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ABSTRACT
We present an image tag completion method, namely PMF-
SVN, where the key idea is to exploit images’ Semantically
and Visually similar Neighborhoods (SVNs) in the learn-
ing process of a Probabilistic Matrix Factorization (PMF)
framework. We propose a two-step SVN formation algo-
rithm that can generate an image set with the images being
both visually and semantically similar. Furthermore, we in-
troduce an efficient way to incorporate the formed SVNs into
the learning process of PMF, under the constraint that the
latent features of each image are averaged by the features of
the images that belong to its SVN. In our experiments with
benchmark datasets, we show that the proposed PMF-SVN
method outperforms competitive baselines, in terms of com-
pletion accuracy, by efficiently capturing the semantical and
visual associations between images and tags in SVNs.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Measurement, Experimentation

Keywords
Tag Completion, Image Annotation, Matrix Factorization

1. INTRODUCTION
With the advent of social media platforms in the past

decade, image tagging has gained a lot of attraction by re-
searchers. Tags are provided by users in the form of free text
and they are usually imprecise, containing noise to efficiently
describe the visual content of images [2, 7]. Meanwhile, users
often avoid assigning tags to images, making image tags in-
complete. To deal with noisy and incomplete tags, several
completion methods [2, 3, 7] have been recently proposed,
to capture relevant tag-image associations and consequently
to add the missing tags.
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Although tag completion methods have several applica-
tions such as image retrieval [7], event detection [1], etc.,
several real world problems limit their performance. The
different tag choices introduce several problems; for exam-
ple, a tag with multiple meanings (polysemy), different tags
with similar meanings (synonymy), as well as using general
versus specialized tags to refer to the same concept, just to
name a few. Matrix factorization techniques, such as prob-
abilistic matrix factorization (PMF), Bayesian PMF, non-
negative matrix factorization and trace norm regularized
matrix factorization, are suitable for facing the aforemen-
tioned problems, since such techniques can reveal the latent
tag-image associations and complete the missing tags, ac-
cordingly. However, in many cases their performance is neg-
atively affected by the very sparse annotations of images,
since in this case there are only few annotations on which to
base the generation of the latent tag-image associations and
consequently the completion of relevant tags is limited. To
solve the problem of images’ sparse annotations, several tag
completion methods [2, 3, 7] exploit the visual features to
construct relevant image-tag associations by forming repre-
sentations of the missing tags of an image using the tags of
its visually similar images. However, this may also limit the
performance of tag completion, since images that are visu-
ally similar are not necessarily semantically similar. What
is therefore required is an efficient way to capture the asso-
ciations between visually and semantically similar images.

Our contribution is summarized as follows, (C1:) we pro-
pose an efficient algorithm to generate for each image a set
of semantically and visually similar images based on the tex-
tual information of tags and the visual features of images,
forming thus a Semantically and Visually similar Neighbor-
hood (SVN) for each image; (C2:) we introduce an efficient
way to incorporate the formed SVNs into the learning pro-
cess of PMF to solve the image tag completion problem.

2. RELATED WORK
Image auto-annotation methods [5] are related to the im-

age tag completion problem; however, these methods differ,
since the majority of existing auto-annotation methods as-
sume that images in training set are completely annotated
with appropriate tags [2, 3], whereas tag completion meth-
ods add missing relevant tags, given a dataset made up of
partially annotated images. Also, several tag refinement
methods have been proposed, such as the work of [8], fo-
cused more on removing noisy tags but less on completion.

More relevant to our work, Wu et al. [7] proposed to ad-
dress the tag completion problem by searching for the op-
timal tagging matrix consistent with both tags and visual



similarities. Recently, Lin et al. [3] introduced an image tag
completion method via image-specific and tag-specific Lin-
ear Sparse Reconstruction (LSR), which reconstructs each
image and each tag with the remaining ones using a sparse
coding technique. Then, both image-specific and tag-specific
reconstructions are merged, in order to complete missing
relevant tags. Feng et al. [2] proposed a tag completion al-
gorithm (TCMR) which aims to simultaneously enrich the
missing tags and remove noisy ones, by exploiting the sta-
tistical dependence between image features and tags via
a graph Laplacian. The impact of incomplete and noisy
tags was reduced by assigning high weights to tags that are
consistent with image features, and low weights otherwise.
Compared to state-of-the-art, the proposed method captures
the inter-correlations between images on the condition that
images are both visually and semantically similar in order to
form SVNs, handling thus noisy and incomplete image tags
in a probabilistic matrix factorization framework.

