
Robust Runtime Optimization of Data Transfer in

Queries over Web Services

Anastasios Gounaris #, Christos Yfoulis 2, Rizos Sakellariou 3, Marios D. Dikaiakos #4
Dept. of Computer Science
University of Cyprus, Cyprus
1gounaris@cs.ucy.ac.cy

4mdd@cs.ucy.ac.cy

*Dept. of Automation
ATEI of Thessaloniki, Greece
2cyfoulis@teithe.gr

tSchool of Computer Science
University of Manchester, UK
1gounaris@cs.man.ac.uk
3rizos@cs.man.ac.uk

Abstract- Self-managing solutions have recently attracted a
lot of interest from the database community. The need for self-*
properties is more evident in distributed applications compris-
ing heterogeneous and autonomous databases and functionality
providers. Such resources are typically exposed as Web Services
(WSs), which encapsulate remote DBMSs and functions called
from within database queries. In this setting, database queries
are over WSs, and the data transfer cost becomes the main
bottleneck. To reduce this cost, data is shipped to and from
WSs in chunks; however the optimum chunk size is volatile,
depending on both the resources' runtime properties and the
query. In this paper we propose a robust control theoretical
solution to the problem of optimizing the data transfer in queries
over WSs, by continuously tuning at runtime the block size and
thus tracking the optimum point. Also, we develop online system
identification mechanisms that are capable of estimating the
optimum block size analytically. Both contributions are evaluated
via both empirical experimentation in a real environment and
simulations, and have been proved to be more effective and
efficient than static solutions.

I. INTRODUCTION

As database systems have become particularly complex
software artifacts, efforts to minimize the need for human
administration and develop self-managing solutions have at-
tracted a lot of interest from the database community in line
also with the Lowell report recommendations [1]. In [2],
several trends of autonomic computing within the domain of
database management are enumerated. The need for self-*
properties is more evident in distributed systems comprising
heterogeneous and autonomous resources. Such resources are
typically exposed as Web/Grid Services, which can encap-
sulate either remote DBMSs (e.g., [3]) or functions called
from within database queries (e.g., [4], [5]). In these settings,
distributed database queries are executed over Web Services
(WSs). WSs are notoriously slow; nevertheless, nowadays,
they provide the most practical solution for accessing remote
data sources and programs spanning multiple administration
domains.

A characteristic of WSs that makes their use in high per-
formance applications problematic is that they incur high data
communication costs and parsing overheads. As such, mini-
mizing the data transmission cost for queries over WSs is of
high significance for modern distributed database applications.
To this end, pulling data from a WS-wrapped database (e.g.,
[3]) or submitting calls to a WS to perform data processing
(e.g., [4]) needs to be block-based. In this mode, the data
transmission cost per se can decrease, whereas applications
can also benefit from pipelined parallel processing. In this
work, we focus on the data transmission cost, without trying
to quantify the impact of pipelining.
The main challenge is that the graph describing the aggre-

gate transmission cost of a given dataset in time units with
regards to the block size, has a concave shape with various
local minima and high noise. Moreover, it cannot be assumed
that an analytical model describing this graph exists, since
it differs for different network and query characteristics. In
this work, we try to tackle the problem of finding the volatile
optimum block size, and thus provide robust runtime solutions
for minimizing query tasks that involve the transmission of
large datasets to and from WSs. These solutions are minimally
intrusive; they operate at the client site, and thus require no
additional monitoring of and extensions to the servers.
We follow a control theoretical approach and we extend

the work in [6]. The latter provides strong insights into how
control theory can be applied to this problem. It investigates
algorithms that fall into two broad areas: runtime optimization
inspired by hill-climbing techniques, and switching extremum
control [7]. As expected, the former category is outperformed
by the latter, which is more suitable for systems exhibiting
noisy, non-monotonical behavior. For the latter category, we
distinguished between techniques employing constant gain
and those employing adaptive gain, proportional to the per-
formance changes due to the last decisions. The trade-offs
between these two types can be summarized as follows.

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 596 ICDE 2008

Adaptive gain policies seem to be the most suitable choice
when the near optimal region can be approximated. However,
in this case the performance benefits may not exceed 10%
decrease in response times. Larger improvements, over 100%
decrease in performance degradation, can be provided when
this region is not a priori known. In this case, adaptive gain
policies have nice transient and stability properties but their
accuracy and capability of convergence are quite sensitive
to noise and non-smooth profile shapes. On the other hand,
constant gain policies can perform well even without proper
tuning, but their transient behavior and steady state stability
can deviate from the optimum point. In other words, none of
the types of switching extremum control is robust with respect
to different settings.
The focus of this paper is to address this severe limitation

of [6] so that the solutions can become more practical. To
this end we propose a novel hybrid controller that aims at
combining the strengths of both constant and adaptive gain
controllers, with a view to improving robustness and average
performance. Moreover, we explore another direction, after
observing that, despite the volatility, local peaks, jitter etc., the
performance graphs can be represented by smooth quadratic
(or sometimes monotonically decreasing) concave curves. As
such, we provide techniques to perform system identification
in our setting by fitting the online data to smooth profiles,
which can subsequently be processed analytically, thus paving
the way towards self-tuning controllers [8].
The remainder of this paper is structured as follows. The rest

of this section deals with related work. Section II discusses a
motivating example, drawn from the OGSA-DAI [3] services.
Similar examples could have been drawn from the emerging
WS management systems [4]. The novel hybrid switching
extremum controller is presented, along with its evaluation, in
Section III. Section IV deals with online system identification
followed by analytical estimate of the optimum block size.
Section V concludes the paper.

A. Related Work
The use of hybrid controllers is an important topic in control

theory. The basic idea has been around since the early days
of control theory development, and led to the development of
approaches such as gain scheduling [7], [9] and supervisory
control [10], and more recently, the related fields of switching
systems [11] and hybrid systems [12], which reach a higher
level of sophistication. The basic idea of gain scheduling
and supervisory control is to switch between a number of
controllers dynamically when moving from one operating
regime to another and there is no single controller to provide
satisfactory performance. The switching is orchestrated by a
supervisor implementing a specially designed logic that uses
measurements collected online to assess the performance of
the controller currently in use and also the performance of
potential controllers.

