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Fig. 6. Search accuracy mAP by varying the search radius 2W .

In Figure 6, the search accuracy for both the Flink-AMR
and Flink-EMR indexing mechanisms is presented, varying
the search radius 2W . Figure 6 shows that Flink-AMR
has lower mAP than the exact approach when the search
radius 2W is extremely low. However, as the search radius
increases, the Flink-AMR indexing mechanism presents sim-
ilar search accuracy with Flink-EMR. This happens because
the incoming descriptors of media storms are relatively close
to their exact position in the double linked list L that Flink-
EMR would assign, for a larger search radius 2W .

6.4 Flink Parameter Sensitivity

Next, we evaluate the performance of Flink-AMR by vary-
ing the following Flink parameters: the number of VMs and
the number of task slots on each VM (Section 5.2).
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Fig. 7. Flink parameter sensitivity on media storm indexing mechanism

Figure 7(a) presents the total indexing time when differ-
ent number of VMs are used for the Flink-AMR indexing
mechanism. As the number of VMs increases, the total in-
dexing time is linearly decreases. However, it is obvious that
increasing the number of VMs over 30, the total indexing
time of Flink-AMR is not further decreased. This occurs
due to the grouping process that is applied in the Map
2 step based on the primary key pk of each descriptor.
Specifically, each VM in the Map 2 step retrieves the subset
Xpk of descriptors with the same primary key pk. Thus, the
number of VMs depends on the number of primary keys
that exist in the respective media storm. Each VM is a multi-
core instance with 4 CPU-cores, able to receive four different
subsets of Xpk. Increasing the number of VMs more than 30
computational nodes has no effect on the performance of
the media storm indexing mechanism, as the primary keys
of the reordered descriptors from the Map 1 step are less
than 120 and no additional computational node is needed.

Figure 7(b) reports the total indexing time by varying the
number of task slots on each VM computational node. The

number of task slots defines the number of jobs that each
VM can execute in parallel. It is observed that increasing the
number of task slots in the multi-core VMs more than four
does not provide any substantial improvement to the total
indexing time, as each VM has four CPU-cores (Section 6.3).

6.5 Comparison with State-Of-The-Art
In this set of experiments, the following methodologies are
compared:
• Flink-AMR: (Section 4.3): the 2W search radius was

varied as in the experiments of Section 6.3.
• Flink-EMR: (Section 4.2): similarly, the search radius

was varied as in Flink-AMR.
• Multi-Index Hashing (MIH): M=8 hash tables were set,

corresponding to the number of CPU cores and MLH
as the default hashing method to compute the hash
bits. The number of bits was varied in 8, 16, 32 and
64 because the implementation of MIH caused memory
overflows for larger number of bits.

• FLANN : the randomized KD-trees algorithm was used
with a 27 branching factor, by varying the number
of randomized KD-trees in (25, 26, 27, 28, 29, 210) and
setting M=8 CPU-cores to search in parallel over the
constructed KD-tree.

• Inverted Multi-Index (IMI): the list length was varied
in (28, 212, 216) using a codebook with size 214.

As MIH, FLANN and IMI are not implemented to
work in a cloud infrastructure, for fair comparison, all
the experiments of the aforementioned methodologies were
conducted on a single 8-core machine of 3.3 GHz CPU with
18 GB main memory, while the descriptors were stored in
HBase similar to our approaches. In this set of experiments,
only the CPU time excluding the latency times is reported.
Although MIH, FLANN and IMI’s implementation support
parallel search, the indexing of the incoming descriptors is
performed in a sequential manner. Therefore, in this set of
experiments, a smaller media storm of 1K incoming descrip-
tors/test queries is considered which have to be indexed in
a batch.

Table 5 presents the total indexing time of the aforemen-
tioned methodologies for the 1K test queries. It is observed
that Flink-AMR achieves 51.99, 8.89 and 25.43 speedup
factor against IMI, MIH and FLANN for the SIFT dataset,
respectively (24.51, 6.26, 40.82 for the GIST dataset). This
happens because IMI, MIH and FLANN provide no paral-
lelization during the indexing of media storms. In contrast,
Flink-EMR and Flink-AMR not only provide parallelization
but are also parameter-free in terms of indexing. Flink-AMR
achieves 2.39 and 2.35 speedup factor against Flink-EMR, as
Flink-EMR compares the test query vq with the subset Vpk
of the already stored descriptor, while Flink-AMR requires
only one comparison of vq with the root descriptor v∗pk.

In Figure 8, the search accuracy is reported after the
media storms have been indexed. This is to evaluate if the
descriptors have been properly indexed. With respect to the
online query processing performance, Flink-AMR achieves
high mAP in low search time. It can also be observed in
Figure 6, for small values of the search radius 2W , the
mAP accuracy is lower than Flink-EMR. However, as the
search radius increases, Flink-AMR maintains equal search
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TABLE 5
TOTAL INDEXING TIME IN SECONDS FOR THE 1K TEST QUERIES.

BOLD DENOTES THE BEST METHOD.

