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Abstract: The work presented in this paper is part of a system able to perform 
risk classification of patients based on medical image analysis and on the 
semantically structured information of patient data from medical records and 
biochemical data. More specifically, the paper focuses on Intravascular 
Ultrasound (IVUS) image processing and the automated segmentation 
developed to extract the useful arterial boundaries. This is coupled with the 
design and implementation of a semantic reasoning-enabled knowledge base in 
OWL that integrates data from heterogeneous sources and incorporates 
functionality for DL classification. Performance evaluation of both IVUS 
image processing and knowledge base is discussed. 

 



   

 

   

   
 

   

   

 

   

   2 C. Doulaverakis et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Keywords: IVUS image processing; RBF; radial basis function; risk 
prediction; semantic analysis; OWL; SWRL. 

Reference to this paper should be made as follows: Doulaverakis, C., 
Papadogiorgaki, M., Mezaris, V., Mpillis, A., Parissi, E., Kompatsiaris, I., 
Gounaris, A., Chatzizisis, Y.S. and Giannoglou, G.D. (xxxx) ‘IVUS image 
processing and semantic analysis for Cardiovascular Diseases risk prediction’, 
Int. J. Biomedical Engineering and Technology, Vol. x, No. x, pp.xxx–xxx. 

Biographical notes: Charalampos Doulaverakis received his Diploma in 
Electronic and Computer Engineering from the Technical University of Crete, 
Greece, in 2003 and his MSc in Advanced Computing from the Aristotle 
University of Thessaloniki, Greece, in 2008. Since 2004, he is a Research 
Associate with the Informatics and Telematics Institute/Center for Research 
and Technology Hellas, Thessaloniki, Greece. His research interests include 
image processing, ontology engineering and semantic web. He is a Member  
of the Technical Chamber of Greece. 

Maria Papadogiorgaki received the Diploma in Electrical and Computer 
Engineering and the MSc in Medical Informatics from the Aristotle University 
of Thessaloniki, Thessaloniki, Greece, in 2003, and 2006, respectively. Since 
2003, she is a Research Assistant with the Informatics and Telematics 
Institute/Center for Research and Technology Hellas, Thessaloniki, Greece. 
Her research interests include medical image analysis/processing, machine 
learning and personalisation systems. She is a Member of the Technical 
Chamber of Greece. 

Vasileios Mezaris received the Diploma and the PhD in Electrical and 
Computer Engineering from the Aristotle University of Thessaloniki, 
Thessaloniki, Greece, in 2001 and 2005, respectively. He is a Senior 
Researcher (Researcher D) with the Informatics and Telematics Institute/Center 
for Research and Technology Hellas, Thessaloniki, Greece. His research 
interests include image and video analysis, content-based and semantic image 
and video retrieval, ontologies, multimedia standards, knowledge-assisted 
multimedia analysis, knowledge extraction from multimedia, medical image 
analysis. He is a member of the IEEE and the Technical Chamber of Greece. 

Antonis Mpillis received the Diploma in Electrical and Computer Engineering 
from the Aristotle University of Thessaloniki, Thessaloniki, Greece, in  
2007 where he is currently attending the graduate programme of Medical 
Informatics, co-organised by the Medical School, the Engineering Faculty  
and the Faculty of Sciences. He is also a Graduate Research Assistant with the 
Informatics and Telematics Institute, Thessaloniki, Greece. His research 
interests include biomedical engineering, image and video processing and 
networking protocols. He is a Member of the Technical Chamber of Greece. 

Eirini Parissi graduated from the Electrical Engineering Department of 
Aristotle University of Thessaloniki in 2005 and worked as a Research 
Assistant in the Multimedia Knowledge Lab, Informatics and Telematics 
Institute, CERTH/ITI, until December 2007. Her basic regions of interest have 
been medical image processing, ontology engineering and reasoning support, 
focusing onto medical applications. She is currently in the second year of 
studies of Master in Business Administration in the University of Macedonia, 
Thessaloniki, Greece. 

