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Abstract—This letter presents a hashing method, where the key
idea is to exploit the discriminative power of image descriptors’
Dimensions’ Value Cardinalities (DVC), that is, the number of
distinct values that occur at the dimensions of the descriptors.
DVC are an inherit characteristic of image descriptors, capable
of boosting the search accuracy for approximate nearest neighbor
search. However, previous DVC-based search strategies function
in an unsupervised manner. To account for the fact that the
semantic information of images can significantly leverage the
search accuracy, this letter proposes an efficient supervised
hashing strategy based on DVC. Given a set of training data, the
proposed approach first calculates a consensus sparse matrix,
to consider both the DVC-based similarities and the sparse
semantic information of images. Then, it formulates an objective
function as a joint minimization problem, to jointly compute (i)
the binary codes of the training data; and (ii) the projection
matrix to map external queries to the Hamming space. The
joint problem is solved via an efficient alternating optimization
algorithm. Experiments on a benchmark dataset demonstrate the
superiority of the proposed approach over other state-of-the-art
supervised hashing and DVC-based search strategies.

Index Terms—Supervised hashing, visual search, dimensions’
value cardinalities.

I. INTRODUCTION

HASHING strategies have been widely used for Approxi-
mate Nearest Neighbor (ANN) search, due to their low

storage cost and fast query speed [1]. The key idea is to
compute binary/hash codes, by efficiently mapping the original
data to the Hamming space. Hashing strategies can be roughly
divided into data-independent [1]–[3] and data-dependent [4]–
[12]. Data-independent approaches calculate binary codes by
random projections, to construct similarity preserving hash
functions based on different distance/similarity metrics [1]–
[3]. As random projections are performed, a long length of
binary codes is required to achieve high search accuracy in
data-independent approaches [4].

Instead of performing random projections, data-dependent
methods learn binary codes based on a training set. Data-
dependent hashing can be further categorized into unsuper-
vised and supervised. Unsupervised hashing strategies, such
as Spectral Hashing [5], Iterative Quantization [6] and An-
chor Graph Hashing [4], try to preserve the similarities of
the training data using linear or nonlinear functions, when
projecting the data to the Hamming space. However, unsuper-
vised hashing strategies do not consider the images’ semantic
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information, thus having limited search accuracy due to the
well known semantic gap problem [13].

In the effort to bridge the semantic gap, Supervised hashing
methods incorporate prior information, when learning the
binary codes. Such prior information is usually expressed as
pairwise labels of semantically similar and dissimilar data
pairs. For instance, Minimal Loss Hashing (MLH) generates
binary codes in a supervised manner, based on a structural
SVM framework with latent variables [7]; Kernel-based Su-
pervised Hashing (KSH) formulates an objective function for
supervised hashing based on code inner products [8]; Fast
supervised Hashing with decision trees (FastH) learns hash
functions by training boosted decision trees and a GraphCut-
based block search method [9]; Boosted Shared Hashing
(BSH) formulates a unified objective function to learn both the
hash functions and the semantically similarities of the images
and follows a query adaptive retrieval strategy [10]; Neigh-
borhood Discriminant Hashing (NDH) learns a discriminant
hashing function by exploiting the images’ local information,
provided that an image and its visually similar neighbour have
semantically similar labels [11]; Supervised Discrete hashing
(SDH) defines a joint learning objective which integrates
binary codes and linear classifier training to leverage the
semantic label information [12]. Compared to unsupervised
strategies, supervised hashing can significantly increase the
search accuracy by exploiting the semantic information of
images [7]–[12].

Recently, a new ANN search strategy has been been intro-
duced, based on the Dimensions’ Value Cardinalities (DVC) of
image descriptor vectors [14]–[17]. DVC are the unique values
that occur at the dimensions of the descriptors in an image
collection (Section II). Various DVC-based approaches have
been introduced, such as ANN search on a single machine [14]
and distributed frameworks [15], or stream processing of
image data [17]. For instance, in [14] Multi-Sort IndeXing
(MSIDX) prioritizes the dimensions with high DVC in the
search strategy, assuming that these dimensions have more
discriminative power. In doing so, MSIDX achieves high
search accuracy, compared to unsupervised hashing methods.
However, all the aforementioned DVC-based strategies do not
work in a supervised manner, thus having a glass ceiling on
the ANN search accuracy.

Therefore, a pressing challenge resides on designing a hash-
ing method, which considers both the semantic information
of images and the discriminative power of DVC. The main
contributions of this letter are summarized as follows, (i) a
weighting scheme based on DVC is proposed to calculate
the image similarities using a kernel function; (ii) the DVC-
based weighted similarities and the semantic information of
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images in the form of must-link and cannot-link constraints
are incorporated into a consensus sparse matrix; finally (iii)
the objective function is formulated as a joint minimization
problem, which is solved via alternating optimization [18],
so as to jointly learn the binary codes and the projection
matrix to map external queries to the Hamming space. In the
experiments on a benchmark dataset, the proposed approach
outperforms several state-of-the-art search strategies.

