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Abstract

Discrete sequence modelling and prediction is an important goal and a challenge for pervasive computing.
Mobile client’s data request forecasting and location tracking in wireless cellular networks are characteristic
application areas of sequence prediction in pervasive computing. This article presents information-theoretic
techniques for discrete sequence prediction. It surveys, classifies, and compares the state-of-the-art solu-
tions, suggesting routes for further research by discussing the critical issues and challenges of prediction
in wireless networks.

Introduction

The proliferation of cellular networks and the penetration of Internet services are changing many
aspects of mobile computing. Constantly increasing mobile client populations utilize diverse mobile
devices to access the wireless medium and various heterogeneous applications are being developed
to satisfy the eager client requirements. In these environments, seamless and ubiquitous connectiv-
ity as well as low client-perceived latencies are two fundamental goals. The first goal calls for smart
techniques for determining the current and future location of a mobile, and the second calls for ef-
fective techniques for deducing future client requests for “information pieces” (i.e., objects/records
from databases, multimedia files, URLSs, etc).

Location and request prediction in wireless networks

Location (request) prediction is the task of exploiting the past movements (requests) in deducing
what the future locations (requests) will be. Therefore, location (request) prediction can improve
the network performance (reduce the user’s latency). The ability to determine the mobile client’s
(future) location can significantly improve the wireless network’s overall performance in a number
of different ways. Consider for instance the handover procedure in a cellular network covering a
metropolitan city; instead of relying on reactive approaches, i.e., allocating appropriate resources
during the handover, we could come up with proactive approaches, i.e., allocating resources before
needed, so as to bypass, instead of correct, the negative effect of handover [5]. Additionally,
methods like the Shadow Cluster [6], could benefit from location prediction, by refraining from
allocating resources to all neighboring cells, but instead, they could allocate resources only to
the most probable-to-move cells. Finally, location prediction could be exploited in call admission
control techniques and also in sequential paging schemes [1] to reduce the combined paging cost.
Apart from the impact upon the network infrastructure, the task of prediction can be employed in
improving the performance of many modern data dissemination-based applications (Digital Video
Broadcasting-Handheld, services like that offered by the DirectBand Network) which are offored
by commercial companies and rely on IEEE 802.11 or 3G wireless networks. In such kind of
applications, the clients access the data by monitoring the broadcast channel, until they get the
required information, which increases the access latency. Although, client-side caching of frequently
accessed data could reduce the problem, it is not a panacea and prefetching can be used to further
reduce the access latency.
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Figure 1. Example mobile transaction. The switching center may allocate more resources and relocate some
data (E, D) to the rightmost cell, since the mobile host is expected to move there. In the current cell (zoomed
leftmost cell), while the mobile host waits for datum A to arrive in the broadcast channel, may prefetch data
C and B, since he forecasted their future use. In many cases, due to the broadcast scheduling algorithm, the
data B,C may arrive earlier than A, but their next appearance may be far from A's appearance. Therefore,
prefetching reduces the overall latency.

As an example exhibiting the benefits of both location and request prediction, consider the
scenario where a mobile client, roaming inside the coverage area of a cellular network, submits
transactions to a distributed database system (Figure 1). This database system (by making a sim-
plifying assumption) uses the cellular system’s base stations for communicating with the mobile
and as its distributed servers as well. To achieve fast response times (i.e., no need for costly re-
mote accesses and expensive handovers) and fault-tolerance (i.e., data availability), a cost-effective
solution would be the selective and dynamic allocation of resources (i.e., needed data, bandwidth)
in those sites (base stations) which the user would visit soon. Such a scheme would require by the
system’s side the ability to predict both information needs and the trajectory of the mobile client.

