conclusion in this context is that RR PS algorithms are the most effective
ones for pruning, highlighting that SRCPS is slightly better than FRCPS.

Finally, from this extensive experimental study of the new algorithms, we conclude that RR PS algorithms are
the most efficient and effective ones for the KCPQ and εDJQ, and the FRCPS variant is the best one.

Regarding the comparison of the new algorithms to the widely accepted R-tree based methods, the file needed
by the new algorithms is created in extremely smaller time than the R-tree structure. The best new algorithm
(FRCPS) answers the KCPQ in significantly smaller time than the best R-tree based algorithm (CCPS-BF), in
most cases. It is slower in only 2 cases out of the 40 cases studied. An analogous situation (in 2 out of the 40 cases
the new algorithm looses) arises for the number of disk pages read by the algorithms. This can be attributed to
the data distribution of these cases that favors the algorithms that work on a tree structure. Nevertheless, even
in these 2 cases, the total (creation + query) time of the new algorithm for answering the KCPQ is significantly
smaller. The best new algorithm (εFRCPS) answers the εDJQ in significantly smaller time and with significantly
less pages read from disk than the best R-tree based algorithm (εCCPS-BF), in all cases. The fact that the εDJQ
requires finding of all (not only K) pairs within a specified distance forces the R-tree algorithms to search within
the whole tree, and thus the new algorithm is faster even in the above 2 cases.
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Overall, even when the data sets do not change at a very rapid rate, or are reusable for subsequent queries,
the best new algorithm is a better choice than the best R-tree based algorithm for the KCPQ and the εDJQ.

7 Conclusions and Future Work

This paper has presented several efficient and effective algorithms (FCCPS, SCCPS, FRCPS and SRCPS) for
the KCPQ and εDJQ, when neither inputs are indexed. First of all, we have enhanced the classic plane-sweep
algorithm for DJQs with two improvements: sliding window and sliding semi-circle. Next, we proposed a new
algorithm called Reverse Run Plane-Sweep, that improves the processing of the classic plane-sweep algorithm for
DJQs, minimizing the Euclidean and sweeping axis distance calculations. Then, as the main contribution of this
work, four algorithms (FCCPS, SCCPS, FRCPS and SRCPS) for KCPQ and εDJQ are proposed, without the
use of indexes on both disk-resident data sets. These four algorithms employ a combination of plane-sweep and
space partitioning techniques to join the data sets. We also presented results of an extensive experimental study,
where efficiency and effectiveness measures are explored for the proposed algorithms. From this performance study,
that was conducted on medium and big spatial (real and synthetic) data sets, when neither input is indexed, we
conclude that RR PS algorithms are the most efficient and effective for the KCPQ and εDJQ, and that FRCPS is
the best variant, which combines RR PS processing with uniform filling partitioning technique. Finally, the best
of the new algorithms was experimentally compared to the best algorithm that is based on the R-tree (a widely
accepted access method), for KCPQs and εDJQs and it was shown that the new algorithms outperform R-tree
based algorithms, in most cases. For future work, we plan to further investigate the adaptation of the new plane-
sweep-based algorithms, when neither input is indexed, to other DJQs (as Iceberg Distance Join Query [42] and K
Nearest Neighbour Join query [43]). Moreover, it would be interesting to study approximate implementations of
the proposed algorithms by using the distance-based approximate techniques presented in [37] and to implement
new in-memory DJQ algorithms inspired in the disk-based approaches.
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2. R. H. Güting, An introduction to spatial database systems, VLDB J. 3 (4) (1994) 357–399.
3. S. Shekhar, S. Chawla, Spatial databases - a tour, Prentice Hall, 2003.
4. V. Gaede, O. Günther, Multidimensional access methods, ACM Computing Surveys 30 (2) (1998) 170–231.
5. A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Closest pair queries in spatial databases, in: SIGMOD

Conference, 2000, pp. 189–200.
6. A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Algorithms for processing k-closest-pair queries in spatial

databases, Data Knowl. Eng. 49 (1) (2004) 67–104.
7. F. P. Preparata, M. I. Shamos, Computational Geometry - An Introduction, Springer, 1985.
8. K. Hinrichs, J. Nievergelt, P. Schorn, Plane-sweep solves the closest pair problem elegantly, Information Processing Letters

26 (5) (1988) 255–261.
9. E. H. Jacox, H. Samet, Spatial join techniques, ACM Trans. Database Syst. 32 (1) (2007) 7.

10. H. Shin, B. Moon, S. Lee, Adaptive and incremental processing for distance join queries, IEEE Trans. Knowl. Data Eng. 15 (6)
(2003) 1561–1578.

11. N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The r*-tree: An efficient and robust access method for points and
rectangles, in: SIGMOD Conference, 1990, pp. 322–331.

