
2nd April, 2015 12:18 IJAIT S0218213015400059 page 1

1st Reading

International Journal on Artificial Intelligence Tools
Vol. 24, No. 2 (2015) 1540005 (22 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213015400059

A Scalable Approach to Harvest Modern Weblogs

Vangelis Banos

Department of Informatics, Aristotle University of Thessaloniki (AUTH)
Thessaloniki, 54124, Greece

vbanos@gmail.com

Olivier Blanvillain

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
olivier.blanvillain@epfl.ch

Nikos Kasioumis

European Organization for Nuclear Research (CERN)
Geneva 23, 1211, Switzerland

nikos.kasioumis@cern.ch

Yannis Manolopoulos

Department of Informatics, Aristotle University of Thessaloniki (AUTH)
Thessaloniki, 54124, Greece

manolopo@csd.auth.gr

Received 30 September 2014
Accepted 25 November 2014
Published 13 April 2015

Blogs are one of the most prominent means of communication on the web. Their content,
interconnections and influence constitute a unique socio-technical artefact of our times
which needs to be preserved. The BlogForever project has established best practices and
developed an innovative system to harvest, preserve, manage and reuse blog content.
This paper presents the latest developments of the blog crawler which is a key compo-
nent of the BlogForever platform. More precisely, our work concentrates on techniques
to automatically extract content such as articles, authors, dates and comments from
blog posts. To achieve this goal, we introduce a simple yet robust and scalable algorithm
to generate extraction rules based on string matching using the blog’s web feed in con-
junction with blog hypertext. Furthermore, we present a system architecture which is
characterised by efficiency, modularity, scalability and interoperability with third-party
systems. Finally, we conduct thorough evaluations of the performance and accuracy of
our system.

Keywords: Blog crawler; web data extraction; wrapper generation; interoperability.

1540005-1

http://dx.doi.org/10.1142/S0218213015400059
mailto:vbanos@gmail.com
mailto:olivier.blanvillain@epfl.ch
mailto:nikos.kasioumis@cern.ch
mailto:manolopo@csd.auth.gr

2nd March, 2015 17:45 IJAIT S0218213015400059 page 2

1st Reading

V. Banos et al.

1. Introduction

The blogosphere is an established channel of online communication which bears

great significance.17 Wordpress, a single blog publishing company, reports more

than 1 million new posts and 1.5 million new comments each day.38 These over-

whelming numbers illustrate the importance of blogs in most aspects of private and

business life.5 Blogs contain data with historic, political, social and scientific value

which need to be accessible for current and future generations. For instance, blogs

proved to be an important resource during the 2011 Egyptian revolution by play-

ing an instrumental role in the organization and implementation of protests.8 The

problem is that blogs disappear every day16 because there is no standard method

or authority to ensure blog archiving and long-term digital preservation.

Among the challenges in developing a blog archiving software is the design of

a web crawler capable of efficiently traversing blogs to harvest their content. The

sheer size of the blogosphere combined with an unpredictable publishing rate of

new information call for a highly scalable system, while the lack of programmatic

access to the complete blog content makes the use of automatic extraction tech-

niques necessary. The variety of available blog publishing platforms offers a limited

common set of properties that a crawler can exploit, further narrowed by the ever-

changing structure of blog contents. Finally, an increasing number of blogs heavily

rely on dynamically created content to present information, using the latest web

technologies, hence invalidating traditional web crawling techniques.

A key characteristic of blogs which differentiates them from regular websites

is their association with web feeds.23 Their primary use is to provide a uniform

subscription mechanism, thereby allowing users to keep track of the latest updates

without the need to actually visit blogs. Concretely, a web feed is an XML file

containing links to the latest blog posts along with their articles (abstract or full

text) and associated metadata.31 While web feeds essentially solve the question of

update monitoring, their limited size makes it necessary to download blog pages to

harvest previous content.

This paper presents the latest developments of the open-source BlogForever

Crawler, a key component of the BlogForever platform18 responsible for traversing

blogs, extracting their content and monitoring their updates. Our main objectives

in this work are to introduce a new approach to blog data extraction and to present

the architecture and implementation of a blog crawler capable of extracting arti-

cles, authors, publication dates, comments and potentially any other element which

appear in weblog web feeds. Our contributions can be summarized as follows:

• A new algorithm to build extraction rules from web feeds and an optimised

reformulation based on a particular string similarity algorithm featuring linear

time complexity.

• A methodology to use the algorithm for blog article extraction and how it can

be augmented to be used with other blog elements such as authors, publication

dates and comments.

1540005-2

2nd March, 2015 17:45 IJAIT S0218213015400059 page 3

1st Reading

A Scalable Approach to Harvest Modern Weblogs

• The overall BlogForever crawler architecture and implementation with a focus

on design decisions, modularity, scalability and interoperability.

• An approach to use a complete web browser to render JavaScript powered web

pages before processing them. This step allows our crawler to effectively harvest

blogs built with modern technologies, such as the increasingly popular third-party

commenting systems.

• A mapping of the extracted blog content to Archival Information Packages (AIPs)

using METS and MARCXML standards for interoperability purposes.

• An evaluation of the content extraction and execution time of our algorithm

against three state-of-the-art web article extraction algorithms.

The concepts emerging from our research are viewed in the context of the Blog-

Forever platform but the presented algorithms, techniques and system architectures

can be used in other applications related to Wrapper Generation and Web Data

Extraction.

The rest of this work is structured as follows: Section 2 presents related

work. Section 3 introduces the new algorithms to extract data from blogs. Sec-

tion 4 presents the blog crawler system architecture and implementation. Section 5

presents the evaluation and results. Finally, our conclusions and some discussion

on our work are presented in section 6.

2. Related Work

Web crawlers are complex software systems which often combine techniques from

various disciplines in computer science. Our work on the BlogForever crawler is

related to the fields of web data extraction, distributed computing and natural lan-

guage processing. In the literature on web data extraction, the word wrapper is

commonly used to designate procedures to extract structured data from unstruc-

tured documents. We did not use this word in the present paper in favour of the

term extraction rule, which better reflects our implementation and is decoupled

from software that concretely performs the extraction.

