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Abstract
In databases of moving objects it is important to
answer queries that concern the future positions of
the objects. An important query type in such an
environment is the nearest-neighbor query, which asks
for the k closest objects of a query object during a
time interval [ts, te]. However, there are cases where
the (k+1)-th nearest-neighbor is requested after the
execution of the k-NN query. In such a case, either
the query must be evaluated again, or we can exploit
the previous result and use an incremental method
to determine the new answer. We focus on the
second alternative and present efficient incremental
algorithms that outperform the trivial method which
is based on complete re-execution of the query. In
addition, we study the problem of keeping the query
result consistent in the presence of object insertions,
deletions and updates which are very common in a
dynamic moving-object environment.

Keywords: spatiotemporal databases, nearest-
neighbors, location-based services, moving objects.

1 Introduction
Spatiotemporal databases combine the spatial and

temporal characteristics of the stored data [22, 30, 29].
Nowadays, an important research direction in the field
is the design of algorithms and access methods, towards
query processing in databases of moving objects. Ap-
plications that could benefit from the efficient manip-
ulation of moving objects include geographical infor-
mation systems, navigation and tracking control, fleet
management, mobile information systems and weather
forecasting, to name a few. These applications require
that the position of the objects at specific time in-
stances is known (or can be computed). In this work
we assume that each mobile object is capable of 1) de-
termining its position and 2) transmitting its position
to a server.

There are two different directions concerning the po-
sitions of moving objects. The first one studies the
problem of processing past queries, which refer to past
positions of objects. The trajectory of each object is
stored in the database and specialized indexing schemes
are used to speed up searching. The object trajecto-
ries are handled: a) by spatial access methods tuned to

support time such as the 3D-Rtree [28], b) by historical
access methods which use the concept of tree overlap-
ping [12, 14, 24], or c) by specialized access methods
for object trajectories [32, 15, 25]. The second direction
involves the processing of future queries with respect to
future positions of the objects. Each object is usually
characterized by its reference position and its veloc-
ity vector. These two parameters are very important
in order to be able to predict future object positions.
Future queries are supported by access methods that
either use transformations and map objects to a fea-
ture space, or they work directly in native space and
use access methods that can predict the object posi-
tions according to the current motion characteristics
[9, 10, 1, 20, 17, 7, 8, 11].

Among the different types of queries that can be
posed to a database of moving objects, we focus on the
k-nearest-neighbor query. Given a future time interval
[ts, te] (where ts ≥ tnow), an integer k and a query
object q, the k-NN query asks for the k closest objects
to q during [ts, te]. Since the query object and the
data objects move, it is evident that the set of nearest-
neighbors may change. In other words, it is likely that
the set of NNs at time ts will be different from the set of
NNs at time te. An interesting variation of the problem
is to compute the (k+1)-th nearest-neighbor, given the
result of the k-NN query. The obvious technique that
we can use is to issue a new (k+1)-NN query. This
approach requires high computation costs both in CPU
and I/O time. There are several optimizations that can
be applied in order to reduce these costs and exploit
the result of the k-NN query which has been evaluated
previously.

Another issue that is of great importance in
databases of moving objects is the ability to adapt the
query results according to the object mobility. For ex-
ample, the result of a k-NN query may be invalidated
due to one of the following reasons:

• If a new object is inserted in the dataset we have to
check whether this insertion causes changes to the
query result. In this case a method is required in
order to efficiently handle such a case. Otherwise
the result remains as it is.

• If an object is deleted from the dataset we have to
check if this deletion affects the query result. For
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example, if object o participates to the results of
a k-NN query and it is deleted, we have to update
the query result. Otherwise no particular action is
required.

• Finally, when during the execution of a query an
object update occurs, we have to check if this up-
date invalidates the query result. An update can
be represented as an object deletion followed by
an object insertion.

The rest of the paper is organized as follows. Section
2 presents the appropriate background and discusses
related work in the area of k-NN search in moving ob-
jects and incremental algorithms. In Section 3 we study
incremental algorithms for moving objects whereas in
Section 4 we present methods to handle object inser-
tions, deletions and updates. Section 5 presents the
performance evaluation results for the proposed meth-
ods. Concluding remarks and future directions are of-
fered in Section 6.

