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Abstract

Collaborative Filtering (CF) Systems are gaining
widespread acceptance in recommender systems and e-
commerce applications. These systems combine information
retrieval and data mining techniques to provide recommen-
dations for products, based on suggestions of users with sim-
ilar preferences. Nearest-neighbor CF process is influenced
by several factors, which were not examined carefully in past
work. In this paper, we bring to surface these factors in or-
der to identify existing false beliefs. Moreover, by being able
to view the “big picture” from the CF process, we propose
new approaches that substantially improve the performance
of CF algorithms. For instance, we obtain more than 40%
percent increase in precision in comparison to widely-used
CF algorithms. We perform an extensive experimental eval-
uation, with several real data sets, and produce results that
invalidate some existing beliefs and illustrate the superiority
of the proposed extensions.

Keywords: Recommender Systems, Collaborative Filtering,
Information Retrieval

1 Introduction

Information Filtering has become a necessary technology
to attack the “information overload” problem. In our every-
day experience, while searching on a topic (e.g., products,
movies, etc.), we often rely on suggestions from others, more
experienced on it. In the Web, however, the plethora of avail-
able suggestions renders it difficult to detect the trustwor-
thy ones. The solution is to shift from individual to collec-
tive suggestions. Collaborative Filtering (CF) applies infor-
mation retrieval and data mining techniques to provide rec-
ommendations based on suggestions of users with similar
preferences. CF is a very popular method in recommender
systems and e-commerce applications. Two types of CF al-
gorithms have been proposed: (a) nearest-neighbor (a.k.a.
memory-based) algorithms, which rely on finding the most
similar ones among the past users, and (b) model-based algo-

rithms, which develop a model about user ratings. Research
results and practical experience have reported that nearest-
neighbor algorithms present good performance in terms of
accuracy, for multi-value rating data [5].

Nearest-neighbors CF algorithms are influenced by sev-
eral factors. Related research on CF, during the past decade,
approached some of these factors. However, existing ap-
proaches may not be considered complete, because they ex-
amine the various factors only partially. More specifically,
existing CF algorithms and their experimental evaluation fo-
cus only on parts of the CF process and do not handle it as
a whole. For the aspects that these partial considerations do
not examine, they usually make choices, which our study
demonstrates that can be misleading. Through our study we
are also able to confirm that there exist dependencies be-
tween the factors affecting CF. Therefore, we have to per-
form an evaluation of the entire CF process in order to pro-
duce reliable conclusions.

In this work, we focus on nearest-neighbor CF algo-
rithms. First, we provide a thorough analysis of the factors
involved in CF. During the analysis we identify choices that
have been incorrectly adopted and new issues that have not
been considered so far. As a result, we propose several ex-
tensions and new approaches, which substantially improve
the entire CF process. We have carried out extensive ex-
perimental evaluation, which takes into account many new
aspects. Our results: (i) reveal fallacies in existing beliefs
about CF algorithms, (ii) demonstrate the superiority of the
proposed methods (more than 40% improvements in terms
of precision over widely-used CF algorithms), (iii) provide
many insights about further examinations in future work.

The rest of this paper is organized as follows. Section 2
summarizes the related work, whereas Section 3 contains the
analysis of the examined CF factors. The proposed approach
is described in Section 4. Experimental results are given in
Section 5. Finally, Section 6 concludes this paper.

2 Related work
In 1992, the Tapestry system [1] introduced Collaborative

Filtering (CF). In 1994, the GroupLens system [9] imple-
mented a CF algorithm based on common users preferences.



Nowadays, it is known as user-based CF (UB) algorithm, be-
cause it employs users’ similarities for the formation of the
neighborhood of nearest users. Since then, many improve-
ments of user-based algorithm have been suggested, e.g., [3].

In 2001, another CF algorithm was proposed. It is
based on the items’ similarities for a neighborhood gener-
ation [11, 6]. Now, it is denoted as item-based or item-item
CF (IB) algorithm, because it employs items’ similarities for
the formation of the neighborhood of nearest users.

Most recent work followed the two aforementioned direc-
tions (i.e., user-based and item-based). Herlocker et al. [4]
weight similarities by the number of common ratings be-
tween users/items, when it is less than some threshold pa-
rameter γ. Xue et al. [13] suggest a hybrid integration
of aforementioned algorithms with model-based CF algo-
rithms. In the following section we elaborate further on re-
lated work, through the analysis of the factors we examine.