Dataset
Method Parameter SIFT GIST
Flink-AMR - 35.123 42.192
Flink-EMR - 84.037 99.275

IMI

List Length
28 1826.283 1034.313
212 1937.937 1376.348
216 2384.762 1772.183

MIH

# of bits
8 312.383 264.317
16 367.274 298.193
32 426.487 327.192
64 887.294 674.391

FLANN

# of KD-Trees
25 893.217 1722.201
26 1078.402 2006.233
27 2344.492 2228.017
28 3567.451 3479.182
29 4006.411 3614.726
210 5232.114 5278.273

accuracy to Flink-EMR. Both Flink-AMR and Flink-EMR
present higher search accuracy in lower search time against
the competitive similarity search strategies. For instance,
despite the fact that the search time of MIH is low, MIH
preserves the limited mAP accuracy of the MLH hashing
method. FLANN searches the complex structures of ran-
domized KD-trees in parallel, making thus the search time
high for many randomized KD-Trees.

6.6 Discussion

The experimental results showed that it is essential to pro-
vide an efficient indexing mechanism in order to index a
massive amount of media storms generated by the modern
multimedia applications. To evaluate the performance of
EMR and AMR, large-scale experiments were conducted on
a real-cloud environment using two image datasets, which
are among the largest publicly available, with 80M and
1B images. Media storms with high volume and different
velocity were generated at the scale of 105 and 106 incoming
images per second. Moreover, two different architectures
were used in order to identify the benefit of the in-memory
processing against the disk-based processing. This means
that for the disk-based processing, the stored descriptors
can be retrieved from the distributed database when a new
descriptor is received; while for the in-memory processing,
the most frequent descriptors are maintained in the memory
of each VM computational node. These experiments showed
that the in-memory processing using the Flink distributed
stream processing framework accelerates the total indexing
time, achieving a speedup factor equal to 3.12 on average.
Moreover, since we retain the most frequent descriptors in
the memory, while the rest of the descriptors are stored in
the distributed databases, our media storm indexing mech-
anisms are able to scale, overcoming the memory resource
limitations of the distributed environment.

Meanwhile, the EMR mechanism presents high latency
and high CPU cost because of the number of descriptors
which have to be retrieved from the distributed databases
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Fig. 8. Comparison of Flink-AMR against baselines in SIFT and GIST.

and the number of required comparisons to index the in-
coming descriptors. In contrast, the AMR mechanism over-
comes the high latency and high CPU issues of EMR, by fol-
lowing an approximate strategy. AMR minimizes the num-
ber of descriptors retrieved from the distributed databases
and compared with the incoming descriptor, achieving a
speedup factor of 2.37 on average in the two evaluation
datasets.

Regarding the search accuracy, the proposed AMR me-
dia storm indexing mechanism indexes the incoming de-
scriptors efficiently in order to preserve the high search
accuracy of EMR. Instead of using a subset of descriptors
with the same primary key, the approximate mechanism
of AMR uses a root descriptor and indexes the incoming
descriptors in a relative position that is close to the position
that the exact mechanism of EMR indexes. As a result, AMR
presents lower search accuracy than EMR when the search
radius 2W is extremely low, while they have similar search
accuracy for high search radius 2W .

However, this study showed that both the EMR and
AMR mechanisms outperform the baseline methodologies,
in terms of indexing, search time and accuracy. For example,
despite the fact that IMI, MIH and FLANN support the
indexing of incoming descriptors, they present extremely
low performance when new descriptors are coming as me-
dia storms since they perform sequential indexing. It was
observed that AMR outperforms the baseline methodologies
and achieves an average speedup factor of 11.09 in the total
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indexing time for the two evaluation datasets.
Real-world applications have to index a vast amount

of multimedia content; consequently, to account for the
fact that real-world multimedia systems have to scale, it
is worth to examine the implementation of AMR to index
media storms. For example, social networks like Flickr [12]
and Instagram [69], where users upload photos following
different distributions according to the popular events, can
benefit from AMR by efficiently indexing the millions of
new images that are generated per day in a streaming mode
and with limited latency. Moreover, with the proliferation
of the IoT where billions of sensors, web cameras, and
so on produce a vast amount of multimedia content at
an unexpected rate, AMR as an IoT service can provide a
scalable solution to index the generated media storms [14].

7 CONCLUSION

This article presented an efficient approximate media storm
indexing mechanisms with MapReduce (AMR) that over-
comes the high CPU and latency issues of the exact media
storm indexing mechanism (EMR). Moreover, the EMR and
AMR indexing mechanisms were implemented using two
architectures, a baseline architecture that uses a disk-based
strategy and an in-memory strategy using the Flink stream
processing framework. As far as literature is concerned, this
is the first study to propose a media storm indexing mech-
anism using the in-memory strategy. This study showed
that the Flink-AMR proposed mechanism achieves a 3.12
speedup factor in the total indexing time against the Flink-
EMR mechanism, for different indexing workloads. The
experimental evaluation also demonstrated that the Flink-
AMR mechanism maintains high search accuracy against
state-of-the-art approaches in low time, after the media
storms have been indexed.

Interesting topics for future work are: i) to monitor
the resources allocated by the CDVC components and
automatically provide elasticity [70]; ii) to follow a data
intensive workload optimization strategy for multi-query
execution [71].
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