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In-memory Stream Indexing of Massive
and Fast Incoming Multimedia Content
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Abstract—In this article, a media storm indexing mechanism is presented, where media storms are defined as fast incoming batches.
We propose an approximate media storm indexing mechanism to index/store massive image collections with varying incoming image
rate. To evaluate the proposed indexing mechanism, two architectures are used: i) a baseline architecture, which utilizes a disk-based
processing strategy and ii) an in-memory architecture, which uses the Flink distributed stream processing framework. This study is the
first in the literature to utilize an in-memory processing strategy to provide a media storm indexing mechanism. In the experimental
evaluation conducted on two image datasets, among the largest publicly available with 80M and 1B images, a media storm generator is
implemented to evaluate the proposed media storm indexing mechanism on different indexing workloads, that is, images that come
with high volume and different velocity at the scale of 105 and 106 incoming images per second. Using the approximate media storm
indexing mechanism a significant speedup factor, equal to 26.32 on average, is achieved compared with conventional indexing
techniques, while maintaining high search accuracy, after having indexed the media storms. Finally, the implementations of both
architectures and media storm indexing mechanisms are made publicly available.

Index Terms—In-memory processing, multimedia storage and search, stream processing.
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1 INTRODUCTION

A PPROXIMATE nearest neighbor (ANN) search over
large amounts of multimedia content is an interest-

ing and fundamental problem in multimedia analysis and
retrieval [1], [2], [3]. ANN search has been widely used for
image similarity search [4], [5], [6], matching local features
[7], [8], and parameter estimation [9]. With the proliferation
of social networks and mobile multimedia applications,
ANN search has become even more demanding, as it needs
to maintain high search accuracy over a massive amount
of multimedia content [10]. To achieve high search accuracy,
ANN search frameworks focus on two main processes: i) the
efficient index/storage; and ii) the similarity search. There-
fore, a serious question has been raised: how can we process
and index/store massive amounts of fast incoming images?
In this article, we define media storms as “large batches of
fast incoming images, typically 10 5 − 10 6 images per second
on average” [11]. Nowadays, there are several applications
that require the media storm management. For example,
the continuously growing and massive image collections
that come from social networks [1], like Flickr [12], a public
picture sharing site, which reported that it has received 1.42,
1.6 and 1.83 million per day, on average, in 2012, 2013 and
2014, respectively, making clear that the number of incom-
ing images will keep increasing every year [13]. Also, the
explosion of the Internet of Things (IoT) with nearly 8 billion
devices connected to the Internet by 2018, will increase the
number of incoming images at an unexpected rate [14].
Therefore, we need a mechanism that can efficiently and
reliably process and index media storms to large numbers
of geographically distributed data centers. Processing media
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storms is computationally intensive; therefore, the challenge
is to support an indexing/storage mechanism that processes
the fast incoming image collections and correctly index them
in a limited time to maintain high search accuracy.

Over the last decade, several frameworks of image sim-
ilarity search strategies of multimedia content, also known
as image descriptors, in distributed databases have been pro-
posed [15], [16], [17], [18], [19]. However, these strategies
are designed in a manner that a collection of descriptors
is processed once and indexed in a distributed database
while search queries are executed over the already pro-
cessed descriptors. When new descriptors seek to insert the
framework, they are indexed in a sequential fashion, as no
parallelization at the indexing process is provided.

Meanwhile, indexing media storms has been studied in
[1]; however, after the media storms have been indexed, the
complex data structures of multiple randomized KD-trees
are used, thus, having high computational cost in the online
search [20]. Additionally, all the aforementioned similarity
search strategies are designed as a disk-based processing
mechanism, which requires a vast amount of I/O opera-
tions in order to process the incoming image collections.
Therefore, this article focuses on the case of in-memory
distributed stream processing of the fast incoming media
storms. In order to perform in-memory distributed stream
processing, several existing frameworks, such as Apache
Flink [21], Apache Spark [22], Apache Storm [23], offer
various libraries to efficiently process a vast amount of data
in a limited time. However, to the best of our knowledge,
none of the above frameworks provides a library to support
stream indexing of media storms.

In-memory mechanisms become the new trend for mul-
tiple high-performance systems, such as database, Big Data
analytics and real-time processing systems, where the mem-
ory becomes the primary data management source [24].
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Shifting the data storage from disk to the memory enables
the systems to achieve over 100 times better response time
and throughput. However, given the resource limitations,
the overall performance of in-memory processing on a
distributed environment can be affected by several design
choices: i) data replication that improves the performance
of processing the same content among different nodes but
allocates more memory than needed; ii) efficient caching
algorithms that load data from the disk to the main memory
to reduce the I/O latency, while preserving a copy of the
cached data to the disk to guarantee data availability; and
iii) data partitioning algorithms that minimize the required
data transfers across different nodes.

Therefore, performing an in-memory distributed index-
ing mechanism of media storms poses the following main
challenges: i) scalability is a required characteristic of index-
ing media storms in order to index a massive amount of
images in a streaming mode into distributed databases and
efficiently search in high accuracy; ii) indexing media storms
should be performed at low latency and no bottlenecks
should be experienced by the incoming image collections;
and iii) to perform an efficient distributed mechanism, a
robust communication messaging system is needed in order
to exchange data using message passing.

1.1 Contribution and Outline

In the preliminary study [11], a parallel media storm in-
dexing mechanism, which handles massive amounts of fast
incoming descriptors, was introduced. The media storm in-
dexing mechanism in [11] utilizes the MapReduce paradigm
to parallelize the sequential indexing mechanism of the
Cloud Based on Image Descriptors’ Dimensions Value Cardinal-
ities (CDVC) framework [20] and index the media storms
in a DVC-based data structure [25]. Despite the fact that
the media storm indexing mechanism in [11] substantially
reduces the computational time of the CDVC’s indexing
mechanism, it suffers from high latency as it performs exact
indexing, which is formally defined as “the indexing of each
of the incoming descriptor in the exact position of the DVC-based
data structure”. Therefore, in this article, the contribution is
summarized as follows: i) an approximate indexing mecha-
nism is proposed using the MapReduce paradigm to reduce
the high latency and high CPU issue of [11]; ii) two different
architectures, a disk-based and an in-memory architecture,
are presented in order to evaluate the benefit of the in-
memory processing in the proposed mechanism, while the
performance of the proposed media storm indexing mech-
anism is examined on different burst incoming rates within
several “storming time frames”, that is, the duration that the
storm lasts; and iii) we verify that the media storms have
been correctly indexed in the DVC-based data structure by
performing search queries, outperforming state-of-the-art
methods in terms of indexing, search time and accuracy.

The rest of this article is organized as follows, Section 2
reviews the related work of similarity search strategies and
in-memory stream processing; Section 3 presents the pre-
liminaries of the previously proposed DVC-based strategy
and outlines the CDVC framework; Section 4 defines the
problem and identifies the CPU and latency issues that the
exact indexing mechanism of [11] poses; Section 5 details

the two architectures to implement the approximate media
storm indexing mechanism and handle the identified issues
from the previous section; Section 6 evaluates the proposed
mechanism on different indexing workloads; and finally,
Section 7 concludes this paper and provides interesting
future directions.