3 Factors affecting the CF process
In this section, we identify the major factors that critically

affect all CF algorithms. Our analysis focuses on the basic
operations of the CF process, which consists of three stages.

• Stage 1: formation of user or item neighborhood.

• Stage 2: top-N list generation algorithms.

• Stage 3: assessment of the recommendation list.

In the rest of this section we elaborate on the aforemen-
tioned factors, which are organized with respect to the stage
that each one is involved. Table 1 summarizes the symbols
that are used in the sequel.

Symbol Definition
k number of nearest neighbors
N size of recommendation list
Pτ threshold for positive ratings
I domain of all items
U domain of all users

u, v some users
i, j some items
Iu set of items rated by user u
Ui set of users rated item i

ru,i the rating of user u on item i
ru mean rating value for user u
ri mean rating value for item i

pu,i predicted rate for user u on item i
γ threshold value used by WS

Table 1. Symbols and definitions.

3.1 First stage factors

Amount of sparsity: In many real cases, users rate only
a very small percentage of items, thus rating data become
sparse. Due to lack of sufficient information, sparsity leads
to inaccurate recommendations. For this reason, several re-
cent works concentrate only on sparse data [4, 6, 11] (e.g.,
Movielens). On the other hand , however, there exist dense
rating data sets (e.g., Jester [2]).

Train/Test data size: There is a clear dependence be-
tween the train set’s size and the accuracy of CF algorithms
[11]. Through our experimental study we verified this con-
clusion. Additionally, we saw that after an upper threshold
of the train-set size, the increase in accuracy is less steep.
However, the effect of overfitting is less significant com-
pared to general classification problems. In contrast, low
train set sizes negatively impact accuracy. Therefore, the fair
evaluation of CF algorithms should be based on adequately
large train sets. Though most related research uses a size
around 80%, there exist works that use significantly smaller
sizes [8]. From our experimental results we concluded that
an 75% train-set size corresponds to an adequate choice. But
we have to notice that training/test size should not be data set
independent.

Neighborhood size: The number, k, of nearest neigh-
bors, used for the neighborhood formation, directly affects
accuracy. Related work [3, 10] utilizes a k in the range of
values between 10 and 100. The optimum k depends on
the data characteristics. Therefore, CF algorithms should be
evaluated against varying k. Moreover, an issue that has not
been precisely clarified in related work, is whether we in-
clude in the neighborhood a user or item with negative sim-
ilarity. In order to improve accuracy, we suggest keeping
only the positive similarities for the neighborhood formation,
even if less than the specified number k of neighbors remain.

Similarity measure: The most extensively used sim-
ilarity measures are based on correlation and cosine-
similarity [4, 8, 11]. Specifically, user-based CF algorithms
mainly use Pearson’s Correlation (Equation 1), whereas for
item-based CF algorithms, the Adjusted Cosine Measure is
preferred (Equation 2) [8, 11]. The Adjusted Cosine Mea-
sure is a variation of the simple cosine formula, that normal-
izes bias from subjective ratings of different users.

We examined all measures that have been discussed in
related work and noticed that the use of different measures
did not result in substantial differences in performance. As
default options, for user-based CF we use the Pearson Cor-
relation, whereas for item-based we use the Adjusted Cosine
Similarity, because they presented the best behavior.

sim(u, v) =

∑
∀i∈S

(ru,i − ru)(rv,i − rv)

√∑
∀i∈S

(ru,i − ru)2
√∑

∀i∈S

(rv,i − rv)2
, S = Iu∩Iv.

(1)

sim(i, j) =

∑
∀u∈T

(ru,i − ru)(ru,j − ru)

√ ∑
∀u∈Ui

(ru,i − ru)2
√ ∑

∀u∈Uj

(ru,j − ru)2
, T = Ui∩Uj .

(2)
Herlocker et al. [4] proposed a variation of the aforemen-

tioned measures, which weights similarities by the number



of common item ratings when it is less than some thresh-
old parameter γ. Henceforth, this measure is denoted as
Weighted Similarity (WS). If sim is the similarity measure
computed either with Equation 1 or Equation 2, then WS
is equal to max(c,γ)

γ sim , where c is the number of co-rated
items.