3. PROPOSED PMF-SVN
3.1 Problem Definition & PMF
Problem Definition: Given N tags and M images, ini-

tially we calculate a matrix R = [Rt,i] ∈ RN×M , where each
element Rt,i=1 denotes the degree of relevance (tag assign-
ment) between tag t and image i, and Rt,i=0 otherwise. Ma-
trix R is usually very sparse, since most of its elements are
expected to be missing in the tag completion problem. Also,
we compute a similarity matrix S = [Si,j ] ∈ RM×M based
on a visual similarity function fV (·), with Si,j=fV (i, j) (Sec-
tion 3.2). The image tag completion problem is defined as
follows: given matrix R with the existing tag assignments
between N tags and M images, as well as the visual sim-
ilarities of the M images in S, the goal is to complete the
relevant missing tag-image associations in R.
Probabilistic Matrix Factorization (PMF): matrix

factorization methods (a.k.a low rank D approximations),
such as the PMF model [6], construct a latent-feature D-
dimensional space in which they represent each tag and
image. Let U ∈ RD×N be a matrix whose t-th column
vector, denoted as Ut, represents the t-th tag in the D-
dimensional space. Similarly, let V ∈ RD×M matrix whose
i-th column vector, denoted as Vi, represents the i-th image
in the same D-dimensional space. Using the initial matrix
R ∈ RN×M as training data, matrix factorization techniques
learn, i.e. compute the elements of matrices U and V , so

that they can approximate matrix R with matrix R̂, such

that R ≈ R̂ = UTV . The process of learning matrices U
and V can be expressed in the probabilistic framework of
PMF, where the likelihood of observing a specific tag-image
association in R can be expressed as:

p
(
R|U, V ;σ2

R

)
=

N∏
t=1

M∏
i=1

[
N
(
Rt,i|UT

t Vi;σ
2
R

)]1R(t,i)
(1)

where N(µ, σ2) denotes the normal distribution with mean
µ and variance σ2; and 1R(t, i) denotes the indicator func-
tion with 1 if Rt,i is known, i.e. not null, or 0 otherwise.
Eq. (1) makes the premise that each known relation, repre-
sented with the element Rt,i is an independent and identi-
cally distributed (iid) random variable that follows a normal

distribution whose mean values is equal to R̂t,i = UT
t Vi and

whose variance σ2 is treatment as hyperparameter. Based
on the Bayes theorem and the likelihood function of Eq. (1),

we can obtain the posterior probability of U and V :

p
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R, σ
2
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2
V

)
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. . .×
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×
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[
N
(
Vi|0;σ2

V

)]
where Eq. (2) makes the premise that the features Ut of each
tag t , as well as the features Vi of each image i in the D-
dimensional space, are also iid random variables following
normal distribution with zero mean and variances σ2

U and
σ2
V , respectively. To compute the low rank D approxima-

tion R̂, we have to calculate U and V , so as to maximize the
probability of observing the given tag-image associations in
R. We pose the image tag completion problem as a problem
of maximizing the posterior probability in Eq. (2). The pro-
posed PMF-SVN method consists of the following two steps,
(i) for the M images, M respective SVNs are constructed
based on the SVN formation algorithm of Section 3.2; (ii)
the M constructed SVNs are incorporated into the learning
process of PMF, by transforming the maximization problem
of Eq. (2) into a minimization problem, which is furthermore
solved using the optimization algorithm of gradient descent.

3.2 SVN Formation Algorithm
The inputs of the SVN formation algorithm are: (i) an

image q; (ii) the tag set Tq, i.e. the set of tags assigned to q
based on R; (iii) a visual threshold ϵ. The algorithm returns
the semantically and visually similar neighborhood (SVN)
of image q as set N+(q). In the SVN formation algorithm
the following functions are defined:

(i) Visual similarity function fV (·): a bag-of-words model
based on densely sampled SIFT descriptors is used to repre-
sent the visual content, and fV (·) is generated by normaliz-
ing the L2-norm1 of image features in [0 1], transformed to
similarity with Si,j = fV (i, j).