Unifying location and request prediction The issues of location and request prediction had
been treated in isolation, but pioneering works ([12] and [1]) are paving the way for treating both
problems homogeneously; they exhibited the possibility of using data compression methods in
carrying out prediction. The unifying principle is that they model the respective state space as
finite alphabets comprised of discrete symbols. In the mobility tracking scenario, the alphabet
consists of all possible sites (cells) where the client has ever visited or might visit. In the request
prediction scenario, the alphabet consists of all the data objects requested by the client plus the
objects that might be requested in the future. Both location and request prediction are related
to the ability of the underlying network to record, learn and predict the mobile’s “behavior”. The
success of the prediction is presupposed and is boost by the fact that mobile users exhibit some
degree of regularity in their movement and/or in their access patterns [1]. A “smart” network
can record the movement(request) history and then construct a mobility(data access) model for its
clients.

This article provides a unifying framework for all the methods dealing with the location pre-
diction and request forecasting using information-theoretic structures; the framework treats them
as (variable/fized length) Markov chains and presents the different families of methods categoriz-
ing the state-of-the-art algorithms into their respective families. An important objective of the
article is to include in the presentation not only the algorithms which are familiar in the wireless
communications community, but also techniques which have been developed in other disciplines,
like computational biology, machine learning, and World Wide Web, in order to achieve cross-
discipline understanding and proliferation of ideas. The purpose of the categorization is to reveal
the shortcomings and advantages of each method and identify routes for further research.
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The discrete sequence prediction problem

In quantifying the utility of the past in predicting the future, a formal problem definition is
needed. Let ¥ be an alphabet, consisting of a finite number of symbols s1, s2,. .., 55|, where | - |
stands for the length/ cardinality of its argument. A predictor accumulates sequences of the type

a; = aj,a?,...,a, where ol € ¥, Vi,j and n; denotes the number of symbols comprising a;.
Without lost of generality, we can assume that all the knowledge of the predictor consists of a
single sequence a = o', a?,...,a". Based on a, the predictor’s goal is to construct a model that

assigns probabilities for any future outcome given “some” past. Using the characterization of the
mobility /request model as a stochastic process (X;);cn, we can formulate this goal as follows:

Definition 1 (Discrete Sequence Prediction problem). At any given time instance ¢ (mean-
ing that ¢ symbols @, 241, ..., 21 have appeared, in reverse order) calculate the conditional prob-
ability B

P[XtJrl = $t+1|Xt =24, X411 = Typ-1, .- ']a
where x; € ¥, V41 € 3. This model introduces a stationary Markov chain, since the probabilities
are not time-dependent. The outcome of the predictor is a ranking of the symbols according to

their P. The predictors which use such kind of prediction models are termed Markov predictors.

The “history” x¢,x¢—1,... used in the above definition is called the context of the predictor,
and it refers to the portion of the past that influences the next outcome. The history’s length (also,
called the length or memory or order of the Markov predictor) will be denoted by I. Therefore, a
predictor which exploits [ past symbols, will calculate conditional probabilities of the form:

P[XtJrl = $t+1|Xt =0, X 1 =2 1,0, Xy 41 = $t71+1]~ (1)

Some Markov predictors fix, in advance of the model creation, the value of [, presetting it in a
constant k, in order to reduce the size and complexity of the prediction model. These predictors,
and the respective Markov chains are termed fized length Markov chains/predictors of order k.
Therefore, they compute conditional probabilities as above, considering only the events from ¢ up
tot—k+ 1, with £ < [. Although it is a nice model from a probabilistic point of view, these
Markov chains are not very appropriate from the estimation point of view. Their main limitation
is related to their structural poverty, since there is no means to set an optimized value for k.

Other Markov predictors deviate from the fixed memory assumption, and allow the order of

the predictor to be of variable length, i.e., to be a function of the values from the past. These
predictors compute conditional probabilities of the form of equation (1), but  is a function of time,
ie, l=1(xy,x4-1,...).
These predictors are termed wariable length Markov chains; the length [ might range from 1 to ¢.
If i =i(xe,24-1,...) = k for all &y, 24_1,..., then we obtain the fixed length Markov chain. The
variable length Markov predictors may or may not impose an upper bound on the considered
length. The concept of variable memory offers a richness in the prediction model and the ability to
adjust itself to the data distribution. Unfortunately, it is not a straightforward problem to choose
in a data-driven way the function I = ().

