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Abstract

Discrete sequence modeling and prediction is an important goal and challenge for Web 
environments, both wired and wireless. Web clients’ data-request forecasting and mobile loca-
tion tracking in wireless cellular networks are characteristic application areas of sequence 
prediction in such environments. Accurate data-request prediction results in effective data 
prefetching, which combined with a caching mechanism can reduce user-perceived laten-
cies as well as server and network loads. Also, effective solutions to the mobility tracking 
and prediction problem can reduce the update and paging costs, freeing the network from 
excessive signaling traffic. Therefore, sequence prediction comprises a very important study 
and development area. This chapter presents information-theoretic techniques for discrete 
sequence prediction. It surveys, classifies, and compares the state-of-the-art solutions, 
suggesting routes for further research by discussing the critical issues and challenges of 
prediction in wired and wireless networks.
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Introduction

The proliferation of wireless cellular networks and the penetration of Internet services are 
changing many aspects of Web computing. Constantly increasing client populations utilize 
diverse devices to access the wired and wireless medium, and various heterogeneous ap-
plications (e.g., traffic- and weather-condition broadcasting, streaming video) are being 
developed to satisfy the eager requirements of the clients. In this environment, seamless and 
ubiquitous connectivity as well as low client-perceived latencies are two fundamental goals. 
The first goal calls for smart techniques for determining the current and future location of 
a mobile node, and the second goal calls for efficient and effective techniques for deducing 
future client requests for information pieces.
Both of the aforementioned problems are related to the ability of the underlying network to 
record, learn, and subsequently predict the mobile user’s behavior, that is, its movements or 
its information needs. The success of the prediction is presupposed and is boosted by the fact 
that mobile users exhibit some degree of regularity in their movement and/or in their access 
patterns (Bhattacharya & Das, 2002; Nanopoulos, Katsaros, & Manolopoulos, 2003). This 
regularity may be apparent in the behavior of each individual client or in client groups. The 
detection of regularity patterns can lead to drastic improvements on the underlying wireless 
network’s performance. Accurate data-request prediction results in effective data prefetching 
(Nanopoulos et al.) combined with a caching mechanism (Katsaros & Manolopoulos, 2004; 
Vakali, 2001) can reduce user-perceived latencies as well as server and network loads. Also, 
effective solutions to the mobility tracking and prediction problem can reduce the update and 
paging costs, freeing the network from excessive signaling traffic (Bhattacharya & Das).
These issues had been treated in isolation, but pioneering works (Bhattacharya & Das, 2002; 
Vitter & Krishnan, 1996) are paving the way for treating both problems in a homogeneous 
fashion. They exhibited the possibility of using methods that have traditionally been used for 
data compression (thus characterized as information-theoretic) in carrying out prediction. The 
unifying principle is that they model the respective state space as finite alphabets comprised 
of discrete symbols. In the mobility tracking scenario, the alphabet consists of all possible 
sites (cells) where the client has ever visited or might visit (assuming that the number of 
cells in the coverage area is finite). In the request-prediction scenario, the alphabet consists 
of all the data objects requested by the client plus the objects that might be requested in the 
future (assuming that the objects come from a database and thus their number is finite).
A smart network can record the movement (request) history and then construct a mobility 
(data-access) model for its clients. The history refers to the past, but the model is probabi-
listic and extends to the future. As uncertainty is inherent in mobile movements or requests, 
we can consider the requests to be the outcome of an underlying stochastic process, which 
can be modeled using established information-theoretic concepts and tools (Misra, Roy, & 
Das, 2004; Vitter & Krishnan, 1996).
In our earlier work, reported in Nanopoulos et al. (2003), we described a framework that was 
able to embrace some algorithms that had been presented in the context of Web prefetching. 
That framework was able to present those algorithms as variations of the standard PPM 
(prediction by partial match) technique. The emphasis of the framework was on differen-
tiating between the techniques based on whether they record contiguous subsequences or 
noncontiguous subsequences. From that work, it was clear that the discovery of noncontigu-
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ous subsequences required considerable computational effort and could be realized only 
through off-line algorithms.
Extending this work, this chapter provides a unifying framework for all the methods, which 
deal with the issues of location tracking and prediction and request forecasting using known 
information-theoretic structures, not only the PPM structures; the framework treats them 
as (variable or fixed-length) Markov chains and presents the different families of methods, 
categorizing the state-of-the-art algorithms into their respective families. It mainly deals with 
the discovery of contiguous subsequences, although it can relatively easily be extended to 
include noncontiguous subsequences. An important objective of the chapter is to include in 
the presentation not only the algorithms that are familiar in the wireless-communications com-
munity, but also techniques that have been developed in other disciplines, like computational 
biology, machine learning, and the World Wide Web, in order to achieve cross-discipline 
understanding and the proliferation of ideas. The purpose of the categorization is to reveal 
the shortcomings and advantages of each method and to identify routes for further research. 
Closely related to our work is that reported in Begleiter, El-Yaniv, and Yolan (2004), which, 
although it has a more narrow scope, examining only online prediction methods, it gives a 
completely different notion for the variable-length Markov chain, defining it as a combina-
tion of various Markov chains that are of different length.
The rest of the chapter is organized as follows. The next section describes in mathemati-
cal terminology the problem of discrete sequence prediction. Then the chapter surveys 
the different families of Markov predictors, and then provides a qualitative comparison of 
them. Next, we present a new online prediction algorithm that does not belong to any of 
the families, though it combines many of the merits presented by each family. Finally, we 
discuss some fields for further research, and then conclude the chapter.