(ii) Aggregated visual similarity function fA(·): is com-
puted between an image set I and an image x as follows:

fA(I, x) =
∑
i∈I

fV (i, x) (3)

(iii) Tag similarity function fT (·): is calculated according
to the Dice similarity [4], ranging in [0 1]:

fT (tx, tk) =
2 · |Itx ∩ Itk |
|Itx |+ |Itk |

(4)

where Itx and Itk denote the sets of images that have been
annotated with tags tx and tk, respectively.

(iv) Sum-of-Squared Error function SSE(·) : is calculated
between a tag tx and a tag set T , also in the range of [0 1]:

SSE(tx, T ) =
1

|T | ·
∑
tk∈T

(
1− fT (tx, tk)

)2

(5)

Initialization step: In line 4 of Algorithm 1, image q
is posed as query to generate the set N (q) with the visual
neighbors r based on the visual similarity function fV (·),
with fV (q, r) ≥ ϵ, ∀ r ∈ N (q). In line 5, ∀ tag tx ∈ Tq the
SSE function SSE(tx, Tq) is calculated to identify the tag

1Except SIFT descriptors and L2-norm several alternatives
can be easily used in our method.



tm of image query q that generates the minimum SSE2:

tm = arg min
tx∈Tq

SSE(tx, Tq) (6)

In line 6, we set a a threshold SSEthres equal to the min-
imum SSE of the identified tag tm ∈ Tq . Next, in lines
7-13 each image r ∈ N (q) is inserted to the set N+(q), if
the following condition is satisfied:

SSE(tm, Trj ) ≤ SSEthres (7)

where Trj is the tag set of the visual neighbor rj . Initializa-
tion finishes with the update of SSEthres, in line 14.
Iterative step: In line 18, the previously identified set

N+(q) is considered as a new query set Q ← N+(q). Ac-
cording to the aggregated visual similarity function fA(Q, r)
of Eq.(3), a new set N (Q) of visual neighbors is generated
in line 19. Next, similar to the initialization step, the visual
neighbors r ∈ N (Q) are examined on the condition of the
SSEthres in line 22, where each r is inserted into the set
N+(q), accordingly. In line 27, threshold SSEthres is up-
dated, which is either preserved or becomes stricter for the
next iteration, considering that the visual similarity to the
initial query q declines over the iterations (by generating a
new query set Q in each iteration) and thus, an equal or
stricter SSEthres is required when a new iteration starts.
The iterative step terminates if the set N+(q) is preserved
and the SVN of query q is returned as the final set N+(q).

ALGORITHM 1: SVN formation algorithm

Input: (1) image q; (2) tag set Tq; (3) visual threshold ϵ

Output: SVN set N+(q).
1

2 Initialization step

3 N+(q)← ∅;
4 Calculate N (q) = {r1, r2, . . . , r|N(q)|}, with fV (q, rj) ≥ ϵ;

5 Identify tag tm with the minimum SSE based on (6);
6 Set SSEthres=SSE(tm, Tq);
7 for (j = 1 : |N (q)|);
8 do
9 if (SSE(tm,Trj ) ≤ SSEthres);

10 then
11 Update N+(q)← {N+(q), rj};
12 end

13 end

14 Update SSEthres = min∀rj∈N+(q)

(
SSE(tm, Trj )

)
;

15

16 Iterative step
17 repeat
18 Set Q ← N+(q) ;
19 Calculate N (Q) based on fA(Q, r) ≥ ϵ and (3);
20 for (j = 1 : |N (Q)|);
21 do
22 if (SSE(tm, Trj ) ≤ SSEthres);

23 then
24 Update N+(q)← {N+(q), rj};
25 end

26 end

27 Update SSEthres = min∀rj∈N+(q)

(
SSE(tm, Trj )

)
;

28 until (|N+(Q)| = |N+(q)|;
29 return N+(q);

3.3 Learning PMF With SVNs
Incorporation Of SVNs Into PMF:Given the similar-

ity matrix S with the visual similarities, and the M formed

2Based on Eqs. (4) and (5), tm with the minimum SSE
is the tag with the highest probability of being assigned to
more images than the rest of tags in Tq, and thus tm has
the highest probability of being in a tag set Trj of a visual
neighbor rj . The mathematical proof is left for future work.

