

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2697441, IEEE
Transactions on Big Data

11

0 10
-4

10
-2 1 10 20 30 40 50

2W (%)

10
-2

10
-1

10
0

10
1

10
2

m
A

P
 (

%
)

SIFT

Flink-AMR

Flink-EMR

0 10
-4

10
-2 1 10 20 30 40 50

2W (%)

10
0

10
1

10
2

m
A

P
 (

%
)

GIST

Flink-AMR

Flink-EMR

(a) (b)

Fig. 6. Search accuracy mAP by varying the search radius 2W .

In Figure 6, the search accuracy for both the Flink-AMR
and Flink-EMR indexing mechanisms is presented, varying
the search radius 2W . Figure 6 shows that Flink-AMR
has lower mAP than the exact approach when the search
radius 2W is extremely low. However, as the search radius
increases, the Flink-AMR indexing mechanism presents sim-
ilar search accuracy with Flink-EMR. This happens because
the incoming descriptors of media storms are relatively close
to their exact position in the double linked list L that Flink-
EMR would assign, for a larger search radius 2W .

6.4 Flink Parameter Sensitivity

Next, we evaluate the performance of Flink-AMR by vary-
ing the following Flink parameters: the number of VMs and
the number of task slots on each VM (Section 5.2).

0 10 20 30 40 50

of VMs

350

400

450

500

550

600

T
o
ta

l
In

se
rt

io
n
 T

im
e
 (

se
c
)

Cluster Size Sensitivity

SIFT

GIST

1 2 3 4 5 6

of Task Slots

350

400

450

500

550

600

650

T
o
ta

l
In

se
rt

io
n
 T

im
e
 (

se
c
)

Task Slots Sensitivity

SIFT

GIST

(a) (b)

Fig. 7. Flink parameter sensitivity on media storm indexing mechanism

Figure 7(a) presents the total indexing time when differ-
ent number of VMs are used for the Flink-AMR indexing
mechanism. As the number of VMs increases, the total in-
dexing time is linearly decreases. However, it is obvious that
increasing the number of VMs over 30, the total indexing
time of Flink-AMR is not further decreased. This occurs
due to the grouping process that is applied in the Map
2 step based on the primary key pk of each descriptor.
Specifically, each VM in the Map 2 step retrieves the subset
Xpk of descriptors with the same primary key pk. Thus, the
number of VMs depends on the number of primary keys
that exist in the respective media storm. Each VM is a multi-
core instance with 4 CPU-cores, able to receive four different
subsets of Xpk. Increasing the number of VMs more than 30
computational nodes has no effect on the performance of
the media storm indexing mechanism, as the primary keys
of the reordered descriptors from the Map 1 step are less
than 120 and no additional computational node is needed.

Figure 7(b) reports the total indexing time by varying the
number of task slots on each VM computational node. The

number of task slots defines the number of jobs that each
VM can execute in parallel. It is observed that increasing the
number of task slots in the multi-core VMs more than four
does not provide any substantial improvement to the total
indexing time, as each VM has four CPU-cores (Section 6.3).

6.5 Comparison with State-Of-The-Art
In this set of experiments, the following methodologies are
compared:
• Flink-AMR: (Section 4.3): the 2W search radius was

varied as in the experiments of Section 6.3.
• Flink-EMR: (Section 4.2): similarly, the search radius

was varied as in Flink-AMR.
• Multi-Index Hashing (MIH): M=8 hash tables were set,

corresponding to the number of CPU cores and MLH
as the default hashing method to compute the hash
bits. The number of bits was varied in 8, 16, 32 and
64 because the implementation of MIH caused memory
overflows for larger number of bits.

• FLANN : the randomized KD-trees algorithm was used
with a 27 branching factor, by varying the number
of randomized KD-trees in (25, 26, 27, 28, 29, 210) and
setting M=8 CPU-cores to search in parallel over the
constructed KD-tree.

• Inverted Multi-Index (IMI): the list length was varied
in (28, 212, 216) using a codebook with size 214.