2 Background and Related Work
The nearest-neighbor query received considerable

attention in spatial databases, where data objects and
queries are assumed to be static (i.e., their position re-
mains constant). Several algorithms and cost models
for k-NN have been proposed in the literature, such as
[19, 21]. Although these algorithms are efficient in a
spatial database context, they are inadequate for spa-
tiotemporal datasets, where data objects and queries
change their position with respect to time. Therefore,
specialized algorithms have been proposed, taking into
consideration the mobility of the dataset. Some of the
proposed methods are applied in the case where only
query objects are allowed to move, whereas data ob-
jects remain stable. However, several proposals handle
the more general case where data objects and queries
are allowed to move.

Kollios et al. [9] propose a method able to an-
swer NN queries for moving objects in 1-D space. The
method is based on the dual transformation where a
line segment in the native space corresponds to a point
in the transformed space, and vice-versa. The method
determines the object that comes closer to the query
between [ts, te] and not the NNs for every time instance.

Zheng et al. [33] proposed a method for comput-
ing a single NN (k = 1) of a moving query, applied
to static points indexed by an R-tree. The method is
based on Voronoi diagrams and it seems quite difficult
to be extended for other values of k and higher space
dimensions.

In [23] a method is presented to answer such queries
on moving-query, static-objects cases. Objects are in-
dexed by an R-tree, and sampling is used to query the
R-tree at specific points. However, due to the nature of
sampling, the method may return incorrect results if a
split point is missed. A low sampling rate yields more
efficient performance, but increases the probability of

incorrect results, whereas a high sampling rate poses
unnecessary computational overhead, but decreases the
probability of incorrect results.

Benetis et al. [3] propose an algorithm capable of an-
swering NN queries and reverse NN queries in moving-
object datasets. However, the proposed method is re-
stricted in answering only one NN per query, and no
results are given for the k-NN query problem. In addi-
tion to the algorithms, the authors propose methods to
keep the query results updated due to insertions and
deletions of data objects.

In [26] the authors propose an NN query processing
algorithm for moving-query moving-objects, based on
the concept of time-parameterized queries. Each query
result is composed of the following components: i) R,
is the current result set of the query, ii) T , is the time
point in which the result becomes invalid, and iii) C,
the set of objects that influence the result at time T .
Therefore, by continuously calculating the next set of
objects that will influence the result, we determine the
NNs of the query from t1 to t2. A TPR-tree index is
used to organize the moving objects.

The main drawback of the aforementioned method
is that the TPR-tree is searched several times in order
to determine the next object that influences the cur-
rent result. This implies additional overhead in CPU
and I/O time, which is more severe as the number
of requested NNs increases. In [27] the same authors
present a method which is applicable for static datasets,
in order to overcome the problems of repetitive NN
queries. By assuming that the dataset is indexed by an
R-tree structure, a single query is performed and there-
fore each participating tree node is accessed only once.
Performance results demonstrate that NN queries are
answered much more efficiently concerning query re-
sponse time. However, the proposed techniques can
only be applied for static datasets.

In [18] we have proposed a nearest-neighbor search
algorithm in the case of moving data objects and mov-
ing query objects. Experimental results performed
have been demonstrated that significant improvement
is obtained in comparison to the method proposed in
[26].

In [13, 31] the authors study the problem of con-
tinuous k-NN processing in spatiotemporal databases.
They propose scalable methods for incrementally up-
dating query results as the objects move in space.

In many cases, the user may request for the (k+1)-
th NN of the query object, after the execution of the
k-NN query. In such a case, an obvious approach is
to perform a new (k+1)-NN query. However, there are
several optimizations that can be applied in order to re-
duce the processing costs. In spatial databases several
methods have been proposed for incremental computa-
tion. Hjaltason et al. [5] proposed an algorithm, which
is capable of ranking the objects with respect to their
distance from a query object. This algorithm is imple-
mented on a PMR quadtree and uses a priority queue
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to keep track of the blocks and the objects not visited
yet. Henrich [4] proposed a similar method, which is
an incremental NN algorithm and can be applied on a
LSD-tree. Its main difference from the previous one is
that it uses two priority queues instead of one. These
two queues are used for the objects and the nodes of
the data structure respectively. Later, Hjaltason et al.
[6] extended their initial idea and showed that their al-
gorithm is more general and applicable not only to the
PMR-tree but to the R-tree as well.