 



   

 

   

   
 

   

   

 

   

    IVUS image processing and semantic analysis 3    
 

    
 
 

   

   
 

   

   

 

   

       
 

Ioannis Kompatsiaris received the Diploma in Electrical Engineering and the 
PhD in 3-D Model based Image Sequence Coding from Aristotle University of 
Thessaloniki, Greece, in 1996 and 2001, respectively. He is a Senior 
Researcher (Researcher B’) with the Informatics and Telematics Institute. His 
research interests include semantic multimedia analysis, indexing and retrieval, 
multimedia and the semantic web, knowledge structures, reasoning and 
personalisation for multimedia applications. He is the co-author of ten book 
chapters, 30 papers in refereed journals and more than 90 papers in 
international conferences. He is a Member of IEEE, ACM and IEE. 

Anastasios Gounaris is a Lecturer at the Department of Informatics of the 
Aristotle University of Thessaloniki, Greece. Prior to that, he was a Visiting 
Lecturer with the University of Cyprus, a Research Associate with the School 
of Computer Science of the University of Manchester and he has also 
collaborated with the ITI Institute of the Center of Research and Technology – 
Hellas CERTH. He received his PhD from the University of Manchester (UK) 
in 2005. He is a Member of the Technical Chamber of Greece, ACM, and 
ΙΕΕΕ. This work was conducted while he was with ITI-CERTH 

Yiannis S. Chatzizisis received the MD from the Medical School, Aristotle 
University of Thessaloniki (A.U.Th), Thessaloniki, Greece, in 2000, and the 
MSc from the same university in 2004. Since 2004, he is a PhD candidate  
in A.U.Th. with funding from the Greek State Scholarships Foundation.  
In 2005, he completed the Residency in Internal Medicine at the AHEPA 
University Hospital, Thessaloniki, Greece. Since 2000, he has been a Research 
Fellow in Cardiology at the Cardiovascular Engineering and Atherosclerosis 
Laboratory, A.U.Th. Since 2005, he has been Research Fellow in Cardiology  
at the Brigham and Women’s Hospital, Harvard Medical School and the 
Massachusetts Institute of Technology. He is now Cardiology Fellow at the 
AHEPA University Hospital, Thessaloniki, Greece. His research interests 
include molecular biology of atherosclerosis, cardiovascular fluid dynamics, 
and cardiovascular imaging. 

George Giannoglou graduated from Medical School of Aristotle University  
of Thessaloniki in 1971. He is Professor of Cardiology at the 1st Cardiology 
Department, AHEPA University General Hospital, Thessaloniki, Greece.  
His research interests include the study of pathophysiology of atherosclerosis 
with special focus on the effect of local haemodynamic factors (e.g., shear 
stress, wall stress). Furthermore, he is working on the development of 
Intravascular Ultrasound (IVUS)-based methods for the imaging of 
atherosclerotic lesions. 

 

1 Introduction 

Today, the delivery of healthcare services to patients relies heavily on Medical 
Information Systems. Such systems are based on cutting-edge information technology  
to electronically collect, process, examine, distribute, display and store patient data.  
The increasing volume of medical data demands new techniques for organising, sharing, 
managing and extracting knowledge. The extracted knowledge can then be used  
to facilitate disease diagnosis, prevent human error and inform about the functions  
and consequences of several diseases. Ontologies and Semantic Web technologies can 
offer solutions to medical information management problems, such as the navigation  
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and integration of large and complex medical terminologies (Nelson et al., 2002).  
These efforts have resulted in thesauri and meta-thesauri like the MeSH and UMLS. They 
are mainly used for medical document classification and retrieval purposes, but other 
major uses include term disambiguation and medical systems interoperability, which can 
in turn offer decision-support and knowledge reuse in areas such as breast cancer 
diagnosis from X-ray mammography and MRI images, and coronary artery disease 
prognosis. 

Additionally, advances in digital signal processing and, more specifically, image 
analysis, take a major hand in medical progress, as analysis of medical images plays  
an ever-increasing crucial role in terms of medical diagnosis and research. In the field  
of medical imaging, coronary angiography is acknowledged as the gold standard  
for imaging and diagnosis of coronary heart disease (Nissen and Yock, 2001). However, 
it is restricted by its inability to depict the vessel wall, provided that it illustrates  
the coronary arteries as a silhouette of the lumen. Thus, it fails to quantify plaque  
burden, which is responsible for partial or total obstruction of the arteries. Recently, 
Intravascular Ultrasound (IVUS) has been introduced as complementary to angiography  
diagnostic technique aiming at more accurate imaging of coronary atherosclerosis  
(Bom et al., 1998; Mario et al., 1998). The detection of specific features in IVUS images 
constitutes a necessary step for accurate morphometric analysis of coronary plaques and 
accordingly the assessment of the atherosclerotic lesion length (Schoenhagen and Nissen, 
2002). 