Pearson’s Correlation (Equation 1) takes into account
only the set of items, S, that are co-rated by both users.
Moreover, in Equation 1 mean ratings (rv, ru) in numera-
tor are computed only from co-rated items. Similarly, the
Adjusted Cosine Measure (Equation 2) considers in the nu-
merator only the set of users, T , that co-rated both the exam-
ined pair of items, whereas means are taken over all ratings
for a user, not a subset of ratings shared with any other user.
In contrast, the denominator of Equation 2 does not consider
only the users that co-rated both the items. It is worth notic-
ing that the clear definition of sets S or T for co-rated items
only, is an issue that is implied in all related work. However,
it is unfortunate that existing work expresses Equations 1 and
2 in very different forms, whereas only few of them [11, 8]
are precisely clear on the aforementioned definition for S
and T . Based on this observation and on the different use of
co-rated items in the denominators of Equation 1 and 2, we
wanted to research different definitions for sets S and T .

3.2 Second stage factors

Recommendation list’s size: The size, N , of the recom-
mendation list corresponds to a tradeoff: With increasing N ,
the absolute number of relevant items (i.e., recall) is expected
to increase, but their ratio to the total size of the recommen-
dation list (i.e., precision) is expected to decrease. (Recall
and precision metrics are detailed in the following.) In re-
lated work [6, 11], N usually takes values between 10 and
50.

Generation of recommendation list: The most often
used technique for the generation of the top-N list, is
the one that counts the frequency of each item inside the
found neighborhood, and recommends the N most frequent
ones [10]. Henceforth, this technique is denoted as Most-
Frequent item recommendation (MF). MF can be applied to
both user-based and item-based CF algorithms. Karypis [6]
reports another technique, which additionally considers the
degree of similarity between items. This takes into account
that the similarities of the k neighbors may vary significantly.
Thus, for each item in the neighborhood, this technique ad-
measures not just their number of appearances, but the simi-
larity of neighbors as well. The N items with the highest sum
of similarities are finally recommended. Henceforth, this
technique is denoted as Highest-Sum-of-Similarities item
recommendation (HSS). HSS is applicable only to item-
based CF.

Based on the aforementioned rationale, we wanted to per-
form an examination of other additional criteria against MF

(used in the majority of existing works), in order to exam-
ine if this direction is promising for future work, because
besides [6], very few works elaborate on this issue.

Positive rating threshold: It is evident that recommen-
dations should be “positive”. It is not success to recommend
an item that will be rated with 1 in scale 1-5. Nevertheless,
this issue is not clearly defined in several existing works.
We argue that “negatively” rated items should not contribute
to the increase of accuracy, and we use a rating-threshold,
Pτ , to recommended items whose rating is no less than this
value. If not a Pτ value is used, then the results can become
misleading, since negative ratings can contribute to the mea-
surement of accuracy.

3.3 Third stage factors

Evaluation Metrics: Several metrics have been used for
the evaluation of CF algorithms, for instance the Mean Abso-
lute Error (MAE) or the Receiving Operating Characteristic
(ROC) curve [4, 5]. MAE represents the absolute differences
between the real and the predicted values and is an exten-
sively used metric. From our experimental study (Section 5)
we understood that MAE is able to characterize the accu-
racy of prediction, but is not indicative for the accuracy of
recommendation. Since in real-world recommender systems
the experience of users mainly depends on the accuracy of
recommendation, MAE may not be the preferred measure.
For this reason we focus on widely accepted metrics from
information retrieval. For a test user that receives a top-N
recommendation list, let R denote the number of relevant
recommended items (the items of the top-N list that are rated
higher than Pτ by the test user). We define the following:

• Precision is the ratio of R to N .

• Recall is the ratio of R to the total number of relevant
items for the test user (all items rated higher than Pτ by
him).

Notice that with the previous definitions, when an item in
the top-N list is not rated at all by the test user, we consider
it as irrelevant and it counts negatively to precision (as we
divide by N ) [8]. In the following we also use F1 = 2 ·
recall ·precision/(recall + precision). F1 is used because it
combines both the previous metrics.

Setting a baseline method: Existing experimental eval-
uations lack the comparison against a baseline algorithm. A
baseline algorithm has to be simple and to indicate what can
be attained with as little effort as possible. Through a base-
line, we can see the actual improvement due to existing CF
algorithms.