A common approach in web data extraction is to manually build wrappers for

the targeted websites. This approach has been proposed for the crawler discussed

in Ref. 9 which automatically assigns web sites to predefined categories and gets

the appropriate wrapper from a static knowledge base. The limiting factor in this

type of approach is the substantial amount of manual work needed to write and

maintain the wrappers, which is not compatible with the increasing size and diver-

sity of the web. Several projects try to simplify this process and provide various

degrees of automation. This is the case of the Stalker algorithm26 which generates

wrappers based on user-labelled training examples. Some commercial solutions such

as the Lixto project12 simplify the task of building wrappers by offering a complete

integrated development environment where the training data set is obtained via a

graphical user interface.

1540005-3

2nd March, 2015 17:45 IJAIT S0218213015400059 page 4

1st Reading

V. Banos et al.

As an alternative to dedicated software for the creation and maintenance of

wrappers, some query languages have been designed specifically for wrappers. These

languages rely on their users to manually identify the structure of the data to be

extracted. This structure can then be formalised as a small declarative program,

which can then be turned into an concrete wrapper by an execution engine. The

OXPath language10 is an interesting extension to XPath designed to incorporate

interaction in the extraction process. It supports simulated user actions such as

filling forms or clicking buttons to obtain information that would not be accessible

otherwise. Another extension of XPath, called Spatial XPath,28 allows to write

spacial rules in the extraction queries. The execution engine embeds a complete

web browser which computes the visual representation of the page.

Fully automated solutions use different techniques to identify and extract in-

formation directly from the structure and content of the web page, without the

need of any manual intervention. The Boilerpipe project19 (which is also used in

our evaluation) uses text density analysis to extract the main article of a web

page. The approach presented in Ref. 29 is based on a tree structure analysis of

pages with similar templates, such as news web sites or blogs. Automatic solutions

have also been designed specifically for blogs. Similarly to our approach, Oita and

Senellart27 describe a procedure to automatically build wrappers by matching web

feed articles to HTML pages. This work was further extended by Gkotsis et al.

with a focus on extracting content anterior to the one indexed in web feeds.11 They

also report to have successfully extracted blog post titles, publication dates and au-

thors, but their approach is less generic than the one for the extraction of articles.

Finally, neither Ref. 27 nor Ref. 11 provide complexity analysis which we believe

to be essential before using an algorithm in production.

One interesting research direction is the one of large scale distributed crawlers.

Mercator,14 UbiCrawler2 and the crawler discussed in Ref. 32 are examples of

successful distributed crawlers. The associated articles provide useful information

regarding the challenges encountered when working on a distributed architecture.

One of the core issues when scaling out seems to be in sharing the list of URLs that

have already been visited and those that need to be visited next. While Refs. 14

and 32 rely on a central node to hold this information,2 uses a fully distributed ar-

chitecture where URLs are divided among nodes using consistent hashing. Both of

these approaches require the crawlers to implement complex mechanisms to achieve

fault tolerance. The BlogForever Crawler does not have to address this issue as it

is already Handled by the BlogForever back-end system which is responsible for

task and state management. In addition, since we process web pages on the fly and

directly emit the extracted content to the back-end, there is no need for persistent

storage on the crawler’s side. This removes one layer of complexity when compared

to general crawlers which need to use a distributed file system (Ref. 32 uses NFS,

Ref. 1 uses HDFS) or implement an aggregation mechanism to further exploit the

collected data. Our design is similar to the distributed active object pattern pre-

1540005-4

2nd March, 2015 17:45 IJAIT S0218213015400059 page 5

1st Reading

A Scalable Approach to Harvest Modern Weblogs

sented in Ref. 20, which is further simplified by the fact that the state of the crawler

instances is not kept between crawls.

3. Algorithms

We propose a new set of algorithms to extract blog post articles as well as varia-

tions for extracting authors, dates and comments. We start with our motivation to

use blog specific characteristics, followed by our approach to build extraction rules

which are applicable throughout a blog. Our focus is on minimising the algorithmic

complexity while keeping our approach simple and generic.

3.1. Motivation

Extracting metadata and content from HTML documents is a challenging task

because standards and format recommendations suffer from very low usage. W3C

has been publishing web standards and format recommendations for quite some

time.34 For instance, according to the W3C HTML guidelines, the <h1></h1> tags

have to contain the highest-level heading of the page and must not appear more than

once per page.35 More recently, specifications such as microdata36 define ways to

embed semantic information and metadata inside HTML documents, but these still

suffer from very low usage: estimated to be used in less than 0.5% of websites.30 In

fact, the majority of websites rely on the generic and <div></div>

container elements with custom id or class attributes to organise the structure of

pages, and more than 95% of pages do not pass HTML validation.37 Under such

circumstances, relying on HTML structure to extract content from web pages is

not viable and other techniques need to be employed.

Having blogs as our target websites, we made the following observations which

play a central role in the extraction process:

(1) Blogs provide web feeds: structured and standardized views of the latest posts

of a blog.

(2) Posts of the same blog share a similar HTML structure.

Web feeds usually contain about 20 blog posts,27 often less than the total number

of posts in blogs. Consequently, to effectively archive the entire content of a blog, it

is necessary to download and process pages beyond the ones referenced in the web

feed.

3.2. Content extraction overview

To extract content from blog posts, we proceed by building extraction rules from

the data given in the blog’s web feed. The idea is to use a set of training data,

pairs of HTML pages and target content, which are used to build an extraction

rule capable of locating the target content on each HTML page.

1540005-5

2nd March, 2015 17:45 IJAIT S0218213015400059 page 6

1st Reading

V. Banos et al.

Observation (1) allows the crawler to obtain input for the extraction rule gen-

eration algorithm: each web feed entry contains a link to the corresponding web

page as well as blog post article (either abstract or full text), its title, authors and

publication date. We call these fields targets as they constitute the data our crawler

aims to extract. Observation (2) guarantees the existence of an appropriate extrac-

tion rule, as well as its applicability to all posts of the blog. Each page is uniquely

identified by its URL. If a page is already processed, it is not processed again in

the future.

Algorithm 1 shows the generic procedure we use to build extraction rules. The

idea is quite simple: for each (page, target) input, compute, out of all possible

extraction rules, the best one with respect to a certain ScoreFunction. The rule

which is most frequently the best rule is then returned.

