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Abstract

In several applications, data objects are assumed to
move on predefined spatial networks such as road segments,
railways, invisible air routes. Moving objects may exhibit
similarity with respect to their traversed paths, and there-
fore two objects can be correlated based on their path sim-
ilarity. In this paper, we study similarity search for mov-
ing object trajectories for spatial networks. The problem
poses some important challenges, since it is quite different
from the case where objects are allowed to move without
any motion restrictions. Experimental results performed on
real-life spatial networks show that trajectory similarity can
be supported in an effective and efficient manner, by using
metric-based access methods.

1 Introduction

In location-based services it is important to pose queries
based on the objects’ location in space, which may change
with respect to time. To support such services from the
database point of view, specialized tools are required which
enable the effective and efficient processing of queries.
Queries may involve the spatial or temporal characteris-
tics of the objects, or both (spatiotemporal queries). Evi-
dently, indexing schemes are ubiquitous to efficiently sup-
port queries on moving objects, by quickly discarding parts
of the database which are not relevant.

Apart from the query processing techniques proposed
for the fundamental types of queries (i.e., window,k-NN
and join), the issue oftrajectory similarityhas been stud-
ied recently. By identifying similar trajectories, effective
data mining techniques (e.g., clustering) can be applied to

discover useful patterns. The majority of the research pro-
posals investigating trajectory similarity are based on the as-
sumption that objects can move freely without restrictions
on their motion. In this paper, we focus on trajectory simi-
larity of moving objects by considering that object mobility
is constrained by an underlying spatial network.

The rest of the article is organized as follows. In the next
section we give the appropriate background, present related
work performed and explain the motivation and contribu-
tion. In Section 3, trajectory similarity search is presented
by investigating effective similarity measures between tra-
jectories in a spatial network. Indexing and query process-
ing issues are covered in Section 4, whereas Section 5 offers
experimental results. Finally, Section 6 concludes the work.

2 Related Work and Contribution

Although query processing for location-based services
is an active area of research, the issue of trajectory similar-
ity has not received the required attention. Moreover, the
issue of trajectory similarity on spatial networks has been
touched only recently. In this section, we give the appropri-
ate background on spatial networks and trajectory similar-
ity, and motivated contributions.

2.1 Spatial Networks

In several applications, the mobility of objects is con-
strained by an underlying spatial network. This means that
objects can not move freely, and their position must satisfy
the network constraints. Network connectivity is usually
modeled by using a graph representation, composed by a
set of vertices (nodes) and a set of edges (connections). De-
pending on the application the graph may beweighted(a
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Figure 1. A road network and its graph.

cost is assigned to each edge) anddirected(each edge has
an orientation). Figure 1 illustrates an example of a spatial
network corresponding to a part of a city road network, and
its graph representation.

Several research efforts have been performed towards ef-
ficient spatial and spatio-temporal query processing in spa-
tial networks. In [9] nearest-neighbor query processing is
achieved by using a mapping technique. Nearest-neighbor
queries in road networks have been also studied in [6].
In [8], the authors study query processing for stationary
datasets, by using both a graph representation for the net-
work and a spatial access method. It is shown that the use
of Euclidean distance retrieves many candidates, and in-
stead they propose a network expansion method to process
range, nearest-neighbor and join queries. In-route nearest-
neighbor queries have been studied in [10], where given a
trajectory source and destination the smallest detour is cal-
culated.

2.2 Trajectory Similarity

An interesting research issue is to determine a way of
expressing the similarity among trajectories of moving ob-
jects. LetTa andTb be the trajectories of moving objects
oa andob respectively, andD(Ta, Tb) a function that ex-
presses their similarity in the range[0, 1]. If the two objects
have similar trajectories we expect the valueD(Ta, Tb) to
be close to 0. On the other hand, if the two trajectories are
dissimilar, we expect the valueD(Ta, Tb) to be close to 1.