Past/future data: In real-world applications, recommen-
dations are derived only from the currently available ratings
of the target user. However, in most of related works the
entire set of rated items is considered apriori known. For a
more realistic evaluation, recommendations should consider



the division of items into two sets: (i) the past items and (ii)
the future items. To make it more clear, lets see an example.
Assume that a test user has rated 10 items. According to the
previous work, these ratings are used to calculate his simi-
larity with the train users. In contrast, we want to measure
how algorithms react when we use a smaller number of items
than those he has rated. For instance, if we use 2 items(past
items) from the 10 can we find the other 8(future items). If
only a fraction of items is included in the past set, then the
accuracy is expected to decrease compared to the best case.
For this reason, we study the effect of this issue.

4 Proposed methodology
In the sequel, we describe in detail our proposed exten-

sions. These extensions are based on the “big picture” of the
CF process.

4.1 Extensions for the first stage : the
UNION similarity measures

We first examined the two most important factors that are
involved in the first stage: sparsity and the similarity mea-
sure. As mentioned, for the formation of sets S and T (see
Equations 1 and 2), past work [5, 8, 11] takes into account
only the items that are co-rated by both users. For instance,
Figure 1 depicts the ratings of two users, U1 and U2, over
five items. When only co-rated items are considered, then
the similarity measure will be computed based on the ratings
for I1 and I3.

I1 I2 I3 I4 I5

U1 3 - 5 4 - 

U2 4 2 4 - - 

Figure 1. Example of the ratings of two users over
four items (dash denotes an empty value).

In case of sparse data, by constraining S and T with co-
rated items, we reduce further the effective amount of used
information. For sparse data, the rated items correspond to a
very small percentage. However, when S and T are formed
by co-rated items only, we additionally ignore many of them,
that is, S and T will finally include an even smaller percent-
age of items. To avoid this, we considered [12] another defi-
nition for S and T :

S = Iu ∪ Iv, T = Ui ∪ Uj (3)

Thus, S includes items for which at least one of the users
rates an item. In the example of Figure 1, except the ratings
for I1 and I3, the ratings for I2 and I4 will be considered
too. Similar reasoning is followed for the set T for the case
of item-based CF.

By combining the definitions of S and T given in Equa-
tion 3 with the Pearson correlation and adjusted cosine sim-
ilarity measures, we get two reformed measures: UNION
Pearson correlation (for UB) and UNION adjusted cosine
(for IB), respectively.1 Notice that in case of UNION Pear-
son correlation, user mean ratings correspond to the average
user ratings over all rated items. Moreover, in Equation 2, the
arithmetic means are divided with all rated items. This prac-
tically means that if a data set is sparse, then the arithmetic
means tend to have close to zero values, thus the measure
essentially becomes equivalent to that of pure cosine.

With the extended definitions of S and T , more informa-
tion is being exploited. For instance, assume that a user rates
an item with 5 (in 1–5 scale) and another one does not rate
this item at all. This fact denotes a clear difference in their
preference for this item, which can be exploited when few
information is provided, as it is the case for sparse data. By
taking the existing definitions of S and T , this information is
being ignored, because it has no impact on the computation
of the similarity value. In contrast, by taking the extended
definitions, this fact is taken into account.

4.2 Extensions for the second stage: the
HPR and HSR algorithms

In Section 3.2, we described the two criteria, MF and
HSS, that have been proposed so far for the generation of
the top-N list. The ranking criteria are important, as they
can significantly affect the performance of CF. For this rea-
son we examined additional criteria, to see if this direction
of research worths investigation.

As a first extension of the existing ranking criteria, some-
one could use the predicted values for each item to rank
them. Predicted values [8] are computed by Equations 4
and 5, for the cases of user-based and item-based CF, re-
spectively. These equations have been used in related work
for the purpose of MAE calculation, whereas we use them
for generation of top-N recommendation list.

pu,i = ru +
∑

v∈U sim(u, v)(rv,i − rv)∑
v∈U |sim(u, v)| (4)

pu,i = ri +

∑
j∈I sim(i, j)(ru,j − rj)∑

j∈I |sim(i, j)| (5)

Therefore, we sort (in descending order) the items accord-
ing to predicted rating value, and recommend the first N of
them.2 This ranking criterion, denoted as Highest Predicted
Rated item recommendation (HPR) is influenced by the good
accuracy of prediction that existing related work reports
through the MAE. HPR opts for recommending the items

1Henceforth, when it is clearly understood from the context whether we
discuss about UB or IB, we use only the name UNION.