The power of Markov predictors

The issue of prediction in wireless networks has received attention during the past years, exploiting
techniques like learning automata, Kalman filtering and pattern matching. Learning automata [5]
are simple, but they are not considered very efficient learners, because of the need to devise appro-
priate penatly /reward policies, and due to their slow convergence to the correct actions. Kalman
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filtering-based methods [7] construct a mobile motion equation relying on specific distributions for
its velocity, acceleration and direction of movement. They can not be used for request prediction,
but only for location prediction and their performance largely depends on the stabilization time
of the Kalman filter and knowledge (or estimation) of the system’s parameters. Finally, pattern
matching techniques have been used for location prediction [7]. They compile mobility profiles,
and perform approximate similarity matching, using the edit distance, between the current and
the stored trajectories, in order to derive predictions. For the edit distance, it is hard to select the
meaningful set of edit operations, to assign weights on them, and so on.

Therefore, why are Markov predictors more appropriate for carrying out location predic-
tion/request prediction, and why this prediction is amenable to Markovian prediction? Their
most profound advantage is their generality. They are domain independent and a simple mapping
from the “entities” of the investigated domain to an alphabet is all that is required. Thus, they
are able to support both location and request prediction. Markovian prediction relies on the short
memory principle, which says that the (empirical) probability distribution of the next symbol,
given the preceding sequence, can be quite accurately approximated by observing no more than
the last few symbols in that sequence. This principle fits reasonably and intuitively with how
humans are acting when travelling or seeking information. A mobile user usually travels with a
specific destination in mind, designing its travel via specific routes (e.g., roads). This “targeted”
traveling is far from a random walk assumption, and it is confirmed by studies with real mobil-
ity traces [11]. Similarly, almost all request traces exhibit strong spatial locality, which describes
correlated sequences of requests.

Families of Markov predictors

Markov predictors create probabilistic models for their input sequence(s) and they use digital
search trees (tries) to keep track of the contexts of interest, along with some counts used in the
calculation of the conditional probabilities P. In the sequel of the paper, we will use the sample
sequence of events a = aabacbbabbacbbe, with length equal to |a] = 15. The appearance count of
subsequence s = ab is E(s) = E(ab) = 2 and the normalized appearance count of s is equal to E(s)
divided by the maximum number of (possibly overlapping) occurrences a subsequence of the same

length could have, considering the a’s length, i.e., E,(s) = % The conditional probability

]5(b|a) of observing a symbol, e.g., b, after a given subsequence, e.g., a, is defined as the number
of times that b has shown up right after the subsequence a divided by the total number of times
that the subsequence has shown up a all, followed by any symbol. Therefore P(bla) = Etab) _ 4.

E(a)

The Prediction by Partial Match scheme

The Prediction by Partial Match (PP.M) is based on the universal compression algorithm reported
in [2]. For the construction of the prediction model, it assumes a pre-determined maximal order, say
k, for the generated model. Then, for every possible subsequence of length of 1 up to k+ 1, creates
or updates the appropriate nodes in the trie. The PPM predictor for the sequence aabacbbabbacbbe
is depicted in Figure 2. The maximum context that the PPM predictor can exploit is k; though,
all intermediate contexts with length from 1 to & — 1 can be used. The interleaving of various
length contexts does not mean that this scheme is a variable length Markov predictor, because the
decision on the context length is made beforehand and not in a data-driven way.

Apart from this basic scheme a number of variations have been proposed, which attempt to
reduce the size of the trie by pruning some of its paths, based on statistical information derived
from the input data, e.g., [3]. Apparently, these schemes are offline, making one or multiple passes
over the input sequence in order to gather the required statistical information.
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Figure 2. A PPM Markov predictor for the sequence aabacbbabbacbbc.