Applying techniques inspired by control theory to the com-
plex problems of distributed computing is not something new;
actually there is a recent booming in development control the-

oretical approaches to solve problems in computing systems,
software engineering and software services [13], [14]. This
is due to the trend of going beyond ad hoc and heuristic
techniques towards an autonomic computing paradigm [15].
Exploitation of the rich arsenal of techniques, methods, ideas
and foundations of control theory, developed for many decades
since the second world war, has already led to improved
designs in many areas and problems [16], [17], [18]. For a
database server, online adjustment of multiple configuration
parameters using online random and direct search techniques
is proposed in [19] to guarantee good performance. Online
minimization of the response time of an Apache web server
by dynamic tuning of the number of maximum clients allowed
to be connected simultaneously is described in [20]. Non-
linear problems of WSs are discussed also in [21], [22].
For application servers, optimal configurations have also been
sought in [23] using off-line experimentation and statistical
analysis.
From the control theory point of view, extremum control

has been employed from the early stages of control theory
development. Although applied in many engineering systems
(e.g., [7], [28], [29]), to the authors' knowledge this work is
the first application of control theory to database queries over
remote resources. For non-engineering problems, in a totally
different context, an extremum control approach has only
recently appeared in [24] for the problem of error correction
in packet-switched networks.

Finally, complementary efforts to minimize the data transfer
cost are described in [25] and [26]. The former suggests
improvements to the basic communication mechanism for
WSs, whereas the latter investigates solutions based upon
runtime selection of the transfer protocol.

II. MOTIVATION SCENARIO

Let us assume that a client submits a data retrieval task
to a WS deployed on an Apache Tomcat Web Server. The
WS acts as a wrapper to a MySQL DBMS. In our motivation
example, that WS is provided by the OGSA-DAI project
[3], which develops generic services for data access and
integration purposes in wide area heterogeneous environments.
The client resides on a randomly chosen PlanetLab node [27]
in Switzerland, and the retrieval task consists of an inexpensive
(in order not to incur significant CPU load) scan-project query
over the entire Customer relation of the TPC-H benchmark,
when this is deployed with scale set to 1, i.e., in total, 150K
tuples are retrieved. The server is in the UK. This query is
executed in a pull mode, i.e., the client continuously requests
for new data chunks that can have different size each time,
until the complete result set is retrieved.

Figure 1 depicts the response time at the client side when
there are 1,2,5, and 10 other concurrent jobs that are being ex-
ecuted on the Web Server. These jobs are not computationally
intensive and do not require access to the DBMS. Two main
observations can be made. Firstly, the more jobs are running
on the server, the more concave the graph becomes. Secondly,
the optimum point changes during the different executions

597

80000()

70000

0 60000

E 50000

E 40000

G) 30000

o 20000

0)@ 1 ioooo0

0-

+ 1 + 0 jobs
+ job

l + 2 jobs
1 + 5 jobs
1 + 10 jobs

0 2000 4000 6000 8000 10000

block size (#tuples)

Fig. 1. The response times when the Web Server processes multiple non-
database requests concurrently.

Algorithm 1 Pseudo-code at the client side
blockSize = initialBlockSize
while Send-of-results do

t, = timestamp()
WebServvice.requestNewBlock(blockSize)
t2 = timestamp()
blockSize = Controller.computeNewSize(t2 -t1)

end while

model, as such information does not exist, in the generic case.

although the network conditions and the total volume of data
transferred across the network remain the same. For instance,
when there is one concurrent job, the optimum block size is
1OK tuples, whereas it shifts to 9K tuples for 2 concurrent
jobs and 8K tuples for 5 jobs running at the same time.

The impact of load and concurrent jobs is more severe when
these jobs share not only the Web Server resources, but the
DBMS server and the network as well. Figure 2(a) shows the
performance degradation and the increased concavity of the
response time graph with regards to the block size, when the
client submits two queries at the same time. The quadratic
effect is even more obvious when there are 3 concurrent
queries and the server received more load in terms of memory
utilization between the second and the third query (see Figure
2(b)). In this case, not only the shift of the optimum size is
larger, but the effect of a suboptimal decision can be detri-
mental. For example, under these conditions, if the optimum
size for 2 concurrent queries is chosen, and one more query
is submitted, then, for the same block size, the response time
would be an order of magnitude higher than the optimum.

In general, for each distributed data transfer, a latency over-
head is incurred. To minimize it, it is better to group tuples into
as large chunks as possible. However, larger chunks require
more local resources, thus their size cannot grow infinitely
without causing performance degradation. For instance, when
the memory at the server size is limited, the optimum size can
be rather small. Fixed size solutions can be either optimistic or
conservative. In the former case, a large size is chosen, which
underperforms in cases like that of Figure 2(b). Smaller data
blocks are inefficient for cases like those in Figure 2(a). In
both cases, performance degradation can be of the level of
several factors, if not of an order of magnitude.
From the above, it becomes obvious that any solution to

the problem of choosing the optimum block size must be
adaptive; it must be characterized by robustness in terms
of the environmental conditions under which it can perform
well, and by fast convergence properties so that it can react
to sudden changes in a timely manner and be capable of
yielding benefits even for queries returning small result sets or
involving transmission on few data blocks. More importantly,
it must be capable of overcoming the local optimum points that
exist on both sides of the global optimum, and apparently, not
to rely on the availability of profiling information or analytical

70000

60000
0R

50000
E

40000
E

30000

0 20000

2 100001
0

0 2000 4000 6000 8000 10000

block size (#tuples)

(a)
350000X

300000 - + 1 query

-a-/2 queries
E / 3 queries

200000/
E

o 1 00000 -

E! 50000

0 2000 4000 6000 8000 10000

block size(#tuples)

(b)
Fig. 2. The response times when (a) 2 queries and (b) 3 queries are being
responded concurrently.