Algorithm 1: Best Extraction Rule

input : Set pageZipTarget of (page and target) pairs

output: Best extraction rule

bestRules ←− new list

foreach (page, target) in pageZipTarget do

score ←− new map

foreach rule in AllRules(page) do

extracted ←− Apply(rule, page)

score of rule ←− ScoreFunction(extracted, target)

bestRules ←− bestRules + rule with highest score

return rule with highest occurrence in bestRules

One might notice that each best rule computation is independent and operates

on a different input pair. This implies that Algorithm 1 is embarrassingly parallel :

iterations of the outer loop can trivially be executed on multiple threads.

Functions in Algorithm 1 are voluntarily abstract at this point and will be

explained in detail in the remaining of this section. Subsection 3.3 defines AllRules,

Apply and the ScoreFunction we use for article extraction. In subsection 3.4 we

analyse the time complexity of Algorithm 1 and give a linear time reformulation

using dynamic programming. Finally, subsection 3.5 shows how the ScoreFunction

can be adapted to extract authors, dates and comments.

3.3. Extraction rules and string similarity

In our implementation, rules are queries in the XML Path Language (XPath).

Consequently, standard libraries can be used to parse HTML pages and apply ex-

traction rules, providing the Apply function used in Algorithm 1. We experimented

1540005-6

2nd March, 2015 17:45 IJAIT S0218213015400059 page 7

1st Reading

A Scalable Approach to Harvest Modern Weblogs

with 3 types of XPath queries: selection over the HTML id attribute, selection over

the HTML class attribute and selection using the relative path in the HTML tree.

id attributes are expected to be unique, and class attributes have showed in our

experiments to have better consistency than relative paths over pages of a blog. For

these reasons we opt to always favour class over path, and id over class, such

that the AllRules function returns a single rule per node.

Function AllRules(page)

rules ←− new set

foreach node in page do

if node as id attribute then

rules ←− rules + {"//*[@id=‘node.id’]"}
else if node as class attribute then

rules ←− rules + {"//*[@class=‘node.class’]"}
else rules ←− rules + {RelativePathTo(node)}

return rules

Unsurprisingly, the choice of ScoreFunction greatly influences the running

time and precision of the extraction process. When targeting articles, extraction

rule scores are computed with a string similarity function comparing the extracted

strings with the target strings. We chose the Sorensen–Dice coefficient similarity,6

which is, to the best of our knowledge, the only string similarity algorithm fulfilling

the following criteria:

(1) Has low sensitivity to word ordering,

(2) Has low sensitivity to length variations,

(3) Runs in linear time.

Properties 1 and 2 are essential when dealing with cases where the blog’s web

feed only contains an abstract or a subset of the entire post article. Table 1 gives ex-

amples to illustrate how these two properties hold for the Sorensen–Dice coefficient

similarity but do not for edit distance based similarities such as the Levenshtein22

similarity.

Table 1. Examples of string similarities.

String1 String2 Sorensen–Dice Levenshtein

"Scheme Scala" "Scala Scheme" 90% 50%

"Rachid" "Richard" 18% 61%

"Rachid" "Amy, Rachid and all their friends" 29% 31%

1540005-7

2nd March, 2015 17:45 IJAIT S0218213015400059 page 8

1st Reading

V. Banos et al.

The Sorensen–Dice coefficient similarity algorithm operates by first building

sets of pairs of adjacent characters, also known as bigrams, and then applying the

quotient of similarity formula:

Function Similarity(string1, string2)

bigrams1 ←− Bigrams(string1)

bigrams2 ←− Bigrams(string2)

return 2 |bigrams1 ∩ bigrams2 | / (|bigrams1 |+ |bigrams2 |)

Function Bigrams(string)

return set of pairs of adjacent characters in string

3.4. Time complexity and linear reformulation

With the functions AllRules, Apply and Similarity (as ScoreFunction) being

defined, the definition of Algorithm 1 for article extraction is now complete. We

can therefore proceed with a time complexity analysis.

First, let us assume that we have at our disposal a linear time HTML parser that

constructs an appropriate data structure, indexing HTML nodes on their id and

class attributes, effectively making Apply ∈ O(1). As stated before, the outer loop

splits the input into independent computations and each call to AllRules returns

(in linear time) at most as many rules as the number of nodes in its page argument.

Therefore, the body of the inner loop will be executed O(n) times. Because each

extraction rule can return any subtree of the queried page, each call to Similarity

takes O(n), leading to an overall quadratic running time.

We now present Algorithm 2, a linear time reformulation of Algorithm 1 for

article extraction using dynamic programming.

While very intuitive, the original idea of first generating extraction rules and

then picking these best rules prevents us from effectively reusing previously com-

puted N -grams (sets of adjacent characters). For instance, when evaluating the

extraction rule for the HTML root node, Algorithm 1 will obtain the complete

string of the page and pass it to the Similarity function. At this point, the infor-

mation on where the string could be split into substrings with already computed

N -grams is not accessible, and the N -grams of the page have to be computed by

linearly traversing the entire string. To overcome this limitation and implement

memoization over the N -gram computations, Algorithm 2 uses a post-order traver-

sal of the HTML tree and computes node N -grams from their children N -grams.

This way, we avoid serializing HTML subtrees for each N -gram computation and

have the guarantee that each character of the HTML page will be read at most

once during the N -gram computation.

An interesting question is what is the optimal N for N -gram computation. To

answer this question, we conduct some simple experiments. Using sample blog post

1540005-8

2nd March, 2015 17:45 IJAIT S0218213015400059 page 9

1st Reading

A Scalable Approach to Harvest Modern Weblogs

Algorithm 2: Linear Time Best Content Extraction Rule

input : Set pageZipTarget of (Html and Text) pairs

output: Best extraction rule

bestRules ←− new list

foreach (page, target) in pageZipTarget do

score ←− new map

bigrams ←− new map

bigrams of target ←− Bigrams(target)

foreach node in page with post-order traversal do

bigrams of node ←−
Bigrams(node.text) ∪ bigrams of all node.childs

score of node ←−
2 |(bigrams of node) ∩ (bigrams of target)|
|bigrams of node|+ |bigrams of target|

bestRules ←− bestRules + Rule(node with best score)

return rule with highest occurrence in bestRules

excerpts and full texts, we calculate the string similarity between each excerpt and

full text. For instance, using a blog post full text and associated text excerpt from

the popular blog TechCrunch as presented in Table 2, the text similarity results

(Table 3) using different N values support the selection of bigrams (N = 2).