The Discrete Sequence Prediction Problem

In quantifying the utility of the past in predicting the future, a formal definition of the prob-
lem is needed, which we provide in the following lines (Feder, Merhav, & Gutman, 1992; 
Merhav & Feder, 1998). Let Σ be an alphabet consisting of a finite number of symbols s1, 
s2, …, s|Σ|, where |·| stands for the length or cardinality of its argument. A predictor, which is 
an algorithm used to generate prediction models, accumulates sequences of the type αi=αi

1, 
αi

2, …, αi
ni, where αi

j ∈ Σ for all i, j and ni denotes the number of symbols comprising αi. 
Without loss of generality, we can assume that all the knowledge of the predictor consists of 
a single sequence α= α1, α2, …, αn. Based on αi, the predictor’s goal is to construct a model 
that assigns probabilities for any future outcome given some past information. Using the 
characterization of the mobility or request model as a stochastic process (Xt)t ∈ N, we can 
formulate the aforementioned goal as follows.

Definition 1 (Discrete Sequence Prediction Problem). At any given time instance t (mean-
ing that t symbols xt, xt-1, ..., x1 have appeared, in reverse order), calculate the conditional 
probability:
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],,|[ ,...1111 −−++ === tttttt xXxXxXP

where xi ∈ Σ for all xt+1 ∈ Σ. This model introduces a stationary Markov chain since the 
probabilities are not time dependent. The outcome of the predictor is a ranking of the 
symbols according to their P . The predictors that use such kind of prediction models are 
termed Markov predictors.
Depending on the application, the predictor may return only the symbol(s) with the highest 
probability, that is, implementing a most-probable prediction policy, or it may return the 
symbols with the m highest probabilities, that is, implementing a top-m prediction policy, 
where m is an administratively set parameter. In any case, the selection of the policy is a 
minor issue and will not be considered in this chapter, which is only concerned with methods 
for inferring the ranking.
The history xt,  xt-1, ... used in the above definition is called the context of the predictor, and 
it refers to the portion of the past that influences the next outcome. The history’s length (also, 
called the length, memory, or order of the Markov chain or predictor) will be denoted by 
l. Therefore, a predictor that exploits l past symbol will calculate conditional probabilities 
of the form:

].,|[ 11,...,1111 +−+−−−++ ==== ltlttttttt xXxXxXxXP

Some Markov predictors fix, in advance of the model creation, the value of l, presetting it 
in a constant k in order to reduce the size and complexity of the prediction model. These 
predictors and the respective Markov chains are termed fixed-length Markov chains or 
predictors of order k. Therefore, they compute probabilities of the form:

].,|[ 11,...,1111 +−+−−−++ ==== ktkttttttt xXxXxXxXP

where k is a constant. Although it is a nice model from a probabilistic point of view, these 
Markov chains are not very appropriate from the estimation point of view. Their main 
limitation is related to their structural poverty since there is no means to set an optimized 
value for k.
Other Markov predictors deviate from the fixed-memory assumption (Buhlmann & Wyner, 
1999) and allow the order of the predictor to be of variable length, that is, to be a function 
of the values from the past.