To the best of the authors’ knowledge, incremental
algorithms have not yet been proposed in the context of
mobile objects. Therefore, in the sequel we present our
ideas towards this goal. We assume that data objects
are indexed by means of a TPR-tree access method
[20], which is a variation of the R∗-tree [2] adapted for
moving objects. Moreover, we study the problem of
query result consistency when insertions, deletions and
updates are taking place. For deletions and updates
the incremental computation of the next NN is of great
importance. Query result consistency has been studied
in [8, 16] and [3] in the case of reverse NN queries and
range queries respectively.

3 Incremental NN Algorithms
A moving nearest-neighbor query on a set of mov-

ing objects can be visualized by plotting the squared
Euclidean distance (D2) between each moving object
and the query object. For example, Figure 1 depicts
two nearest-neighbor queries for k=2 and k=3 (left and
right respectively). An intersection between two object
plots denotes a possible change in the result. The in-
tegral of the distance to the k-th nearest-neighbor in
every time tx determines the area of relevance which
is shown shaded in Figure 1. Evidently, this area is
determined by the k-th nearest-neighbors of the query
object. For every change in the k-th nearest-neighbor
or a change in the order of two objects participating in
the result, there is an associated split point. According
to the way split points are defined, there are two types:

• internal split points, which are defined by an
intersection of two objects o1 and o2 both partic-
ipating in the result, and

• external split points, which are defined by
an intersection between the current k-th nearest-
neighbor and another object which is not partici-
pating in the result.

As an example, split points at tab and tbd in Figure
1(a) are internal, whereas split-points at tad and tbc

are external. Note that in internal split points only
the object order in the result is altered, whereas in
external split points a new object is inserted in the
result and takes the place of the current k-th nearest-
neighbor (the order remains unchanged).

The result of a nearest-neighbor query is represented
by a split-list. The split-list contains the time points at

D2

(a) k = 2

D2

(b) k = 3

Figure 1: Visualization of a k-NN query result.

which there is a change in the result, and the object IDs
for each time subinterval in increasing distance order
from the query object. If we are interested in both
internal and external split points then both types are
present in the split-list. Otherwise, only external split-
points are represented. Therefore the split-list contains
all the necessary information to describe the result of a
k-NN query. The split-lists for the results of Figure 1
are depicted in Figure 2. Note that both internal and
external split-points are represented. Above each split-
point the pair of intersecting objects is presented. The
nearest-neighbors for each time subinterval are given
in increasing distance order with respect to the query
object.

The challenge is given this information to determine
the k+1 nearest-neighbor, by avoiding the query re-
execution from the beginning. More specifically, we
aim at:

• reducing the number of disk accesses in compari-
son to a newly executed (k+1)-NN query and

• reducing the required CPU time in comparison to
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Figure 2: Split-list examples (top k=2, bottom k = 3).

a newly executed (k+1)-NN query.

The target is to exploit the split-list in order to de-
fine a starting point that will help in determining the
(k+1)-th nearest-neighbor. We assume for the time be-
ing that there is at least one external split-point present
in the split-list of the k-NN result. The case where all
split-points are internal will be discussed later. Ex-
ternal split-points provide valuable information for the
determination of the (k+1)-th nearest-neighbor, since
they correspond to time instances where there is a
change in the result set. For example, by observing
Figure 1(a) it is evident that at time tad+dt (where
dt is a sufficiently small time interval), the (k+1)-th
neighbor is object a. Similarly, at time point tbc+dt
the (k+1)-th neighbor is object b. Therefore, for the
time instances that correspond to external split-points,
the (k+1)-th neighbor can be determined directly from
the split-list. However, this does not solve the problem
for the whole interval [ts, te], since we can not be certain
about what is happening between external split-points.
For example, the intersection of objects a and c (Figure
1(a)) has not been recorded in the split-list.

The above discussion suggests that we must deter-
mine a way to discover new split-points that denote a
change in the result of the (k+1)-NN query. Let tx
be an external split-point in the split-list of the k-NN
query result, which denotes an intersection between ob-
jects o1 and o2. Without loss of generality, we assume
that at time tx+dt the k-th NN is o2, whereas at time
tx-dt the k-th NN is o1. The time interval [ts, te] is
therefore partitioned into two subintervals [ts, tx) and
(tx, te]. Note that at tx the (k+1)-th NN is already
known (either o1 or o2). The method proceeds as fol-
lows:

1. New external split-points are determined for the
subinterval [ts, tx).

2. New external split-points are determined for the
subinterval (tx, te].

3. A new split-list is generated by combining the
split-points of the k-NN result with the new set
of split-points

In the sequel we describe the process of generating
new split-points and combining them with the split-
points that are present in the split-list of the k-NN
result.