With bigrams computed in this dynamic programming manner, the overall

time to compute all Bigrams(node.text) is linear. To conclude the argument that

Algorithm 2 runs in linear time we show that all other computations of the inner

loop can be done in constant amortized time. As the number of edges in a tree is

one less than the number of nodes, the amortized number of bigrams unions per

inner loop iteration tends to one. Each quotient of similarity computation requires

one bigrams intersection and three bigrams length computations. Over a finite al-

phabet (we used printable ASCII), bigrams sizes have bounded size and each of

these operations takes constant time.

3.5. Variations for authors, dates, comments

Using string similarity as the only score measurement leads to poor performance

on author and date extraction, and is not suitable for comment extraction. This

subsection presents variations of the ScoreFunctionwhich addresses issues of these

other types of content.

The case of authors is problematic because authors’ names often appear in

multiple places of a page, which results in several rules with maximum Similarity

score. The heuristic we use to get around this issue consists of adding a new

1540005-9

2nd March, 2015 17:45 IJAIT S0218213015400059 page 10

1st Reading

V. Banos et al.

Table 2. TechCrunch blog post example.

Blog Post Text

Apple has a new version of iOS 8 out, just a short time after the initial launch of the software.

The update, 8.0.1, includes a number of fixes, but most notably (and listed first), it addressed the

bug that prevented HealthKit apps from being available at launch. It also zaps some bugs with

third-party keyboards, which should make them remain the default option until a user switches

to another, which has been a sore spot for fans of the new external software keyboard options.

Unfortunately, installing the iOS 8.0.1 update revealed that despite Apple’s promised fixes, it

actually completely disables cellular service and Touch ID on many devices, though some iPhone

5s and older model owners report no issues. The bottom line is that you should definitely NOT

install this update, at least until an updated version appears, at which time we will let you know

it is safe to go ahead.

As you can see in the image below, Apple is also addressing an issue that blocked some photos

from appearing in Photo Library, fixing reliability concerns around Reachability on iPhone 6 and 6

Plus (which brings the top of the screen down when you double touch the Home button), zapping

bugs that cause unexpected data use when communicating via SMS or MMS, and improving the

“Ask to Buy” feature for Family Sharing, specifically around in-app purchases, in addition to

other minor bugs.

Weblog Post Text Abstract from RSS

Apple has a new version of iOS 8 out, just a short time after the initial launch of the software.
The update, 8.0.1, includes a number of fixes, but most notably (and listed first), it addressed
the bug that prevented HealthKit apps from being available at launch. It also zaps . . .

Table 3. Blog post excerpt and full text similarity
using different N values.

N 2 3 4

Similarity 0.7817 0.6680 0.6212

component in the ScoreFunction for author extraction rules: the tree distance

between the evaluated node and the post content node. This new component takes

advantage of the positioning of a post’s authors node which often is a direct child

or shares its parent with the post content node.

Dates are affected by the same duplication issue, as well as the issue of inconsis-

tencies of format between web feeds and web pages. Our solution for date extraction

extends the ScoreFunction for authors by comparing the extracted string to multi-

ple targets, each being a different string representation of the original date obtained

from the web feed. For instance, if the feed indicates that a post was published at

"Thu, 01 Jan 1970 00:00:00", our algorithm will search for a rule that returns

one of "Thursday January 1, 1970", "1970-01-01", "43 years ago" and so on.

So far we do not support dates in multiple languages, but adding new target formats

based on languages detection would be a simple extension of our date extraction

algorithm.

Comments are usually available in separate web feeds, one per blog post. Sim-

ilarly to blog feeds, comment feeds have a limited number of entries, and when

1540005-10

2nd March, 2015 17:45 IJAIT S0218213015400059 page 11

1st Reading

A Scalable Approach to Harvest Modern Weblogs

the number of comments on a blog post exceeds this limit, comments have to be

extracted from web pages. To do so, we use the following ScoreFunction:

• Rules returning fewer HTML nodes than the number of comments on the feed

are filtered out with a zero score,

• The scores of the remaining rules are computed with the value of the maximum

weighted matching in the complete bipartite graph G = (U, V,E), where U is the

set of HTML nodes returned by the rule, V is the set of target comment fields

from the web feed (such as comment authors) and E(u, v) has weight equal to

Similarity(u, v).

Regarding time complexity, computing the tree distance of each node of a graph

to a single reference node and multiplying the number of targets by a constant fac-

tor can be done in linear time. However, computing scores of comment extraction

rules requires a more expensive algorithm. This is compensated by the fact that

the proportion of candidate HTML nodes left, after filtering out rules not return-

ing enough results, is very low in practice. Analogous reformulations to the one

done with Algorithm 2 can be straightforwardly applied on each ScoreFunction to

minimize the time spent in Similarity calculations.

It must be noted that there is no limitation due to comment nesting as long as

comments follow the same format.

4. Architecture

We present the BlogForever crawler system architecture which implements the pro-

posed algorithms for weblog data extraction via the generation of extraction rules.

We describe the system architecture and discuss the software tools and techniques

we used, such as the enrichment of the Scrapy framework for our specific usage and

the integration of a headless web browser into the harvesting process to achieve

content extraction from webpages which use JavaScript to display content. Follow-

ing, we focus on the scalability design and distributed architecture of our system.

Finally, we present our provisions for interoperability using established open stan-

dards which increases the value and reusability of the proposed system in many

contexts.

4.1. System and workflow

The BlogForever crawler is a Pythona application which is based on Scrapy, an

open-source framework for web crawling. Scrapy provides an elegant and modular

architecture illustrated in Fig. 1. Several components can be plugged into the Scrapy

core infrastructure. Following, we present each part of the architecture and our own

contributions:

ahttp://www.python.org/

1540005-11

http://www.python.org/

2nd March, 2015 17:45 IJAIT S0218213015400059 page 12

1st Reading

V. Banos et al.

Fig. 1. Overview of the crawler architecture. (Credit: Pablo Hoffman, Daniel Graña, Scrapy)

• Spiders define how a target website is scraped, including how to perform the

crawl (i.e. follow links). The BlogForever crawer implementation includes two

new types of spiders: NewCrawl and UpdateCrawl, which implement the logic to

respectively crawl a new blog and get updates from a previously crawled blog.