],,|[ 11,...,1111 +−+−−−++ ==== ltlttttttt xXxXxXxXP

where l=l(xt,xt-1,...).
These predictors are termed variable-length Markov chains; the length l might range from 
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1 to t. If l=l(xt,xt-1,...) ≡ k for all xt, xt-1, ..., then we obtain the fixed-length Markov chain. 
The variable-length Markov predictors may or may not impose an upper bound on the 
considered length. The concept of variable memory offers richness in the prediction model 
and the ability to adjust itself to the data distribution. If we can choose in a data-driven way 
the function l=l(·), then we can only gain with respect to the ordinary fixed-length Markov 
chains, but this is not a straightforward problem.

The Markov predictors (fixed or variable length) base their probability calculations P  on 
counts of the number of appearances of symbols after contexts. They also take special care to 
deal with the cases of unobserved symbols (i.e., symbols with zero appearance counts after 
contexts), assigning to them some minimum probability mass, which is acquired from the 
respective mass of the symbols already seen. For the location-tracking and request-prediction 
applications, though, the predictors usually adopt a nonprediction approach for the unob-
served events and do not apply any smoothing mechanism because the possible alternative 
symbols may be quite large. Therefore, for the rest of the chapter, we will not deal with the 
zero-frequency problem and will not adopt smoothing in the presented examples. 

Families of Markov Predictors

We explained earlier how Markov predictors create probabilistic models for their input 
sequence(s). To realize these models, they need a data structure, a dictionary to keep track 
of the contexts of interest, and some counts used in the calculation of the conditional prob-
abilities P . The preferred choice for this task is the use of digital search trees (trees). The 
root node of the tree corresponds to the null event or symbol, whereas every other node 
of the tree corresponds to a sequence of events; the sequence is used to label the node. An 
invariant for the trees is that no two children of a father node may have the same label. In 
the rest of the chapter, we will consider a Markov predictor to be equivalent to its respective 
tree. Each node is accompanied by a counter, which depicts how many times this event has 
appeared after the sequence of events corresponding to the path from the root to the node’s 
father that has been observed.
For our convenience, we present some definitions useful for the sequel of the chapter. We 
use the sample sequence of events α=aabacbbabbacbbc. The length of α is the number of 
symbols it contains, that is, |α|=15. We term that the maximal prefix of a (sub)sequence, say, 
acb, is the (sub)sequence without its rightmost symbol, that is, ac; the maximal suffix of the 
(sub)sequence acb is the (sub)sequence without its leftmost symbol, that is, cb, whereas a 
suffix of the acb comes out of acb by removing 0, 1, ..., |abc| symbols from the left of acb. 
The null sequence denoted as R is a suffix of any sequence and it holds that |R|=0.
The appearance count of subsequence s=ab is E(s)=E(ab)=2, and the normalized appearance 
count of s is equal to E(s) divided by the maximum number of (possibly overlapping) occur-
rences a subsequence of the same length could have, considering a’s length, that is, En(s) = 
E(s)/(|a|-|s|+1). The conditional probability of observing a symbol after a given subsequence 
is defined as the number of times that symbol has shown up right after the given subsequence 
divided by the total number of times that the subsequence has shown up at all, followed 
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by any symbol. Therefore, the conditional probability of observing the symbol b after the 
subsequence a will be denoted as P (b|a) and is equal to P  (b|a)= E(ab)/E(a)=0.4.
The generic procedure for deciding which subsequences will be inserted into the tree is spe-
cific to each family of Markov predictors and will be described in the next subsections. For 
purposes related to the clarity of presentation and comparison, we will build the respective 
tree of each family considering as input the sequence aabacbbabbacbbc. We will present the 
construction of each family’s tree as simple as possible, omitting any optimizations, and we 
will assume that the input is given beforehand, although some predictors, that is, the online 
ones, do not demand the whole input to be known in advance.