SVNs, let Vi and Vj denote the feature vectors of the i-th and
j-th image in the D-dimensional latent-feature space. If im-
age j is in the i-th SVN N+(i) of image i, then the learning
process of PMF should compute Vi by taken into account Vj .
This means that the learning process should consider the se-
mantical and visual information in N+(i). This is achieved
by firstly expressing the dependency of matrix V on S as:

p
(
V |T ;σ2

V , σ2
S

)
∝ p

(
V |Tσ2

S ;
)
× p

(
V |σ2

V

)
(8)

where the first factor p
(
V |Tσ2

S ;
)
expresses the dependence

of V on S and the second factor p
(
V |σ2

V

)
is the prior proba-

bility of V . Given the i-th SVN N+(i) of image i, we have:

p(V |T ;σ2
S) =

M∏
i=1

[
N

(
Vi|

∑
j∈N+(i)

Si,j ;σ
2
S

)]
(9)

Eq. (9) considers that the D-dimensional feature vector Vi

follows normal distribution with mean equal to the average
of the features of the images that belong to its SVN N+(i).
Based on Eq. (9) we reformulate the posterior probability of
U and V in Eq. (2):

p(U, V |R;σ2
R, σ

2
U , σ

2
V , σ2

S) ∝
N∏
t=1

M∏
i=1

[
N(Rt,i|UT

t Vi;σ
2
R)

]1R(t,i)

×

(10)

. . .×
N∏
t=1

[
N(Ut|0;σ2

U )
]
×

M∏
i=1

[
N(Vi|

∑
j∈N+(i)

Si,jVj ;σ
2
S)
]
×

. . .×
M∏
i=1

[
N(Vi|0;σ2

V )
]

Objective Function: Eq. (10) provides the basis for
learning U and V by exploiting the semantically and vi-
sually information of the SVNs. The learning process is
performed by calculating those U and V variables that maxi-
mize the posterior probability of Eq. (10). Since the natural
logarithm function ln(p(U, V |R;σ2

R, σ
2
U ), σ

2
V , σ2

S) is monot-
ically increasing, we proceed by minimizing its arithmetic-
negation function L(U, V ) = − ln (p(U, V |R;σ2

R, σ
2
U ), σ

2
V , σ2

S).
Thus, the maximization problem of Eq. (10) is transformed
to the following minimization problem:

L(U, V ) =
1

2

N∑
t=1

M∑
i=1

1R(t, i)(Rt,i−UT
t Vi)

2 +
λU

2

N∑
t=1

UT
t Ut+

(11)

λV

2

M∑
i=1

V T
i Vi+

λS

2

M∑
i=1

(
(Vi−

∑
j∈N+(i)

Si,jVj)
T (Vi−

∑
j∈N+(i)

Si,jVj)
)

where λU = σ2
R/σ

2
U , λV = σ2

R/σ
2
V and λS = σ2

R/σ
2
S are the

regularization parameters to avoid model overfitting. To
minimize the objective function L(U, V ) in Eq. (11), which
is a convex function, we use the gradient descent on ∂L/∂Ut

and ∂L/∂Vi for each pair Ut and Vi, and iteratively update
their values. Given a learning rate η, in each iteration (a.k.a.
epoch), updating is performed as follows:

Ut ← Ut − η
∂L

∂Ut
, Vi ← Vi − η

∂L

∂Vi
(12)

4. EXPERIMENTS
Datasets: In our experiments, we used the benchmark

datasets (i) IAPR TC12 from ImageCLEF and (ii) ESP
Game, with their features publicly available at [9]. Each
dataset was split into training and test set. Following the
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Figure 1: Comparison of PMF-SVN against LSR, TCMR, PMF and PMF-VN(ϵ).