• Item Pipeline defines the processing of extracted data from the spiders through

several components that are executed sequentially. The BlogForever crawler

implementation includes a new item pipeline which orchestrates all aspects of

crawling. More specifically the BlogForever pipeline is defined as follows:

(1) JavaScript rendering,

(2) Extract content,

(3) Extract comments,

(4) Download multimedia files,

(5) Prepare Archival Information Packages (APIs) to propagate the results to

potential back-ends.

• Downloader Middlewares is a framework of hooks into Scrapy’s request/response

processing and altering Scrapy’s requests and responses.

• Spider Middlewares is a framework of hooks into Scrapy’s spider processing

mechanism.

1540005-12

2nd March, 2015 17:45 IJAIT S0218213015400059 page 13

1st Reading

A Scalable Approach to Harvest Modern Weblogs

The system architecture providers great modularity. This is illustrated clearly

in our work with the following example:

• If it is necessary to disable JavaScript rendering or plugging in an alternative

back-end can be done by editing a single line of code.

• The features to extract comments and download multimedia files were imple-

mented after creating the initial logic to extract content and were added as extra

steps in the pipeline.

• The requirement to implement interoperability provisions later presented in

section 4.4 was easily covered with the implementation of an extra middleware

plugin which was invoked from the main crawler architecture. No further modi-

fications were necessary in the code.

In the remaining parts of this section, we elaborate our work on each specific

part of the crawler system.

4.2. JavaScript rendering

JavaScript is a widely used language for client-side scripting. While some applica-

tions simply use it for aesthetics, an increasing number of websites use JavaScript

to download and display content. In such cases, traditional HTML based crawlers

do not see web pages as they are presented to a human visitor by a web browser,

and might therefore be obsolete for data extraction.

In our experiments whilst crawling the blogosphere, we encountered several

blogs where crawled data was incomplete because of the lack of JavaScript inter-

pretation. The most frequent cases were blogs using the Disqusb and LiveFyrec

comment hosting services. For webmasters, these tools are very handy because the

entire comments infrastructure is externalized and their setup essentially comes

down to including a JavaScript snippet in each target page. Both of these services

heavily rely on JavaScript to download and display the comments, even providing

functionalities such as real-time updates for edits and newly written comments.

Less commonly, some blogs are fully rendered using JavaScript. When loading such

websites, the web browser will not receive the page content as an HTML document,

but will instead have to execute JavaScript code to download and display the page

content. The Blogger platform provides the Dynamic Views as a default template,

which uses this mechanism.13

To support blogs with JavaScript-generated content, we embed a full web

browser into the crawler. After considering multiple options, we opted for

PhantomJS,d a headless web browser with great performance and scripting ca-

pabilities. The JavaScript rendering is enabled by default and is the very first step

bhttp://disqus.com/websites
chttp://web.livefyre.com
dhttp://phantomjs.org

1540005-13

http://disqus.com/websites
http://web.livefyre.com
http://phantomjs.org

2nd March, 2015 17:45 IJAIT S0218213015400059 page 14

1st Reading

V. Banos et al.

of web page processing. Therefore, extracting blog post articles, comments or multi-

media files works equally well on blogs with JavaScript-generated content and on

traditional HTML-only blogs.

When the number of comments on a page exceeds a certain threshold, both

Disqus and LiveFyre will only load the most recent ones and the stream of comments

will end with a Show More Comments button. As part of the page loading process,

we instruct PhantomJS to repeatedly click on these buttons until all comments are

loaded. Paths to Disqus and LiveFyre Show More buttons are manually obtained.

They constitute the only non-generic elements of our extraction stack which require

human intervention to maintain and extend to other commenting platforms.

4.3. Content extraction

In order to identify web pages as blog posts, our implementation enriches Scrapy

with two components to narrow the extraction process down to the subsets of pages

which are blog posts: blog post identification and download priority heuristic.

Given a URL entry point to a website, the default Scrapy behaviour traverses

all the pages of the same domain in a last-in-first-out manner. The blog post iden-

tification function is able to identify whether an URL points to a blog post or not.

Internally, for each blog, this function uses a regular expression constructed from

the blog post URLs found in the web feed. This simple approach requires that blogs

use the same URL pattern for all their posts (or false negatives will occur) which

has to be distinct for pages that are not posts (or false positives will occur). In

practice, this assumption holds for all blog platforms we encountered and seems to

be a common practice among web developers.

In order to efficiently deal with blogs that have a large number of pages which

are not posts, the blog post identification mechanism is not sufficient. Indeed, after

all pages identified as blog posts are processed, the crawler needs to download

all other pages to search for additional blog posts. To replace the naive random

walk, depth first search or breadth first search web site traversals, we use a priority

queue where priorities for new URLs are determined by a machine learning system.

This mechanism has shown to be mandatory for blogs hosted on a single domain

alongside large number of other types of web pages, such as those in forums or

wikis.

The idea is to give high priority to URLs which are believed to point to pages

with links to blog posts. These predictions are done using an active Distance-

Weighted k-Nearest-Neighbour classifier.7 Let L(u) be the number of links to blog

posts contained in a page with URL u. Whenever a page is downloaded, its URL

u and L(u) are given to the machine learning system as training data. When the

crawler encounters a new URL v, it will ask the machine learning system for an

estimation of L(v), and use this value as the download priority of v. L(v) is esti-

mated by calculating a weighted average of the values of the k URLs most similar

to v.

1540005-14

2nd March, 2015 17:45 IJAIT S0218213015400059 page 15

1st Reading

A Scalable Approach to Harvest Modern Weblogs

4.4. The BlogForever metadata schema for interoperability

One of the key BlogForever project goals is interoperability with third party plat-

forms. The original BlogForever crawler was intended to insert blog data directly to

the BlogForever repository component but later the architecture was reworked to

make it possible to use other storage and archiving systems as well. To achieve this

goal, we implement a special interoperability middleware for the spider to produce

Archival Information Packages (AIPs) from harvested blog content. The AIPs can

be used by any software platform which complies with the OAIS reference model.21

It must be noted also that this is the first time weblog content is encoded in this way.