One of the medical research areas that can benefit from advances in the  
above-mentioned technologies is that of Cardiovascular Diseases (CVDs). CVDs, but 
principally heart disease and atherosclerosis, are worldwide primarily fatal diseases for 
both men and women among all racial and ethnic groups. According to data from  
the American Heart Association, almost 1 million Americans die of CVD each year, 
which adds up to 42% of all deaths. Atherosclerosis involves a build-up on the inner side 
of artery walls. Excess fat or plaque deposits are narrowing the veins that supply 
oxygenated blood to the heart, usually leading to a heart attack. There is overwhelming 
evidence that high blood cholesterol increases the risk of developing atherosclerosis 
(Glagov et al., 1987). 

Following the above studies, the work presented in this paper is part of a 
bioinformatics system utilising real 3D reconstruction of coronary arteries, by  
fusion of IVUS and biplane angiography imaging, along with Computational Fluid 
Dynamics (CFD) techniques to provide early diagnosis of coronary arteries diseases.  
The system is also able to perform risk classification of patients based on the 
semantically structured information of patient data. The paper focuses on two major parts 
of the system, i.e., the IVUS image processing and segmentation module and on the  
design and implementation of the semantic reasoning-enabled knowledge base in Web 
Ontology Language (OWL) that integrates data from heterogeneous sources, such as 
images and structured files, and incorporates functionality for Description Logic (DL) 
classification. 

More specifically, regarding IVUS image segmentation, the paper presents  
an automated method for the segmentation of IVUS images and specifically for the 
detection of luminal and medial–adventitial boundaries, based on the results of texture 
analysis, performed by means of a multilevel Discrete Wavelet Frames (DWFs) 
decomposition, and on a smoothing step using Radial Basis Function (RBF) 
approximation. The proposed approach does not require manual initialisation of the 
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contours and shows promising results. Regarding the semantic data processing, research 
focuses on risk prediction of CVDs, employing Semantic Web to achieve 
interoperability, clarity, unambiguity and proof tracing. All patient data, including those 
coming from automated IVUS image analysis, are expressed as classes and properties of 
an OWL medical ontology using standard terminology adopted from the MeSH 
thesaurus. 

The remainder of the paper is structured as follows: Section 2 gives a detailed 
description of the proposed methodology for IVUS image processing, while Section 3 
elaborates on the employed knowledge-based risk assessment system by giving insights 
in the ontology and rules used as foundations of the knowledge base. Results on the 
IVUS segmentation method and evaluation of knowledge base performance and 
scalability are discussed in Section 4. Section 5 concludes the paper with a discussion 
about plans for future work. 

2 IVUS image processing 

IVUS is a catheter-based technique that renders two-dimensional images of coronary 
arteries and, therefore, provides information concerning luminal and wall area, plaque 
morphology and wall composition (Figure 1). The wall of coronary arteries  
consists of three main layers: intima, media and adventitia, while three regions  
are visualised as distinguished fields in an IVUS image, namely the lumen,  
the vessel wall (consisted of the intima and the media layers) and the adventitia plus 
surroundings, as illustrated in Figure 1. The above-mentioned regions are separated  
by two closed contours: the inner border, which corresponds to the lumen–wall interface, 
and the outer border representing the boundary between media and adventitia. The 
reliable and quick detection of these two borders is the goal of analysis and  
also the basic step towards the subsequent 3D reconstruction of the arteries,  
which can provide additional information regarding the burden of atherosclerosis 
(Giannoglou et al., 2006). However, the quantitative evaluation of characteristic 
parameters such as luminal and wall area that is necessary for the clinical evaluation of 
the image data requires their segmentation according to the actual structure of the 
coronary arteries. 