III. SOLUTIONS FROM SWITCHING EXTREMUM CONTROL

To provide a solution to the runtime optimization prob-
lem investigated in this paper, we adopt a control-theoretical
approach. The architecture envisaged is that a lightweight
controller is encapsulated in the client. This controller receives
as input the response time of each block size, and based on
these values, it decides the size of the next block to be pulled
from the WS (see Algorithm 1).
The solutions presented in this paper are inspired by ex-

tremum control [7], which can yield results and track a varying
optimum operating point even in the absence of a detailed
analytic model. Extremum control is based upon numerical
optimization but goes beyond that since it can be blended
with well known control approaches, including variable set-
point (optimum tracking) controllers, feedforward controllers,
perturbation analysis, self tuning and adaptive techniques, so
that noise, model uncertainties and time variations can be dealt
with. Filtering and averaging are also typically included in the
aforementioned techniques. There is a rich literature and many
different methodologies and applications [28], [29].

598

Two flavors are examined overall, namely switching and
self-tuning extremum control. The former proposes a novel
hybrid technique that aims at combining the strengths of the
constant and adaptive gain policies explored in [6]. The latter
investigates a different, analytical approach to defining the
optimum values of the block size based on samples, and is
discussed in Section IV.

A. A hybrid non-linear controller

Let y be the performance metric, such as response time or,
equivalently, the per tuple cost in time units, and x denote
the size of the data block. Then, there is a typically unknown
function f, for which y = f(x). The role of an extremum
controller is to manipulate the input x to the performance
function f (x), as a function of this output, i.e, there is a control
function h, for which x = h(y).

In switching extremum control, h defines that the value of
x at the kth step, Xk is given by the following formula:

Xk = 1- g. sign(Ayk 1 Ax- i) (1)

where Au = U Uk-1. The function sign() returns 1 if
its argument is positive and -1 otherwise. g corresponds to
the gain and can be either constant or adaptive. The formula
above can detect the side of the optimum point where the
current block size resides on. The rationale is that the next
block size must be greater than the previous one, if, in the
last step, an increase has led to performance improvement, or
a decrease has led to performance degradation. Otherwise, the
block size must become smaller.

Several heuristics are applied to switching extremum con-
trol. To mitigate the impact of the noise in the graphs, the
measured output and the control input are firstly averaged over
a sequence of n measurements. This may reduce the speed of
response to changes. Hence, a proper choice of the averaging
horizon must be made to trade off speed of response with
noise removal. In addition, maximum and minimum limits can
be imposed to avoid overshooting with detrimental effects, as
there is no guarantee that the controller will not reach a very
high or very low value before converging. To facilitate the
controller to be capable of continuously probing the block
size space, since the optimum point may move during query
execution, a dither signal d(k) = df w(k) is added, where
df is a constant factor and w a pseudo-random variable that
follows a Gaussian distribution with mean 0 and standard
deviation 1. As such, for an averaging horizon of length n,
(1) is transformed to

Xk Xk-1-gg.sign(A7yk1 iA7- k1) + d(k) (2)

k

where {Xk, Yk} = S {xi,yi}, k -n+1 >0.
i=1c-n+l1

As mentioned earlier, this controller can be implemented
in two ways according to the type of the gain. In the first
way, g = b, is a constant (positive) tuning parameter. Without
applying a dither signal, the step size is always the same, and

2000

conf 1.