The AIPs consist of XML files structured using the METS4 standard for encod-

ing metadata and content. METS is widely adopted and supported by all popular

digital library systems. In addition, the blog content attributes which are included

in the METS XML packages are encoded using the MARCXML Schema.25 The

reason for the selection of MARCXML is the wide adoption of the standard, its

flexibility and extensibility, as well as previous experience with the Invenio digital

library systeme which is also based on MARCXML.

There are three kinds of entities which can be included in an AIP: Blog, En-

try and Comment. The content extracted from weblogs is mapped to the relevant

entities using the following rule: If an attribute is already defined in MARC for

other content types use the same MARC code for blogs. If an attribute is totally

new, an unused MARC 9xx tag is chosen to represent it, composing therefore the

BlogForever metadata schema.24 Following, we present the BlogForever metadata

schema for Blog, Post, Page and Comment entities in Tables 4–6.

4.5. Distributed architecture and scalability

One of the problems of web crawling is the large amount of input which need to

be processed. To address this issue, it is crucial to build every layer of the system

with scalability in mind.33

The BlogForever Crawler, and in particular the two core procedures NewCrawl

and UpdateCrawl, are designed to be usable as part of an event-driven, scalable

and fault-resilient distributed system. Heading in this direction, we made the key

design choice to have both NewCrawl and UpdateCrawl as stateless components.

From a high-level point of view, these two components are purely functional :

NewCrawl : URL→ P(RECORD)

UpdateCrawl : URL×DATE→ P(RECORD)

where URL, DATE and RECORD are respectively the set of all URLs, dates and

records, and P designates the power set operator. By delegating all shared mutable

state to the back-end system, web crawler instances can be added, removed and

used interchangeably.

ehttp://invenio-software.org/

1540005-15

http://invenio-software.org/

2nd March, 2015 17:45 IJAIT S0218213015400059 page 16

1st Reading

V. Banos et al.

Table 4. Blog record attributes — MARC 21 representations
mapping.

Blog Attribute MARC 21 Representation

title 245 $a
subtitle 245 $b
URI 520 $u
aliases 100 $g
status code 952 $a
language 041 $a
encoding 532
sitemap uri 520
platform 781 $a
platform version 781 $b
webmaster 955 $a
hosting ip 956 $a
location city 270 $d
location country 270 $b
last activity date 954 $a
post frequency 954 $b
update frequency 954 $c
copyright 542
ownership rights 542
distribution rights 542
access rights 542
license 542 $f

Table 5. Blog record attributes — MARC 21 representations mapping.

Post and Page Attribute MARC 21 Representation

title 245 $a
subtitle 245 $b
full content 520 $a
full content format 520 $b
author 100 $a
URI 520 $u
aliases 100 $g
alt identifier (UR) 0247 $a
date created 269 $c
date modified 260 $m
version 950 $a
status code 952 $a
response code 952 $b
geo longitude 342 $g
geo latitude 342 $h
access restriction 506
has reply 788 $a
last reply date 788 $c
num of replies 788 $b
child of 760 $o $4 $w

1540005-16

2nd March, 2015 17:45 IJAIT S0218213015400059 page 17

1st Reading

A Scalable Approach to Harvest Modern Weblogs

Table 6. Comment record attributes — MARC tags mapping.

Comment Attribute MARC 21 Representation

subject 245 $a
author 100 $a
full content 520 $a
full content format 520 $b
URI 520 $u
status 952 $a
date added 269 $c
date modified 269 $m
addressed to URI 789 $u
geo longitude 342 $g
geo latitude 342 $h
has reply 788 $a
num replies 788 $b
is child of post 773 $o $4 $w
is child of comment 773 $o $4 $w

To implement a distributed crawler architecture, we choose to use Scrapyd,f an

application for deploying and running Scrapy spiders. The process is quite straight-

forward:

(1) Deploy the BlogForever crawler in any number of servers according to require-

ments. Using the Scrapyd component which is run as a system daemon, each

crawler is listening for requests to run crawling tasks and spawn a process for

each new command.

(2) Implement a small control program that reads the list of target weblogs which

need to be crawled and issue commands in a round-robin fashion using the

Scrapyd JSON API.g

(3) All crawlers share a common storage service where they save the crawling

results.

5. Evaluation

Our evaluation is articulated in two parts. First, we compare the article extrac-

tion procedure presented in section 3 with three open-source projects capable of

extracting articles and titles from web pages. The comparison will show that our

weblog-targeted solution has better performance both in terms of success rate and

running time. Second, a discussion is held regarding the different solutions available

to archive data beyond what is available in the HTML source code. Extraction of

authors, dates and comments is not part of this evaluation because of the lack of

publicly available competing projects and reference data sets.

In our experiments we used Debian GNU/Linux 7.2, Python 2.7 and an Intel

Core i7-3770 3.4 GHz processor. Timing measurements were made on a single

fhttp://scrapyd.readthedocs.org/en/latest/
ghttp://scrapyd.readthedocs.org/en/latest/api.html

1540005-17

http://scrapyd.readthedocs.org/en/latest/
http://scrapyd.readthedocs.org/en/latest/api.html

2nd March, 2015 17:45 IJAIT S0218213015400059 page 18

1st Reading

V. Banos et al.

Table 7. Extraction success rates for different algorithms.

Target Our Approach Readability Boilerpipe Goose

Article 93.0% 88.1% 79.3% 79.2%

Title 95.0% 74.0% N/A 84.9%

dedicated core with garbage collection disabled. The Git repository for this paperh

contains the necessary scripts and instructions to reproduce all the evaluation ex-

periments presented in this section. The crawler source code is available under the

MIT license from the project’s websites.i

5.1. Extraction success rates

To evaluate article and title extraction from weblog posts we compare our approach

to three open source projects: Readability,j Boilerpipe19 and Goose,k which are

implemented in JavaScript, Java and Scala respectively. These projects are more

generic than our blog-specific approach in the sense that they are able to identify

and extract data directly from HTML source code, and do not make use of web

feeds or structural similarities between pages of the same weblog (observations (1)

and (2)). Table 7 shows the extraction success rates for article and title on a test

sample of 2300 posts from 230 weblogs obtained from the Spinn3r dataset.3

On our test dataset, Algorithm 1 outperformed the competition by 4.9% on

article extraction and 10.1% on title extraction. It is important to stress that

Readability, Boilerpipe and Goose rely on generic techniques such as word den-

sity, paragraph clustering and heuristics on HTML tagging conventions, which are

designed to work for any type of web page. On the contrary, our algorithm is only

suitable for pages with associated web feeds, as these provide the reference data

used to build extraction rules. Therefore, results shown in Table 7 should not be

interpreted as a general quality evaluation of the different projects, but simply as

evidence that our approach is more suitable when working with weblogs.