Figure 1 IVUS image 
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2.1 Related work 

A direct approach to IVUS image analysis is manual segmentation, i.e., the manual 
determination of the inner and outer borders, which is always performed by an expert.  
It is a time-consuming procedure with results affected by the high inter- and intra-user’s 
variability. To overcome these limitations, several approaches for semi-automated 
segmentation have been proposed in the literature. Semi-automated methods include  
a usually crude and fast manual denotation of the vessel borders followed by an 
automated refinement to depict as precisely as possible the actual borders. Sonka et al. 
(1995) implemented a knowledge-based graph searching method incorporating a priori 
knowledge on coronary artery anatomy and a selected region of interest prior to the 
automatic border detection. Quite a few variations of the active contour model have been 
investigated. The active contour principles have been used to allow the extraction of the 
borders in three dimensions after setting an initial contour in Kovalski et al.’s (2000) 
approach. However, the contour detection fails for low-contrast interface regions such as 
the luminal border where the blood–wall interface in most images corresponds to weak 
pixel intensity variation. Klingensmith et al. (2004) employ plaque characterisation by 
using the frequency information to improve the active surface segmentation algorithms 
after acquiring the Radiofrequency (RF) IVUS data. 

For clinical practice, the most attractive approaches are the fully automatic ones with 
a limited number of them being developed so far. Brusseau et al. (2004) exploited an 
automatic method for detecting the endoluminal border based on an active contour that 
evolves until it optimally separates regions with different statistical properties. 
Giannoglou et al. (2007) propose an automated segmentation method based on a variant 
of the active contour model, while Filho et al. (2005) investigated a fuzzy clustering 
algorithm for adaptive segmentation in IVUS images. Cardinal et al. (2006) present a 3D 
IVUS segmentation where Rayleigh probability density functions are applied for 
modelling the pixel grey value distribution of the vessel wall structures. An automated 
approach based on deformable models has been reported by Plissiti et al. (2004), who 
employed a Hopfield neural network for the modification and minimisation of an energy 
function as well as a priori vessel geometry knowledge. Unal et al. (2006) proposed  
a shape-driven approach to the segmentation of IVUS images, based on building a shape 
space using training data and consequently constraining the lumen and media–adventitia 
contours to a smooth, closed geometry in this space. 

2.2 Image pre-processing 

The proposed method, described in detail in Papadogiorgaki et al. (2007a, 2007b), 
involves a pre-processing of the image data for the purpose of applying texture 
description. The method consists of two steps: representation of the images in polar 
coordinates (Figure 2(a)), and removal of catheter-induced artefacts (Figure 2(b)). 
Representation of the images in polar coordinates is important for facilitating the 
description of local image regions in terms of their radial and tangential characteristics. 
Each of the original IVUS images is transformed to a polar coordinate image where 
columns and rows correspond to angle and distance from the centre of the catheter, 
respectively, and this image alone, denoted I(r, θ), is used throughout the analysis 
process. 
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The images produced by IVUS include not only tissue and blood regions but also the 
outer boundary of the catheter itself. The latter defines a dead zone of radius equal to that 
of the catheter, where no useful information is contained. Knowing the diameter of the 
catheter, these catheter-induced artefacts are easily removed by setting I(r, θ) = 0 for 
r < D/2 + e, e being a small constant. This pre-processing is illustrated in Figure 2. 

Figure 2 (a) IVUS image in polar coordinates and (b) IVUS image after catheter removal 

 
 (a) 

 
 (b) 

2.3 Contour initialisation 

Prior to contour initialisation, texture analysis is employed, as it has been proven to be an 
important cue for image analysis (Mezaris et al., 2004). DWFs (Unser, 1995) have been 
used for texture analysis, a method similar to Discrete Wave Transform (DWT) that uses 
a filter bank to decompose the greyscale image to a set of sub-bands. The filter bank is 
based on the low-pass Haar filter H(z) = (1/2)(1 + z–1) and its complementary high-pass 
filter G(z) = zH(–z–1). A four-level DWF is employed using the fast iterative Texture 
Analysis and RBF approximation proposed by Unser (1995), resulting in K = 12 images 
where each image, denoted as Ik, k = 1, …, K, results from treating each calculated 
standard deviation from the neighbourhood F of pixel p as intensity value for pixel p.  
In addition to these images, an approximation component that is a low-pass filtered image 
denoted as ILL is generated. 

Following the texture analysis, the objective of the contour initialisation procedure is 
the detection of pixels that are more likely to belong to the lumen and media–adventitia 
boundaries. On the basis of the proposed approach, the initialisation of the lumen 
boundary relies on the observation that the lumen and wall areas demonstrate different 
texture characteristics: the lumen area tends to be a low-intensity non-textured region, 
with noise being responsible for any high-intensity artefacts in it, whereas the wall area is 
typically characterised by the presence of both low-intensity and high-intensity parts, 
with changes between the two are of relatively low-frequency in the tangential direction 
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and of somewhat higher frequency in the radial direction. Consequently, the local energy 
of the signal in appropriate frequency sub-bands can be used as a criterion for 
differentiating between the lumen and wall areas; to this end, the results of texture 
analysis discussed in the previous paragraph are employed. 