In several research proposals, trajectory similarity is
viewed as the multidimensional counterpart of time series
similarity. In [7] the authors study the problem of simi-
larity search in multidimensional data sequences, to deter-
mine similarities in image and video databases. A similarity
model based on the Minkowski distance is defined, and each
sequence is partitioned to subsequences by means of MBRs,
to enable efficient indexing. This work can be viewed as an
extension of the method proposed in [3] for time series data.

Another approach for expressing the similarity between
two trajectories is studied in [12, 13]. A more robust dis-
tance metric is used, based on thelongest common subse-
quence(LCS) between two trajectories. This metric is more

immune to noise than the Minkowski distance. Because the
proposed distance does not satisfy the metric space proper-
ties, indexing is achieved by utilizing the index structure of
a hierarchical clustering algorithm.

To the best of the authors’ knowledge, the only research
work studying trajectory similarity on networks is the work
in [5]. The authors propose a simple similarity measure
based on POIs (points of interest). No details are given with
respect to the access methods required to provide efficient
similarity search. Moreover, it is not clear how trajectories
of different lengths are handled, and finally, no discussion
is performed regarding the metric space properties of the
proposed distance measures.

2.3 Motivation and Contribution

The research work performed for trajectory similarity as-
sumes that objects can move anywhere in the 2-D or 3-D
Euclidean space, without any restrictions in their motion.
Taking into consideration that a large number of applica-
tions require that objects are embedded to an underlying
network, the challenge is to express trajectory similarity by
respecting the network constraints.
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Figure 2. Trajectories in (a) 2-D Euclidean
space, and (b) in a spatial network.

Figure 2 illustrates an example that shows the differences
between restricted and unrestricted trajectories. Objects
moving in a spatial network follow specific paths deter-
mined by the graph topology, and therefore arbitrary move-
ment is prohibited.

The motivation behind our work is summarized as
follows:

(I) The majority of existing methods for trajectory sim-
ilarity assume that objects can move anywhere in the
underlying space, and therefore do not support motion
constraints. Most of the proposals are inspired by the time
series case, and provide translation invariance, which is not
always meaningful in the case of spatial networks.



(II) The method proposed in [12, 13] employs a similarity
distance based on the longest common subsequence be-
tween two trajectories. This approach leads to a distance
measure which does not satisfy the metric space properties,
and therefore it is difficult to exploit efficient indexing
schemes. Instead, hierarchical clustering is used to group
trajectories. Moreover, the similarity measure depends
heavily on two parameters, namelyδ andε, which must be
known in advance, and can not be altered dynamically with-
out reorganization. These values determine the maximum
distance between two locations of different trajectories,
in time and space respectively, to be characterized as
similar. Trajectories that differ more, are characterized as
dissimilar and therefore their similarity is set to zero. This
approach does not permit the use of ranking or incremental
computation of similarity nearest-neighbor queries.

In the next section we study in detail the proposed sim-
ilarity model for trajectory similarity search in spatial net-
works aiming at: (i) the definition of a similarity distance
between trajectories that satisfies the metric space proper-
ties, (ii) the exploitation of the distance between two graph
nodes, which is used as a building block for the definition
of trajectory similarity, (iii)the incorporation of time infor-
mation in the similarity metric, and (iv) the efficient sup-
port of similarity queries by exploiting appropriate indexing
schemes.

3 Trajectory Similarity Measures

Let T be the set of trajectories in a spatial network,
which is represented by a graphG(V, E), whereV is the
set of nodes andE the set of edges. Each trajectoryT is
defined as:

T = ((v1, t1), (v2, t2), ..., (vm, tm)) (1)

wherem is the trajectory length,vi denotes a node in the
graph representation of the spatial network, andti is the
time instance (expressed in time units, e.g., seconds) that
the moving object reached nodevi, and t1 < ti < tm,
∀ 1 < i < m. It is assumed that moving from a node
to another comes at non-zero cost, since at least a small
amount of time will be required for the transition. Table
1 gives the most important symbols and the corresponding
definitions that are used frequently for the rest of the study.