12. E. H. Jacox, H. Samet, Iterative spatial join, ACM Trans. Database Syst. 28 (3) (2003) 230–256.
13. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. S. Vitter, Scalable sweeping-based spatial join, in: VLDB Conference, 1998,

pp. 570–581.
14. C. Gurret, P. Rigaux, The sort/sweep algorithm: A new method for r-tree based spatial joins, in: SSDBM Conference, 2000,

pp. 153–165.
15. G. Roumelis, A. Corral, M. Vassilakopoulos, Y. Manolopoulos, New plane-sweep algorithms for distance-based join queries in

spatial databases, Tech. Rep. TR-01-2014, Data Eng. Lab, AUTH, Greece, http://delab.csd.auth.gr/m̃ichalis/TR-01-2014.pdf
(2014).

16. G. R. Hjaltason, H. Samet, Incremental distance join algorithms for spatial databases, in: SIGMOD Conference, 1998, pp.
237–248.

17. P. Rigaux, M. Scholl, A. Voisard, Spatial databases - with applications to GIS, Elsevier, San Francisco, CA, 2002.
18. H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, San Francisco, CA, 2007.
19. S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan, A. Ailamaki, TOUCH: in-memory spatial join by hierarchical data-

oriented partitioning, in: SIGMOD Conference, 2013, pp. 701–712.
20. B. Sowell, M. A. V. Salles, T. Cao, A. J. Demers, J. Gehrke, An experimental analysis of iterated spatial joins in main memory,

PVLDB 6 (14) (2013) 1882–1893.



New Plane-Sweep Algorithms for DJQ in Spatial Databases 39

21. D. Sidlauskas, C. S. Jensen, Spatial joins in main memory: Implementation matters!, PVLDB 8 (1) (2014) 97–100.
22. H. Zhang, G. Chen, B. C. Ooi, K. Tan, M. Zhang, In-memory big data management and processing: A survey, IEEE Trans.

Knowl. Data Eng. 27 (7) (2015) 1920–1948.
23. N. Mamoulis, D. Papadias, Multiway spatial joins, ACM Trans. Database Syst. 26 (4) (2001) 424–475.
24. T. Brinkhoff, H.-P. Kriegel, B. Seeger, Efficient processing of spatial joins using r-trees, in: SIGMOD Conference, 1993, pp.

237–246.
25. A. Guttman, R-trees: A dynamic index structure for spatial searching, in: SIGMOD Conference, 1984, pp. 47–57.
26. M.-L. Lo, C. V. Ravishankar, Spatial hash-joins, in: SIGMOD Conference, 1996, pp. 247–258.
27. J. M. Patel, D. J. DeWitt, Partition based spatial-merge join, in: SIGMOD Conference, 1996, pp. 259–270.
28. M. Smid, Closest-point problems in computational geometry, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational

Geometry, Elsevier, 2000, Ch. 20, pp. 877–935.
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31. G. Gutiérrez, P. Sáez, The k closest pairs in spatial databases when only one set is indexed, GeoInformatica 17 (4) (2013)

543–565.
32. R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and performance study for similarity-search methods in high-

dimensional spaces, in: VLDB Conference, 1998, pp. 194–205.
33. N. Koudas, K. C. Sevcik, High dimensional similarity joins: Algorithms and performance evaluation, IEEE Trans. Knowl. Data

Eng. 12 (1) (2000) 3–18.
34. E. P. F. Chan, Buffer queries, IEEE Trans. Knowl. Data Eng. 15 (4) (2003) 895–910.
35. C. Yang, K.-I. Lin, An index structure for improving nearest closest pairs and related join queries in spatial databases, in:

IDEAS Conference, 2002, pp. 140–149.
36. F. Angiulli, C. Pizzuti, An approximate algorithm for top-k closest pairs join query in large high dimensional data, Data Knowl.

Eng. 53 (3) (2005) 263–281.
37. A. Corral, M. Vassilakopoulos, On approximate algorithms for distance-based queries using r-trees, The Computer Journal

48 (2) (2005) 220–238.
38. J. Shan, D. Zhang, B. Salzberg, On spatial-range closest-pair query, in: SSTD Conference, 2003, pp. 252–269.
39. L. H. U, N. Mamoulis, M. L. Yiu, Computation and monitoring of exclusive closest pairs, IEEE Trans. Knowl. Data Eng.

20 (12) (2008) 1641–1654.
40. M. A. Cheema, X. Lin, H. Wang, J. Wang, W. Zhang, A unified approach for computing top-k pairs in multidimensional space,

in: ICDE Conference, 2011, pp. 1031–1042.
41. D. Choi, C. Chung, Y. Tao, Maximizing range sum in external memory, ACM Trans. Database Syst. 39 (3) (2014) 21:1–21:44.
42. Y. Shou, N. Mamoulis, H. Cao, D. Papadias, D. W. Cheung, Evaluation of iceberg distance joins, in: SSTD Conference, 2003,

pp. 270–288.
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