The Prediction-by-Partial-Match Scheme

The prediction-by-partial-match scheme is based on the universal compression algorithm 
reported in Cleary and Witten (1984) and constructs a prediction model for an input sequence 
as follows. It assumes a predetermined maximal order, say, k, for the generated model. Then, 
for every possible subsequence of length of 1 up to k+1, if it has never been encountered 
before, we determine the node whose label is the maximal prefix of the considered subse-
quence. We create a new node under that node. The label of the new node is the length-1 
suffix of the considered subsequence, and the new node’s counter is initialized to the value 
of 1. If the considered subsequence has been encountered before, then the counter of the 
respective node is incremented by 1. Although this description implies that the whole input 
sequence is known in advance, the method works in an online fashion by exploiting a sliding 
window of size k+1 over the sequence as it grows symbol by symbol. The PPM predictor 
for the sample sequence aabacbbabbacbbc is depicted in Figure 1.
Upon completion of the construction phase, we can compute the probability of a symbol σ 
to appear after a context s by detecting the sequence sσ as a path in the tree emanating from 
the root, provided that |sσ| ≤ k. The conditional probability of sσ is computed as the ratio of 
the node counter corresponding to sσ divided by the counter corresponding to σ. Therefore, 
having built the predictor of Figure 1, we can use it to carry out symbol prediction for a 
progressing sequence of events as follows: We determine the maximum context with length 
less than or equal to k that appears as a path in the tree, and compute the conditional prob-
abilities of all symbols to appear after this context. For instance, adopting a most-probable 
prediction policy, the predicted symbol for the test context ab is a or b, and its conditional 
probability is 0.50 for either of them (see the gray-shaded nodes in Figure 1).

Figure 1. A PPM Markov predictor for the sequence aabacbbabbacbbc
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The maximum context that the PPM predictor can exploit in carrying out predictions is 
k, though all intermediate contexts with length from 1 to k-1 can be used since they have 
already been stored into the tree. This model is also referred as the all-kth-order PPM model 
because it encodes a set of PPM predictors whose order ranges from 1 to k. The interleav-
ing of various-length contexts does not mean that this scheme is a variable-length Markov 
predictor (although sometimes it is referred to as such) because the decision on the context 
length is made beforehand and not in a data-driven way.
Apart from this basic scheme, a number of variations have been proposed that attempt to 
reduce the size of the tree by pruning some of its paths or suffixes of some paths based on 
statistical information derived from the input data. They set lower bounds for the normalized 
appearance count and for the conditional probabilities of subsequences, and then prune any 
branch that does not exceed these bounds. Characteristic works adopting such an approach are 
reported in Chen and Zhang (2003), Nanopoulos et al. (2003), and Deshpande and Karypis 
(2004). Their basic motivation stems from the assumption that the pruned states add very 
little to the prediction capability of the original model, and thus they could be eliminated 
without sacrificing significantly its effectiveness. The validity of this assumption cannot 
be justified and, in any case, it strongly depends on the input data distribution. Apparently, 
these schemes are off line, making one or multiple passes over the input sequence in order 
to gather the required statistical information. 

Application Fields

The PPM scheme was the first compression algorithm that was used in carrying out predic-
tion in wired networks (Fan, Cao, Lin, & Jacobson, 1999; Palpanas & Mendelzon, 1999). 
Earlier, it had been exploited for the same task in databases (Curewitz, Krishnan, & Vit-
ter, 1993). Although the currently implemented approaches, for example, in the Mozilla 
browser, implement link prefetching, the sophisticated procedure of the PPM could provide 
significant benefits.

The Lempel-Ziv-78 Scheme

The Lempel-Ziv-78 Markov predictor, LZ78 for short, is the second scheme whose virtues 
in carrying out predictions were investigated very early in the literature (Bhattacharya & 
Das, 2002; Krishnan & Vitter, 1998; Vitter & Krishnan, 1996). The algorithm LZ78 (Lempel 
& Ziv, 1978) arose from a need for finding a universal variable to the fixed-length coding 
method and constructs a prediction model for an input sequence as follows. It makes no 
assumptions about the maximal order for the generated model. Then, it parses the input 
sequence into a number of distinct subsequences, say, s1, s2, ..., sx, such that for all j, 1≤j≤x, 
the prefix of subsequence sj (i.e., all but the last character of sj) is equal to some si, for some 
1≤i≤j. The discovered subsequences are inserted into a tree in a manner identical to that of 
the PPM scheme. In addition, the statistics regarding the number of appearances of each 
subsequence are stored into the nodes of the tree. 
As the process of incremental parsing progresses, larger and larger subsequences are inserted 
into the tree, allowing the computation of conditional probabilities of increasingly larger 
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subsequences, thus exploiting larger contexts. The LZ78 predictor for the sample sequence 
aabacbbabbacbbc is depicted in the left part of Figure 2. The computation of conditional 
probabilities takes place in a manner completely analogous to that of PPM. However, LZ78 
for this example is not able to produce a prediction for the test context ab (i.e., there is no 
subtree under the gray-shaded node).
Apparently, the LZ78 Markov predictor is an online scheme, it lacks administratively tuned 
parameters like lower bounds on appearance counts, and it is a characteristic paradigm of a 
variable-length Markov predictor. Although results do exist that prove its asymptotic opti-
mality and its superiority over any fixed-length PPM predictor, in practice, various studies 
contradict this result because of the finite length of the input sequence. Nevertheless, the 
LZ78 predictor remains a very popular prediction method. The original LZ78 prediction 
scheme was enhanced in Bhattacharya and Das (2002), and Misra et al. (2004) in a way 
such that apart from a considered subsequence that is going to be inserted into the tree, all 
its suffixes are inserted as well (see right part of Figure 2).