D 1500 -*I I 'confl 2

a). confl.3

iooo
10

~~~~L.~~~~~~~~.0 500

0

0 5000 10000 15000 20000

block size (#tuples)

Fig. 3. The average response times when the block size is fixed.

since 11\Ax = b1, b1 defines the rate at which x is modified.
In the second way

g = b2 A7k 1Axk-fl1 b2 > 0
Yk- 1

(3)

where b2 is constant. In this case, the step (gain) is adaptive
and is proportional to the product of the performance change
and the change in the block size. In both ways, the formulas
take effect from the second adaptivity step, since before that
point the required information is not available yet. In the
first step the controller increases the block by bl. In [6]
both techniques were implemented and the lesson learnt from
this and other works (e.g., [30], [24]) has been that there is
no clear winner in all cases: adaptive gain may yield more
accurate results when the starting point is relatively close to
the optimum; policies with constant gain may perform better
otherwise, however they exhibit worse behavior during the
transient and steady-state phases. In this paper, we introduce
a novel hybrid solution that aims to combine the strengths of
both:

bl, in transient phase
k Ab27ky ALk 1|,in steady-state phase (4)

In the hybrid mode, the step remains constant until the
value of x converges to a stable value, and then it becomes
adaptive. If it re-enters a transient phase, it switches back
to constant gain mode. The transition point must be defined
mathematically. To this end, we propose the following phase
transition criterion, which counts the sign switches over a
horizon of length n', and defines that a steady-state phase is
entered at step k if

k-1

z1E siggn(Ayk AXk)1 <Ks
i=k-n'

(5)

where s is a small positive integer (odd if n' is odd, even
otherwise). The intuition behind this criterion is that, at steady-
state phase, a constant gain switching extremum controller
oscillates around the stability point in a saw-tooth manner.

B. Empirical Evaluation
The main outcome of the empirical evaluation is that, by

using the hybrid technique presented hereby and starting from
a small block size, no or limited performance degradation

599



8000-

6000-
,n 4000-
m 2000-

ona) 8000-

°-. 6000-
o 4000-

2000-

o constant gain
adaptive gain

x hybrid

40 500 1a0 20 30

adaptivity steps

(a)

0 5 101a5 20 25 30

adaptivity steps

(b)
14000

12000

10000

8000

6000

4000 -e-constant gain

0- adaptiv gain
2000

--hybrid

0 5 10 15 20 25

adaptivity steps

(c)

Fig. 4. The average decisions of the adaptive block configuration mechanisms
for (a) confl.1 (b) confl.2 and (c) confl.3.

occurs both when the performance is described by a graph
like the one in Figure 2(a) (since the techniques are capable
of tracking the optimum point), and when it is described by a

graph like the one in Figure 2(b). The former case is examined
in WAN setting, whereas the latter in a LAN environment.
Both cases can be encountered in both environments, however
it was easier to set up a heavily load server for the whole
duration of experiments in a LAN setting rather than in a

WAN one. In summary, the hybrid technique is both robust
(as it performs well in a wide range of cases) and capable of
converging in a timely manner thus yielding benefits even for
queries that require no more than a few dozens of adaptivity
steps.

1) WAN set up: The first experimental set up is as follows.
We choose the same query as in Section II and two remote
machines, such that the optimum block size is relatively large.
The server remains in the UK and the client is in Greece.
Three cases are examined: (i) confl.], in which the server and
the client are both unloaded; (ii) confl.2, in which 3 queries
are executed concurrently at the server and thus they share
the network and the memory and CPU resources at both the
server and the client side; and (iii) confl.3, in which the server

runs some memory intensive jobs while the client submits the
query. For each of the cases above, 10 runs with fixed and
adaptive block sizes were executed. The fixed configurations

Fig. 5. The impact of bi on speed of convergence.

in each run are used for defining the ground truth for these
experiments. As the configurations were scheduled in a round-
robin fashion, they correspond to the same time period, i.e.,
there is no bias in this respect.

Figure 3 shows the response time (i.e., the time to retrieve
all blocks for the same result set) and the standard deviation for
the three cases, based on the configurations with fixed block
size. Upper and lower limits are imposed, set to 20K and 100
tuples, respectively. In confl.., the optimum point is the upper

limit, and due to the rather small standard deviation, there
are few local optimum points. In confl.2, the optimum point
remains the same, however the standard deviation is more

significant, which may insert more local optimum points. In
the last case, confl.3, the memory load at the server generates
more obvious local minima, and causes a small shift of the
optimum point to the left.

For the adaptive techniques, we set b1 = 2000 (1200 for
confl.2), b2 = 25,df = 25,n = 3,n' = 5 and s = 1.
Following a conservative approach, the starting block size is
set to 1000 tuples. For the hybrid scheme, after it switches to
the adaptive gain mode, switching back to constant gain is not
allowed (this constraint will be relaxed later). The intra-query
behavior of the adaptive techniques is presented in Figures
4(a)-(c). From these figures, it can be observed that the hybrid
approach combines the benefits of both approaches and is
characterized by (i) less oscillations (i.e., increased stability),
and (ii) accuracy comparable to the best of the other two
approaches. Moreover, its convergence speed is fast; adaptive
gain techniques may converge even faster in some cases but
they are prone to instability (Figures 4(b)-(c)) and inaccuracy
(Figure 4(a)). The most important factor for quick convergence

is the value of bl. When the initial block size is small and
far away from the optimum, a large b1 is desirable. However,
when the optimum is close, policies with smaller values for b1
perform better. The impact of this parameter on the speed of
convergence is more obvious in Figure 5, which corresponds
to a constant gain extremum controller (confl.]).
The fact that the adaptive techniques, as shown in Figure 4,

do not converge to the same optimum point as this is implied
by Figure 3, does not mean that the adaptive techniques
cannot, on average, yield performance improvements, even

if the profiling figures like Figure 3 are apriori known. This
somehow counter-intuitive remark is mainly due to the fact
that the optimum point is actually volatile (a result of which

600

16000

14000 i-o bl=800

O 12000 - - Ib1=200

'- 6000=00
.R 10000 ib/b120

8 48000c8 4000 -

2000

0 5 10 15 20 25 30

adaptivity steps

4000-

onK

.E
on

.0



TABLE I
THE NORMALIZED RESPONSE TIMES WHEN THE BLOCK SIZE IS FIXED AT

1000 TUPLES AND WHEN THE ADAPTIVE TECHNIQUES ARE EMPLOYED.

1000 tuples constant adaptive hybrid hybrid - s