2 RELATED WORK

2.1 Similarity Search Strategies in Distributed
Databases
Over the last decades several similarity search strategies in
distributed databases, such as M-Chord [26], RT-CAN [16],
DKdt [27] and MT-Chord [19], were proposed. These simi-
larity search strategies require the construction of complex
data structures, such as R-trees [16], [19], [26], KD-trees [27],
in order to allocate the multimedia data on the distributed
databases. The construction and the maintenance of such
complex data structures require a significant processing
cost due to the high-dimensional multimedia content [20].
Therefore, the aforementioned similarity search strategies
are inefficient to store and accurately searched over massive
and fast incoming multimedia content.

To avoid the construction of complex data structures that
cannot handle the high-dimensional data, hashing methods
have been widely used [28], [29], [30], [31]. Hashing strate-
gies are divided into data-independent [4], [32], [33] and
data-dependent [6], [29], [34], [35], [36], [37] and are widely
used for ANN search because of their low storage cost and
fast query speed [32]. The main goal of hashing strategies,
such as Spectral Hashing [6], Iterative Quantization [34] and
Anchor Graph Hashing [35] is to preserve the similarities
of the training data using linear or nonlinear functions
when projecting the data to the Hamming space. However,
the aforementioned hashing strategies provide no paral-
lelization while indexing new descriptors and performing
ANN search. The framework in [28] proposed a Multi-Index
Hashing (MIH) strategy, which utilizes different hashing
methods such as Locallity-Sensitive Hashing (LSH) [38] and
Minimal Loss Hashing (MLH) [29] to store the descriptors
M times in M different hash tables, using M disjoint binary
substrings and therefore search the multimedia content in
a parallel manner. Consequently, MIH’s search accuracy
relies on the used hashing method. However, indexing the
incoming descriptors is performed in a sequential order, as
MIH does not support parallelization when learning the
new binary codes. Another strategy to handle the high-
dimensional content of the multimedia data is the Inverted
Multi-Index (IMI) [39], which utilizes the Product Quan-
tization (PQ) strategy [40] to split the high-dimensional
descriptor vectors into dimension groups and store them
in inverted indexes. Although both MIH and IMI manage
to efficiently handle high-dimensional multimedia data and
achieve high search accuracy, no parallelization is supported
during the insertion of the incoming multimedia content,
thus being inefficient to index/store media storms. Our pro-
posed indexing mechanisms not only achieve high search
accuracy but also provide a parallel indexing mechanism
for incoming media storms.

The necessity of parallelization in order to manage
the rapidly increasing volumes of multimedia content is
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discussed in [1], where multimedia content is processed
in batch using the MapReduce paradigm. The incoming
descriptors are inserted in the Hadoop framework and pro-
cessed in parallel. Although [1] accelerates the processing of
media storms using the MapReduce paradigm, Hadoop as
a substrate of the framework hinders the indexing of media
storms. The HDFS memory caching mechanism [41] enables
Hadoop for in-memory processing. However, Hadoop is
a framework primarily for batch processing rather than
stream processing. Moreover, [1] uses randomized KD-trees
to maintain the data allocation of the multimedia content,
the maintenance of which provides additional computa-
tional cost and makes the framework inefficient to handle
the massive amount of multimedia content [20]. On the
other hand, our approach provides an in-memory stream
processing mechanism that indexes the new descriptor vec-
tors in non-complex data structures in order to process
massive media storms.

2.2 In-memory streaming processing
To overcome the I/O latencies that the disk-based frame-
works pose and index the media storms in real-time, in-
memory big data management and processing techniques
are required. Over the last decade, several big data pro-
cessing frameworks have been introduced that are based
on the MapReduce paradigm and perform in-memory pro-
cessing, such as Apache Spark [22], Apache Flink [21] and
Apache Storm [23]. Apache Spark utilizes in-memory data
structures, called resilient distributed datasets (RDDs), to
perform big calculations by pinning memory. Apache Spark
offers a microbatch stream processing model that collects the
data generated over a time-window and process them in a
batch form. Apache Flink utilizes the Lambda Architecture
[42] to accelerate the streaming process and is optimized for
cyclic or iterative processes by using iterative transforma-
tion on collections. Apache Storm architecture consists of
the input stream, called spouts and the computation logic,
called bolts. The stream processing frameworks offer several
libraries (MLib [43] and H2O [44] for Apache Spark; Flink-
ML [45], SAMOA [46] and Gelly [47] for Apache Flink;
and SAMOA [46] for Apache Storm) to support machine
learning and graph analysis. However, to the best of our
knowledge, there is no stream processing framework that
supports a mechanism for indexing the high dimensional
data of media storms.

3 PRELIMINARIES

3.1 The DVC-based strategy
Definition 1 (DVC). ”The DVC of a dimension j ∈ 1, . . . , D is

the number of unique values at the j-th dimension of all the
descriptors in an image collection [11], [20], [25].“

According to the analysis in [25], descriptors’ DVC have
the following three important properties:
Property 1. ”DVC distributions highly depend on the descriptors’

extraction strategies [25].“

Property 2. ”Each descriptor extraction method tends to produce
similar DVC distributions for different dataset sizes; therefore,
ANN search strategies that exploit DVC can scale, as the DVC

distributions over the dimensions are preserved, irrespective of
the dataset sizes [25].“

Property 3. ”Descriptors’ DVC have a strong impact on the ANN
search strategies, both in terms of search time and accuracy
[25].“

Proposition 1. ”In the DVC-based strategy, the goal is to reorder
the storage positions of descriptors according to the value
cardinalities of their dimensions, by performing a multiple sort
algorithm, in order to increase the probability of having two
similar images in storage positions that do not differ more
than a specific global constant range, denoted by a parameter
2W [25].”

3.2 The CDVC framework
CDVC is a cloud-based similarity search framework based
on the DVC-based strategy [20] that supports the following
functionalities: (1) parallel preprocessing of datasets’ descrip-
tors for the storage management in the distributed databases
over the cloud; (2) indexing of a new descriptor q in real-time;
(3) parallel query processing (similarity search) in the cloud to
retrieve the top-k results. In Table 1, the notation of CDVC
is presented.

TABLE 1
NOTATION IN CDVC

Symbol Description
N dataset size
D dimensionality of descriptors
M number of nodes in the cloud

L
the double linked list with the images’ multi-sorted
logical storage positions based on their DVC

p the D-dimensional priority index vector based on DVC
C the D-dimensional DVC vector
T number of threads

Vpk
the set of images with the same primary key pk
at the first sorted dimension with the highest DVC

k the top-k results

Overview: The preprocessing analyzes the N images,
stored in the distributed databases over the cloud. After
the preprocessing has finished, image queries are posed to
the CDVC framework to retrieve the top-k results from the
distributed databases. This is achieved within the indexing
and query processing. The search process receives the D-
dimensional descriptor vq , of a query image q and initially
indexes it to the distributed databases. Afterwards, it com-
pares the new descriptor query q with the already stored
images and return the top-k similar image results.