5.2. Article extraction running times

In addition to the quality of the extracted data we also evaluated the running time of

the extraction procedure. The main point of interest is the ability of the extraction

procedure to scale as the number of posts in the processed weblog increases. This

corresponds to the evaluation of a NewCrawl task, which is in charge of harvesting

all published content on a weblog.

Figure 2 shows the cumulated time spent for each article extraction procedure

(this excludes common tasks such as downloading pages and storing results) as a

hhttps://github.com/OlivierBlanvillain/bfc-paper
ihttps://github.com/BlogForever/crawler
jhttps://github.com/gfxmonk/python-readability
khttps://github.com/GravityLabs/goose

1540005-18

https://github.com/OlivierBlanvillain/bfc-paper
https://github.com/BlogForever/crawler
https://github.com/gfxmonk/python-readability
https://github.com/GravityLabs/goose

2nd March, 2015 17:45 IJAIT S0218213015400059 page 19

1st Reading

A Scalable Approach to Harvest Modern Weblogs

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60

C
um

ul
at

ed
ru

nn
in

g
ti

m
e

(s
ec

.)

Processed blog posts

Our approach
Readability
Boilerpipe

Goose

Fig. 2. Running time of articles extraction.

function of the number of weblog posts processed. We used the Quantum Diariesl

blog for this experiment. Data presented in this graph was obtained by taking the

arithmetic mean over 10 measurements. These results are believed to be significant

given that standard deviations are of the order of 2 milliseconds.

As illustrated in Figure 2, our approach spends the majority of its total running

time between the initialisation the processing of the first weblog post. This initial

increase of about 0.4 seconds corresponds to cost of executing Algorithm 2 to com-

pute extraction rule for articles. As already mentioned, this consists in computing

the best extraction rule of each pages references by the web feed and picking the

one functioning best on these pages. Once we have this extraction rule, processing

subsequent weblog posts only requires parsing and applying the rule, which takes

about 3 milliseconds and are barely visible on the scale of Figure 2. The other

evaluated solutions do not function this way: each weblog post is processed as new

and independent input, leading to approximately linear running times.

The vertical dashed line at 15 processed weblog posts represents a suitable

point of comparison of processing time per post. Indeed, as the web feed of our

test weblog contains 15 posts, the extraction rule computation performed by our

approach include the cost of entirely processing these 15 entries. That being said,

comparing raw performance of algorithms implemented in different programming

languages is not very informative given the high variations of running times observed

across programming languages.15

When compared to the other parts of crawling, the content extraction is suffi-

ciently quick not to be a bottleneck. Indeed, extracting the content of 100 pages

takes about half a second, downloading 100 pages takes at least 1 second, and, if

enabled, rendering and taking screenshots takes about half a second per page.

lhttp://www.quantumdiaries.org

1540005-19

http://www.quantumdiaries.org

2nd March, 2015 17:45 IJAIT S0218213015400059 page 20

1st Reading

V. Banos et al.

6. Discussion and Conclusions

In this article, we presented our extended work on a scalable approach to harvest

modern weblogs. Our approach is based on a new algorithm to build extraction rules

from web feeds. The key observations which led us to the inception and implemen-

tation of this algorithm are the facts that: (1) weblogs provide web feeds which

include structured and standardized views of the latest blog posts, and (2) post

of the same weblog share a similar HTML structure. Following, we presented a

simple adaptation of this procedure that allows extracting different types of con-

tent, including authors, dates, comments and potentially any other element. The

elaboration of this process enables the wider use of this method as it is feasi-

ble to devise variations of the proposed method to extract any kind of weblog

content.

A critical part of this work was the presentation of the BlogForever crawler

architecture and discussion of the software tools and the novel techniques we used.

In order to support rapidly evolving web technologies such as JavaScript-generated

content, the crawler uses a headless web browser to render pages before processing

them. Another important aspect of the crawler architecture was the interoperabil-

ity provisions. In our design, we introduced a new metadata schema for interoper-

ability, encoding weblog crawling results in Archival Information Packages (AIPs)

using established open standards. This feature enables the use of our system in

many contexts and with multiple different back-ends, increasing its relevance and

reusability. We also highlighted the design choices made to achieve both modularity

and scalability. This is particularly relevant in the domain of web crawling given

that intensive network operations can be a serious bottleneck. Crawlers greatly

benefit from the use of multiple Internet access points which makes them natural

candidates for distributed computing.

Our method had great success with content extraction accuracy and perfor-

mance against state-of-the-art open source web article extraction systems as pre-

sented in the evaluation section. We have to note thought that our experiments on a

considerably large weblogs dataset showed that there were some failing tests which

stem from either the violation of one of our two key observations, or from an insuffi-

cient amount of text in posts. Therefore, it is suggested to potential users to ensure

that these observations are valid on the target weblogs before proceeding with using

the BlogForever crawler. Future work could attempt to alleviate this problem using

hybrid extraction algorithms. Combining our approach with others techniques such

as word density or special reasoning could lead to better performance given that

these techniques are insensible to the above issues.

Acknowledgments

Acknowledgments to G. Gkotsis from the University of Warwick for generously

sharing his research material, time, and ideas with us.

1540005-20

2nd March, 2015 17:45 IJAIT S0218213015400059 page 21

1st Reading

A Scalable Approach to Harvest Modern Weblogs

References

1. P. Berger, P. Hennig, J. Bross and C. Meinel, Mapping the Blogosphere — Towards a
universal and scalable Blog-Crawler, in Third Int. Conf. on Social Computing (2011),
pp. 672–677.

2. P. Boldi, B. Codenotti, M. Santini and S. Vigna, UbiCrawler: A scalable fully dis-
tributed web crawler, Software: Practice and Experience 34(8) (2003) 711–726.