The Lempel-Ziv-78 scheme

The virtues of the Lempel-Ziv-78 predictor (£LZ78) were investigated very early in the literature [1,
12]. The algorithm £Z78 [15] makes no assumptions about the maximal order for the generated
model. It parses the input sequence into a number of distinct subsequences, say s1, 82, ..., 5z,
such that Vj (1 < j < z), the maximal prefix of subsequence s; is equal to some s;, for some
1 < i < j. The LZ78 predictor for the sequence aabacbbabbacbbc is depicted in the left part of
Figure 3. Though, £LZ78 for this example is not able to produce a prediction for the test context
ab (i.e., there is no subtree under the gray-shaded node).

Figure 3. (Left) A £Z78 Markov predictor for the sequence aabacbbabbacbbc (Right) A LZ78 predictor
enhanced accordmg to [1, 8].

The LZ78 predictor is an online scheme, it lacks administratively tuned parameters, like lower
bounds on appearance counts, and it is a characteristic paradigm of a variable length Markov pre-
dictor. Although, strong results do exist which prove its asymptotic optimality and its superiority
over any fixed length PPM predictor, in practice, various experimental studies contradict this
result, because of the finite length of the input sequence. The original £LZ78 prediction scheme
was enhanced in [1, 8] in a way such that apart from a considered subsequence which is going to
be inserted into the trie, all its suffixes are inserted, as well (right part of Figure 3).

The Probabilistic Suffix Tree scheme

The Probabilistic Suffix Tree predictor (PS7) was introduced in [9] and although it specifies a
maximum order for the contexts it will consider, it is actually a variable length Markov predictor
and constructs its trie for an input sequence as follows. It uses five administratively set parameters:
k, the maximum context length, P,,;,, a minimum normalized appearance count, r, which is a
simple measure of the difference between the prediction capability of the subsequence at hand and
its direct father node, v,,,;, and a which together define the significance threshold for a conditional
appearance of a symbol. Then, for every subsequence of length of 1 up to k, if it has never been
encountered before, a new node is added to the trie, provided that a set of three conditions hold.
E.g., the subsequence abed will be inserted into the trie of the PST iff:

a) E,(abed) > P, and

b) There exists some symbol, say x, for which the following relations hold:

bi) ) > (1 + a)ymin, and

P(z|abed)
b2) P(x|abc)

E(abc) E(abedx)
» E(abed) E(abcz)

>ror <1/r,in other words >ror <1/r
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The PST predictor with k& = 3, Pnin = %,r = 1.05,%mim = 0.001,a = 0 for the sequence

aabacbbabbacbbe is depicted in Figure 4.

Figure 4. A PST Markov predictor for the sequence aabacbbabbacbbe.

The Context Tree Weighting scheme

The Context Tree Weighting predictor [14] (CTW) is based on the idea of combining exponentially
many Markov chains of bounded order, and the original proposition dealt with binary alphabets
only. The CTW assumes a pre-determined maximal order, say k, for the generated model and
constructs a complete binary tree 7 of height k. Each node s maintains two counters as and
bs, which count the number of zeros and ones, respectively, that followed context s in the input
sequence so far. Additionally, each context (node) s maintains, apart from the pair (as,bs), two
probabilities P and P;. The former, P?, is the Krichevsky-Trofimov estimator for a sequence
to have exactly as zeros and bs ones. The latter probability, P, is the weighted sum of some
values of P.. The CTW predictor for the sample binary sequence 010/11010100011 is depicted in
the left part of Figure 5. With PX and P denoting the Krichevsky-Trofimov estimate and the
CTW estimate of the root, respectively, we can predict the next symbol with the aid of a CTW
as follows. We make the working hypothesis that the next symbol is a one, and we update the
T accordingly obtaining a new estimate for the root P{UR. Then, the ratio 1;;31: is the conditional
probability that the next symbol is a one. h
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Figure 5. (Left) A CT)WW Markov predictor for the binary sequence 010/11010100011. (Right) A sketch of the
DeCTVW Markov predictor for the sequence aabacbbabbacbbe.