Preprocessing: It takes as input a set V of the N D-
dimensional descriptors which are stored in the distributed
databases and generates a global double linked list L with
the logical sorted positions of all N descriptors based on
DVC. The preprocessing consists of four main steps: Step #1,
the value cardinalities of a subset of dimensions of N D-
dimensional descriptors based on M different predefined
lower lb(m) and upper ub(m) dimensions’ bounds, with
m = 1, . . . ,M nodes, are calculated and then M dimen-
sion value cardinality vectors C(m) are generated; Step #2,
M different dimension value cardinality vectors C(m) are
merged into a global dimension value cardinality vector C.
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The output is a priority index vector p of the dimensions,
which is calculated by sorting the global dimension value
cardinality vector C in a descending order, assuming that
dimensions with high DVC are more discriminative; in Step
#3, each of the m = 1, . . . ,M nodes retrieves a subset of the
descriptors V(m), and based on the generated priority index
vector p the logical sorting is performed, thus generating M
different double linked lists L(m), which contain the logical
sorted positions of the descriptors in V(m). The M different
double linked lists L(m) are merged into a global double
linked list L in Step #4.

Proposition 2. ”The preprocessing step in the CDVC framework
has the following complexity [20]:

O

(
N · D

M

)
+O(M ·D)+O(D logD)+O

(
D·N

M
·log N

M

)
(1)

Indexing: Given a new query vq , the correct position
posq in the double linked list L based on the priority index
vector p is defined and furthermore, the vq is indexed in
the position posq by updating the double linked list from L
to L′. This is achieved by identifying the set Vpk, which is
formally defined as follows:

Definition 2 (The Vpk set). ”The set of the already stored descrip-
tors that have the same value - primary key pk with query vq

at the first sorted dimension with the highest DVC [20].”:

Proposition 3. ”The complexity of the indexing step is indepen-
dent of the dataset size N , and it is linearly correlated with
the size |Vpk|, that is, the number of the unique primary keys,
and the dimensionality D of the descriptors [20]”:

O(|Vpk| · log |Vpk|) +O(D) (2)

It is noteworthy to mention that no parallelization is
applied during the indexing step of CDVC and each new
query vq is indexed in a sequential order [11].

Query Processing: Given the updated double linked list
L′ and the position posq of the descriptor query q, a set
V2W of descriptors are generated which are located in the
updated double linked list L′, in W previous and W next
to the position posq . The set V2W of descriptors and the
query descriptor vq are then used to calculate the respective
distances between vq and V2W using T parallel threads. The
M different sets d(m) of the calculated distances are then
merged to generate the top-k similar image results.

Proposition 4. ”Given the search radius 2W as a percentage of
the dataset size N , a set of M computational nodes and T par-
allel threads per node, the complexity of the query processing
step in CDVC is linearly correlated with the dimensionality D
of the descriptors and sublinearly correlated with the dataset
size N , and it is equal to [20]”:

O

(
2 ·W
M · T

·D
)
+O(k) (3)

4 HANDLING MEDIA STORMS WITH MAPREDUCE

This section presents how the CDVC indexing step can be
adapted to fit with the MapReduce paradigm. First, the
problem that the CDVC indexing confronts is defined and
then moved to the details of the proposed media storm
indexing mechanism. Two approaches of the media storm
indexing mechanism are described: i) an exact MapReduce
approach that is presented in [11] and identifies the position
of the incoming descriptors in the double linked list L; and
ii) a MapReduce approach that assigns the logical position
to each descriptor in an approximate manner using the
notion of the root descriptor (Definition 5), in order to
reduce the computational complexity and latency of the
exact approach.

4.1 Problem Definition
The indexing step of an incoming descriptor vq in the
CDVC framework locates its logical position in the already
preprocessed double linked list L, resulting in high search
accuracy and low search time [20]. However, the indexing
step in the CDVC framework does not support the case of
indexing many descriptors simultaneously, but indexes and
processes each descriptor separately and not in a batch form.
A media storm is formally defined as follows:
Definition 3 (Media Storm). ”A Media Storm is defined as a

consecutive sequence of batches, where each batch contains a
set X of incoming descriptors at a certain time step within the
storming time frame, that is the duration of media storm.”

A time step equal to one second is set, having an in-
coming batch X per one second. The sizes of the batch |X |
may vary within the storming time frame, corresponding
to the real-case scenario. The challenges of indexing media
storms are: (1) to preserve the CDVC’s search in low time,
by correctly identifying the |X | logical positions of the
incoming images in the double linked list L; and (2) to
keep the computational cost of the media storm indexing
mechanism low. The problem of indexing media storms in
the CDVC framework is formally defined as follows:
Definition 4 (Problem Definition). ”The problem of indexing

media storms is to correctly index a set X of incoming
descriptors in parallel, and update the double linked list from
L to L′, by preserving the multi-sorted logical positions based
on the priority index p.”

4.2 Exact Indexing Mechanism with MapReduce (EMR)
In EMR, the indexing of a set X incoming descriptors can be
divided into three main steps using two map functions and
one reduce function [11]. During Map #1, the set X of the
incoming descriptor vectors are split into M computational
nodes, where each image descriptor vector vq ∈ X is sorted
based on the priority index p. During Map #2, the sorted im-
age descriptor vectorsXpk with the same primary key pk are
grouped into the same computational node m = 1, . . . ,M
following the MapReduce paradigm. The subset Xpk is
combined with the set Vpk and has generated the double
linked sublist L(m). Finally, during the Reduce step, the M
different double linked sublists L(m) are collected by one
computation node and are merged to update the global
double linked list from L to L′.
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Fig. 1. Running example of the proposed media storm indexing mechanism. In the Map 2 step, blue fonts denote the sets Xpk of the incoming batch
X , while red fonts denote the already stored descriptors Vpk, with the same primary key pk.

Proposition 5. ”The indexing step in EMR has the following
complexity [11]”:

O

(
|X | ·D
M

)
+O(|X |) +O

(
|X | · |Vpk|
|Xpk| ·M

)
+O(M) (4)

Figure 1 presents a running example of the proposed
media storm indexing mechanism. The input is the set of
X=10 descriptors vi, i ∈ 1 . . . 10, with D=6 dimensions
and the priority index p = 〈5, 6, 3, 2, 4, 1〉, following the
paradigm of [11]. In the running example, ten descriptors
are considered as an incoming batch at a time step of one
second within the storming time frame. In Step #1, the
dimensions of the ten descriptors are reordered according
to p, generating ten reordered descriptors v′. In Step #2,
according to the primary key pk, the reordered vectors Xpk

are grouped with the preprocessed vectors in the respective
set Vpk of the already stored descriptors. For instance,
Xpk={v′1} is grouped with Vpk={v′i, . . .v′i+j}, because
they have the same primary key pk=2. Also, Xpk={v′8,v′10}
are grouped with Vpk={v′n, . . .v′n+l}, with the same pk=6.
The respective group of descriptors are reordered, gener-
ating M different sublists L(m). In Step #3 of Figure 1,
the M different sublists L(m) are merged to update the
double linked list L accordingly and to store the incoming
descriptors of X .

Although the EMR mechanism ensures the identification
of the exact position in the double linked list L for each of
the incoming descriptors vq , it presents two main draw-
backs as stated below:
Remark 1 (High Latency). Each of the M computational nodes

needs to retrieve the subset Vpk from the distributed database
in order to process the subset Xpk, posing high latency when
the size of the subset Vpk is large.