II. DIMENSIONS’ VALUE CARDINALITIES

Definition 1 (DVC). “The DVC of a dimension i ∈ 1, . . . , D
is the number of unique values at the i-th dimension of all the
descriptors in an image collection [14]–[16].”

Property 1. “DVC distributions highly depend on the descrip-
tors’ extraction strategies [16].”

Property 2. “Each descriptor extraction method tends to
produce similar DVC distributions for different dataset sizes;
therefore, ANN search strategies that exploit descriptors’ DVC
can scale, as the DVC distributions over the dimensions are
preserved, irrespective of the dataset sizes. [16].”

Property 3. “Descriptors’ DVC have a strong impact on the
ANN search strategies, both in terms of search accuracy and
query speed [16].”

III. PROBLEM FORMULATION

Given a training set with N samples, let X ∈ ℜD×N

be a data matrix, where each column corresponds to a D-
dimensional descriptor vector xj = [x1, x2, . . . , xD] ∈ ℜD of
sample j, with j = 1 . . . N . In our supervised approach, we
assume that L distinct labels have been used, where lj denotes
the label of sample j. Based on the semantic label information,
we generate must-link ML = {(x, y)|lx = ly} and cannot-
link constraints CL = {(x, y)|lx ̸= ly}, with x, y = 1 . . . N .
The constraints are stored in a sparse matrix Slabel ∈ ℜN×N ,
with [Slabel]xy = 1, if (x, y) ∈ ML; [Slabel]xy = −1, if
(x, y) ∈ CL; and 0 otherwise. The matrix with the binary
codes of the training set is denoted by B ∈ {0, 1}C×N ,
where the j-th column is the C-dimensional binary code
bj = [b1, b2, . . . , bC ] ∈ {0, 1}C of sample j. The problem that
the proposed approach faces is formally defined as follows:

Definition 2 (Problem). “The goal of the proposed approach
is to calculate the projection matrix P ∈ ℜD×C and the binary
matrix B, by considering the semantic information in Slabel

and preserving the original similarities, when mapping the
data to the Hamming space.”

IV. PROPOSED APPROACH

The proposed hashing method consists of the following
steps: (i) an efficient way is proposed to weigh the similarities
based on the image descriptors’ DVC; (ii) a consensus sparse
matrix is calculated by considering both the semantic label
information and the DVC-based weighted similarities; (iii) the
projection matrix P and the binary matrix B are computed
based on an efficient alternating optimization algorithm.

A. Weighting Strategy based on DVC

The training data matrix X ∈ ℜD×N is represented as
follows:

X =



X11, X12, . . . , X1N

X21, X22, . . . , X2N

...
XD1, XD2, . . . , XDN

(1)

Based on the images descriptors’ value types, that is, integer,
normalized real and real values [14]–[16], ∀ i = 1, . . . , D,
the i-th DVC is calculated for each row i of matrix X,
corresponding to the unique values that the i-th dimension has
in the whole training set. The D different DVC are stored in a
vector u = {u1, u2, . . . , uD} ∈ ℜD. Provided that dimensions
with high DVC have more discriminative than those with lower
ones, we weigh the DVC accordingly, by generating a D-
dimensional vector w ∈ ℜD, where each element is calculated
as follows:

wi =
ui

max{ui|i = 1 ≤ i ≤ D}
log

N

qi
(2)

where qi denotes the total number that the unique values
Xij appear in the i-th dimension of the N descriptors. The
weighting vector w has real values in (0, 1], with wi = 1,
if the i-th dimension has the highest DVC value. According
to Property 2, DVC come from the same distribution family
for different dataset sizes, which means that the relative
differences between the DVC are preserved, thus producing
similar weights in w for different dataset sizes. Following the
notation of p-norm, the weighted distance F(·) between two
image descriptors x and y is computed as follows:

F(x,y) =

( D∑
i=1

wi|xi − yi|p
)1/p

(3)

In this letter, we consider the Euclidean distance (p = 2).
The weighted distance function F amplifies the differences
between two descriptors, when they have different values at
dimensions with high DVC (wi ≃ 1), and downweigh the dif-
ferences at the dimensions with lower ones (wi ≃ 0), respec-
tively. The DVC-based weighted similarities are calculated
based on the Gaussian kernel, which are stored in a matrix
SDV C ∈ ℜN×N , with [SDV C ]xy = exp(−F(x,y)/σ2), and
σ being the bandwidth of the kernel.