Regarding the initialisation of the media–adventitia boundary, the approximation 
component of the DWF decomposition is used. This choice was motivated by the 
observation that in many cases the media–adventitia boundary is represented by a thick 
bright ring (a thick bright curve in polar coordinates) that is dominant in the IVUS image. 
Thus, in the approximation component, the media–adventitia boundary is rather well 
preserved, as opposed to higher-frequency details that are suppressed by the low-pass 
filtering, which facilitates contour initialisation. 

In detail, let Iint, Iext denote the simplified images, after texture analysis, which are 
used for detecting the lumen and media–adventitia boundaries, respectively. These are 
defined based on the proposed approach as 

{ }{ }int int
, int

255( , ) ( , )
max ( , )r

I r I r
I rθ

θ θ
θ

′=
′

 (1) 

int ( , ) ( , )k
k

I r I rθ θ′ =∑  (2) 

ext ( , ) ( , ).LLI r I rθ θ=  (3) 

The choice of images Ik that are employed in this initialisation process was done based  
on visual evaluation of all K generated images and is in line with the aforementioned 
observations regarding the texture properties of the lumen and wall areas, in combination 
with the characteristics of the filter bank used for the generation of images Ik. 

The internal contour is initialised as the set of pixels 

{ }int int [ , ]c p ρ θ= =  (4) 

for which 

int int( , ) and ( , ) ,I T I r T rρ θ θ ρ> < ∀ <  (5) 

thus defining an internal contour function cint(θ) = ρ (Figure 3(a)) T in the above equation 
is a threshold whose value was set experimentally to 128; small deviations from this 
value were shown to have little effect on the results of initialisation. 

The external contour is initialised as the set of pixels: 

{ }ext ext [ , ]c p µ θ= =  (6) 

for which 

{ }ext ext( , ) ( , )max
r

I I r
ρ

µ θ θ
′>

=  (7) 

where [ρ′, θ] are the points of the final internal contour, as obtained by applying to the 
initialisation data the refinement process of the following section. This defines a contour 
function cext(θ) = µ for the external contour (Figure 3(b)). 
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Figure 3 Results of contour initialisation for: (a) the lumen and (b) the media–adventitia 
boundary 

 
 (a) 

 
 (b) 

2.4 Contour refinement using Radial Basis Function approximation 

In contrast to the initial contours generated as described in the previous paragraph, which 
are not smooth and are characterised by discontinuities (Figure 3, the true lumen and 
media–adventitia boundaries are smooth, continuous functions of θ. Consequently, to 
obtain smooth contours that are consistent with the true ones, the application of a filtering 
or approximation procedure to the initial contour functions cint(θ), cext(θ) is required.  
In this work, RBFs (Carr et al., 2001) are used for this purpose. 

Polyharmonic RBFs have been proposed for reconstructing smooth, manifold 
surfaces from point-cloud data and for repairing incomplete meshes through interpolation 
methods and approximation techniques. Their suitability for contour refinement  
in the IVUS image segmentation process has been investigated by Papadogiorgaki  
et al. (2007a, 2007b). Using them for the approximation of the initial contours  
in a frame, i.e., the generation of a contour c′ that is a smooth, reasonable  
approximation of c requires the definition for each such contour of a function f as 
follows: 

( , ( )) 0f Cθ θ =  (8) 

where C(θ) here denotes either cint(θ) or cext(θ), depending on the contour being 
examined. Function f is used for formulating the approximation problem as the one of 
finding an RBF s for which s(⋅) ≅ f(⋅). To avoid the trivial solution of s  being zero at 
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every point, f  must also be defined for a set of points not belonging to the initial 
contour, so that 

( , ( )) 0.f r Cθ θ≠ ≠  (9) 

The latter points are defined in this work as those that satisfy the following equations: 

( ) 1maxr C
θ

θ= +  (10) 

( ) 1.maxr C
θ

θ= −  (11) 

For the above points in the 2D space, function f is defined as the signed Euclidean 
distance from the initialised contour for θ = const, i.e., 

( , ( )) ( ).f r C r Cθ θ θ≠ ≠ −  (12) 

Following the definition of f, the FastRBF library (FarField Technology) was used to 
generate the smooth contour approximation c′ by removing duplicate points where f has 
been defined (i.e., points in the 2D space which are located within a specific minimum 
distance from other input points), fitting of an RBF to this data and evaluating it to find 
the points, which correspond to zero value; the latter defines the contour approximation 
c′. Figure 4 shows the result of applying the RBF-based refinement on the contours of 
Figure 3. 