evaluation protocol of [2], each image in the training set
has 4 tags. The rest tags of each image were deleted from
the training set and used as ground-truth tags in the test
set. According to [2, 3], we evaluated the tag completion
accuracy by Average Precision (AP@N), Average Recall
(AR@N) and Coverage (C@N). AP@N measures the av-
erage percentage of the top N correctly completed tags;
AR@N the percentage of correct tags that are completed by
a method out of all ground-truth tags; and coverage (C@N)
the percentage of images with at least one correctly com-
pleted tag. We ran 20 trials and mean and standard devia-
tion of the evaluation metrics are reported.
Methods: Regarding the proposed PMF-SVN, the learn-

ing rate η in Eq. (11) was varied in [10−3103] with a step
of 10, where the concluded η were 10−1 and 10−2 for IAPR
TC12 and ESP game, respectively, denoting that dataset
ESP game required a more conservative learning strategy
than IAPR TC12. According to Algorithm 1 the proposed
PMF-SVN generated SVNs with 7.23 and 11.46 images on
average for IAPR TC12 and ESP game. LSR [3] and TCMR [2]
were considered as current baselines (Section 2). The pa-
rameter values in the baselines were determined by cross-
validation, using the publicly available implementations of
LSR and TCMR at [10] and [11], respectively. Also, we com-
pared the proposed PMF-SVN against the baseline PMF
model [6] which does not exploit any additional information
in the learning process by trying to maximize the poste-
rior probability in Eq. (2). Finally, to evaluate the SVN
formation Algorithm 1, we also considered as baseline the
PMF-VN(ϵ) method, which in contrast to PMF-SVN, uses
solely the Visual Neighborhood (VN) N (i) for each image i,
with fV (i, r) ≥ ϵ ∀r ∈ N (i), by replacing N+(i) with N (i)
in the learning process of Section 3.3.
Results: In Figure 1, the experimental results are pre-

sented. In the baseline PMF-VN(ϵ) method, we varied the
visual threshold in [0.6 0.7 0.8 0.9]. For PMF-VN(ϵ) the
optimal values of the visual threshold ϵ are 0.8, i.e. PMF-
VN(0.8) and 0.7, i.e. PMF-VN(0.7) for IAPR TC12 and
ESP Game, respectively. The highest visual threshold ϵ=0.9,
i.e. PMF-VN(0.9), does not improve the completion accu-
racy of PMF by limiting the size of the Visual Neighbor-
hood (VN) and consequently having limited impact on PMF;
meanwhile the lowest visual threshold ϵ=0.6, i.e. PMF-
VN(0.6), generates large visual neighborhoods with less vi-
sually similar images, introducing thus noise in PMF. Hence,
by solely considering visual neighbors in PMF, there is a
glass ceiling in terms of completion accuracy, since baseline
PMF-VN(ϵ) does not reach the completion accuracy of LSR
and TCMR for any ϵ variation. For the proposed PMF-
SVN we consider the same optimal ϵ thresholds, i.e. 0.8 and
0.7 for TAPR TC12 and ESP game. PMF-SVN outperforms

PMF and PMF-VN(ϵ), since PMF-SVN based on Algorithm
1 forms SVNs with images that are both semantically and
visually similar. Moreover, the proposed PMF-SVN method
completes tags more accurate than TCMR and LSR. As also
presented in [2], TCMR and LSR have comparable perfor-
mance in terms of AP@N and AR@N on IAPR TC12 and
EPS game; however TCMR achieves higher coverage C@N
than LSR. Hence, except the experiments of Fig. 1, we mea-
sured the coverage C@N , where we observed that PMF-
SVN achieves also higher coverage than TCMR; for instance,
PMF-SVN achieves C@2=[0.7 0.57] in IAPR TC12 and ESP
game, whereas TCMR is limited to C@2=[0.61 0.51], indi-
cating that PMF-SVN can complete relevant tags for more
images than TCMR.

5. CONCLUSIONS
In this paper we propose PMF-SVN, an efficient method

to solve the tag completion problem. The key idea is to cap-
ture the semantical and visual correlations of images and
to form SVNs, incorporating thus SVNs into the learning
process of a probabilistic matrix factorization framework.
Our experimental evaluation on benchmark datasets demon-
strates the superiority of PMF-SVN over baselines. Our fu-
ture work includes an adaptive strategy for both the SVN
formation algorithm and the learning process of PMF to
evaluate PMF-SVN on the evolving data of social media.
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