Remark 2 (High CPU). The indexing media storms is directly
affected by the size of the subsets Xpk and Vpk, increasing thus
the comparisons occurred as the subsets Xpk and Vpk are high
enough.

4.3 Approximate Indexing Mechanism with MapReduce
(AMR)
To efficiently solve the drawbacks of high latency and CPU,
an approximate media storm indexing mechanism with
MapReduce (AMR) is presented in Algorithm 1.

Algorithm 1: Approximate Media Storm Indexing
Algorithm

Input: (1) X , (2) p
Output: L′

1 MAP 1
2 Input : (1) pairs < vi,p >, with vi ∈ X , (2) p
3 Method
4 v′i ← Sort vi based on p
5 pk ← v′i1
6 Emit < pk, v′i >
7 MAP 2
8 Input: (1) pairs < pk, Xpk >, (2) v∗pk
9 Method

10 L(m) ← sort < v′1,v
′
2, . . . ,v

′
|Xpk|

> with v∗pk

11 Emit <key, L(m) >
12 REDUCE
13 Input :<key, < L(1),L(2),L(3), . . . ,L(m) >>
14 Method
15 L′ ←Merge < L(1),L(2),L(3), . . . ,L(m) >
16 Emit <key, L′ >

Following the MapReduce paradigm, the algorithm con-
sists of the following steps:

Map 1: The batch X of the incoming descriptors is
divided into M computational nodes. Each node takes as
input a descriptor vi ∈ X and the priority index p (line 2).
Then, to comply with the DVC-based strategy, the descriptor
vi is reordered based on p (line 4). The value of the first
dimension of the descriptor v′i1 is set as a primary key pk
(line 5). The output of the Map 1 step is a pair <pk, v′i>,
considering the primary key pk as key, and the reordered
descriptor v′i as value. The total complexity of the Map 1

step is O
(
|X |·D
M

)
.

Map 2: For each primary key pk, the m-th computational
node, with m ∈ 1 . . .M , fetches the sets Xpk from the Map
1 step, as well as the root descriptor v∗pk, which is formally
defined as follows:

Definition 5 (Root descriptor vector v∗pk). ”The first ordered
descriptor in the double linked list L that has the same primary
key pk with the subset Xpk.”

Thereafter, the m-th node compares and reorders the
subset Xpk of the incoming descriptors along with the root
descriptor v∗pk, in order to generate the double linked sublist

L(m) (line 17) in O

(
|X |

|Xpk|·M

)
. Finally, the same key is set to
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all the M different computational nodes’ outputs, to process
all the output pairs by a single reducer.

Reduce: The M different double linked sublists L(m),
produced by the Map 2 step, are merged to update the
global double linked list from L to L′, thus indexing the
incoming descriptors of set X , in O(M).
Proposition 6. ”Summarizing, the total complexity of the AMR

is”:

O

(
|X | ·D
M

)
+O(|X |) +O

(
|X |

|Xpk| ·M

)
+O(M) (5)

AMR indexes the incoming descriptors in a position
relatively close to the root descriptor v∗pk in the double
linked list L, instead of the exact position that the EMR
assigns using the whole set Vpk. The benefits of AMR against
EMR are the following:
Remark 3 (Low Latency). The M computational nodes retrieve

from the distributed databases only the root descriptor, v∗pk,
that substantially reduces the latency when comparing with
EMR that retrieves the whole subset of Vpk (Remark 1).

Remark 4 (Low CPU). The subset Xpk is compared and re-
ordered only with the root descriptor v∗pk and indexing media
storms is independent of the size of the subset Vpk.

5 UNDERLYING ARCHITECTURES

The proposed media storm indexing mechanism AMR is
designed to be executed in two different architectures, fol-
lowing the disk-based (baseline) and the in-memory (Flink)
strategy. In this section we present the two architectures that
we have used to implement the EMR and AMR media storm
indexing mechanisms.

Fig. 2. Baseline architecture

5.1 Baseline Architecture
It is a disk-based architecture of AMR (Section 4.3), built
over a cloud infrastructure. Figure 2 shows that the cloud
infrastructure is orchestrated using the OpenStack [48] free
and open-source computing software platform to create

the Virtual Machine (VM) computational nodes. Moreover,
Apache Kafka [49] was installed to provide an efficient and
robust messaging communication between the VM com-
putational nodes, and Apache HBase [50] for distributed
data storage in order to retrieve and store the data in a
distributed manner.

In the baseline architecture, each VM computational
node is responsible for the execution of a different AMR
step. Following this allocation strategy, the baseline archi-
tecture addresses the three challenges described in Section 1
as follows:

• The scalability of the baseline architecture is ensured by
assigning more VM computational nodes to a specific
step of AMR that requires a computationally intensive
task. By allocating more VM instances in a specific step
of AMR we achieve low CPU cost and indexing media
storms time.

• The low latency is preserved based on the AMR mecha-
nism used to index media storms. As each VM com-
putational node at the Map 2 step requires the re-
trieval of only one image descriptor vector v∗pk from
the distributed database, we achieve low latency and
avoid causing bottleneck during the indexing of media
storms.

• The robust messaging communication between the VM
computational nodes is established based on a messag-
ing protocol, namely the Advanced Message Queuing
Protocol (AMQP) [51]. As AMQP provides a reliable
and scalable solution for the VM computational nodes’
communication, message queues are installed between
the respective computational nodes at each AMR step.

Distributed database HBase: The baseline architecture
requires a very high throughput and cheap and elastic
storage that presents low latency. Although modern dis-
tributed databases such as Cassandra [52], Redis [53], etc.
present high performance results, HBase [50] is selected
in the baseline architecture for the following reasons: (1)
High read/write throughput: Indexing media storms mech-
anism requires high aggregate read/write throughput to
store and retrieve a massive amount of descriptors form
the distributed databases. HBase has higher read/write
throughput than other distributed databases, thus reducing
the total latency cost of AMR [54]; (2) Data Consistency and
Disaster Recovery: Indexing media storms requires high data
availability and update of the storage data centers. HBase
achieves strong consistency for both read and write, while
tolerating the data center failure, using data replication [55];
(3) Scalability and Elasticity: Indexing media storms has to
store and maintain a large amount of descriptors at an
unexpected rate. HBase performs stability while adding
incremental capacity to the storage systems with minimal
overhead. In the cases of adding capacity rapidly, HBase
automatically balances load and utilization across the new
hardware with no downtime [54].

Messaging Protocol Apache Kafka: Baseline architec-
ture requires a robust communication protocol for the commu-
nication between the VM computational nodes. Messaging
between different components is required to deliver the data
safely and at scale. The reasons for selecting Apache Kafka
against other popular distributed publish/subscribe mes-
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saging systems, such as RabbitMQ [56], ActiveMQ [57], etc.
are summarized as follows: (1) High throughput: Indexing
media storms requires the transfer of event data (descrip-
tors) between different VM computational nodes with ex-
tremely high velocity. Apache Kafka offers high throughput
over 1 million events per second, by grouping the event data
in small batches of 1-20 events [58]. (2) Scalability: When
indexing media storms it is critical to increase the number
of VM instances according to the data size. This means that
the VM computational nodes cannot be coupled directly.
Kafka is designed as a distributed system that provides
asynchronous decoupling and hence it is able to easily
scale out, reducing the complexity of integration when new
resources are added [59]. (3) Failure recovery: Indexing media
storms requires a robust communication service, even in the
case of a VM failure. Apache Kafka persists messages on
the VM computational nodes’ disk and thus can be used
for consumption when a VM is recovered. Moreover, Kafka
offers replication strategies in order to ensure high data
availability when a failure occurs.