Application Fields

Apart from the traditional use of the LZ78 algorithm in data-compression areas, recently 
it has found important application in problems related to location management in mobile 
networks. It has been proposed as a tool to reduce the communication overhead of the mes-
sages that are exchanged between the network and the roaming client (Misra et al., 2004; 
Roy, Das, & Misra, 2004). However, the applicability of the prediction algorithm is not 
confined to situations in which the alphabet is easily recognized; in the case of the wireless 
network, the alphabet consists of the cell IDs. We can have more general situations in which 
the application defines the symbols of the alphabet. The LZ78 algorithm has been used to 
track and predict the position of the inhabitants in smart-home applications (Das, Cook, 
Bhattacharya, Heierman, & Lin, 2002) in order to provide control over home devices. In 
this context, the house is modeled as a collection of nonoverlapping areas, which are later 
mapped into a symbolic map corresponding to the neighborhood information for each area. 
These notions are depicted in Figure 3 and Figure 4. Once we have done this mapping, the 
application of the prediction algorithm is straightforward.

Figure 2. (Left) An LZ78 Markov predictor for the sequence aabacbbabbacbbc. (Right) An 
LZ78 predictor enhanced according to Bhattacharya and Das (2002)
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The Probabilistic Suffix Tree Scheme

The probabilistic suffix tree predictor, PST for short, was introduced in Ron, Singer, and 
Tishby (1996), and it presents some similarities to LZ78 and PPM. Although it specifies 
a maximum order for the contexts it will consider, it is actually a variable-length Markov 
predictor and constructs its tree for an input sequence as follows. The construction procedure 
uses five administratively set parameters: k, the maximum context length; a Pmin minimum 
normalized appearance count for any subsequence in order to be considered for insertion 
into the tree; r, which is a simple measure of the difference between the prediction capabil-
ity of the subsequence at hand and its direct father node; and γmin and α, which together 
define the significance threshold for a conditional appearance of a symbol. Then, for every 
subsequence of length of 1 up to k, if it has never been encountered before, a new node is 
added to the tree, labeled by this subsequence in reverse symbol order provided that a set 
of three conditions hold. To exhibit the conditions, suppose that the subsequence at hand is 
abcd. Then, this subsequence will be inserted into the tree of the PST if

1. En(abcd) ≥ Pmin, and
2. there exists some symbol, say, x, for which the following relations hold:

Figure 3. The areas of a smart home

Figure 4. The symbolic representation of the example smart home
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In addition, the node corresponding to the considered subsequence stores the (nonzero 
only) conditional probabilities of each symbol to appear after the subsequence. Obviously, 
the labels and statistics of each node of a PST differ from those of a PPM or LZ78 scheme. 
The PST predictor with the following set of parameters k=3, Pmin=2/14, r=1.05, γmim=0.001, 
a=0 for the sample sequence aabacbbabbacbbc is depicted in Figure 5. Apparently, PST is 
a subset of the baseline PPM scheme when k is the same.
Upon completion of the construction phase, we can compute the probability of a symbol σ 
to appear after a context s by reversing s, and, starting from the root, can detect either the 
node whose label equals the reversed sequence or the deepest node whose label is a prefix 
of the reversed sequence. However, PST for this example is not able to produce a prediction 
for the test context ab (i.e., there is no subtree under the gray-shaded node).

Application Fields

Apart from this basic scheme, a number of variations have been developed, the most important 
reported in Apostolico and Bejerano (2000), which provided improved algorithms, that is, 
linear algorithms for the procedures of learning the input sequence and making predictions. 
Other approaches adapt the technique to specialized contexts, such as computational biology 
(Bejerano & Yona, 2001; Largeron-Leteno, 2003). Currently, this scheme has not been applied 
in online problems such as location prediction, but it could be effectively employed in the 
request-prediction scenario under the assumption that the request pattern of the application 
does not change dramatically. It is relatively stable for large time intervals.