confl.1 1.39 0.99 1.11 0.98 0.99
confl.2 2.05 1 0.98 0.94 0.98
confl.3 1.69 0.97 0.97 0.85 0.91

is the high standard deviation in the figure).
Table I summarizes the average normalized performance

improvements of the adaptive techniques. 1 corresponds to
the response time for the optimum block size of Figure 3.
The second column presents the normalized response times
when the block size cannot change at runtime and is 1000
tuples in size. In this case, the query lasts between 0.39 and
1.05 times longer than when profiling information is available.
Four adaptive techniques are compared: switching extremum
control with constant and adaptive gain, and the two flavors of
the hybrid technique proposed. In the first flavor (5th column),
the algorithm does not switch from adaptive gain back to con-

stant gain. In the second flavor (last column), such a switch is
allowed. From the table, it can be seen that hybrid techniques
consistently yield lower response times, apart from increased
robustness. However, the second hybrid flavor increases the
instability and, in these experiments, it exhibits worse behavior
than the first flavor. Further investigation as to whether and
under which circumstances this scheme can be profitable is
left for future work.

Finally, we explored two other cases, which did not prove

efficient. Firstly, we experimented with another criterion for
deciding whether the transient phase has finished. This crite-
rion is an alternative to the one in (5) and checks the average

value of x over two consecutive, disjoint averaging windows
of size n'. According to it, the steady-state phase starts when:

zXk-1- Xk-l-nl < '
ni

However, this criterion fails in some cases to detect
end of the transient phase in a timely manner, and yi
significantly worse performance than when the criterion of
is used: 7.6% for confl.2 and 10% for confl.3. For conj
both approaches behave the same.

Secondly, based upon the observation that the constant g
switching extremum controller is efficient in several case;

question arises as to whether linear controllers can perfc
better than the techniques presented above. The constant g
scheme is close to the additive increase - additive decre
(AIAD) model. We also investigated another type of lin
controllers, namely a multiplicative increase - multiplica
decrease (MIMD) model, which adopts a different appro

to defining future values of the block size based on the r
ones, and to performing averaging with a view to mitigat
the impact of noise. Such linear schemes have been used
networking and congestion control problems, e.g. recall
AIMD scheme adopted in TCP/IP.

(a)

-o- constant gain, b =800
constant gain, b =1200

x adaptive gain

1 0000

9000
on~ 8000-
a)
m& 7000-
rt 6000-
on 5000
*N 4000-
-> 3000-
° 2000-

1000
0

0 10 20 30 40

adaptivity steps

(b)
10000
9000 hybrid, Eq(5)

Q
-o- hybrid,

*"6000a

adaptivity steps

(C)

Fig. 6. (a)The average response times when the block size is fixed. (b)

The average decisions of the constant and adaptive gain controllers. (c) The

average decisions of the hybrid controllers.

In MIMD, the next value of the block size is derived by

multiplying rather than adding the previous value to a certain

quantity, which equals to the following:

5000~~~

(6) j(k-1) j(k) = :-sign(Ayi Axi)
i=l

(7)

Obviously, the space of the possible values of the output
of the MIMD controller is more limited than that of the
AIAD one, which contains arbitrary integers. This renders
the application of scale averaging more straightforward. Let
(4P m' YP m) be the m control input - measured output pairs
for which 4p1 m = xo * gP, where p is an integer. Then, instead
of AYk-1 in (7), Ayk-1 can be used, which computes the
average over the measured output of the same control input:

m

Yk n Yi Xk = XO gp.
i=m-n+lI

Unfortunately, this type of controller behaves similarly to
adaptive gain schemes in Figure 4(a), which is unacceptable.
Detailed figures are omitted due to space limitations.

2) LAN set up: In the second set up, the machines are con-

nected via a 1Gbps Ethernet. Initially, 3 queries are executed
concurrently (conJ2.1), and their average response times after
12 runs are depicted in Figure 6(a). The configuration of the

601

IOU

- 600-
on

a) 500

E) 400-

a) 300-

m 200-
on

100

o
0 1000 2000 3000 4000 5000 6000

block size (#tuples)

50



25000 -

9 15000

10 0 10 0 0 0
.~~~~~~~adpiit tp

o constant gain

0 10 20 30 40 50 60 70

.d.pflv iW.s.p.

(b)
Fig. 7. (a) The average response times when the block size is fixed. (b) The
average decisions of the controllers.

adaptive techniques remains the same, apart from the upper

limit which is now set to 7000 tuples, and bl, which is 1200,
unless otherwise stated. The average intra-query behavior of
traditional switching extremum control techniques is presented
in Figure 6(b). Adaptive gain policies are clearly inefficient,
as they suffer from overshooting (which is constrained only
through the upper limit) and instability. Constant gain policies
perform well only if bi is small (e.g., 800). However, for this
value, they cannot perform reasonably well in the scenarios
discussed previously (see Figure 5). For larger values of
bl, overshooting and increased instability cannot be avoided.
These two effects are mitigated in the hybrid schemes which
remain closer to the optimum for the whole duration of the
query (Figure 6(c)). Again, when the transition criterion of (5)
is used instead of that in (6), the response time is lower.
The robustness of the hybrid controller and the increased

instability and overshooting of the constant gain one is more

evident in Figure 7. In this figure a larger query over the
Orders relation of TPC-H (with 3 times more tuples in the
result set) is executed while the server is loaded with three
more local queries (conJ2.2). The upper limit is reset to
20000 tuples. Adaptive gain policies cannot track the optimum
region, whereas constant gain policies oscillate significantly
around that region and converge more slowly. These limita-
tions do not apply to the hybrid case.

C. Simulation Results

The simulation setup is intended to provide a complemen-
tary study and experimentation with the algorithms proposed
so that a more representative picture of the results can be
obtained and more reliable conclusions can be drawn. On the
basis of the profiles obtained by real evaluation experiments,
we developed a simulation engine based on MATLAB for
evaluating all adaptive policies proposed. An important aspect

Fig. 8. The decisions of adaptive techniques when the profile changes during
query execution.

of a faithful simulation in our case study is the ability to
emulate a number of unknown and unpredictable factors,
such as variable network conditions, server utilization level,
transients after block size changes, which induce jitter and
hence noisy measurements and also frequent movements of
the optimal point. These factors give rise to local peaks and
non-monotonic behavior. Jitter, transients and movements of