2If less than N items have positive ratings (i.e., not less than Pτ ), then less than
N items remain in the list.



that are more probable to receive a higher rating. Never-
theless, as already mentioned, MAE is not indicative for the
accuracy of recommendation. As our experimental results
will demonstrate, HPR presents poor performance. This fact
is another indication that MAE alone cannot characterize the
performance of CF algorithms.

As another criterion, which resulted from observations
during our experimental investigation, we sum the positive
rates of the items in the neighborhood, instead of just count-
ing their frequency. This criterion is denoted as Highest
Sum of Rates item recommendation (HSR). The top-N rec-
ommendation list consists of the N items with the highest
sum. The intuition behind HSR is that it takes into account
both the frequency (as MF) and the actual ratings, because it
wants to favor items that appear most frequently in the neigh-
borhood and have the best ratings. Assume, for example, an
item i that has just a smaller frequency from an item j. If i
is rated much higher than j, then HSR will prefer it from i,
whereas MF will favor j.

4.3 Extensions for the third stage : the
Baseline algorithm

Considering the factors described in Section 3.3 regard-
ing the evaluation procedure, we detail a baseline algorithm.
We propose the one that recommends the N items that are
most frequently rated positively in the entire training set.
This algorithm is denoted as BL. BL is very simple and, as
will be shown in our experimental results, it is quite effec-
tive. For instance, our experiments with Movielens-100K
data set have shown that, with BL, when we simply propose
the N = 20 most positively rated movies (20 most popular
movies), precision reaches 40%. Therefore, the most fre-
quently rated items are very probable to be selected by the
majority of the users. For the aforementioned reasons, BL
is a tool to clearly evaluate the actual improvement of ex-
isting CF algorithms. We will see in our experiments that
asymptotically, as k (neighborhood size) increases, the per-
formance of Pearson correlation and adjusted cosine tend to
become equal with that of BL. In the extreme case where k
is equal to the number of all users in the training set, the re-
sult of the Most-Frequent item-recommendation procedure,
for the generation of the top-N list, becomes equivalent to
BL.

5 Performance study
In the sequel, we study the performance of the described

extensions against existing CF algorithms, by means of a
thorough experimental evaluation. Both user-based and IB
algorithms are tested. Several factors are considered, like
the sparsity, the similarity measures, and criteria for gener-
ating the top-N list. The additional factors, that are treated
as parameters, are the following: the neighborhood size (k,
default value 10), the size of the recommendation list (N ,
default value 20), the size of train set (default value 75%),

and the division between past/future data. Regarding WS,
the γ value was set to 25. Evaluation is performed with the
precision and recall metrics (given as percentages). We also
use F1 metric.

We perform experiments with four real data sets that have
been used as benchmarks in prior work. In particular, we
examined two MovieLens data sets: (i) the first one with
100,000 ratings assigned by 943 users on 1,682 movies, and
(ii) the second one with about 1 million ratings for 3,592
movies by 6,040 users. The range of ratings is between
1(bad)-5(excellent) of the numerical scale. Moreover, we ran
our experiments on the EachMovie data set [7], which con-
tains 2,811,983 ratings entered by 72,916 for 1628 different
movies, and the Jester data set, which contains 4.1 million
ratings of 100 jokes from 73,496 users. Due to lack of space,
we present results only for the first MovieLens and the Jester
data sets (the default set is the former), because they corre-
spond to a sparse and a dense data set, respectively. The per-
formance of the former has been verified with the results of
the other two (sparse) real data sets. Finally, in all data sets,
we normalized the rating scale in the range 1–5, whereas Pτ

is set to 3 and the value of an unrated item is considered
equal to zero.

5.1 Results for user-based CF

First, we examine the UB CF case and compare the ex-
isting Pearson similarity and WS measures against UNION.
We also include the baseline (BL) algorithm. The results for
precision and recall vs. k are displayed in Figure 2a and b,
respectively.
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Figure 2. Performance of user-based CF vs. k: (a)
precision, (b) recall.

As shown, the existing Pearson measure, which is based
on co-rated items, performs worst than BL. This result is sur-
prising, as BL is very simple. WS improves Pearson, be-
cause the disadvantage of Pearson, due to co-rated items, is
downsized by the weighting with the number of common
items. UNION clearly outperforms all other measures for
the reason that have been described in Section 4. Outside
the examined k range (not displayed), Pearson stabilizes and
never exceeds BL. As we already described, with increasing
k, Pearson measure practically becomes equivalent to BL.