Remark 5 (I/O bottleneck). “AMR (Section 4.3) is designed
in a fashion of processing large amounts of data in a small
amount of time. Therefore, accessing the distributed databases
every time a media storm occurred limits the performance of
the proposed approach because of the additional I/O latency
during the retrieval process. Moreover, the new indexed de-
scriptors participate in the indexing process of the next media
storm, thus making the proposed approach an iterative process
unable to support the high access latency to the distributed
databases.”

5.2 Flink Architecture

To meet the strict real-time requirements for analyzing
mass amount of media storms and indexing the incoming
descriptors within milliseconds, an in-memory strategy that
keeps the data in the random access memory (RAM) all the
time is necessary. As described in Section 5.1, the baseline
architecture fails short to fit the demands of a stream pro-
cessing architecture with low latency due to its dependency
on the indexing/retrieval operation to/from the distributed
databases. In contrast, current stream processing frame-
works, such as Apache Flink [21], Apache Spark [22] and
Apache Storm [23] provide an in-memory processing service
that keeps the inbound data in the cluster’s memory, and
hence reduces the latency in the data transfers.

In this study, Apache Flink is selected for the in-memory
stream processing service against other stream processing
frameworks for the following reasons: (1) Data Consistency:
Flink provides exactly-once guarantees to state updates, in
order to avoid duplicates [60]. (2) High-throughput: Flink has
a high-throughput engine that controllably buffers events
before sending them over the network [60], [61]. (3) Low-
latency: Flink achieves low latency by using a checkpointing
mechanism based on Chandy-Lamport rather than process-
ing data in micro-batches [62]. (4) Message delivery guarantees:
Flink provides states in stateful operators in order to be
correctly restored after a failure occurred [62]. (5) In-memory
processing: Flink automatically allocates 70% of the free heap
space so data can be retained in the random access memory

(RAM) for the operators execution and the in-memory op-
erations are maximized [63]. (6) Scalability: Flink utilizes the
distributed databases as a secondary storage space where
the least recently data are stored to overcome any memory
resource limitations [63].

Apache Flink dataflow: Apache Flink is an in-memory
streaming dataflow engine that provides data distribution,
communication and fault tolerance for distributed compu-
tations over data streams. When submitting a program to a
Flink cluster, a client compiles and preprocess the program
to produce a Directed Acyclic Graph (DAG) using the
Nephele execution engine [64]. A DAG is a tree represen-
tation of the operations that should be applied to the data
set. Each node of the DAG represents an operator (e.g. Map,
Reduce, Join, etc.) and each edge of the DAG represents the
data flow over the operators. Using this DAG, Flink is able
to identify which data should be retained in-memory since
it will be needed by the next operator, thus reducing the
additional I/O bottleneck.

Figure 3 shows the Flink architecture, where media
storms are inserted to our Flink service using the Apache
Kafka messaging service and processed by creating op-
erators similar to the MapReduce paradigm described in
Section 4. Specifically, in Flink job, three main steps are de-
fined as follows: (1) Map 1: the dimensions of the incoming
descriptors are reordered based on the priority index p, (2)
Map 2: the reordered image descriptor vectors are processed
and compared with the already stored image descriptor
vectors, creating the double linked sublists L(m), and (3)
Reducer: the sublists are merged defining the location of the
incoming descriptors.

 

Fig. 3. Flink architecture

Flink Parameters: Apache Flink requires parameter con-
figuration, essential for the performance of the executed op-
erations. The most important parameters are: (1) Number of
VMs: When building a Flink instance to a Cloud infrastruc-
ture, it is necessary to define the number of VMs that will
host the Flink’s master and worker nodes. This parameter
is essential for the parallelization of the executed service.
(2) Number of Task Slots: Since modern VMs provide multi-
core CPU resources, it is necessary to define the number of
Task Slots that each VM is able to host. Thus, one VM in our
cluster is able to execute more than one task at the same time
and exploits all the CPU-cores that are available, reducing
the total execution time of the Flink service.
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6 EXPERIMENTS

6.1 Evaluation setup

Datasets: The experimental evaluation is performed on
GIST [65] of N=80M GIST descriptors of 384 dimensions
and SIFT [66] of N=1B images of SIFT descriptors of 128
dimensions. To the best of our knowledge, these datasets
are among the largest publicly available image collections.

Evaluation Metrics: The following metrics are used to
measure the performance of the examined strategies:
• Indexing time: which consists of the CPU time and

Latency; where CPU time is the time that the media
storms are processed in order to identify their position
in the double linked list L and Latency is the time that
the media storms spend on the messaging service and
the time spend waiting for the already stored image
descriptor vectors to be retrieved from the distributed
databases.

• Search time and Accuracy: where Search time is the
time required to retrieve the top-k results after index-
ing/storing a query descriptor vq , and the Accuracy is
measured according to the average results by a set of
test queries mAP = |Rseq ∩ Rind|/k, with Rseq being
the set of the top-k results, retrieved by the sequential
search and Rind being the set of the top-k results
retrieved by the examined search strategy.

Roadmap: In Section 6.2, we present the media storm
generator to evaluate the performance of the indexing
mechanisms. Next, three set of experiments are conducted:
Experiment#1: Section 6.3 demonstrates the performance of
the baseline and Flink architectures (Section 5) using the
EMR (Section 4.2) and AMR (Section 4.3) indexing mech-
anisms. Experiment#2: Section 6.4 analyzes the impact of
the Flink parameters on the performance of the proposed
indexing mechanism. Experiment#3: Section 6.5 compares
the media storm indexing mechanism with the state-of-the-
art approaches in terms of indexing, search time and mAP
accuracy.

6.2 Media Storm Generator

Media storms are measured in terms of Incoming Image
Rate (IIR), which is defined as follows [11]:

Definition 6 (IIR). ”Incoming Image Rate (IIR) is the number of
incoming images per second.”

To evaluate the performance of the proposed media
storm indexing mechanism, 80% of each dataset were ini-
tially preprocessed, and the remaining 20% is considered
as the media storm size, corresponding to 200M and 16M
descriptors for SIFT and GIST, respectively.

The incoming image rates vary in real-world applica-
tions, where bursts of incoming image rates affect the index-
ing performance of our mechanism. Hence, a media storm
generator is implemented by varying IIR according to the: (i)
Exponential, (ii) Logarithmic, (iii) Random, and (iv) Normal
distributions. The reason for selecting these distributions is
their different characteristics, such as different IIR bursting
frequency and magnitude. Also, the storming time frame
is varied, that is, the media storm duration, in 1, 2, 3, 4
and 5 minutes. This way, different indexing workloads were

generated to test the limits of the proposed media storm in-
dexing mechanisms on the baseline and Flink architectures.