the optimum point can be injected into the initial profiles and
emulated in the form of additional random noise uniformly
distributed around the static profile values. Furthermore, crit-
ical events such as sudden changes in the number of queries
and/or concurrent jobs may be emulated by the simulation
engine so that the performance of the adaptive policies and
their robustness can be studied.

Our main remarks can be summarized as follows. Firstly,
the main characteristics of the adaptive gain and the constant
gain policies mentioned in the introduction and the empirical
evaluation sections are justified in the simulations for the
profiles appearing in Figures 3,6,7. The hybrid controller,
implementing a constant gain policy during the transient phase
and switching to an adaptive gain policy during the steady-
state combines the attractive features of both policies and is
rather robust in yielding good performance. For the short-
lived experiments considered in the empirical evaluation, the
hybrid algorithm's second flavor, which allows switching back
to constant policy has not been found successful. This has been
observed in the simulation experiments as well, and should
not be attributed only to the small number of transfer tasks
before the completion of a query. We have observed that the
steady-state phase can be detected reliably thanks to the robust
behavior of the constant gain policy to track the optimum in
the presence of volatile profiles. On the contrary, adaptive gain
policies lack robustness (they can either converge and become
stagnant as in Figure 4(a) or fail to converge by exhibiting
sustained oscillations as in Figures 4(b),(c)), hence switching
back to constant gains based on the same criterion is now

unreliable.
Secondly, we investigate the robustness of the algorithms to

sudden changes. Such situations are more commonly encoun-

tered in long-lived cases, where they should be detectable by
a good controller, which should be capable of adapting to the
new conditions. We consider a longer-lived query execution
comprising a total of more than 400 adaptivity steps and

602

e) 250

0 00 100 50 00
cn~~ ~~ ~lc sie(tuls

(a)
25000TX



a number of profile switchings at runtime. We assume that
initially confl.] is active for the first hundred steps, then we
switch to confl.2 for the second hundred steps; then another
switch to confl.3 for the third hundred steps follows, and
finally we switch back to confl.] . In similar experiments in the
context of [6], it has been observed that adaptive gain policies
fail to track such changing conditions, whereas constant gain
policies are robust, but also usually oscillating. Hence, without
any additional modifications, our hybrid scheme which has
switched to the adaptive gain mode in the steady-state is
certainly not robust in this respect. Moreover, for the reasons
mentioned before, the second flavor that allows switching
back to constant gains should be avoided. For such long-lived
tasks, one suggestion is to allow switching back to constant
gain mode at periodic predetermined intervals. This essentially
amounts to resetting the hybrid controller periodically, so
that re-adjustment to the new conditions can be made. The
period of this pre-programmed behavior allows desirable trade-
offs between speed of response/ability to react and stabil-
ity/robustness to changes to be achieved. The response of a
constant gain and a modified hybrid controller (periodic reset
with a period of 50 steps) is shown in Figure 8. We observe
that both controllers show good tracking ability, but the hybrid
controller's response is virtually free of oscillations, i.e., more
stable.

IV. MODEL-BASED SOLUTION

One of the main difficulties in runtime optimization of the
communication in WS Grids is the fact that due to the presence
of noise and the volatile conditions, the performance graphs
with regards to the block size are not monotonical on both
sides of the optimum. To smooth the profiles in the previous
section, averaging was employed. Another solution investi-
gated hereby is to identify at runtime a smooth approximation
of the profile in the form of a quadratic mathematical model
(i.e., perform system identification), and then, based upon this
approximation to estimate the optimum point analytically.

For the system identification, two generic models are con-
sidered. Firstly, a typical quadratic model, which can capture
the concave effect observed in the graphs:

Yi = fi(x) = a(x _ XO)2 + b = a,x2 + bix + cl (8)

where a, b, a,, bl, cl are all constants. However, a more realis-
tic modelling is as follows. The data transmission cost consists
of the network cost CN and the computation cost at the server
and the client Cc. The former consists of the sum of the costs
for each block. The cost for each block consists of a standard
overhead and the size of the block, x. For a given query,
simple algebraic manipulation gives CN = a2N/x + C2N,
where a2N, C2N are constants. The computation cost depends
on the total number of tuples processed (which is independent
of the block size) and the block size itself, which denotes
how many resources in terms of buffer size and memory are
required at each time point. Again, it can be easily derived
that Cc = b2CX + c2C. Overall, a parabolic model is obtained

TABLE II
THE DECISIONS AND THE NORMALIZED RESPONSE TIMES FOR

MODEL-BASED TECHNIQUES.
,, I .̂ ,f1,, T f-

WAN-confl .1
WAN-confl .3
LAN-conf2.1
LAN-conf2.2

Eq. (8)
block size resp.time
13250 1.025
13482 1.028
4404 1.72
13310 1.25

Eq. (9)
block size resp. time
10716 1.026
9521* 1.14*
2237 1.055
9818* 1.035*

with constant parameters a2, b2. c2:

Y2 = f2(X) = a2/X + b2X +c2

At runtime, firstly, n samples Yi..., are taken with various
block sizes, xl...,. A main challenge is to meet the requirement
for fast identification, since even queries with over 100000
tuples can complete in a small number of adaptivity steps
(Figure 4). As such, n must be small. Let Y be the vector

[Y1Y2 y ]'. Also, if the model in (8) is assumed, let

S12
X2 I

X= S2 S
... ... ...

L Xn zXn I1

F a,
Lb

Cl

For (9), the first column of X and 6 are modified ac-

cordingly. Then, we can perform a typical least squares (LS)
estimation and compute the model parameters:

d = (XTX)-iXTY (10)

Then the optimum point can be estimated by setting the
first derivative of f (x) to 0. Many heuristics can extend
this solution. For example, the LS may rerun if the values
of x deviate significantly from the derived model. Or, after
the optimum point has been estimated analytically, extremum
control techniques may be applied with the analytical optimum
point as their starting block size. For significantly larger
queries, techniques based on recursive least squares estimation
(RLS) with forgetting factors seem promising. As such, the
extremum control becomes self-tuning [29]. However, an in-
depth investigation of all these is left for future work.

A. Empirical Evaluation
Four of the experimental configurations of Section Ill-B