3.1 Expressing Trajectory Similarity

We begin our exploration by assuming that any two tra-
jectories have the same length. Later, we are going to relax
this assumption. LetTa andTb be two trajectories, each of
lengthm. By using our trajectory definition and ignoring

Symbol Description

T set of trajectories
T , Ta, Tb trajectories
Tq a query trajectory
m trajectory length
V set of graph nodes (vertices)
vi a node in the graph representation
ti time instance that the object reached nodevi

e an edge of the graph
T [i].v thei-th node of the trajectory
T [i].t the time instance at thei-th node
d(vi, vj) network distance between nodesvi andvj

Dnet(Ta, Tb) network distance betweenTa andTb

Dtime(Ta, Tb) time distance betweenTa andTb

Enet query radius forDnet

Etime query radius forDtime

Table 1. Symbols used throughout the study.

the time information, we have:Ta = (va1, va2, ...,vam) and
Tb = (vb1, vb2, ..., vbm), where∀i, vai ∈ V andvbi ∈ V.
Note that, to characterize two trajectoriessimilar it is not
necessary to share common nodes. Therefore, the similarity
measure must take into account theproximityof the trajec-
tories.

Due to motion restrictions posed by the spatial network,
measuring trajectory proximity by means of the Euclidean
distance is not appropriate. Instead, it is more natural to
use the cost associated with each transition from a graph
node to another. Letc(vi, vj) denote the cost to travel
from a source nodevi to a destination nodevj . This cost
may express the travel distance between the two nodes,
the average time required to travel fromvi to vj , or any
other meaningful cost measure which is usually application
dependent.

Definition 1
The distanced(vi, vj) between two graph nodesvi andvj

is defined as:

d(vi, vj) =

{
0, c(vi, vj) = 0 ∧ c(vj , vi) = 0
min{c(vi,vj),c(vj ,vi)}
max{c(vi,vj),c(vj ,vi)} , otherwise

(2)

Definition 2
The network distanceDnet(Ta, Tb) between two trajecto-
riesTa, Tb with lengthm is defined as:

Dnet(Ta, Tb) =
1
m
·

m∑

i=1

(d(vai, vbi)) (3)



Proposition 1
The distance measured(vi, vj) satisfies the metric space
properties.

Proof
Clearlyd(vi, vj) ≥ 0, andd(vi, vj) = d(vj , vi), therefore
the first two metric space properties are hold. It suffices to
prove that triangular inequality is satisfied. Letvx be any
other node in the graph representation of the spatial net-
work. Then, we need to prove that

d(vi, vj) ≤ d(vi, vx) + d(vx, vj)

and by substitution we get:

min{c(vi, vj), c(vj , vi)}
max{c(vi, vj), c(vj , vi)} ≤

min{c(vi, vx), c(vx, vi)}
max{c(vi, vx), c(vx, vi)}+

min{c(vx, vj), c(vj , vx)}
max{c(vx, vj), c(vj , vx)}

The application ofmin andmax functions results in a non-
directed weighted graph, where the triangular inequality
holds. Therefore, the following inequalities are true:

min{c(vi, vj), c(vj , vi)} ≤ min{c(vi, vx), c(vx, vi)}+

min{c(vx, vj), c(vj , vx)} (4)

max{c(vi, vj), c(vj , vi)} ≤ max{c(vi, vx), c(vx, vi)}+

max{c(vx, vj), c(vj , vx)} (5)

For simplicity, we use the following substitutions:

C1 = min{c(vi, vj), c(vj , vi)}
C2 = min{c(vi, vx), c(vx, vi)}
C3 = min{c(vx, vj), c(vj , vx)}
C4 = max{c(vi, vj), c(vj , vi)}
C5 = max{c(vi, vx), c(vx, vi)}
C6 = max{c(vx, vj), c(vj , vx)}

By substitution in Equations 4 and 5 we get:

C1 ≤ C2 + C3 (6)

C4 ≤ C5 + C6 (7)

SinceC1 ≤ C4 and(C2 + C3) ≤ (C5 + C6) we can safely
divide (6) and (7) above without changing the direction of
the inequalities:

C1

C4
≤ C2

C5 + C6
+

C3

C5 + C6
⇒ C1

C4
≤ C2

C5
+

C3

C6
(8)

2

Proposition 2
The distanceDnet(Ta, Tb) satisfies the metric space
properties.