3. K. Burton, N. Kasch and I. Soboroff, The ICWSM 2011 spinn3r dataset in Fifth
Annual Conference on Weblogs and Social Media (2011).

4. L. Cantara, Mets: The metadata encoding and transmission standard, Cataloging &
Classification Quarterly 40(3-4) (2005) 237–253.

5. D. S. Chung, E. Kim, K. D. Trammell and L. V. Porter, Uses and perceptions of
blogs: A report on professional journalists and journalism educators, Journalism &
Mass Communication Educator 62(3) (2007) 305–322.

6. L. R. Dice, Measures of the amount of ecologic association between species, Ecology
26(3) (July 1945) 297.

7. S. A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Transactions on
Systems, Man and Cybernetics SMC-6(4) (1976) 325–327.

8. N. Eltantawy and J. B. Wiest, Social media in the Egyptian revolution: Reconsidering
resource mobilization theory (1-3) (2012).

9. M. Faheem, Intelligent crawling of web applications for web archiving, in Proc. of the
21st Int. Conf. Companion on World Wide Web (2012), pp. 127–132.

10. T. Furche, G. Gottlob, G. Grasso, C. Schallhart and A. J. Sellers, Oxpath: A language
for scalable data extraction, automation and crawling on the deep web, VLDB J. 22(1)
(2013) 47–72.

11. G. Gkotsis, K. Stepanyan, A. I. Cristea and M. Joy, Self-supervised automated wrap-
per generation for weblog data extraction, in Proc. of the 29th British National
Conference on Big Data (BNCOD’13) (Berlin, Heidelberg, 2013), pp. 292–302.

12. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog and S. Flesca, The lixto data extrac-
tion project: Back and forth between theory and practice, in Proc. of the Twenty-third
Symposium on Principles of Database Systems (2004), pp. 1–12.

13. A. Harasymiv, Blogger dynamic views. http://buzz.blogger.com/2011/09/

dynamic-views-seven-new-ways-to-share.htm.
14. A. Heydon and M. Najork, Mercator: A scalable, extensible web crawler, World Wide

Web 2(4) (1999) 219–229.
15. R. Hundt, Loop recognition in C++/Java/Go/Scala, in Proc. of Scala Days (2011).
16. K. Johnson, Are blogs here to stay?: An examination of the longevity and currency of

a static list of library and information science weblogs, Serials Review 34(3) (2008)
199–204.

17. H. Kalb and M. Trier, The blogosphere as œuvre: Individual and collective influence
on bloggers, in ECIS 2012 Proceedings, Proceedings/European Conference on Infor-
mation Systems (ECIS) (Association for Information Systems, AIS Electronic Library
(AISeL), 2012), Paper 110.

18. N. Kasioumis, V. Banos and H. Kalb, Towards building a blog preservation platform,
World Wide Web (2013), pp. 1–27.

19. C. Kohlschütter, P. Fankhauser and W. Nejdl, Boilerplate detection using shallow
text features, in Proc. of the Third ACM Int. Conf. on Web Search and Data Mining
(WSDM ’10) (New York, USA, 2010), pp. 441–450.

20. R. G. Lavender and D. C. Schmidt, Active Object — An Object Behavioral Pattern for
Concurrent Programming (Addison-Wesley Longman Publishing, Boston, MA, 1996),
pp. 483–499.

1540005-21

http://buzz.blogger.com/2011/09/dynamic-views-seven-new-ways-to-share.htm
http://buzz.blogger.com/2011/09/dynamic-views-seven-new-ways-to-share.htm

2nd March, 2015 17:45 IJAIT S0218213015400059 page 22

1st Reading

V. Banos et al.

21. B. Lavoie, Meeting the challenges of digital preservation: The oais reference model,
OCLC Newsletter 243 (2000) 26–30.

22. V. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals,
Soviet Physics Doklady 10(8) (February 1966), 707–710.

23. C. Lindahl and E. Blount, Weblogs: Simplifying web publishing, Computer 36(11)
(2003) 114–116.

24. J. G. Llopis et al., D4. 4: Digital repository component design, work package, European
Organization for Nuclear Research (CERN, 2012).

25. X. MARC, Official web site (2003).
26. I. Muslea, S. Minton and C. A. Knoblock, Hierarchical wrapper induction for

semistructured information sources, Journal of Autonomous Agents and Multi-Agent
Systems 4 (2001) 93–114.

27. M. Oita and P. Senellart, Archiving data objects using web feeds, in Proc. of the
International Workshop on Web Archiving (IWAW) (September 2010).

28. E. Oro, M. Ruffolo and S. Staab, SXPath — Extending XPath towards spatial query-
ing on web documents, PVLDB 4(2) (2010) 129–140.

29. D. C. Reis, P. B. Golgher, A. S. Silva and A. F. Laender, Automatic web news
extraction using tree edit distance, in Proc. of the 13th Int. Conf. on World Wide
Web (WWW ’04) (New York, USA, 2004), pp. 502–511.

30. A. Rogers and G. Brewer, Microdata usage statistics.
http://trends.builtwith.com/docinfo/Microdata.

31. RSS Advisory Board. Rss 2.0 specification (2007).
32. V. Shkapenyuk and T. Suel, Design and implementation of a high-performance dis-

tributed web crawler, in 18th Int. Conf. on Data Engineering, 2002. Proceedings
(2002), pp. 357–368.

33. Various authors. The reactive manifesto. http://reactivemanifesto.org.
34. Various authors, W3C. W3C standards. http://w3.org/standards.
35. Various authors, WC3. Use h1 for top level heading. http://www-mit.w3.org/QA/

Tips/Use h1 for Title.
36. WHATWG. Microdata — HTML5 draft standard.

http://whatwg.org/specs/web-apps/current-work/multipage/microdata.html.
37. B. Wilson, Metadata analysis and mining application.

http://dev.opera.com/articles/view/mama.
38. WordPress. Posting activity. http://wordpress.com/stats/posting.

1540005-22

http://trends.builtwith.com/ docinfo/Microdata
http://reactivemanifesto.org
http://w3.org/standards
http://whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://dev.opera.com/ articles/view/mama
http://wordpress.com/stats/posting

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