3.1 Generating new split-points
There are two alternatives for the generation of new

split-points. The first alternative determines split-
points in increasing order with respect to time, by con-
tinuously querying the TPR-tree. The second alterna-
tive, searches the TPR-tree only once, but it is possible
to fetch objects that subsequently will be discarded.
We examine each alternative in detail, by using Fig-
ure 1(a) for illustration purposes, assuming that the
external split-point at tad is the starting point.

At time tad objects a and d intersect. Accord-
ing to the first alternative, new splits points are de-
termined one-by-one for the two subintervals [ts, tad)
and (tad, te]. Using object a the TPR-tree is searched
for the next possible intersection between a and other
objects. If no intersection is found, then we deduce
that object a is the (k+1)-th nearest-neighbor during
(tad, te]. In our case, an intersection between a and c
is determined at time tac. A new split-point is gen-
erated, and the same method is applied for object c.
At time tcb objects c and b intersect and therefore an-
other split-point is generated. Finally, object b does not
intersect any other object before te and thus no more
split-points can be generated for the subinterval (t2, te].
The method for the subinterval [ts, tad) is the same.
There is only one new split-point for this subinterval
at time tcd, denoting the intersection between objects
c and d. The algorithm for the generation of a new
split-point is similar to the algorithm reported in [27],
which uses a simplified version of the mindist distance
between the query object and the MBR of an internal
node. After the algorithm termination, a new split-list
is generated for the (k+1)-th nearest-neighbor. The
outline of algorithm INCNN-REP is presented in Fig-
ure 3.

It is evident that for each new split-point deter-
mined, a query must be issued to the TPR-tree (lines
3 and 10 of Figure 3). Although the repetitive queries
are likely to retrieve similar disk pages, the total num-
ber of TPR-tree node accesses is high. Therefore, we
present another alternative concerning the determina-
tion of new split-points, which issues only two queries
(one for each subinterval) and fetches the relevant ob-
jects. However, some of the retrieved objects may
be discarded because they may not contribute to the
(k+1)-NN query result. When querying the TPR-tree,
the algorithm does not stop when the first intersec-
tion is determined, but continues to search the tree for
more intersections. After searching the TPR-tree for
both subintervals, the algorithm returns a set of ob-
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Algorithm INCNN-REP
Input: the k-NN split-list
Output: the (k+1)-NN split-list
1. let (o1,o2,tx) be any external split-point
2. do /* subinterval (tx, te] */
3. search TPR-tree for first intersection of o1 in (tx, te]
4. set ox := intersecting object
5. create new split point (o1,ox,tx)
6. update (k+1)-NN split-list
7. set o1 := ox

8. while (intersection found)
9. do /* subinterval [ts, tx) */
10. search TPR-tree for first intersection of o2 in [ts, tx)
11. set ox := intersecting object
12. create new split point (o2,ox,tx)
13. update (k+1)-NN split-list
14. set o1 := ox

15. while (intersection found)

Figure 3: The INCNN-REP algorithm

jects which comprise the possible candidates for the
(k+1)-th nearest-neighbor. In our example, these ob-
jects are b, c and e. Therefore, objects b, c, d and e are
participating for the (k+1)-th nearest-neighbor. Using
the set of candidates, a new split-list is generated for
the (k+1)-th nearest-neighbor. Evidently, this method
computes the result in two phases: a) the candidate
determination phase and b) the new split-list gener-
ation phase. The outline of algorithm INCNN-2P is
illustrated in Figures 4, 5 and 6.