The Content-Tree Weighting Scheme

The context-tree weighting Markov predictor (Willems, Shtarkov, & Tjalkens, 1995), 
CTW for short, is based on a clever idea of combining exponentially many Markov chains 
of bounded order. The original proposition dealt with binary alphabets only, and its later 

Figure 5. A PST Markov predictor for the sequence aabacbbabbacbbc



170 Katsaros

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of 
Idea Group Inc. is prohibited.

extensions for multialphabets (Volf, 2002) maintained this binary nature. For this reason, 
we will first describe the CTW Markov predictor for binary {0,1} alphabets and then give 
the most interesting and practical extension.
The CTW assumes a predetermined maximal order, say, k, for the generated model, and 
constructs a complete binary tree T of height k, that is, a binary tree in which every non-
leaf node has two children and all leaves are at the same height k. An outgoing edge to the 
left-side children of T is labeled 0, and an outgoing edge to the right-side children of T is 
labeled 1. Each node s in T is associated with the sequence corresponding to the path from 
this node to the root. This sequence is also denoted as s. We can find to which input subse-
quence it corresponds by reversing it. The left and right children of node s are denoted as 
0s and 1s, respectively.
Each node s maintains two counters, as and bs, that count the number of 0s and 1s, respec-
tively, that followed context s in the input sequence so far. Initially, all counters are set to 0. 
Then, we scan the input sequence by considering all subsequences of length k and for each 
subsequence, we update the counters of the nodes along the path defined by this subsequence. 
Additionally, each context (node) s maintains, apart from the pair (as, bs), two probabilities, 
Pe

s and Pw
s. The former, Pe

s, is the Krichevsky-Trofimov estimator for a sequence to have 
exactly as 0s and bs 1s, and it is computed as
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with $Pe
s(0,0)=1, Pe

s(1,0)=1/2 and Pe
s(0,1)=1/2. The latter probability, Pw

s, is the weighted 
sum of some values of Pe, and it is computed with the following recursive formula:

With Pe
R and Pw

R, we denote the Krichevsky-Trofimov estimate and the CTW estimate of 
the root, respectively. We can predict the next symbol with the aid of a CTW as follows. 
We make the working hypothesis that the next symbol is a 1, and we update the T accord-
ingly, obtaining a new estimate for the root Pe

’R. Then, the ratio Pw
’R/Pw

R is the conditional 
probability that the next symbol is a 1. If the next event is indeed a 1, we need not do any 
update to T; otherwise, we restore the previous values of the tree and perform the update 
that corresponds to appending a 0 to the input sequence. The CTW predictor for the sample 
binary sequence 010|11010100011 is depicted in Figure 6. The first three binary digits (at 
the left of |) are used to create a context for the sequence.
For the case of nonbinary alphabets, Volf (2002) proposed various extensions. We present 
the decomposed CTW, DeCTW for short, as the best compromise between method efficiency 
and simplicity. First, we assume that the symbols belong to an alphabet Σ with cardinality 
|Σ|. We consider a full binary tree with |Σ| leaves. Each leaf is uniquely associated with a 
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symbol in |Σ|. Each internal node v defines the binary problem of predicting whether the next 
symbol is a leaf on v’s left subtree or a leaf on v’s right subtree. Then, we attach a binary 
CTW predictor to each internal node. We project the training sequence over the relevant 
symbols (i.e., corresponding to the subtree rooted by v) and translate the symbols on v’s 
left (respectively, right) subtree to 0s (respectively, 1s). After training, we predict the next 
symbol σ by assigning each symbol a probability that is the product of binary predictions 
along the path from the root of the binary tree to the leaf labeled by σ. A diagram of the 
DeCTW is depicted in Figure 7.

Application Fields

The inherent binary nature of the CTW prohibits its wider applicability. However, it has 
been successfully applied to some problems related to improving the performance of com-
puter architecture. In particular, Federovsky, Feder, and Weiss (1998) described a direct 
application of the CTW method to the branch-prediction problem, which is the problem of 
assessing whether the program under execution will follow a branch or not. They looked 
at the program as a binary source that generates a binary sequence in which 1s correspond 
to taken branches and 0s correspond to not-taken branches. Furthermore, they model this 
binary symbol source using the CTW and perform branch prediction by blending the in-
dividual prediction models. Several efforts have been done toward alleviating the binary 
nature of the CTW and extending it for multialphabets. Of particular importance is the 

Figure 6.  A CTW Markov predictor for the binary sequence 010|11010100011

Figure 7. A sketch of the DeCTW Markov predictor for the sequence aabacbbabbacbbc
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work by Sadakane, Okazaki, and Imai (2000), which provided a very simple and practical 
implementation along with a technique for combining the prediction strength of PPM and 
CTW (Okazaki, Sadakane, & Imai, 2002).