As MIH, FLANN and IMI are not implemented to
work in a cloud infrastructure, for fair comparison, all
the experiments of the aforementioned methodologies were
conducted on a single 8-core machine of 3.3 GHz CPU with
18 GB main memory, while the descriptors were stored in
HBase similar to our approaches. In this set of experiments,
only the CPU time excluding the latency times is reported.
Although MIH, FLANN and IMI’s implementation support
parallel search, the indexing of the incoming descriptors is
performed in a sequential manner. Therefore, in this set of
experiments, a smaller media storm of 1K incoming descrip-
tors/test queries is considered which have to be indexed in
a batch.

Table 5 presents the total indexing time of the aforemen-
tioned methodologies for the 1K test queries. It is observed
that Flink-AMR achieves 51.99, 8.89 and 25.43 speedup
factor against IMI, MIH and FLANN for the SIFT dataset,
respectively (24.51, 6.26, 40.82 for the GIST dataset). This
happens because IMI, MIH and FLANN provide no paral-
lelization during the indexing of media storms. In contrast,
Flink-EMR and Flink-AMR not only provide parallelization
but are also parameter-free in terms of indexing. Flink-AMR
achieves 2.39 and 2.35 speedup factor against Flink-EMR, as
Flink-EMR compares the test query vq with the subset Vpk
of the already stored descriptor, while Flink-AMR requires
only one comparison of vq with the root descriptor v∗pk.

In Figure 8, the search accuracy is reported after the
media storms have been indexed. This is to evaluate if the
descriptors have been properly indexed. With respect to the
online query processing performance, Flink-AMR achieves
high mAP in low search time. It can also be observed in
Figure 6, for small values of the search radius 2W , the
mAP accuracy is lower than Flink-EMR. However, as the
search radius increases, Flink-AMR maintains equal search

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2697441, IEEE
Transactions on Big Data

12

TABLE 5
TOTAL INDEXING TIME IN SECONDS FOR THE 1K TEST QUERIES.

BOLD DENOTES THE BEST METHOD.

Dataset
Method Parameter SIFT GIST
Flink-AMR - 35.123 42.192
Flink-EMR - 84.037 99.275

IMI

List Length
28 1826.283 1034.313
212 1937.937 1376.348
216 2384.762 1772.183

MIH

of bits
8 312.383 264.317
16 367.274 298.193
32 426.487 327.192
64 887.294 674.391

FLANN

of KD-Trees
25 893.217 1722.201
26 1078.402 2006.233
27 2344.492 2228.017
28 3567.451 3479.182
29 4006.411 3614.726
210 5232.114 5278.273

accuracy to Flink-EMR. Both Flink-AMR and Flink-EMR
present higher search accuracy in lower search time against
the competitive similarity search strategies. For instance,
despite the fact that the search time of MIH is low, MIH
preserves the limited mAP accuracy of the MLH hashing
method. FLANN searches the complex structures of ran-
domized KD-trees in parallel, making thus the search time
high for many randomized KD-Trees.

6.6 Discussion

The experimental results showed that it is essential to pro-
vide an efficient indexing mechanism in order to index a
massive amount of media storms generated by the modern
multimedia applications. To evaluate the performance of
EMR and AMR, large-scale experiments were conducted on
a real-cloud environment using two image datasets, which
are among the largest publicly available, with 80M and
1B images. Media storms with high volume and different
velocity were generated at the scale of 105 and 106 incoming
images per second. Moreover, two different architectures
were used in order to identify the benefit of the in-memory
processing against the disk-based processing. This means
that for the disk-based processing, the stored descriptors
can be retrieved from the distributed database when a new
descriptor is received; while for the in-memory processing,
the most frequent descriptors are maintained in the memory
of each VM computational node. These experiments showed
that the in-memory processing using the Flink distributed
stream processing framework accelerates the total indexing
time, achieving a speedup factor equal to 3.12 on average.
Moreover, since we retain the most frequent descriptors in
the memory, while the rest of the descriptors are stored in
the distributed databases, our media storm indexing mech-
anisms are able to scale, overcoming the memory resource
limitations of the distributed environment.