B. Consensus Sparse Matrix

The goal of this step is to compute a consensus sparse
matrix S ∈ ℜN×N , by combining the semantic information
in Slabel with the DVC-based weighted similarities in SDV C .
We formulate the problem of computing S as a minimization
problem, where we have to bring the consensus matrix S as
close as possible to matrices Slabel and SDV C , expressed by
the approximation errors ||S− Slabel||2F and ||S− SDV C ||2F ,
respectively. In addition, as Slabel is sparse (Section III), we
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force the solution of the consensus matrix S to be sparse using
the l2,1-norm ||S||2,1, which is defined as [19]:

||S||2,1 =
N∑
i=1

√√√√ N∑
j=1

S2
ij =

N∑
i=1

||Si,∗||2 (4)

where Si,∗ denotes the i-th row of matrix S. Hence, we have
to solve the following minimization problem with respect to
the consensus matrix S:

min
S

O = ||S− Slabel||2F + ||S− SDV C ||2F + λ||S||2,1 (5)

where λ > 0 is a regularization parameter. By setting the
gradient of O with respect to S equal to zero we have:

2(S− Slabel) + 2(S− SDV C) + 2λ(K−1S) = 0 (6)

with K ∈ ℜN×N being a diagonal matrix, whose entries are
calculated as follows, Kii = 2||Si,∗||2 for the i-th diagonal
entry. According to (6), we compute the following closed form
solution of the consensus matrix S:

S = (2I+ λK−1)−1(Slabel + SDV C) (7)

where I is the identity matrix.

C. Projection Matrix and Binary Codes

Having computed the consensus matrix S, we have to cal-
culate the projection matrix P and the binary matrix B. Based
on graph-based strategies [5], we formulate the following joint
minimization problem:

min
B,P

G = ||X−PB||2F+Tr(BLBT )+α(||B||2F+||P||2F ) (8)

subject to B ∈ {0, 1}C×N

where Tr(·) is the trace operator. Matrix L ∈ ℜN×N is the
graph Laplacian constructed based on the consensus matrix
S, which is calculated as L = D − S, and D ∈ ℜN×N is
the degree matrix, a diagonal matrix with Dii =

∑
j Sij . The

first term of (8) expresses the reconstruction error between PB
and the original data matrix X; the second term Tr(BLBT )
is the matrix form of

∑
ij Sij ||bi − bj ||2, which expresses if

two samples i and j are similar in the consensus matrix S,
then they should have similar binary codes bi and bj in the
Hamming space; and the last one is the regularization term on
variables B and P to avoid model overfitting, with α being
the regularization parameter.

The minimization problem of G in (8) is intractable because
of the discrete constraint in B, that is, taking only the values
0 and 1. Thus, at the current stage we relax the constraint
by taking continuous real values in B. Nonetheless, the
minimization problem of (8) remains intractable, as we have
to jointly minimize G with respect to B and P. We solve
the minimization problem of (8) using alternating optimiza-
tion [18], that is, we fix matrix P and optimize with respect
to B, and then we fix the updated matrix B and optimize with
respect to P.

-Fix P and update B (Step 1): Using the trace operator
Tr(·), Eq. (8) can be rewritten as follows:

G(B,P) = Tr
[
(X−PB)(X−PB)T

]
+ Tr(BLBT ) + αTr(BBT ) + αTr(PPT )

(9)

The partial derivative of G with respect to B in (9) is
calculated as follows:

∂G(B,P)

∂B
= −2PTX+ 2PTPB+ 2BL+ 2αB (10)

As there is no closed form solution for B in (10), we
calculate the matrix B based on the L-BFGS Quasi-Newton
method [20], using the libLBFGS library [21].

-Fix B and update P (Step 2): Having fixed matrix B,
we set the gradient of G with respect to P equal to zero:

∂G(B,P)

∂P
= −2XBT + 2PBBT + 2αP = 0 (11)

As (BBT + aI) is positive definite, based on (11) we can
obtain a closed form solution for P:

P = XBT (BBT + αI)−1 (12)

The two-step alternating optimization is an iterative algo-
rithm, which is repeated until convergence, concluding in real
valued matrices B and P. At the first iteration, we use the
identity matrix to initialize P.