For the case of non-binary alphabets, Volf [13] proposed the Decomposed CTW (DeCTW).
Assuming that the symbols belong to a alphabet ¥ with cardinality ||, it considers a full binary
tree with |X| leaves. Each leaf is uniquely associated with a symbol in ¥. Each internal node v
defines the binary problem of predicting whether the next symbol is a leaf on v’s left subtree or a
leaf on v’s right subtree, “attaching” a binary CT7W predictor to each internal node (Figure 5).
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Comparison of prediction schemes

Implicitly or explicitly all Markov predictors all based on the short memory principle, which says
that the probability distribution of the next symbol can be approximated by observing no more
than the last k symbols in that sequence. Some methods fix in advance the value of k (e.g., PPM,
CTW). If the selected value for k is too low, then it will not capture all the dependencies between
symbols, degrading its prediction efficiency. On the other hand, if the value of k is too large, then
the model will overfit the training sequence. Therefore, variable length Markov predictors (e.g.,
LZ78, PST) are in general more appropriate from this point of view. This was the motivation for
subsequent enhancements to PPM and CTW so as to consider unbounded length contexts, e.g.,
the PPM* algorithm.

On the other hand, variable length predictors face the problem of which sequences and of
what length should be considered. PS7T attempts to estimate the predictive capability of each
subsequence in order to store it in the trie, which results in deploying many tunable parameters.
LZ78 employs a prefix-based decorrelation process, which results in some recurrent structures to
be excluded from the trie, at least at the first stages. This characteristic is not very important for
large sequences, but may incur performance penalty for short sequences; for instance, the pattern
bba is missing in both variants of LZ78 of Figure 3. Although this example is by no means a kind
of proof that £LZ78 is inferior to the other algorithms, it is an indication of how an individual
algorithm’s particularities may affect its prediction performance, especially in short sequences.
Despite their superior prediction performance, PPM schemes are far less commonly applied than
algorithms like £Z78, which is favored over PPM algorithms for its relative efficiency in memory
and computational complexity.

Prediction method Overheads Particularity
Family |Variant |Markov class || Train |Parameterization | Storage
1] Variable |lon-line moderate moderate .
L2t [15] Variable |lon-line moderate moderate May miss patterns
PPM 2 Fixed on-line moderate large Fixed length.
3 Fixed off-line heavy large High complexity
PST 9] Variable |off-line heavy low Parameterization
13 Fixed on-line moderate large .
cTw 14 Fixed on-line moderate large Binary nature

Table 1. Qualitative comparison of discrete sequence prediction models.

From Table 1 we can gain some insights regarding which method is more appropriate for which
type of application. To the best of our knowledge, we found no study which compares all families
mentioned in this article for either the location prediction of the request prediction issue with both
synthetic and real data, although a worthwhile study containing comprehensive experiments with
real data is reported in [11]. Aiming to provide suggestions for policy selection, we select two
primary dimensions; the first dimension reflects the type of the problem (i.e., location or request
prediction) and the second dimension reflects the “network part”, where the prediction is carried
out (i.e., fixed, resource-rich network servers or resource-starving mobile hosts).

For data-consuming applications, some very important intuitive and experimentally confirmed
results exist, which state that: a) user request sequences are of considerably varying length, where
quite large sequences have significant non-zero probability (Universal Law of Mobile Web Surfing),
b) user interests vary significantly with time (not “strong” stationarity), c¢) many alternative paths
exist which lead to the same datum, thus the regularity patterns are “blurred” by noise. Due to
the not so strong stationarity, and the existenc of many alternative symbols (in request prediction
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scenaria), the possibility of using £LZ78 types of predictors is not very high. Due to the variance in
the length of the individual client’s access sequence, the rest of the variable-order Markov predictors
are more appropriate; PS7 would be a perfect choice under the assumptions that the procedure
is performed offline and it runs on a resource-rich server or a laptop.