are used to test the performance of model-based adaptive
techniques, namely confl.] and confl.3, which refer to a WAN
setting, and the two LAN configurations. A main requirement
of the techniques is to produce a decision on the block size
quickly. To this end, only 6 samples are collected, which are

evenly distributed in the whole search space defined by the
lower and upper limits. Collecting just one sample per sampled
block size is very prone to errors, due to the high standard
deviation in the communication cost of blocks of the same size.
Table II summarizes the decisions of the techniques based on

the models of (8) (quadratic model) and (9) (parabolic model),
and the corresponding (normalized) response times. For the
latter, 1 corresponds to the response time for the optimum

603

(9)

l

II



25000

o model based
20000 - i model based +constant gain

X A -)K model based +adaptive gain
o. 0--- model based +hybrid gain

15000

*,,10000

~ 0 0

1 6 11 16 21 26

adaptivity steps

Fig. 9. The behavior of enhanced model-based techniques.

block size of Figures 3, 6(a) and 7(a). Given the volatility
of the environment, and the small number of samples, the
techniques performed better than expected, although hybrid
switching extremum controllers perform better in most of the
cases.

For confl.], which is characterized by a rather smooth
profile, both techniques detect the flat near-optimal region,
and thus, although their accuracy is not particularly good,
the performance degradation they cause, when compared to
the optimum, is insignificant. The pure quadratic model is
more accurate, and the standard deviation of its decisions
is negligible (detailed information about this is not shown
for brevity); this fact does not hold for the parabolic model.
The model of (8) performs equally well for confl.3, too.
However, for this setting, the parabolic model is even less
accurate, and the increase in the response time that it causes
is more significant. Moreover in several runs (4 out of 10),
it fails to produce a useful model, selecting the lower limit
value. The same behavior appears for conJ2.2. These cases
are ignored in the performance indicators in Table II, and
the remaining corresponding values are marked with *. The
parabolic model is more efficient for shapes like that in Figures
6(a) and 7(a). In this case, it can detect the optimum point
with reasonable accuracy, more efficiently than the switching
extremum controllers; on the other hand the quadratic model
decisions deviate significantly, thus causing a high increase in
the query response time.

In summary the lessons learnt from this evaluation are
as follows. Firstly, self-tuning extremum control theoretical
approaches are not impractical for the online optimization of
data transfer, despite the serious challenges of the problem
under investigation. The initial evaluation results are promis-
ing. Secondly, in all evaluation configurations, which differ
significantly from each other, at least one of the models
manages to capture to a sufficient extent the shape of the
graph, although its estimates are based upon a single value
for a limited number of sizes. Thirdly, none of the models
outperforms the other consistently, which means that further
investigation is required in this field, taking also into account
the directions for future work identified earlier.

B. Simulation Results

Simulation runs have justified the use of the light and simple
model based techniques suggested in the previous section.

TABLE III
PERFORMANCE DEGRADATION FOR DIFFERENT APPROACHES TO BLOCK

SIZE SELECTION.

static static static const. adapt. hybrid best
1K 1OK 20K gain gain model

53.3% 81.5 % 226.8 % 21.3 % 37.5 % 13.5 % 0.7 %

Although simple, the idea of fitting a 6-sample set to a
quadratic or parabolic model to produce a good estimate for
our optimal position has been proved quite robust. Robustness
here refers to the fact that despite the highly noisy and
volatile samples collected, the fitting provides a representative
estimate which lies in the near optimal region with very high
probability.

However, it is clear that in profiles with many local minima,
there is no guarantee that such model-based techniques will
return the global minimum or even any of the local minima.
Moreover, once an estimate is found the block size remains
fixed at that value until the query completion. These facts may
lead to suboptimal performance in many cases and, moreover,
there is no tracking ability in sudden changes.

Nevertheless, it is not difficult to see that, in view of the
other techniques discussed in this paper, and their character-
istics, these issues could be easily resolved by combining
our simple model-based scheme with them. This is easily
done by using the LS estimate obtained after 6 steps as
an initial block size for a constant gain, adaptive gain, or
hybrid gain controller. We have made simulation runs for
these controllers, using a quadratic model-based controller for
the initial estimate and the profile data of conJ2.2 (depicted
in Figure 7), for which the optimum block size is around
7.5K tuples. We decided to use this profile because there
exist many local minima, and the quadratic model fitting
fails to approximate the global one. The decisions of the
controllers are shown in Figure 9. The adaptive gain scheme
gets stuck and we need to apply a constant gain scheme upon
the LS estimate in order to move to the global minimum,
which further suffers from non-negligible oscillations around
the optimal point. The oscillations may be suppressed by
switching to adaptive gain on the basis of a hybrid scheme.

V. CONCLUSIONS

This paper investigates the problem of optimizing the data
transfer in queries over WSs by runtime configuration of
the data block size. Static solutions cannot perform well;
actually, they suffer from significant performance degradation
(of several factors or even an order of magnitude) in a wide
range of cases. Two solutions were presented; both inspired
from extremum control. The first one presents a novel robust
non-linear controller, which combines the strengths of constant
gain and adaptive gain switching extremum controllers in
terms of accuracy, speed of convergence and stability in a
hybrid manner. The second one performs system identification
and estimates the optimum block size analytically. Evaluation
results prove the effectiveness and the efficiency of the hybrid

604



and the model-based controllers. Table III summarizes the
average performance degradation in the five experimental
configurations used in this paper with respect to the optimum
block size, which can be defined only through a post-mortem
analysis. In this table, the adaptive techniques are compared
against 3 static ones, with small, medium and large block
sizes, respectively. On average, the hybrid technique leads
to smaller degradation in performance, if not to performance
improvements in WANs, as shown in Table I. The model-
based techniques discussed in this work may experience
negligible degradation. Their main problem is that none of