Generate binary codes: As aforementioned, we relaxed the
constraint in (8) over the alternating optimization algorithm,
which results in a matrix B with real values. To generate the
final binary codes B ∈ {0, 1}C×N , we follow the maximum
entropy principle, based on which a binary bit c = 1, . . . , C
that gives balanced partitioning of the training set should
provide maximum information [22]. We apply the following
thresholding strategy, for the c-th bit we quantize the real
values in the c-th row of B using the respective mean value
Mc = 1/N

∑
j Bc,j , with Bcj = 1, if Bcj > Mc, and 0

otherwise.
Out-of-sample extension: Given an external sample j /∈ X,

we have to compute the binary codes of bj ∈ ℜC . Based on
the projection matrix P ∈ ℜD×C we create a real valued
vector bj = xjP, where xj is the D-dimensional image
descriptor vector of the external sample j. The final binary
codes are quantized in {0, 1} according to the aforementioned
thresholding strategy.

V. EXPERIMENTS

A. Data Analysis

The evaluation is performed on the NUS-WIDE
dataset [23], which consists of 269,648 images with 81
concept labels, and each image is represented by a 500-
dimensional Bag-of-Words vector. In Fig. 1, we plot the
DVC for each dimension, where the “picks” represent the
dimensions with high DVC. To verify that the values in
the weighting vector w of (2) are similar for different
dataset sizes (Section IV-A), the NUS-WIDE dataset was
uniformly down-sampled from 100% to 20%, by a step of
20%. In Fig. 2(a)-(b), we report the respective five empirical
cumulative distribution functions of (a) the descriptors’ DVC
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and (b) the weights in w for each down-sampled dataset,
with F (x) = P (X ≤ x), and x = DVCi, x = wi. Using
the Kolmogorov-Smirnov test (p ≤ 0.01), we verified that
the five DVC distributions in Fig. 2(a) come from the same
distribution family, which confirms that DVC have Property
2, as in the analysis of [16]. Fig. 2(b) shows that the five
different down-sampled datasets generate similar weight
distributions, thus having similar values in the weighting
vector w of (2) for the different dataset sizes.
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Fig. 1. DVC of the 500-dimensional Bag-of-Words vectors in NUS-WIDE.
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Fig. 2. Empirical distributions functions of (a) DVCi and (b) weights wi for
different dataset sizes.

B. Settings

The ANN accuracy is measured in terms of Mean Average
Precision (MAP), where the true neighbors of a query are
defined as the images that share at least one label with the
query image [7], [8], [12]. Following [4], [12], the 21 most
frequent labels are kept, where 100 images from each label
are randomly selected to form the query set, and the results
are averaged over ten runs. In the proposed DVC-based Super-
vised Hashing method, namely DVC-SH, parameters λ=1e-1
and α=1e-3 are determined based on cross validation. The
complexity of DVC-SH depends on the number of iterations
that the alternating optimization algorithm needs to converge.
A predefined convergence threshold is set to 1e-4 and the
maximum number of iterations is fixed to 20. In the ten runs,
the algorithm needs up to 14 iterations to converge.

C. Results

DVC-SH is compared with the unsupervised strategies
LSH [1] and MSIDX [14]. The search radius in MSIDX
is varied so as to produce the same bit budget with the
hashing methods [14]. In addition, two variants of the proposed
approach are used, namely SH and SHL. The SH variant
ignores the DVC-based weighting strategy of Section IV-A,

with w = 1, and the SHL variant uses only the Slabel matrix
in (5). Fig. 3 shows that the supervised approaches of SH, SHL
and DVC-SH clearly outperform the unsupervised methods of
MSIDX and LSH. The SHL variant has limited performance,
when comparing with DVC-SH and SH, as SHL uses only
the sparse semantic information of images when computing
S, thus generating a sparse similarity graph. Meanwhile, the
proposed DVC-SH method beats the SH variant, by consid-
ering the discriminative power of DVC, when weighting the
image similarities.
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Fig. 3. Comparison with LSH, MSIDX, and the variants SH and SHL.

Next, the proposed DVC-SH approach is compared with the
supervised hashing methods MLH [7], KSH, [8], FastH [9] and
SDH [12], using their implementations at [24], [25], [26] and
[27], respectively. In FastH, the tree depth is fixed to 4 [9], and
in SDH the number of anchor points is set to 1,000 [12]. Fig. 4
shows that DVC-SH outperforms the competitive supervised
hashing methods, achieving a relative improvement of 8.5-
12.4%, when varying the code lengths. This happens because
DVC-SH considers both the DVC-based weighted similarities
and the semantic information of images, when generating the
binary codes.
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Fig. 4. Comparison with supervised hashing methods.

VI. CONCLUSION

This letter presented DVC-SH, an efficient supervised hash-
ing method. DVC-SH computes a consensus sparse matrix
to capture both the DVC-based weighted similarities and the
images’ semantic information when learning the binary codes.
The experimental results showed that DVC-SH achieves high
search accuracy, compared to other DVC-based strategies and
supervised hashing methods. As future work, we will consider
the impact of DVC on cross-view hashing [28], [29].
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