Figure 4 (a, b) The result of the proposed contour refinement method applied to the contours  
of Figure 3(a) and (b) respectively 

 
 (a) 

 
 (b) 
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After the successful detection of the inner and outer borders, morphometric analysis for 
the estimation of important vessel parameters takes place. Using the detected borders as 
reference, the centre of mass for the lumen is calculated and we proceed to the 
measurement of the dimensions as depicted in Figure 5. Point A is the centre of mass 
while AB is defined as the lumen radius and BC is the Wall Thickness. The sum  
of AB and BC is the vessel radius. Owing to the shape of the vessel, almost every 
dimension measurement that is calculated will be different from each other, so a number 
of measurements have to be taken. Typically, 200 radii and Wall Thickness 
measurements are calculated for every IVUS image so as to estimate the mean vessel and 
lumen radius. The largest and the smallest Wall Thickness values, denoted as maxWT and 
minWT in Figure 5, are also registered, as they provide important clues to the 
development of atheromatic plaque on the artery. Additionally, the area of the lumen, 
wall and vessel is calculated. Table 1 summarises the parameters measured from every 
IVUS image. 

Figure 5 Calculated artery measurements for morphometric analysis. WT represents  
Wall Thickness 

 

Table 1 Parameters calculated for every IVUS image 

Parameter Symbol Units 
Vessel area Evessel mm2 
Lumen area Elumen  mm2 
Wall area Ewall  mm2 
Vessel min radius minRvessel mm 
Vessel max radius maxRvessel mm 
Vessel mean radius meanRvessel  mm 
Lumen min radius minRlumen mm 
Lumen max radius maxRlumen mm 
Lumen mean radius meanRlumen  mm 
Vessel min diameter minDvessel mm 
Vessel max diameter maxDvessel mm 
Vessel mean diameter meanDvessel mm 
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Table 1 Parameters calculated for every IVUS image (continued) 

Parameter Symbol Units 
Lumen min diameter minDlumen mm 
Lumen max diameter maxDlumen mm 
Lumen mean diameter meanDlumen mm 
Mean Wall Thickness meanWT  mm 
Max Wall Thickness maxWT  mm 
Min Wall Thickness minWT mm 

3 Semantic medical data processing 

Semantic analysis and classification are applied to facilitate the examination of IVUS 
image sequences and extract initial knowledge-based diagnosis of coronary artery 
disease. The preliminary diagnosis is achieved through an end-to-end analysis of raw 
medical facts via the image processing procedure described earlier, in combination with 
complex reasoning tasks. At a first level, the developed medical ontology provides  
a central point for accumulation of information produced from different modalities, i.e., 
analysis of IVUS images, data collected from patient’s medical record and from 
biochemical tests, where they are automatically arranged and stored in a structured 
ontological form. At a second level of process, semantic rules and inherent reasoning 
capabilities of ontologies are applied to the data to perform the required classification. 
Using this approach, a core knowledge base of patients is created. 

Benefits from this procedure are easy to conceive. One of the most important aspects 
is that data would be otherwise distributed among different sections or databases of a 
hospital, e.g., IVUS images would remain in the Cardiovascular Laboratory separated 
from biochemical and medical record data thus complicating or making difficult the 
amassment and processing of the data. Another key benefit comes from the ontology 
itself as it allows the semantic and, in turn, automatic further processing of information. 
Semantic description of data or information in the area of medicine has proven to be quite 
useful. 

The medical domain offers a rich and often non-monotonically defined vocabulary. 
An example, taken from the MeSH thesaurus, is the term Diabetes Mellitus, which can 
have the meaning either of a Metabolic Disorder or of an Endocrine System Disease. 
Through the ongoing research (MeSH, UMLS), there is an effort to organise all medical 
terms and concepts in a semantic structure so as to avoid ambiguity of term meanings 
(Nelson et al., 1999). Making use of such outcomes has the advantage of dramatically 
decreasing the development time to conceptualise the medical domain of interest  
in a given application as is the case with the presented system. 