Proof
Again, the first two metric space properties are satisfied.
Therefore, it is sufficient to prove that triangular inequality
also holds in this case. Since for any graph nodesvi, vj , the
distanced(vi, vj) satisfies the metric space properties, the
summation preserves the inequality direction. Therefore,
the triangular inequality holds. 2

3.2 Incorporating Time Information

The similarity measure defined in the previous section
takes into consideration only the traveling cost information,
which depends on the spatial network. In applications such
as traffic analysis, the time information associated with
each trajectory is very important.

Definition 3
Given two trajectoriesTa ∈ T and Tb ∈ T with
lengthm, their distance with respect to time is denoted as
Dtime(Ta, Tb) and it is given by:

Dtime(Ta, Tb) =
1

m− 1
·

m−1∑
i=1

|(Ta[i + 1].t− Ta[i].t)− (Tb[i + 1].t− Tb[i].t)|
max{(Ta[i + 1].t− Ta[i].t), (Tb[i + 1].t− Tb[i].t)}

Essentially, the time similarity between two trajectories,
as it has been defined in Definition 3, measures their
resemblance with respect to the time required to travel
from one node to the next. Clearly, theDtime measure
assumes values in the interval[0, 1], and as the following
proposition explains, respects the metric space properties.

Proposition 3
The distance measureDtime(Ta, Tb) satisfies the metric
space properties.

Proof
By following a similar approach with that used for Propo-
sitions 1 and 2. 2



We have at hand two different similarity measuresDnet

andDtime that can be used to compare trajectories of the
same length. As it is mentioned, several applications may
require both distance measures to extract useful knowledge.
Therefore, one alternative is to combine these two measures
into a single one. For example, the two distances may be
weighted with parametersWnet andWtime such thatWnet

+ Wtime = 1. The total (combined) similarity can then be
expressed as follows:

Dtotal(Ta, Tb) = Wnet ·Dnet(Ta, Tb)+ Wtime ·Dtime(Ta, Tb)

It is evident that the distance metricDtotal satisfies the
metric space properties. However, this approach poses a
significant limitation, since the values ofWnet andWtime

must be known in advance.
Another alternative is to useDnet andDtime separately.

This way, two distances are required to be posed by the
query. The distanceEnet expresses the desired similarity
with respect to theDnet metric, whereas the distanceEtime

expresses the desired similarity regarding theDtime met-
ric. If the user wishes to focus only on the network distance
Dnet, then the value ofEtime may be set to 1. Otherwise,
another value is required forEtime which determines the
desired similarity in the time domain. By allowing the user
to control the values ofEnet andEtime a significant degree
of flexibility is achieved, since the “weight” of each distance
can be controlled accordingly.

4 Indexing and Query Processing

In this section we study two important issues regarding
trajectory similarity. Firstly, we discuss the problem of han-
dling trajectories of different length, by decomposing a tra-
jectory to sub-trajectories. Then, we study the use of index-
ing schemes the sub-trajectories. Finally, we study some
fundamental query processing issues.

Let T be a trajectory of lengthm. Moreover, letµ de-
note an integer such thatµ ≤ m. T is decomposed into
m-µ+1 sub-trajectories, by using a window of lengthµ, and
progressively moving one node at a time from left to right.
Each of the resulting sub-trajectories has a length ofµ. Fig-
ure 3 illustrates an example of the decomposition process,
wherem=6 andµ=3.

By following the same process for all trajectoriesT ∈
T , we get a new set of sub-trajectoriesS, all of lengthµ.
Moreover, we have already defined a similarity measure for
trajectories of the same length in the previous section, given
by eitherDnet or Dtime which both satisfy the metric space
properties.