If energy conservation is the main issue in these applications (e.g., PDAs), then the choice
of PPM style predictors seems more appropriate since they are online, but they sacrifice some
prediction performance (due to the relatively small and fixed order model employed) for reduced
model complexity. The third observation may turn all prediction methods inefficient, since it
violates the “consecutiveness” property of appearance of the symbols in the patterns, upon which
property all described Markov predictors rely. In such cases, the modified Markov predictors
described in [3] can be employed, but these algorithms are offline and require substantial resources
(memory, power) to be executed. Therefore they could only be used by fixed network servers.

Location prediction is considered as a more manageable problem than request prediction, be-
cause of the fewer alternatives in possible contexts (i.e., hexagonal architecture of cellular systems,
few fixed access points in wireless LANs) and because of the “strong” stationarity (i.e., few habitual
routes in campuses/cities, few travel paths in urban regions — road network).

For location prediction applications, several families of Markov predictors could be used in
some specific scenarios each. For dynamic tracking of mobile hosts (with the tracking application
running either in the network server or the mobile host) PPM and LZ78 methods are appro-
priate. The small order PPM model and the enhanced £LZ78 [1] are expected to achieve the
best performance, because of the undoubted validity of the stationarity assumption. Indeed, the
study in [11] confirmed that intuitive results. These variants are perfect fit for dynamic resource
allocation before handovers, as well. For location area design applications, where we are interested
in discovering “long-standing” repetitive user routes, the process is offline and therefore methods
like PST or [3] are appropriate and less vulnerable to statistical deviation.

To support the aforementioned design guidelines we performed a performance comparison of
the major Markov predictors, as described in [1, 2, 9, 13]. We generated synthetic sequences of 500
symbols each (drawn from a 26-symbol alphabet), falling into four categories: a) with strong sta-
tionarity and short (relative to the order of PPM, De CTW) patterns, b) with strong stationarity
and longer (relative to the order of PPM, DeCTW) patterns, ¢) with strong stationarity, but
high variance in the patterns’ length, and d) with piecewise stationarity (cf. Section “Further
research”). All patterns were blurred with “white” noise. The average prediction precision of each
Markov predictor for each category of sequences is depicted in the four areas of Figure 6.

We can easily see the low performance of the enhanced £LZ78 algorithm while the sequences
are at their beginings, and how it considerably improves its performance while more symbols are
accumulated. PPM in general performs superior to all its competitors when the patterns’ lenght
is smaller than its order and this situation is reversed when there is high variance in the patterns’
length, in which case PS7T prevails. Finally, none of the predictors performs satisfactory for the
piecewise stationary sequences.

Further research

The classical result about the duality between lossless compression and prediction implies that any
universal lossless compression algorithm can be used to carry out prediction. Although quite a lot
of theoretical lossless compression schemes do exist in the literature, only a few of them have been
implemented for practical purposes. This is due to the need for effectively combining prediction
efficiency, computational complexity and low implementation effort. These three “dimensions”
limit the range of possible alternative practical prediction models. Towards this direction, the
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Figure 6. Performance evaluation of major Markov predictors.

Burrows-Wheeler (BW) lossless compression scheme offers significant opportunities for combining
the excellent prediction ratios of PPM and the low complexity of schemes based on £LZ78. This
compression scheme is composed by three steps: a) the Burrows-Wheeler Transform (BWT), b)
a Move-To-Front transform, and ¢) a variant of Run-Length Encoding and entropy coding. The
main difference between BW compression and its context-based competitors (C7 W, PPM, LZT8,
PST) is that the latter methods encode each symbol knowing the left context of its appearance,
which helps estimating the probability of the symbol occurrence. In BW schemes, firstly, the right
context is exploited, and secondly, the information regarding the contexts is lost after the BWT
stage. Recovering contextual information could make BW appropriate for prediction in wireless
settings, but unfortunately no full solution to this problem has been described yet. So far, no
practical prediction scheme is based on the BW scheme.