the two analytical models examined can perform well in all
configurations. Nevertheless, initial results of simulations with
self-tuning controllers, which merge the hybrid scheme with
model-based solutions, are promising.

Overall, the lessons learnt from this work is that in a volatile
environment, static configurations of the data block size should
be avoided. Additionally, when a near optimal size cannot
be approximated, as it typically happens, a hybrid solution is
particularly effective and robust, and capable of overcoming
problems stemming from inaccurate initial settings of the
block size. Finally, further improvements can be achieved
by coupling system identification techniques with a hybrid
switching extremum controller, which eliminates the need for
setting an initial value for the block size.

Although this work discusses database queries over WSs, its
main findings are more generic, and can be applied to other
settings, as well. More specifically, the techniques presented
are applicable to any setting, where (i) the entity to be
controlled exposes to the controller a tuning knob, which
impacts on the performance metric; (ii) the performance graph
is represented by a non-smooth, concave curve with regards
to the tuning parameter, with local optimum points and noise
distortions; and (iii) no analytical model describing this graph
exists and the graph changes for each task.

ACKNOWLEDGMENT
This work has been supported by the EU-funded CoreGrid

Network of Excellence project through grant FP6-004265. C.
Yfoulis has been supported by the ATEI grant titled "Adaptive
QoS control and optimization of computing systems".

REFERENCES
[1] s. Abiteboul et al., " The Lowell database research self-assessment

Communications of the ACM, vol. 48, no. 5, pp. 111-118, 2005.
[2] S. Lightstone, B. Schiefer, D. Zilio, and J. Kleewein, "Autonomic

computing for relational databases: the ten-year vision," in Proc.of the
IEEE Workshop Autonomic Computing Principles and Architectures
(AUCOPA), 2003, pp. 419-424.

[3] M. Antonioletti et al., "The design and implementation of grid database
services in OGSA-DAI." Concurrency - Practice and Experience,
vol. 17, no. 2-4, pp. 357-376, 2005.

[4] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, "Query
optimization over web services." in VLDB, 2006, pp. 355-366.

[5] D. T. Liu, M. J. Franklin, and D. Parekh, "Griddb: A database interface
to the grid." in Proceedings ofACM SIGMOD, A. Y Halevy, Z. G. Ives,
and A. Doan, Eds. ACM, 2003, p. 660.

[6] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. D. Dikaiakos, "Self-
optimizing block transfer in web service grids," in WIDM '07: Proceed-
ings of the 9th annual ACM international workshop on Web information
and data management. ACM, 2007, pp. 49-56.

[7] K. J. Astr6m and B. Wittenmark, Adaptive Control. Reading, MA,
USA: Addison-Wesley, 1995.

[8] G. Dumont and M. Huzmezan, "Concepts, methods and techniques in
adaptive control," in Proceedings of the American Control Conference,
Boston, MA, 2002.

[9] W. Rugh and J. Shamma, "Research on gain scheduling," Automatica,
vol. 36, pp. 1401-1425, 2000.

[10] J. P. Hespanha, "Tutorial on supervisory control," Dept. of Electrical
and Computer Eng., University of California, Santa Barbara, Tech. Rep.,
Nov. 2001, available at http://www.ece.ucsb.edu/ hespanha/techrep.html.

[11] D. Liberzon, Switching in Systems and Control. Boston, MA:
Birkhauser, 2003.

[12] A. van der Schaft and H. Schumacher, "An introduction to hybrid
dynamical systems," Lecture Notes in Control and Information Sciences,
vol. 251, 2000.

[13] J. Hellerstein, Y Diao, S. Parekh, and D. Tilbury, "Control engineering
for computing systems," IEEE Control Systems Magazine, vol. 25, no. 6,
pp. 56-68, 2005.

[14] T. F. Abdelzaher, A. Stankovic, C. Lu, R. Zhang, and Y Lu, "Feed-
back performance control in software services," IEEE Control Systems
Magazine, vol. 23, no. 3, 2003.

[15] Y Diao, J. L. Hellerstein, S. S. Parekh, R. Griffith, G. E. Kaiser, and
D. B. Phung, "Self-managing systems: A control theory foundation." in
Proc ofIEEE International Conference and Workshop on the Engineer-
ing of Computer Based Systems ECBS 2005, 2005, pp. 441-448.

[16] T. F. Abdelzaher, K. G. Shin, and N. T. Bhatti, "Performance guarantees
for web server end-systems: A control-theoretical approach," IEEE
Trans. Parallel Distrib. Systems, vol. 13, no. 1, pp. 80-96, 2002.

[17] N. Gandhi, J. Hellerstein, D. Tilbury, and T. Jayram, "Using control
theory to achieve service level objectives in performance management,"
Real-Time Systems, vol. 23, pp. 127-141, 2002.

[18] C. Lu, X. Wang, and X. D. Koutsoukos, "Feedback utilization control
in distributed real-time systems with end-to-end tasks," IEEE Trans.
Parallel Distrib. Systems, vol. 16, no. 6, pp. 550-561, 2005.

[19] Y Diao, F. Eskesen, S. Forehlich, J. Hellerstein, L. Spainhower, and
M. Surendra, "Generic online optimization of multiple configuration
parameters with application to a database server," DSOM, pp. 3-15,
2003, lNCS 2867.

[20] X. Liu, L. Sha, Y Diao, S. Froehlich, J. L. Hellerstein, and S. S. Parekh,
"Online response time optimization of apache web server." in IWQoS,
2003, pp. 461-478.

[21] T. Abdelzaher, Y Lu, R. Zhang, and D. Henriksson, "Practical applica-
tion of control theory to web services," in Proceedings of the American
Control Conference, 2004.

[22] C. Lu, Y Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, "Feedback
control architecture and design methodology for service delay guarantees
in web servers." IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, 2006.

[23] Y Raghavachari, D. Reimer, and R. Johnson, "The deployer's problem:
Configuring application servers for performance and reliability," pp. 3-
15, 2003, iCSE.

[24] 0. Flardh, K. H. Johansson, and M. Johansson, "A new feedback
control mechanism for error correction in packet-switched networks," in
44th IEEE Conference on Decision and Control and European Control
Conference, 2005.

[25] B. Seshasayee, K. Schwan, and P. Widener, "Soap-binq: High-
performance soap with continuous quality management." in ICDCS,
2004, pp. 158-165.

[26] T. Kosar and M. Livny, "Stork: Making data placement a first class
citizen in the grid." in 24th International Conference on Distributed
Computing Systems (ICDCS 2004), 24-26 March 2004, Hachioji, Tokyo,
Japan. IEEE Computer Society, 2004, pp. 342-349.

[27] D. E. Culler, "Planetlab: An open, community-driven infrastructure
for experimental planetary-scale services." in USENIX Symposium on
Internet Technologies and Systems, 2003.

[28] K. Ariyur and M. Krstic, Real-Time Optimization by Extremum-Seeking
Control. John Wiley & Sons, 2003.

[29] P. Wellstead and M.B.Zarrop, Self tuning systems: control and signal
processing. John Wiley & Sons, 1995.

[30] 0. Flardh, C. Fischione, K. H. Johansson, and M. Johansson, "A control
framework for online error control adaptation in networked applica-
tions," in IEEE Second International Symposium on Communications,
Control and Signal Processing, 2006.

605