Figure 4 shows the generated indexing workloads for
the different distributions and the media storm durations.
Table 2 presents the average IIR and the standard devi-
ations of both the SIFT and GIST datasets for different
distributions and storm durations. The Normal distribution
generates a more intensive media storm workload at every
storming time frame, as our indexing mechanism receives
more descriptors on every second than the other distribu-
tions. Specifically, the highest IIR picks/bursts, presented in
Figure 4, of the Normal distribution in a 1-minute storm-
ing time frame is 16 × 106 for SIFT ( 11 × 105 for GIST
respectively). In contrast, the highest IIR picks/bursts of
the Exponential distribution is limited to 15 × 106 for SIFT
(7× 105 for GIST respectively), whereas for the Logarithmic
distribution is limited to 3.8 × 106 for SIFT ( 3.2 × 105

for GIST respectively) and for the Random distribution is
9.9× 106 (4.6× 105 respectively).

TABLE 2
IIR FOR DIFFERENT DISTRIBUTIONS AND STORMING TIME

FRAMES IN THE SIFT AND GIST DATASETS.

Distribution
Dataset Storming Time Exponential Logarithmic Random Normal

Frame (min)

SIFT

1 3.33 ± 4.52 3.33 ± 0.45 3.33 ± 2.21 3.33 ± 5.18
2 1.66 ± 2.42 1.66 ± 0.37 1.66 ± 1.75 1.66 ± 2.54
3 1.11 ± 1.53 1.11 ± 0.27 1.11 ± 0.31 1.11 ± 1.67
4 0.83 ± 1.12 0.83 ± 0.18 0.83 ± 0.14 0.83 ± 1.25
5 0.66 ± 0.89 0.66 ± 0.09 0.66 ± 0.20 0.66 ± 1.02

GIST

1 2.66 ± 2.42 2.66 ± 0.45 2.66 ± 0.93 2.66 ± 3.72
2 1.33 ± 1.36 1.33 ± 0.35 1.33 ± 0.36 1.33 ± 1.93
3 0.89 ± 0.98 0.89 ± 0.26 0.89 ± 0.22 0.89 ±1.23
4 0.66 ± 0.79 0.66 ± 0.18 0.66 ± 0.20 0.66 ± 0.94
5 0.53 ± 0.56 0.53 ± 0.09 0.53 ± 0.20 0.53 ± 0.77

6.3 Comparison of Underlying Architectures
In this study, the benefits of the proposed media storm in-
dexing mechanism are evaluated using the two architectures
described in Section 5:
• Baseline-AMR: is the disk-based architecture built on

the cloud infrastructure (Section 5.1) that implements
the AMR indexing mechanism (Section 4.3).

• Flink-AMR: is the in-memory architecture (Section 5.2)
built on the Flink stream processing framework that im-
plements the AMR indexing mechanism (Section 4.3).

• Flink-EMR: is the in-memory architecture (Section 5.2)
built on the Flink stream processing framework that
implements the EMR indexing mechanism (Section 4.2).

The implementations of our media storm indexing mech-
anisms using both the baseline and the Flink architectures
are made available at:

https://github.com/stefanosantaris/StormLibrary
Cloud Configuration: As presented in Section 5, the

OpenStack cloud computing software platform for the real
cloud infrastructure supports the default five different types
of VM instances, that is, tiny, small, medium, large and
xlarge, depending on the amount of resources that each VM
reserves [67]. In our experiments, 62 distinct VM instances
(Table 4) were used. These instances were deployed on 11
Dell PowerEdge servers, each with 2 Intel Xeon X5660 (24
cores), 40GB of RAM and 2TB of SSD storage. We used

https://github.com/stefanosantaris/StormLibrary
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Fig. 4. IIR in SIFT-1B (×106 incoming images per second). For constrained storming time frames the indexing workloads are significantly increased.

TABLE 3
TOTAL INDEXING TIME FOR DIFFERENT DISTRIBUTIONS AND STORMING TIME FRAMES.

Distribution
Dataset Storming Time Architecture Exponential Logarithmic Random Normal

Frame(min)

SIFT

1
Baseline-AMR 2,322 1,843 1,547 2,743
Flink-EMR 1,039 988 958 1,057
Flink-AMR 528 507 503 621

2
Baseline-AMR 2,034 1,689 1,449 2,349
Flink-EMR 910 784 805 909
Flink-AMR 489 442 429 548

3
Baseline-AMR 1,886 1,518 1,314 1,804
Flink-EMR 715 595 734 820
Flink-AMR 404 361 402 506

4
Baseline-AMR 1,128 1,127 1,193 1,627
Flink-EMR 592 496 695 638
Flink-AMR 387 343 386 407

5
Baseline-AMR 847 897 831 1,041
Flink-EMR 518 447 556 566
Flink-AMR 344 323 312 381

GIST

1
Baseline-AMR 1,323 1,214 1,128 1,562
Flink-EMR 951 911 1,006 1,030
Flink-AMR 489 426 410 531

2
Baseline-AMR 1,301 1,023 962 1,434
Flink-EMR 734 722 896 912
Flink-AMR 435 408 385 482

3
Baseline-AMR 1,261 913 804 1,122
Flink-EMR 637 613 764 750
Flink-AMR 393 345 339 399

4
Baseline-AMR 1,084 847 759 1,023
Flink-EMR 477 431 701 619
Flink-AMR 329 331 321 375

5
Baseline-AMR 752 646 697 853
Flink-EMR 450 415 661 521
Flink-AMR 314 309 306 334
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TABLE 4
CLOUD CONFIGURATION.

# of VMs Type of VM # of Cores RAM Disk Usage
30 Large 4 8 GB 80 GB Computation
2 Small 1 2 GB 20 GB Queue
30 Large 4 8 GB 80 GB Storage (HBase)

the OpenStack Folsom Release, while the architecture for
the setup was similar to the Amazon Web Services (AWS),
that is, Elastic Compute Cloud for computing nodes; Simple
Storage Service for storage; Amazon Machine Images for
image services; and Elastic Block Store for block storage. The
HBase distributed data storage was installed in 30 large VM
instances to retrieve and store the data in a distributed man-
ner. In addition, two small VM instances were utilized to
install the Apache Kafka service. The computational power
was distributed in 30 large VM instances, corresponding to
the M=30 computational nodes of CDVC. Hence, a total of
242 Cores, 484 GB RAM and 4.84 TB Hard Disk Storage were
utilized. To run our experiments on the Flink distributed
streaming framework, a Flink cluster was deployed on the
same 30 large VM instances as the M=30 computational
nodes. Large VM instances were used for the M compu-
tational nodes in order to increase the parallelization on
each VM instance, with each large VM instance having four
CPU cores. To monitor the indexing times (milliseconds),
several timestamps were added on each incoming descrip-
tor. Moreover, to calculate the total indexing time on Flink,
the Monitoring Rest API was utilized [68].