We now examine the MAE metric. Results are illustrated
in Figure 3a (BL is only for recommendation, not prediction,
thus omitted). As expected, Pearson yields the lowest MAE
values, whereas WS is second best. This fact supports our
explanation that MAE is indicative only for the evaluation
of prediction and not of recommendation, as these measures
did not attain the best performance in terms of precision and
recall.
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Figure 3. Performance of user-based CF vs. k: (a)
MAE, (b) F1 for dense data.

To consider the impact of density, we also examine the
Jester data set. The results for the F1 metric are depicted in
Figure 3b. In this case, the relative differences are smaller
than for the case of sparse data. The reason is that dense
data have a sufficient amount of information, thus there is
less need to exploit information in the way UNION does.
Nevertheless, UNION still presents the best performance.

Finally, we test the described criteria for the top-N list
generation: MF, HPR, and HSR. We used the UB UNION
similarity measure, because it presented the best perfor-
mance in the previous measurements. The results for pre-
cision and recall are given in Figure 4a and b, respectively.
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Figure 4. Comparison of criteria for the generation
of top-N list for user-based CF vs. k: (a) precision,
(b) recall.

In Figure 4a it is shown that HPR is clearly outperformed
by the other two criteria, a fact that furthermore illustrates
the unsuitability of the MAE metric to characterize the task
of recommendation. On the other hand, MF and HSR present
similar precision. Figure 4b presents the results on recall (to
make comparison between MF and HSR more clear, we omit
HPR). HSR is constantly better than MF, though slightly.

5.2 Results for item-based CF

We perform similar measurements for the case of IB CF.
Thus, we first examine the precision and recall for the ad-
justed cosine (considers co-rated items) against UNION. The
results are depicted in Figure 5 and are analogous to those of
the UB case. UNION clearly outperforms adjusted cosine
and WS. Again, it is surprising to find that the adjusted co-
sine looses out by BL.
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Figure 5. Performance of item-based CF vs. k: (a)
precision, (b) recall.

Regarding the examination of the dense data set (Jester),
we have to notice that, since IB CF has been designed to suit
the needs of sparse data, we find out that for dense data all
IB algorithms are outperformed by BL. This is the case even
for UNION, although it performs better than adjusted cosine.
This result clarifies the need to examine CF algorithms for
all the involved factors, in this case the amount of sparsity,
in order to draw more complete conclusions. Finally, we
test the three described criteria, MF, HPR, and HSS, for the
top-N list generation by IB CF algorithms. The results for
precision and recall are analogous to the UB case (Due to
lack of space we do not present the aforementioned results).

5.3 Comparative results

In this section, we compare UNION for the UB and IB
cases, as the corresponding UNION measures were shown
to have the best performance in each case separately. The
results for precision are depicted in Figure 6a, whereas those
for recall are depicted in Figure 6b.

These results demonstrate that UB CF compares favor-
ably against IB CF when UNION is used. The difference
in precision is larger than 10%, whereas with respect to re-
call, it exceeds 5% (we refer to the optimum values resulting
from the tuning of k). This conclusion contrasts the exist-
ing one, that IB is more preferable than UB, for the case of
sparse data. The reason is that UB CF is more focused to-
wards the preferences of the target user. In contrast, with
IB CF, the recommended items may have been found simi-
lar by transactions of users with much different preferences
than the ones of the target user. Thus, they may not directly
reflect the preferences of the latter. However, this property
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Figure 6. Comparison between UB and IB: (a) pre-
cision, (b) recall.

could not be revealed with the existing similarity measures
and evaluation procedures.

The previous conclusion is in accordance with the one
resulting from the comparison for the dense data set (Jester).
Due to lack of space we do not present a graph for this case.
However, from Figure 3b and Figure ??b it is easy to see that
UB performs much better than IB when UNION is used, as
the former is better than BL and the latter is worse.

Finally, we have to notice that IB algorithms employ off-
line computation(items’ similarity matrix), which is an ad-
vantage over UB algorithms in terms of execution time. Fur-
thermore, the generation of top-N list for the UB approach
further burdens the CF process. The reason is that the al-
gorithm finds, firstly, user neighbors in the neighborhood
matrix and then counts presences of items in the user-item
matrix. In contrast, with the IB approach the whole work is
completed in the item neighborhood matrix.