Meanwhile, the EMR mechanism presents high latency
and high CPU cost because of the number of descriptors
which have to be retrieved from the distributed databases

0 500 1000 1500 2000 2500

Search Time (msecs)

0

20

40

60

80

100

m
A

P
(%

)

SIFT

FLANN

IMI

MIH

Flink-EMR

Flink-AMR

0 1000 2000 3000 4000 5000

Search Time (msecs)

0

20

40

60

80

100

m
A

P
(%

)

GIST

FLANN

IMI

MIH

Flink-EMR

Flink-AMR

Fig. 8. Comparison of Flink-AMR against baselines in SIFT and GIST.

and the number of required comparisons to index the in-
coming descriptors. In contrast, the AMR mechanism over-
comes the high latency and high CPU issues of EMR, by fol-
lowing an approximate strategy. AMR minimizes the num-
ber of descriptors retrieved from the distributed databases
and compared with the incoming descriptor, achieving a
speedup factor of 2.37 on average in the two evaluation
datasets.

Regarding the search accuracy, the proposed AMR me-
dia storm indexing mechanism indexes the incoming de-
scriptors efficiently in order to preserve the high search
accuracy of EMR. Instead of using a subset of descriptors
with the same primary key, the approximate mechanism
of AMR uses a root descriptor and indexes the incoming
descriptors in a relative position that is close to the position
that the exact mechanism of EMR indexes. As a result, AMR
presents lower search accuracy than EMR when the search
radius 2W is extremely low, while they have similar search
accuracy for high search radius 2W .

However, this study showed that both the EMR and
AMR mechanisms outperform the baseline methodologies,
in terms of indexing, search time and accuracy. For example,
despite the fact that IMI, MIH and FLANN support the
indexing of incoming descriptors, they present extremely
low performance when new descriptors are coming as me-
dia storms since they perform sequential indexing. It was
observed that AMR outperforms the baseline methodologies
and achieves an average speedup factor of 11.09 in the total

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2697441, IEEE
Transactions on Big Data

13

indexing time for the two evaluation datasets.
Real-world applications have to index a vast amount

of multimedia content; consequently, to account for the
fact that real-world multimedia systems have to scale, it
is worth to examine the implementation of AMR to index
media storms. For example, social networks like Flickr [12]
and Instagram [69], where users upload photos following
different distributions according to the popular events, can
benefit from AMR by efficiently indexing the millions of
new images that are generated per day in a streaming mode
and with limited latency. Moreover, with the proliferation
of the IoT where billions of sensors, web cameras, and
so on produce a vast amount of multimedia content at
an unexpected rate, AMR as an IoT service can provide a
scalable solution to index the generated media storms [14].

7 CONCLUSION

This article presented an efficient approximate media storm
indexing mechanisms with MapReduce (AMR) that over-
comes the high CPU and latency issues of the exact media
storm indexing mechanism (EMR). Moreover, the EMR and
AMR indexing mechanisms were implemented using two
architectures, a baseline architecture that uses a disk-based
strategy and an in-memory strategy using the Flink stream
processing framework. As far as literature is concerned, this
is the first study to propose a media storm indexing mech-
anism using the in-memory strategy. This study showed
that the Flink-AMR proposed mechanism achieves a 3.12
speedup factor in the total indexing time against the Flink-
EMR mechanism, for different indexing workloads. The
experimental evaluation also demonstrated that the Flink-
AMR mechanism maintains high search accuracy against
state-of-the-art approaches in low time, after the media
storms have been indexed.

Interesting topics for future work are: i) to monitor
the resources allocated by the CDVC components and
automatically provide elasticity [70]; ii) to follow a data
intensive workload optimization strategy for multi-query
execution [71].

REFERENCES

[1] D. Moise, D. Shestakov, G. T. Gudmundsson, and L. Amsaleg,
“Terabyte-scale image similarity search: Experience and best prac-
tice,” in Proceedings IEEE International Conference on Big Data, 2013,
pp. 674–682.

[2] H. Wang, B. Xiao, L. Wang, and J. Wu, “Accelerating large-scale
image retrieval on heterogeneous architectures with spark,” in
Proceedings of the 23rd ACM International Conference on Multimedia,
2015, pp. 1023–1026.