In Table 3, the total indexing time is presented when
different distributions and storming time frames are used.
We can make the following observations:

– Performance on different time frames and distributions:
In all architectures, the total indexing time is decreased for
larger storming time frames, as IIR is reduced. Moreover,
it is observed that the total indexing time is higher when
Normal distribution is applied, as it has the higher indexing
workload than the Logarithmic, Random and Exponential
distributions.
– Comparison of Baseline-AMR against Flink-AMR: The
total indexing time of Flink-AMR presents 3.72, 3.55, 3.18
and 3.8 speedup factor against Baseline-AMR for the SIFT
dataset and for the Exponential, Logarithmic, Random and
Normal distributions, respectively (2.92, 2.53, 2.45, 2.8 for
the GIST dataset). This happens because Baseline-AMR uti-
lizes a disk-based strategy as it retrieves an already stored
descriptor every time a new descriptor is indexed (Remark
1), while Flink-AMR maintains the descriptor in memory
(Remark 3), thus reducing the additional I/O latency.
– Comparison of Flink-AMR against Flink-EMR: When
comparing Flink-EMR with Flink-AMR it is observed that
the total indexing time is decreased by 70.66%, 73.94%,
50.64%, 79.72% when Flink-AMR is applied for the SIFT
dataset and for the Exponential, Logarithmic, Random and
Normal distributions, respectively (56.44%, 42.2%, 7.38%,
44.57% for the GIST dataset). Moreover, Flink-AMR outper-
forms Flink-EMR, as the incoming descriptors vq in Flink-
AMR are compared only with the respective root descriptor
v∗pk, instead of the subset Vpk of Flink-EMR (Remark 4).
Thus, Flink-AMR has lower Latency and CPU time.

– CPU times on different time frames and distributions:
As the storm time frame increases, the total indexing time
between the Flink-EMR and Flink-AMR mechanism is de-
creased by a 61.03% on average for the Exponential, Log-
arithmic, Random and Normal distributions for the SIFT
dataset (62.92% on average for the GIST dataset). This
occurred as Flink-AMR is parameter free, that is, it is only
affected by the IIR. Therefore, each incoming descriptor vq

in Flink-AMR is compared only with the root descriptor v∗pk,
and thus the CPU time equals 4.105 and 8.091 milliseconds
for the SIFT and GIST datasets, respectively. In contrast,
Flink-EMR, which compares the incoming descriptor vq

with the whole set Vpk, not only is affected by the IIR but
also by the number of comparisons between the incoming
descriptors and the set Vpk that are accomplished during the
media storms. Thus, the average CPU time for indexing each
incoming descriptor is 112.172 and 183.123 milliseconds,
for the SIFT and GIST datasets, respectively. Increasing the
time storm frame, Flink-EMR performs lower number of
comparisons every second and the total indexing time is
reduced significantly. We would like to mention that in both
Flink-AMR and Flink-EMR the average CPU time for each
independent indexing is not affected by the distribution
used to generate the indexing workload, since each new
descriptor is compared with the same number of already
stored descriptors, that is one (with the root descriptor v∗pk)
and |Vpk| for Flink-AMR and Flink-EMR, respectively.
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Fig. 5. Total latency using a 3 minute storming time frame.

Figure 5 presents the impact of the latency in the pro-
posed indexing mechanisms using a 3 minute storming time
frame. The following observations were noted:
• Baseline-AMR presents higher latency than both the

Flink-AMR and Flink-EMR, as it is a disk-based ar-
chitecture. Since Baseline-AMR is not designed as an
in-memory execution job, 83% of the total indexing
time is spent in latency, such as transfer the media
storm through the Apache Kafka service and waiting
the already stored root descriptor to be retrieved from
the HBase distributed database.

• As Flink is an in-memory processing architecture, the
already retrieved image descriptor vectors are retained
in the VMs RAM, reducing the additional latency of
the HBase read operation for the next descriptor. Thus,
the network latency constituted the 62% of the total
indexing time of Flink-AMR and Flink-EMR.

• Flink-AMR presents lower latency than Flink-EMR.
This happens because Flink-AMR requires the retrieval
of only the root descriptor v∗pk from the distributed
database, thus reducing the latency to 39% of the total
indexing time on average.



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2697441, IEEE
Transactions on Big Data

11

0 10
-4

10
-2 1 10 20 30 40 50

2W (%)

10
-2

10
-1

10
0

10
1

10
2

m
A

P
 (

%
)

SIFT

Flink-AMR

Flink-EMR

0 10
-4

10
-2 1 10 20 30 40 50

2W (%)

10
0

10
1

10
2

m
A

P
 (

%
)

GIST

Flink-AMR

Flink-EMR

(a) (b)

Fig. 6. Search accuracy mAP by varying the search radius 2W .

In Figure 6, the search accuracy for both the Flink-AMR
and Flink-EMR indexing mechanisms is presented, varying
the search radius 2W . Figure 6 shows that Flink-AMR
has lower mAP than the exact approach when the search
radius 2W is extremely low. However, as the search radius
increases, the Flink-AMR indexing mechanism presents sim-
ilar search accuracy with Flink-EMR. This happens because
the incoming descriptors of media storms are relatively close
to their exact position in the double linked list L that Flink-
EMR would assign, for a larger search radius 2W .

6.4 Flink Parameter Sensitivity

Next, we evaluate the performance of Flink-AMR by vary-
ing the following Flink parameters: the number of VMs and
the number of task slots on each VM (Section 5.2).
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Fig. 7. Flink parameter sensitivity on media storm indexing mechanism

Figure 7(a) presents the total indexing time when differ-
ent number of VMs are used for the Flink-AMR indexing
mechanism. As the number of VMs increases, the total in-
dexing time is linearly decreases. However, it is obvious that
increasing the number of VMs over 30, the total indexing
time of Flink-AMR is not further decreased. This occurs
due to the grouping process that is applied in the Map
2 step based on the primary key pk of each descriptor.
Specifically, each VM in the Map 2 step retrieves the subset
Xpk of descriptors with the same primary key pk. Thus, the
number of VMs depends on the number of primary keys
that exist in the respective media storm. Each VM is a multi-
core instance with 4 CPU-cores, able to receive four different
subsets of Xpk. Increasing the number of VMs more than 30
computational nodes has no effect on the performance of
the media storm indexing mechanism, as the primary keys
of the reordered descriptors from the Map 1 step are less
than 120 and no additional computational node is needed.

Figure 7(b) reports the total indexing time by varying the
number of task slots on each VM computational node. The

number of task slots defines the number of jobs that each
VM can execute in parallel. It is observed that increasing the
number of task slots in the multi-core VMs more than four
does not provide any substantial improvement to the total
indexing time, as each VM has four CPU-cores (Section 6.3).

6.5 Comparison with State-Of-The-Art
In this set of experiments, the following methodologies are
compared:
• Flink-AMR: (Section 4.3): the 2W search radius was

varied as in the experiments of Section 6.3.
• Flink-EMR: (Section 4.2): similarly, the search radius

was varied as in Flink-AMR.
• Multi-Index Hashing (MIH): M=8 hash tables were set,

corresponding to the number of CPU cores and MLH
as the default hashing method to compute the hash
bits. The number of bits was varied in 8, 16, 32 and
64 because the implementation of MIH caused memory
overflows for larger number of bits.

• FLANN: the randomized KD-trees algorithm was used
with a 27 branching factor, by varying the number
of randomized KD-trees in (25, 26, 27, 28, 29, 210) and
setting M=8 CPU-cores to search in parallel over the
constructed KD-tree.

• Inverted Multi-Index (IMI): the list length was varied
in (28, 212, 216) using a codebook with size 214.