Comparison of Prediction Schemes

In the preceding section, we surveyed a number of Markov predictors. Implicitly or explicitly, 
they are all based on the short-memory principle, which, simply stated, says that the (empiri-
cal) probability distribution of the next symbol, given the preceding sequence, can be quite 
accurately approximated by observing no more than the last k symbols in that sequence.
Although this principle appears to be simple, the complications it introduces for the predic-
tion algorithms are far from being simple. The algorithms are faced with the problems of 
selecting an appropriate value for k, which in general depends on the actual values of these 
most recent symbols. In absence of any other information, some methods fixed in advance 
the value of k (e.g., PPM, CTW). Such policies mainly suffer from the following drawback. 
If the value of k is too low and thus too general to capture all the dependencies between 
symbols, then the prediction efficiency of the respective model will not be satisfactory. On 
the other hand, if the value of k is too large, then the model will overfit the training sequence. 
Therefore, variable-length Markov predictors (e.g., LZ78, PST) are most appropriate from 
this point of view. This was the motivation for subsequent enhancements to PPM and CTW 
so as to consider unbounded-length contexts, for example, the PPM* algorithm (Cleary & 
Teahan, 1997).
On the other hand, variable-length predictors face the problem of which sequences and of 
what length should be considered. PST attempts to estimate the predictive capability of each 
subsequence in order to store it in the tree, which results in deploying many tunable param-
eters. LZ78 employs a prefix-based decorrelation process, which results in some recurrent 
structures being excluded from the tree, at least at the first stages. This characteristic is not 
very important for infinite-length sequences, but may incur severe performance penalty for 
short sequences or for sequences in which the patterns appear only a limited number of times; 
for instance, the pattern bba is missing in both variants of LZ78 of Figure 2.
Despite its superior prediction performance (for instance, see Effros, 2000), PPM is far less 
commonly applied than algorithms like LZ78. In practice, the LZ78 schemes are favored over 
PPM algorithms for their relative efficiencies in memory and computational complexity. While 
the LZ78 predictors can be implemented with O(n) memory and complexity, straightforward 
implementations of some PPM variants require worst case O(n2) memory and complexity 
to process a data sequence of length n (Cleary & Teahan, 1997). The high computational 
complexity of PPM algorithms remains an impediment for their more widespread use.
Finally, particular features encountered in each algorithm may make them less appealing 
for some applications. For instance, the CTW, due to its coupling with binary alphabets, is 
not the preferred choice for applications regarding multialphabets. Off-line schemes, for 
example, those in Deshpande and Karypis (2004) and Ron et al. (1996), are not appropriate 
when request prefetching must be performed by mobile clients.
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Table 1 summarizes the Markov-predictor families and their main limitations and advantages. 
While the considered features and metrics provide a general guideline for algorithm evalua-
tion, the choice and performance of a specific model largely depends on the application.

A Suffix-Tree-Based Prediction Scheme

The suffix-tree-based prediction scheme, STP for short, is a new prediction algorithm 
not belonging to any of the aforementioned families, and it is described in Katsaros and 
Manolopoulos (2005). It works as follows. It finds the largest suffix of the input sequence 
s1

n—let us call it ssi
n—whose copy appears somewhere inside s1

n. Then, it takes a suffix of 
ssi

n (the length of this suffix is a parameter of the algorithm) and locates its appearances 
inside si

n. The symbols that appear after the appearances of it are the candidate predictions 
of the algorithm. The final outcome of the prediction algorithms is the symbol that appears 
the most times. In pseudocode language, the algorithms are presented in Figure 8.
To explain how the STP algorithm works, we present a simple example.
Example. Suppose that the sequence of symbols seen so far is the following:
s1

24=abcdefgabcdklmabcdexabcd. The largest suffix of s1
24 that appears somewhere in s1