5.4 Examination of additional factors

In this section we examine the impact of the additional
factors. In our measurements we consider the existing two
cases, that is, UB CF with Pearson similarity and IB CF with
Adjusted Cosine.

Recommendation list’s size: First, we examine the im-
pact of N (recommendation list’s size). The results are de-
picted in Figure 7. As expected, with increasing N , recall
increases and precision decreases. The relative differences
between the algorithms are coherent with those in our previ-
ous measurements. We have to mentioned that in real appli-
cations, N should be kept low, because it is impractical for a
user to see all recommendations when their number is large.

Training/Test data size: We test the impact of the size
of the train set, which is expressed as percentage of the to-
tal data set size. The results for the F1 metric are given in
Figure 8a (to make the graph more clear, we show results
only for the two best UB and IB algorithms). As expected,
when the train set is small, performance downgrades for both
algorithms. Therefore, we should be careful enough when
we evaluate CF algorithms and use adequately large train
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Figure 7. Comparison vs. N : (a) precision, (b) re-
call.

sets. Similar to the previous measurements, in all cases UB
UNION is better than IB UNION. The performance of both
reaches a peak around 75%, after which it reduces. The rea-
son for this is the overfitting that results from very large train
sets. Thus, after a threshold of the training set size, the in-
crease in accuracy for algorithms is less steep. However, the
effect of overfitting is less significant compared to general
classification problems. In contrast, low training set sizes
negatively impact accuracy. Therefore, the fair evaluation of
CF algorithms should be based on adequately large training
sets.
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Figure 8. (a) Comparison vs. train set size. (b)
Comparison vs. past’s size.

Past/future data: We examine the performance when
considering the division between past and future data. For
each user’s transaction in the train set we keep the 70% as
future data and use a varying number of ratings from the rest
30% as past data. This way, we examine the impact of past’s
size. We compare UB UNION with IB UNION using the F1

metric. The results are illustrated in Figure 8b. As the size
of the considered past reduces, the performance of both algo-
rithms reduces. This result demonstrates the need to evalu-
ate CF algorithms using the division between past and future
data, because this division is more indicative about the actual
performance in real-world CF applications. Nevertheless,
UB UNION manages to keep a higher F1 value for small past
size, whereas both algorithms converge to the same point for
larger past. The merit of UB UNION is evident, as in real
applications the past size takes very small values.



6 Conclusions

We have performed a thorough study of neighborhood-
based CF, which brought out several factors of the three
stages CF process, that have not been examined carefully in
the past. Specifically, we brought to surface issues concern-
ing, (i) the formation of user’s neighborhood, (ii) the top-N
list generation algorithms and, (iii) the quality assessment
of the top-N recommendation list. We carried out extensive
experimentation which reforms several existing beliefs and
provides new insights.

In particular, we highlight the following conclusions from
our examination:

• In contrast to what is reported in majority of related
work, MAE is not indicative for the accuracy of the rec-
ommendation process. It is, though, useful to character-
ize the quality of the similarity measure (as reflected in
the process of prediction).

• Constraining similarity measures with co-rated items,
weaknesses the measure. Though it is somewhat useful
to consider the number of co-rated items (as WS does),
the strict constraining inside the formulae for similarity
measures is not suitable.

• The proposed extensions that do not use co-rated items
only, substantially improve the performance of CF, es-
pecially for sparse data.

• The generation of the top-N recommendation list with
a ranking criterion, is a significant problem that worths
further consideration. The proposed HSR criterion can
replace the existing MF, which has been used by the
majority of related work.

• Our results showed that, following the best options for
UB and IB CF, the former compares favorably to the lat-
ter. This contrasts with existing results in related work,
because until now, comparison did not follow the best
options we describe.

• Finally, we included a baseline (BL) algorithm, which
was useful to better characterize the performance of ex-
isting CF algorithms. Actually, the comparison against
BL has produced some surprising results.

We have to notice that item-based algorithms employ off-
line computation, which is an advantage over user-based al-
gorithms in terms of execution time. For this reason, in our
future work we will consider the issue of scalability through
techniques like SVD, and compare the two approaches for
this factor as well. Moreover, we will examine other tech-
niques for the generation of the top-N recommendation list.
Finally, we will consider the issue of an approach that would
unify the best characteristics of these two cases in an inte-
grated approach.
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