As MIH, FLANN and IMI are not implemented to
work in a cloud infrastructure, for fair comparison, all
the experiments of the aforementioned methodologies were
conducted on a single 8-core machine of 3.3 GHz CPU with
18 GB main memory, while the descriptors were stored in
HBase similar to our approaches. In this set of experiments,
only the CPU time excluding the latency times is reported.
Although MIH, FLANN and IMI’s implementation support
parallel search, the indexing of the incoming descriptors is
performed in a sequential manner. Therefore, in this set of
experiments, a smaller media storm of 1K incoming descrip-
tors/test queries is considered which have to be indexed in
a batch.

Table 5 presents the total indexing time of the aforemen-
tioned methodologies for the 1K test queries. It is observed
that Flink-AMR achieves 51.99, 8.89 and 25.43 speedup
factor against IMI, MIH and FLANN for the SIFT dataset,
respectively (24.51, 6.26, 40.82 for the GIST dataset). This
happens because IMI, MIH and FLANN provide no paral-
lelization during the indexing of media storms. In contrast,
Flink-EMR and Flink-AMR not only provide parallelization
but are also parameter-free in terms of indexing. Flink-AMR
achieves 2.39 and 2.35 speedup factor against Flink-EMR, as
Flink-EMR compares the test query vq with the subset Vpk
of the already stored descriptor, while Flink-AMR requires
only one comparison of vq with the root descriptor v∗pk.

In Figure 8, the search accuracy is reported after the
media storms have been indexed. This is to evaluate if the
descriptors have been properly indexed. With respect to the
online query processing performance, Flink-AMR achieves
high mAP in low search time. It can also be observed in
Figure 6, for small values of the search radius 2W , the
mAP accuracy is lower than Flink-EMR. However, as the
search radius increases, Flink-AMR maintains equal search
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TABLE 5
TOTAL INDEXING TIME IN SECONDS FOR THE 1K TEST QUERIES.

BOLD DENOTES THE BEST METHOD.

Dataset
Method Parameter SIFT GIST
Flink-AMR - 35.123 42.192
Flink-EMR - 84.037 99.275

IMI

List Length
28 1826.283 1034.313
212 1937.937 1376.348
216 2384.762 1772.183

MIH

# of bits
8 312.383 264.317
16 367.274 298.193
32 426.487 327.192
64 887.294 674.391

FLANN

# of KD-Trees
25 893.217 1722.201
26 1078.402 2006.233
27 2344.492 2228.017
28 3567.451 3479.182
29 4006.411 3614.726
210 5232.114 5278.273

accuracy to Flink-EMR. Both Flink-AMR and Flink-EMR
present higher search accuracy in lower search time against
the competitive similarity search strategies. For instance,
despite the fact that the search time of MIH is low, MIH
preserves the limited mAP accuracy of the MLH hashing
method. FLANN searches the complex structures of ran-
domized KD-trees in parallel, making thus the search time
high for many randomized KD-Trees.

6.6 Discussion

The experimental results showed that it is essential to pro-
vide an efficient indexing mechanism in order to index a
massive amount of media storms generated by the modern
multimedia applications. To evaluate the performance of
EMR and AMR, large-scale experiments were conducted on
a real-cloud environment using two image datasets, which
are among the largest publicly available, with 80M and
1B images. Media storms with high volume and different
velocity were generated at the scale of 105 and 106 incoming
images per second. Moreover, two different architectures
were used in order to identify the benefit of the in-memory
processing against the disk-based processing. This means
that for the disk-based processing, the stored descriptors
can be retrieved from the distributed database when a new
descriptor is received; while for the in-memory processing,
the most frequent descriptors are maintained in the memory
of each VM computational node. These experiments showed
that the in-memory processing using the Flink distributed
stream processing framework accelerates the total indexing
time, achieving a speedup factor equal to 3.12 on average.
Moreover, since we retain the most frequent descriptors in
the memory, while the rest of the descriptors are stored in
the distributed databases, our media storm indexing mech-
anisms are able to scale, overcoming the memory resource
limitations of the distributed environment.

Meanwhile, the EMR mechanism presents high latency
and high CPU cost because of the number of descriptors
which have to be retrieved from the distributed databases
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Fig. 8. Comparison of Flink-AMR against baselines in SIFT and GIST.

and the number of required comparisons to index the in-
coming descriptors. In contrast, the AMR mechanism over-
comes the high latency and high CPU issues of EMR, by fol-
lowing an approximate strategy. AMR minimizes the num-
ber of descriptors retrieved from the distributed databases
and compared with the incoming descriptor, achieving a
speedup factor of 2.37 on average in the two evaluation
datasets.

Regarding the search accuracy, the proposed AMR me-
dia storm indexing mechanism indexes the incoming de-
scriptors efficiently in order to preserve the high search
accuracy of EMR. Instead of using a subset of descriptors
with the same primary key, the approximate mechanism
of AMR uses a root descriptor and indexes the incoming
descriptors in a relative position that is close to the position
that the exact mechanism of EMR indexes. As a result, AMR
presents lower search accuracy than EMR when the search
radius 2W is extremely low, while they have similar search
accuracy for high search radius 2W .

However, this study showed that both the EMR and
AMR mechanisms outperform the baseline methodologies,
in terms of indexing, search time and accuracy. For example,
despite the fact that IMI, MIH and FLANN support the
indexing of incoming descriptors, they present extremely
low performance when new descriptors are coming as me-
dia storms since they perform sequential indexing. It was
observed that AMR outperforms the baseline methodologies
and achieves an average speedup factor of 11.09 in the total
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indexing time for the two evaluation datasets.
Real-world applications have to index a vast amount

of multimedia content; consequently, to account for the
fact that real-world multimedia systems have to scale, it
is worth to examine the implementation of AMR to index
media storms. For example, social networks like Flickr [12]
and Instagram [69], where users upload photos following
different distributions according to the popular events, can
benefit from AMR by efficiently indexing the millions of
new images that are generated per day in a streaming mode
and with limited latency. Moreover, with the proliferation
of the IoT where billions of sensors, web cameras, and
so on produce a vast amount of multimedia content at
an unexpected rate, AMR as an IoT service can provide a
scalable solution to index the generated media storms [14].

7 CONCLUSION

This article presented an efficient approximate media storm
indexing mechanisms with MapReduce (AMR) that over-
comes the high CPU and latency issues of the exact media
storm indexing mechanism (EMR). Moreover, the EMR and
AMR indexing mechanisms were implemented using two
architectures, a baseline architecture that uses a disk-based
strategy and an in-memory strategy using the Flink stream
processing framework. As far as literature is concerned, this
is the first study to propose a media storm indexing mech-
anism using the in-memory strategy. This study showed
that the Flink-AMR proposed mechanism achieves a 3.12
speedup factor in the total indexing time against the Flink-
EMR mechanism, for different indexing workloads. The
experimental evaluation also demonstrated that the Flink-
AMR mechanism maintains high search accuracy against
state-of-the-art approaches in low time, after the media
storms have been indexed.

Interesting topics for future work are: i) to monitor
the resources allocated by the CDVC components and
automatically provide elasticity [70]; ii) to follow a data
intensive workload optimization strategy for multi-query
execution [71].
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