Our next step is to index the setS of sub-trajectories,
enabling efficient query processing. Towards this direction,
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Figure 3. Decomposition ( m=6, µ=3).

we propose two schemes, which are both based on the
Mtree access method. Note that since a vector represen-
tation of each sub-trajectory is not available, techniques
like R-trees [4] and its variants are not applicable. Recall
that, the Mtree is already equipped by the necessary tools
to handle range and nearest-neighbor queries, as it has
been reported in [2]. The only requirement for the Mtree
to work properly is that the distance used must satisfy the
metric space properties. Since bothDnet andDtime satisfy
these properties, they can be used as distance measures
in Mtrees. Note that, although we use Mtrees, any metric
access method can been applied (e.g., SlimTrees [11]). Two
alternatives are followed towards indexing sub-trajectories:

MtreeI method: In this scheme, only the NET-Mtree is
used to check the constraint regardingEnet. Then, in a
subsequent step the candidate sub-trajectories are checked
against the time constraints. This way, only one Mtree is
used.

MtreeII method : In this scheme, two Mtrees are used to
handleDnet andDtime separately. These trees are termed
NET-Mtree and TIME-Mtree respectively. Each Mtree
is searched separately usingEnet andEtime respectively.
Then, the intersection of both results is determined to get
the sub-trajectories that satisfy the network and time con-
straints.

A user query is defined by a triplet< Tq, Enet, Etime >
whereTq is the query trajectory,Enet is the radius for the
network distance andEtime is the radius for the time dis-
tance. For the query processing to be consistent with the
proposed framework, each query trajectoryTq must be of at
least lengthµ. If this is not true, padding is performed by
repeating, for example, the last node of the trajectory sev-
eral times, until the lengthµ is reached. In the general case
where the length ofTq is greater thanµ, the decomposition



process is applied to obtain the sub-trajectories ofTq.
Let p denote the number of sub-trajectories ofTq deter-

mined by the trajectory decomposition process. The next
step depends on the indexing scheme we utilize, i.e. either
MtreeI or MtreeII as they have been described previously.
A trajectory is part of the answer if there is at least one of
its sub-trajectories that satisfies the network and time con-
straints for at least one query sub-trajectory.

5 Performance Evaluation

The proposed approach has been implemented in C++
and the experiments have been conducted on a Pentium IV
with 1GB RAM running Windows XP. To generate trajecto-
ries the generator of [1] has been used. The data set we have
used for the experiments consists of 3,797 trajectories of ob-
jects moving on the roads of Oldenburg city. Each trajectory
has a length of at least 10. A sliding window of lengthµ =
10 has been used to generate the sub-trajectories of each
trajectory. Therefore, the total number of sub-trajectories
produced is 75,144.

Algorithm SimilaritySearch (Tq , Enet, Etime, µ)
Input

Tq : query trajectory,
Enet: network distance radius,
Etime: time distance radius,
µ: minimum length of query sub-trajectory

Output
AS: set of sub-trajectory IDs,
AT : set of trajectory IDs

1. if length(Tq) < µ
2. padTq with the last trajectory node
3. QS(Tq)← Tq

4. else
5. QS(Tq)← all sub-trajectories ofTq of lengthµ
6. end if
7. for eachquery sub-trajectoryqs ∈QS(Tq)
8. if method MtreeI is used
9. search NET-Mtree usingqs andEnet

10. Cnet ← candidate sub-trajectories from NET-Mtree
11. check every sub-trajectory inC againstEtime

12. updateAS
13. else ifmethod MtreeII is used
14. search NET-Mtree usingqs andEnet

15. Cnet ← candidate sub-trajectories from NET-Mtree
16. search TIME-Mtree usingqs andEtime

17. Ctime ← candidate sub-trajectories from TIME-Mtree
18. AS ← Cnet ∩ Ctime

19. end if
20. end for
21. calculateAT fromAS
22. return (AS,AT )

Figure 4. Similarity search algorithm.

For the MtreeI method only one Mtree is built based
on theDnet measure, whereas for the MtreeII method two
Mtrees are built based onDnet andDtime. The NET-Mtree
which is implemented based on theDnet metric and the
TIME-Mtree implemented based on theDtime metric. Re-
call that, both trees handle sub-trajectories of lengthµ=10
and not complete trajectories of moving objects.