The cornerstone for building the Markov predictors described in this paper is the “stationarity
assumption”, which implied time-homogeneous transition probabilities. Under this assumption, the
trie of each predictor grows node-by-node increasing the respective node counters, i.e., identical
subsequences are “aggregated” (mapped) into the same node of the trie. Under the stationarity
assumption, Markovian prediction is well understood. By completely removing the notion of
stationarity, it is obvious that we can hardly have any prediction capability, since the fundamental
tenet of predictability is violated, i.e., some degree of ergodicity.

In-between these two extremes lies the more realistic case of piecewise stationarity, where the
sequence of symbols is treated now as a series of non-overlapping segments, each of them having
been generated by a stationary source. It is supposed that the system has no knowledge about
the number of these segments, their duration, the kind of change between them (abrupt or slowly
varying). Clearly, the removal of the full stationarity assumption, turns the procedure for creation
of predictors mentioned in the previous paragraph, not appropriate at all or of reduced value.
For instance, in the simplest case of a mobile client whose roaming patterns change gradually, the
predictors will tend to favor the “old habits” of the client and will adapt to the changing conditions
in a very slow rate. Therefore, the assumption of non time-homogeneous transition probabilities
turns the current predictors inefficient and raise some design challenges for any new scheme that



KATSAROS & MANOLOPOULOS: PREDICTION BY MARKOV CHAINS 10

will be designed to address this assumption. Although research works exist dealing with piecewise
stationarity (e.g., [10]) these works mainly focus on memoryless sources and have not considered
Markov sources.

Markov predictors could still achieve prediction efficiency for piecewise stationary sources, but
they should be armed with some smart mechanisms. For instance, an enhanced £LZ78 scheme is
presented in [1, 8], which inserts into the trie all proper suffixes of a discovered subsequence (a
LZ78 word). Indeed, this improvement is shown to outperform the classic £LZ78 decorrelation
scheme. Although not explicitly mentioned as such in [1], this enhancement can be seen as a
method of modeling intra-word correlations, i.e., an approach to account for the fact that full
stationarity might not be valid for the sequence, in which case the original decorrelation procedure
finds the wrong words. This technique seems appropriate in cases of abrupt changes between
stationary segments, but does it really help for piecewise stationary slowly varying sequences?
Also, the enhancement reported in [4] takes a first step toward addressing this issue, but in many
real applications, for instance in daily movement patterns of mobiles, it may be the case that the
stationary segments are repeating. How could we discover (segment the sequence) and exploit such
repeating statistics? As we mentioned, “full aggregation” (i.e., accumulating counts in nodes) is
not helpful; partial (controlled) or no aggregation could be considered as well, but in any case
novel prediction algorithms should be designed, since, as [11] concluded, there is significant gap
between the performance of the examined Markov predictors and an “optimal” offline predictor.

Summary

Designers of modern wireless networks are increasingly confronted with the issues of providing
seamless and ubiquitous connectivity in a system-independent nature, as well as providing low
access latency to data-hungry applications. Smart wireless networks could deduce future client
locations and allocate resources in advance, in order to mitigate the negative effect of handovers
and perform paging in a cost-effective manner. Similarly, smart agents running on the mobile
clients could forecast future client data needs and preload the respective data from the broadcast
channels, while waiting to get the explicitly-requested information pieces.

This article presented the issues of location and request prediction in wireless networks in a
homogeneous fashion, characterizing them a discrete sequence prediction problems, and surveyed
the major Markovian prediction methods. The article by no means serves as an exhaustive survey,
but as a vehicle to promote understanding and proliferation of ideas. We explained the virtues
of Markov predictors and showed important yet to be addressed research issues. We envision
predictive model design as a fertile research area.
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