[3] M. Muja and D. G. Lowe, “Scalable nearest neighbour algorithms
for high dimensional data,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[4] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes
from shift-invariant kernels,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds., 2009, pp. 1509–1517.

[5] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large
image databases for recognition,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, June 2008, pp.
1–8.

[6] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in
Advances in Neural Information Processing Systems 21, D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, Eds., 2009, pp. 1753–
1760.

[7] H. Jegou, M. Douze, and C. Schmid, Computer Vision – ECCV 2008:
10th European Conference on Computer Vision, Marseille, France, Octo-
ber 12-18, 2008, Proceedings, Part I, 2008, ch. Hamming Embedding
and Weak Geometric Consistency for Large Scale Image Search,
pp. 304–317.

[8] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash:
Improved matching with smaller descriptors,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 66–
78, Jan 2012.

[9] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation
with parameter-sensitive hashing,” in Proceedings of the Ninth IEEE
International Conference on Computer Vision - Volume 2, ser. ICCV ’03,
2003, pp. 750–.

[10] W. Zhu, P. Cui, Z. Wang, and G. Hua, “Multimedia big data
computing,” MultiMedia, IEEE, vol. 22, no. 3, pp. 96–c3, 2015.

[11] D. Rafailidis and S. Antaris, “Indexing media storms on flink,” in
Big Data (Big Data), 2015 IEEE International Conference on, Oct 2015,
pp. 2836–2838.

[12] “Flickr,” www.flickr.com, accessed Jun. 06, 2016.
[13] “Flickr images per day report,” www.flickr.com/photos/

franckmichel/6855169886/, accessed Jun. 06, 2016.
[14] R. Want, B. N. Schilit, and S. Jenson, “Enabling the internet of

things,” IEEE Computer, no. 1, pp. 28–35, 2015.
[15] D. Novak, M. Batko, and P. Zezula, “Web-scale system for image

similarity search: When the dreams are coming true,” in Proceed-
ings of the sixth international workshop on content-based multimedia
indexing. IEEE, 2008.

[16] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in Proceedings of SIGMOD,
2010, pp. 591–602.

[17] D. Novak, M. Batko, and P. Zezula, “Large-scale similarity data
management with distributed metric index,” Information Processing
and Management, vol. 48, pp. 855–872, 2012.

[18] A. Vlachou, C. Doulkeridis, and Y. Kotidis, Metric-Based similarity
search in unstructured peer-to-peer systems. Heidelberg: Springer-
Verlag, 2012.

[19] M. Zhu, D. Shen, Y. Kou, T. Nie, and G. Yu, “An adaptive
distributed index for similarity queries in metric spaces,” Web-Age
Information Retrieval, Lecture Notes in Computer Science, vol. 7418,
pp. 222–227, 2012.

[20] S. Antaris and D. Rafailidis, “Similarity search over the cloud
based on image descriptors’ dimensions value cardinalities,” ACM
Transactions on Multimedia Computing, Communications and Applica-
tions, vol. 11, no. 4, p. 51, 2015.

[21] “Apache flink,” http://flink.apache.org/, accessed Jun. 06, 2016.
[22] “Apache spark,” http://spark.apache.org/, accessed Jun. 06, 2016.
[23] “Apache storm,” http://storm.apache.org/, accessed Jun. 06,

2016.
[24] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang, “In-memory

big data management and processing: A survey,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 7, pp. 1920–1948, 2015.

[25] E. Tiakas, D. Rafailidis, A. Dimou, and P. Daras, “Msidx: Multi-sort
indexing for efficient content-based image search and retrieval,”
IEEE Transaction on Multimedia, vol. 15, no. 6, pp. 1415–1430, 2013.

[26] M. Batko, D. Novak, F. Falchi, and P. Zezula, “Scalability compari-
son of peer-to-peer similarity search structures,” Future Generation
Computer Systems, vol. 24, no. 8, pp. 834–848, 2008.

[27] M. Aly, M. Munich, and P. Perona, “Distributed kd-trees for
retrieval from very large image collections,” in Proceedings of
BMVC’11, 2011.

[28] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in
hamming space with multi-index hashing,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1107–
1119, 2014.