Algorithm INCNN-2P
Input: the k-NN split-list
Output: the (k+1)-NN split-list
1. call DetermineCandidates
2. set C := set of candidate objects
3. call GenerateSplitList(C)

Figure 4: The INCNN-2P algorithm

Algorithm DetermineCandidates
Input: the k-NN split-list
Output: the set of candidates for the (k+1)-th NN
1. let (o1,o2,tx) be any external split-point
2. search the TPR-tree for intersections of o2 in (tx, te]
3. search the TPR-tree for intersections of o1 in [ts, tx)
4. return the candidate objects

Figure 5: The DetermineCandidates algorithm

If we are interested only in external split-points, the
new split-list determined by the aforementioned algo-
rithms corresponds to the split-list for the whole (k+1)-
NN query. In the case where internal split-points are
also considered, a combination of two split-lists must be
performed. The combination of the new split-list with

Algorithm GenerateSplitList
Input: the set C of candidates
Output: a split-list for the (k+1)-th NN
1. set os := the NN at ts
2. while (TRUE) do
3. find first intersection of os with ox ∈ C at tx
4. if (tx > te) break
5. record tx as a split-point
6. set os := ox

7. end

Figure 6: The GenerateSplitList algorithm

the split-list of the k-NN query result determines the fi-
nal split-list of the (k+1)-NN query. This is performed
by a merging process with respect to the time instance
of each split-point. Since the two lists are sorted with
respect to time, the merging is performed easily.

3.2 Absence of external split-points
In the previous section we assumed that there is at

least one external split-point in the split-list of the k-
NN query result. However, we must cover the case
where all split-points are internal. An example of this
situation is depicted in Figure 7.

D2

Figure 7: Query result with no external split-points.

In such a case, a starting point for the (k+1)-th
NN investigation can not be determined directly from
the split-list. This happens because either the split-
list is empty (if only external split-points are recorded)
or contains internal split-points only. In other words,
the set of objects that correspond to the k nearest-
neighbors at ts are also the nearest-neighbors at te.
Only the object order changes. We need at least one
object which does not belong to the set of nearest-
neighbors. This object is determined by computing the
(k+1)-NN at any time instance in [ts, te]. Then, this
object is used as a candidate and either INCNN-REP
or INCNN-2P can be used to provide the complete an-
swer.
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4 Insertions, Deletions and Updates
In dynamically changing environments, there are op-

erations that alter the status of the database. A new
object may be inserted, an already existing object may
be deleted or updated. For example, in an aircraft mon-
itoring system the appearance of a new aircraft in the
vicinity of the radar corresponds to an object insertion.
Similarly, switching off a mobile phone corresponds to
an object deletion. Finally, a change of direction or
speed of a car corresponds to an object update. In a
set of moving objects, the queries that have been spec-
ified and correspond to future time intervals (future
queries) must be kept up to date. This implies that
the result of a future query must be valid, according
to the changes applied to the database. Therefore, ob-
jects participating in insertions, deletions and updates
must be examined in order to determine if they affect
any of the specified queries.

In [16] the authors present efficient methods for up-
dating the query results in the case of range queries in
a database of moving objects, whereas in [3] the au-
thors study the consistency problem if reverse nearest-
neighbor queries. In this section we present methods
in the case of k-NN queries. Let w be a moving object
that is either inserted, deleted or updated. There are
two steps in the process of query update:

1. the determination of the queries that may be af-
fected by w, and

2. the update of the query result

The first step can be handled by applying indexing
mechanisms on the queries, as it is suggested in [16].
Using this method, the role of queries and data is ex-
changed. Every time an object is modified, the queries
that may be possibly affected are determined by con-
sulting the index on the queries. The second step in-
volves the refinement of the set of queries determined,
and the update of the query result if this is necessary.
In the sequel we focus on the efficient update of the
query results. The query indexing problem can be
solved by creating a TPR-tree for the active queries.
If the number of these queries is small, the index can
be managed in main memory.

Let w be a new moving object inserted in the
database, and q be a k-NN query defined by a mov-
ing point at (qx, qy), a time interval [ts, te], an integer
k and the corresponding result stored in the split-list.
Also, let S be the set of objects that participate in the
result of q. Note that set S must contain at least k ob-
jects. We distinguish among the following cases, which
describe the relation of w to the current answer:

case 1: w does not intersect any of the objects in S
between ts and te, and it is “above” the area of
relevance. In this case, w is ignored, since it can
not contribute to the NNs. The number of split
points remains the same.

case 2: w does not intersect any of the objects in
S between ts and te, and it is completely “inside”
the area of relevance. In this case w must be taken
into account, since it affects the answer from ts to
te (Proposition 4). The number of split points may
be reduced.

case 3: w intersects at least one object v ∈ S at
time ts ≤ tx ≤ te, but at time tx v is not con-
tained in the set of NNs. In this case, again w
is ignored, since this intersection can not be con-
sidered as a split point because the answer is not
affected. Therefore, no new split points are gener-
ated.