24 
is ss1

4=abcd. Let α=0.5. Then, sss1
2= cd. The appearances of cd inside s1

24 are located at the 
positions 3, 10, 17, and 23. Therefore, the marked positions are 5, 12, 19, and 25. Obviously, 
the last one is not null since it contains the symbol we want to predict. In the general case, all 
marked positions will contain some valid symbol. Thus, the sequence of candidate predicted 
symbols is e, k, e. Since the symbol that appears most of the time in this sequence is e, the 
output of the STP algorithm, that is, the predicted symbol at this stage, is e.
The implementation of the algorithm requires an appropriate data structure to support its 
basic operations, which are the following: (a) the determination of the maximal suffix (at 
Step 1), and (b) substring matching (at Steps 1 and 2). These two operations can be optimally 
supported by a suffix tree. The suffix tree of a string x1, x2, ..., xn is a tree built from all suf-
fixes of x1, x2, ..., xn$, where $ is a special symbol not belonging to the alphabet. External 
nodes of a suffix tree contain information about the suffix positions in the original string 

Prediction Method Overhead

DrawbackFamily Markov Class Training Parameterization Storage

LZ78 variable online moderate moderate misses patterns

PPM fixed online moderate large
fixed length
high complexity

PST variable Off line heavy low parameterization

CTW fixed online moderate large binary nature

Table 1. Qualitative comparison of discrete sequence-prediction models
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and the substring itself that leads to that node (or a pair of indexes to the original string in 
order to keep the storage requirement linear in the string length). It is a well-known result 
that the suffix tree can be built in linear (optimal) time (in the string length), and can support 
substring finding in this string also in linear (optimal) time (in the length of the substring). 
Therefore, the substring searching operation of our algorithm can optimally be implemented. 
As for the maximal suffix determination operation, if we keep pointers to those external 
nodes that contain suffixes ending with the $ symbol (since one of them will be the longest 
suffix we are looking for), then we can very efficiently support this operation as well. From 
the above discussion, we conclude the following: (a) The STP algorithm is online, which 
means it needs no training or preprocessing of the historical data, (b) the storage overhead 
of the algorithm is low since it is implemented upon the suffix tree, and (c) the algorithm 
has only one tunable parameter α, which fine-tunes the algorithm’s accuracy.

Further Research

This section presents a couple of directions that we feel would be significant to explore in 
future research. The first suggestion concerns the development of a new prediction model, 
and the second proposes to remove one of the assumptions that lead to the development of 
the current models.
The classical result about the duality between lossless compression (Feder & Merhav, 1994) 
and prediction implies that any universal lossless compression algorithm can be used to 
carry out prediction. Although quite a lot of theoretical lossless compression schemes do 
exist in the literature, only a few of them have been implemented for practical purposes. 

Figure 8. The STP algorithm
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This is due to the need for effectively combining prediction efficiency, computational com-
plexity, and low implementation effort. These three dimensions limit the range of possible 
alternative, practical prediction models. Toward this direction, the Burrows-Wheeler (BW) 
lossless compression scheme offers significant opportunities (Effros, 2000) for combining 
the excellent prediction ratios of PPM and the low complexity of schemes based on LZ78. 
So far, no practical prediction scheme is based on the BW scheme, and a plethora of issues 
have yet to be considered to propose a practical model based on the BW method.
The cornerstone for building the Markov predictors described in this chapter is the “sta-
tionarity” assumption, which implied time-homogeneous transition probabilities. Under this 
assumption, the tree of each predictor grows node by node, increasing the respective node 
counters; that is, identical subsequences are aggregated (mapped) into the same node of the 
tree. If we remove the stationarity assumption, this technique is no longer appropriate. In the 
simplest case, for a mobile client whose roaming patterns change gradually, the predictors 
will tend to favor the old habits of the client and will adapt to the changing conditions at a 
very slow rate. Therefore, the assumption of non-time-homogeneous transition probabilities 
makes the current predictors inefficient and raises some design challenges for any new scheme 
that will be designed to address this assumption. As we mentioned, full aggregation is not 
helpful; partial (controlled) or no aggregation could be considered as well, but in any case, 
novel prediction algorithms should be designed. The technique reported in Ehrenfeucht and 
Mycielski (1992) could open some directions for research.

Conclusion

Discrete sequence prediction is an effective means to reduce access latencies and location 
uncertainty in networking applications. Due to the importance of the problem in various 
scientific fields, for example, machine learning, the Web, and bioinformatics, various 
methods have been reported in the literature. This chapter serves as a survey in this field, 
promoting the cross-discipline proliferation of ideas, although it by no means covers all 
proposed techniques. Important research issues have yet to be addressed, such as predictions 
for nonstationary sequences. We envision predictive model design as a fertile research area 
with both theoretical and practical solutions.
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Section III

Web Information Integration 
and Applications