[29] M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact bi-
nary codes,” in Proceedings 28th International Conference on Machine
Learning (ICML), 2011, pp. 353–360.

[30] J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, “Robust hashing
with local models for approximate similarity search,” IEEE Trans-
actions on Cybernetics, vol. 44, no. 7, pp. 1225–1236, July 2014.

[31] K. Jiang, Q. Que, and B. Kulis, “Revisiting kernelized locality-
sensitive hashing for improved large-scale image retrieval,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[32] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proceedings of the 25th International

www.flickr.com
www.flickr.com/photos/franckmichel/6855169886/
www.flickr.com/photos/franckmichel/6855169886/
http://flink.apache.org/
http://spark.apache.org/
http://storm.apache.org/

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2697441, IEEE
Transactions on Big Data

14

Conference on Very Large Data Bases, ser. VLDB ’99, 1999, pp. 518–
529.

[33] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Proceedings of the Twentieth Annual Symposium on Computational
Geometry, 2004, pp. 253–262.

[34] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, June 2011, pp. 817–
824.

[35] W. Liu, J. Wang, and S. fu Chang, “Hashing with graphs,” in In
ICML, 2011.

[36] W. Liu, J. Wang, R. Ji, Y. G. Jiang, and S. F. Chang, “Supervised
hashing with kernels,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, June 2012, pp. 2074–2081.

[37] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete
hashing,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 37–45.

[38] A. Gionis, P. Indyk, and M. R., “Similarity search in high dimen-
sions via hashing,” in Proceedings of International Conference on Very
Large Data Bases, 1999, pp. 518–529.

[39] A. Babenko and V. Lempitsky, “The inverted multi-index,” in Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 3069–3076.

[40] H. Jégou, M. Douze, and C. Schmid, “Product Quantization for
Nearest Neighbor Search,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 1, pp. 117–128, Jan. 2011.
[Online]. Available: https://hal.inria.fr/inria-00514462

[41] J. Kwak, E. Hwang, T. K. Yoo, B. Nam, and Y. R. Choi, “In-memory
caching orchestration for hadoop,” in 2016 16th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid),
May 2016, pp. 94–97.

[42] N. Marz and J. Warren, Big Data: Principles and Best Practices of
Scalable Realtime Data Systems, 1st ed., 2015.

[43] “Machine learning library (mlib),” http://spark.apache.org/
docs/latest/mllib-guide.html, accessed Jun. 06, 2016.

[44] “Sparking water,” http://www.h2o.ai/product/sparkling-
water/, accessed Jun. 06, 2016.

[45] “Flinkml - machine learning for flink,” https://ci.apache.org/
projects/flink/flink-docs-release-1.0/apis/batch/libs/ml/index.
html, accessed Jun. 06, 2016.

[46] “Apache samoa,” https://samoa.incubator.apache.org/, accessed
Jun. 06, 2016.

[47] “Gelly: Fling graph api,” https://ci.apache.org/projects/flink/
flink-docs-master/apis/batch/libs/gelly.html, accessed Jun. 06,
2016.

[48] “Openstack,” http://www.openstack.org, accessed Jun. 06, 2016.
[49] “Apache kafka,” accessed Jun. 06, 2016.
[50] “Apache hbase,” http://hbase.apache.org, accessed Jun. 06, 2016.
[51] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet

Computing, vol. 10, no. 6, pp. 87–89, 2006.
[52] “Cassandra,” http://cassandra.apache.org, accessed Jun. 06, 2016.
[53] “Redis,” http://redis.io/, accessed Jun. 06, 2016.
[54] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking scalabil-

ity and elasticity of distributed database systems,” Proc. VLDB
Endow., vol. 7, no. 12, pp. 1219–1230, 2014.

[55] H. Wang, J. Li, H. Zhang, and Y. Zhou, Big Data Benchmarks, Perfor-
mance Optimization, and Emerging Hardware: 4th and 5th Workshops,
BPOE 2014, 2014, ch. Benchmarking Replication and Consistency
Strategies in Cloud Serving Databases: HBase and Cassandra, pp.
71–82.