case 4: w intersects at least one object v ∈ S at time
ts ≤ tx ≤ te, and object v is contained in the set of
NNs at time tx. In this case w must be considered
because at least one new split point is generated.
However, some of the previous split points may be
discarded.
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Figure 8: The four different cases that show the relation
of a new object to the current NNs

The aforementioned cases are depicted in Figure 8.
Object e corresponds to case 1, since it is above the area
of interest. Object f corresponds to case 2, because
it is completely covered by the relevant area. Object
g although intersects some objects, the time of these
intersections are irrelevant to the answer, and therefore
the situation corresponds to case 3. Finally, object h
intersects a number of objects at time points that are
critical to the answer and therefore corresponds to case
4.

Let us examine now the case where a moving object
is deleted from the database. Let w be the deleted ob-
ject and q a k-NN query which contains w in its result
set. Updating the query result involves the following
operations:

1. the removal of w from the split-list, and

2. the update of the split-list
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During the first operation, the split-list is scanned,
and object w is removed from the corresponding time
intervals between ts and te where it participates to the
query result. This removal yields in a split-list that,
for some time intervals, represents the result of a (k-1)-
NN query. In order to determine the k-th NN for these
intervals, one of the incremental algorithms (INCNN-
REP, INCNN-2P) discussed in the previous section can
be applied.

The last operation we examine involves object up-
date. In real-life applications is very unusual for a mov-
ing object to maintain the same mobility characteris-
tics for long time periods. Concerning moving objects
modeled as moving points, there are two operations
that may request for an update: change of speed, and
change of direction. When a moving object reports one
or both of these changes the result of the queries that
are affected must be updated to reflect the changes.
Let w be an object that changes its mobility charac-
teristics, and q a k-NN query which contains w in its
result set. The object update is equivalent to the dele-
tion of w followed by the insertion of a new object w′.
Therefore, the query update problem can be solved by
the following steps:

1. object w is deleted and the split-list is updated,

2. the new k-th NN of the query is computed incre-
mentally, and

3. object w′ is inserted and the split-list is updated

The above discussion shows that the incremental
computation described in the previous section is an
important building block for updating the result of a
query. In the upcoming section we study the efficiency
of incremental algorithms through an experimental per-
formance evaluation.

5 Performance Evaluation
The purpose of this section is to study and eval-

uate the efficiency of the incremental NN processing
algorithms INCNN-REP and INCNN-2P, and compare
their performance with algorithm REEXEC (described
in [27]), which is based on query re-execution. The
database is composed of 50,000 to 1,000,000 moving
objects whose reference positions are uniformly dis-
tributed in an address space of 1,000 x 1,000 km. Each
moving object is assigned a speed randomly selected
between 0 and 30 m/sec for each dimension. The di-
rection of movement is randomly selected. All experi-
ments have been conducted using a Pentium IV at 2.4
GHz processor system. The varying parameters used
for the experimental evaluation are as follows:

• the number k of requested nearest-neighbors,

• the query duration [ts, te] (query travel time),

• the size of the available memory for each query,
and

• the number of database objects.

Using the aforementioned dataset, a TPR-tree is
constructed for indexing purposes. The TPR-tree page
size is set to 2KBytes for all the experiments conducted.
The efficiency of the algorithms is expressed by the
number of TPR-tree node accesses, the CPU time re-
quired to process each query, and the number of disk
accesses. In order to measure the latter, an LRU buffer
is used, and the number of page faults is computed
for the query processing duration. A time overhead
of 8ms is assigned for every page fault occurred. In
the experimental evaluation that follows, when k=5 it
means that the incremental algorithms search for the
6-th nearest-neighbor of the query, whereas algorithm
REEXEC computes the 6-NN query.