The distance between two nodes of the graph corre-
sponds to the shortest path distance between these nodes.
The number of vertices in the Oldenburg data set is 6,105.
Therefore, the total number of pre-computed distances
among all possible pairs of vertices is 37,271,025. An LRU
buffer has been used to keep a number of distances in main
memory. The rest are kept in a hash-based file on disk. The
size of the buffer for the main memory distances has been
set to 2,000, which is a relatively small value compared to
the total number of pair-wise distances. Figure 5 depicts the
number of network distance calculation requests, the num-
ber of hits and the number of misses. It is evident, that
about 25% of the distance requests are absorbed by the main
memory buffer, and therefore, we avoid fetching them from
the disk. The more buffer pages are available, the higher
the hit ratio becomes. We note that this buffer is used only
for the search in the NET-Mtree. The calculation ofDtime

does not require any network distance calculation.
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Figure 6(a) depicts the performance of the MtreeII
method for different values of the parameterEnet. Three
curves are shown, for three different values of theEtime

parameter. It is evident, that by increasingEnet the total
processing time also increases. Moreover, we observe that
Etime does not have a serious impact in query processing
performance.

Similar results are obtained from Figure 6(b), which de-
picts the query processing time for different values of the
parameterEtime. Again, there are three curves in the graph
for three different values ofEnet. It is evident that by
increasingEtime the overall query performance is not af-
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Figure 6. Query response time vs (a) Enet and
(b) Etime.
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fected significantly. Therefore, the overall query processing
cost is dominated by the network-based similarity search.
This is clearly shown in Figure 7, which illustrates the time
required to search the NET-Mtree and the TIME-Mtree ac-
cess methods whenEnet andEtime assumes the same value

between 0 and 1. We obtained similar results for the MtreeI
method, which uses only the NET-Mtree. Again, the dom-
inant part of the query processing is the determination of
network distances.

In the MtreeI approach, the number ofDtime calcu-
lations is determined by the number of candidate sub-
trajectories return by the search in the NET-Mtree. On the
other hand, when the TIME-Mtree is used, the number of
Dtime calculations are affected by the parameterEtime.
Figure 8 illustrates the number ofDtime calculations per-
formed by MtreeI and MtreeII methods.
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The total processing costs for the two methods is de-
picted in Figure 9. The cost of MtreeI and MtreeII is shown
in Figure 9(a) and (b) respectively, whereas in (c) we give
the total cost ratio of MtreeII over MtreeI. Evidently, query
processing with the MtreeI method is more efficient than
that of the MtreeII method, for all combinations of several
values ofEnet andEtime parameters.

In all the experiments conducted, the method that uses
only one Mtree on theDnet metric performs better than the
method which utilizes two Mtrees (one forDnet and one for
Dtime). However, the existence of two Mtrees offer a higher
degree of flexibility during query processing, since we can
search for similar trajectories based: (i) only onDnet, (ii)
only on Dtime and (iii) both onDnet andDtime. More-
over, different clustering schemes can be achieved based on
the two metrics. More specifically, using the two separate
Mtrees, a clustering algorithm can provide clusters forDnet

or Dtime. Finally, more choices for query optimization are
available if both indexes are utilized, since the query ex-
ecution engine can form an efficient query execution plan
according to the selectivities of the search distancesEnet

andEtime, and traverse the Mtrees accordingly.

6 Concluding Remarks

Although there is significant research work performed
on trajectory similarity on moving objects trajectories, the
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vast majority of the proposed approaches assume that ob-
jects can move freely without any motion restrictions. In
this paper, we have studied the problem of trajectory simi-
larity query processing in network-constrained moving ob-
jects. We have defined two concepts of similarity. The first
is based on the network distance and the second is based on
the time characteristics of the trajectories. By using these
concepts, we have defined two similarity measures,Dnet

to capture the network distance andDtime to capture the
time-based distance of trajectories. Both measures satisfy
the metric space properties, and therefore, metric-based ac-
cess methods can be used for efficient indexing. Perfor-
mance evaluation results have shown that trajectory similar-
ity can be efficiently supported by these schemes, provided
that node distances are pre-computed.
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