[56] “Rabbitmq,” https://www.rabbitmq.com, accessed Jun. 06, 2016.
[57] “Apache activemq,” http://activemq.apache.org/, accessed Jun.

06, 2016.
[58] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards bench-

marking modern distributed stream computing frameworks,” in
Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th Interna-
tional Conference on, Dec 2014, pp. 69–78.

[59] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh,
N. Narkhede, J. Rao, J. Kreps, and J. Stein, “Building a replicated
logging system with apache kafka,” Proc. VLDB Endow., vol. 8,
no. 12, pp. 1654–1655, Aug. 2015.

[60] G. Hesse and M. Lorenz, “Conceptual survey on data stream
processing systems,” in Parallel and Distributed Systems (ICPADS),
2015 IEEE 21st International Conference on, Dec 2015, pp. 797–802.

[61] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas,
“Lightweight asynchronous snapshots for distributed dataflows,”
CoRR, vol. abs/1506.08603, 2015.

[62] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt, and S. Whittle, “The dataflow model: A practical ap-
proach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing,” Proc. VLDB Endow.,
vol. 8, no. 12, pp. 1792–1803, Aug. 2015.

[63] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A
survey of open source tools for machine learning with big data in
the hadoop ecosystem,” Journal of Big Data, vol. 2, no. 1, pp. 1–36,
2015.

[64] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: A programming model and execution frame-
work for web-scale analytical processing,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, ser. SoCC ’10, 2010, pp. 119–
130.

[65] “Tiny images dataset,” http://horatio.cs.nyu.edu/mit/tiny/
data/index.html, accessed Jun. 06, 2016.

[66] “Texmex,” http://corpus-texmex.irisa.fr/, accessed Jun. 06, 2016.
[67] “Openstack flavors,” http://docs.openstack.org/openstack-ops/

content/flavors.html, accessed Jun. 06, 2016.
[68] “Flink monitor rest api,” https://ci.apache.org/projects/flink/

flink-docs-release-1.0/internals/monitoring rest api.html,
accessed Jun. 06, 2016.

[69] “Instagram,” https://www.instagram.com/, accessed Jun. 06,
2016.

[70] R. Mian and P. Martin, “Executing data-intensive workloads in
a cloud,” in Proceedings IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2012, pp. 758–763.

[71] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann,
“Shared workload optimization,” PVLDB, vol. 7, no. 6, pp. 429–
440, 2014.

Stefanos Antaris received the B.Sc. and M.Sc
degrees from the Department of Informatics of
the Aristotle University of Thessaloniki, Greece
in 2011 and 2013, respectively. He is a student
member of IEEE and his current research inter-
ests include Big Data stream processing, Dis-
tributed Systems, data analysis and social media
mining.

Dimitrios Rafailidis received the B.Sc., M.Sc.,
and Ph.D. degrees from the Department of Infor-
matics of the Aristotle University of Thessaloniki,
Greece, in 2005, 2007, and 2011, respectively.
He is a Post-Doctoral Research Fellow with the
Department of Informatics, Aristotle University
of Thessaloniki. His current research interests
include multimedia information retrieval, social
media mining, and Big Data platforms.

https://hal.inria.fr/inria-00514462
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://www.h2o.ai/product/sparkling-water/
http://www.h2o.ai/product/sparkling-water/
https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/batch/libs/ml/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/batch/libs/ml/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/batch/libs/ml/index.html
https://samoa.incubator.apache.org/
https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/gelly.html
https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/gelly.html
http://www.openstack.org
http://hbase.apache.org
http://cassandra.apache.org
http://redis.io/
https://www.rabbitmq.com
http://activemq.apache.org/
http://horatio.cs.nyu.edu/mit/tiny/data/index.html
http://horatio.cs.nyu.edu/mit/tiny/data/index.html
http://corpus-texmex.irisa.fr/
http://docs.openstack.org/openstack-ops/content/flavors.html
http://docs.openstack.org/openstack-ops/content/flavors.html
https://ci.apache.org/projects/flink/flink-docs-release-1.0/internals/monitoring_rest_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.0/internals/monitoring_rest_api.html
https://www.instagram.com/