Figure 9 illustrates the performance of the algo-
rithms assuming that the varying parameter is the
number k of requested nearest-neighbors, which varies
between 1 and 30. For each query we assume an avail-
able buffer which is equal to 5% of the total database
size. The database contains 1,000,000 moving objects.
Since the total number of pages of the TPR-tree is
77,926 the buffer has 3,897 available pages. The query
travel time is set to 524 seconds (8.7 minutes). The first
observation is that algorithm REEXEC issues many
repetitive queries to the TPR-tree and this highly af-
fects the number of accessed TPR-tree nodes. As Fig-
ure 9(a) illustrates, the number of node accesses for
the REEXEC algorithm is by factors larger than for
the INCNN-2P algorithm. Algorithm INCNN-REP al-
though accesses less nodes than REEXEC, its perfor-
mance is by factors worse than that of INCNN-2P. The
existence of a buffer is very important since it reduces
the number of page faults occurred. This is illustrated
in Figure 9(b) where the I/O cost is presented for all
algorithms. The number of disk accesses is significantly
less than the number of node accesses and INCNN-2P
outperforms the other methods. It is evident that for
all algorithms the total cost is dominated by the I/O
cost (Figures 9(b), (c) and (d)).

Figure 10 illustrates the impact of the buffer size
which varies from 1% to 20% of the total database size.
The number of database objects is set to 500,000, and
the number of the requested nearest-neighbors k is set
to 10. The query travel time is again set to 524 sec-
onds. We observe that the performance of all methods
is highly affected by the buffer size. INCNN-2P how-
ever is less affected, and shows a fairly stable perfor-
mance. For small buffer sizes, INCNN-REP and RE-
EXEC issue a large number of disk accesses which de-
grades their performance. When the number of buffer
pages is more than 2000 we observe a clear improve-
ment of the performance. In the extreme case where all
database objects are maintained in main memory (this
is not shown in the figure), the total cost is dominated
by the CPU time. Therefore, since INCNN-2P shows
better performance with respect to the CPU time (Fig-
ure 9(c)) it can be used for main-memory databases as
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Figure 9: Results for different values of the k.
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Figure 11: Results for different query travel time values.

well.
Figure 11 presents the impact of the query travel

time which varies from 52 seconds to 1048 seconds (17.4
minutes). The database contains 500,000 moving ob-
jects. The number k is set to 10 and the size of the
buffer is set to 5% of the database size (1952 pages).
Again we observe that algorithm INCNN-2P performs
better than the other methods for different query du-

ration intervals ([ts, te]).
Finally, Figure 12 presents the behavior of the meth-

ods for several database sizes. The database size varies
between 50,000 and 500,000 objects. The size of the
buffer is fixed at 2,000 pages, whereas the number of k
is set to 10. The query travel time is set to 1048 sec-
onds. We observe that generally INCNN-2P shows the
best performance. However, for small databases sizes
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the I/O performance of INCNN-2P may be marginally
worse than REEXEC. This happens because there are
cases where the number of disk accesses that INCNN-
2P issues is slightly larger than REEXEC. INCNN-2P
follows a filter-refinement approach, and some of the
retrieved objects may not participate to the final an-
swer.

By observing the previous results we can state that,
generally, INCNN-2P algorithm outperforms INCNN-
REP and REEXEC and therefore, can be used for
the incremental computation of the (k+1)-th nearest-
neighbor. As described in a previous section, the com-
putation of the (k+1)-th closest object (with respect
to a query object) can be used in order to update the
query results after a deletion or an update. On the
other hand, if an insertion of a new object affects the
result of an already computed k-NN query, the new re-
sult can be computed by using the split-list of the k-NN
query and the new object.

6 Concluding Remarks
An interesting research direction in spatiotemporal

databases is the design of efficient query processing
techniques for future queries, i.e. queries that refer
to a future time interval [ts, te]. In this work, we fo-
cused on k-NN query processing for datasets composed
of moving objects. Particularly, we have studied the
problem of incremental computation of the (k+1)-th
nearest-neighbor given the result of the already exe-
cuted k-NN query. The proposed algorithm INCNN-2P
outperforms INCNN-REP which is based on repetitive
queries and REEXEC which issues a new (k+1)-NN
query from the beginning without considering the re-
sult of the previously executed k-NN query.

Another important issue in moving-object databases
is the ability to keep the query results consistent after
insertions, deletions and updates. We have shown that
the incremental computation method can be used if a
deletion or an update affects the query results. For ob-
ject insertions only the available split-list and the new
object are needed to compute the new result. Future
research in the area may include:

• The use of a priority queue in a spatiotemporal
context. A problem that may arise, is that ob-
jects and tree nodes may become invalid after in-
sertions, deletions and updates.

• The consideration of all available external split-
points instead of just one.

• The study of cost estimations for incremental k-
NN processing.
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