With the ongoing progress that is being constantly made in the area of knowledge 
management through ontologies, medical information systems are shifting to the use of 
standardised terminologies and hierarchies. Such standardisation actions are, as already 
mentioned, the Medical Subject Headline (MeSH), which is a thesaurus used primarily 
for the indexing of medical documents, the Unified Medical Language System (UMLS), 
which provides a semantic network of concepts aiming at the development of advanced 
information systems, and the OpenGALEN Ontology of Human Anatomy project aiming 
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at providing semantic hierarchy of clinical guidelines to be followed by healthcare 
personnel (Rogers et al., 2001). The incorporation of widely accepted ontologies or 
thesauri in the development of medical information will enable the interoperation of these 
systems even at an international level, as the main effort in these actions is to formalise 
knowledge at a semantic rather than a linguistic level, thus paving the way to unified or 
interoperable medical information systems. 

The work presented in this paper makes use of such outcomes. In the development  
of our domain ontology, the MeSH thesaurus was used as a reference. Following specific 
guidelines, given by the medical experts in the project, on the data to be integrated  
and on the needed classification and assumptions in the semantic analysis system, the 
appropriate concepts from the thesaurus were selected and, by retaining hierarchy, 
gathered to create the OWL ontology. Use of the latter to create the core knowledge base 
can ensure future scaling of the system to support interoperability as previously 
described. 

The semantic analysis and classification approach layout is presented in Figure 6.  
The main idea is based on linking measurements extracted from IVUS images, as well as 
patient record information and biochemical data, to a conventional Semantic Web 
ontology. In this way, an a-priori knowledge base is formed and used as a basis for its 
further exploitation within semantic image analysis and reasoning support. 

Figure 6 Semantic patient classification (see online version for colours) 

 

3.1 Ontology description 

The domain ontology in the semantic analysis system implementation (Figure 7) was 
based on the MeSH thesaurus as explained earlier in this section. Given the guidelines 
provided by the medical experts, in addition to the risk factors that would be taken into 
account for the overall patient classification scheme, the appropriate concepts from the 
thesaurus were selected to form the ontology where the system would be based on.  
As a result, the scalability of this approach is enhanced due to the reasons discussed 
earlier. 
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Figure 7 The domain ontology (see online version for colours) 

 

Additional classes had to be added to the ontology for domain-specific concepts as was 
done with e.g., Low, Mid, High and Very High CVD Risk, which were added as 
subclasses to the Risk Assessment class (MeSH ID: D018570). Given that the ontology 
would serve both as patient data repository as well as knowledge base, where new 
knowledge would be generated, overall development was tested so as to ensure adequate 
data representation, retrieval and storage coupled with the ability to efficiently perform 
reasoning. 

More specifically, the repository for which the ontology will be the bone structure 
should be able to effectively store and retrieve patient information for the purpose of data 
viewing, but it should also be made easy to handle when it comes to performing 
reasoning either rule- or DL-based. Keeping these in mind, the ontology has five main 
classes, which are in turn broken down to subclasses representing the specific concepts 
we are trying to describe. These classes are: 
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• Diseases: Is divided in concepts regarding the description of diseases. These can  
be metabolic diseases like Diabetes, CVDs like Hypertension and so on 

• Health care quality access and evaluation: Concepts like Medical Record, Risk 
Assessment and Risk Factors are subclasses of this class. 

• Lipids: Cholesterol and Triglycerides values from biochemical tests are stored here. 

• Diagnosis: IVUS morphometric measurements, calculated using the methodology 
described in Section 2, are stored in this class hierarchy. The class IVUS 
Measurement was not part of the MeSH thesaurus so it was added accordingly  
under Ultrasonography Interventional for the purposes of this work. 

• Risk assessment: Under this class are the classes Low, Mid, High and Very High 
CVD Risk, which correspond to the patient risk category classes. These classes were 
not part of the MeSH thesaurus so they were added accordingly. 

To sum up, data from three different sources (Medical Record information, Biochemical 
tests results and IVUS morphometric measurements) are integrated in the ontology. 
Medical Record information includes Age, Sex and if the patient suffers from 
Hypertension, Hyperlipidemia, Diabetes or Obesity. Additional info for Smoking and 
CVD family history are referred here. Biochemical test results correspond to Cholesterol 
levels, values of Triglycerides and LDL/HDL cholesterol. Finally, IVUS measurements 
include Maximum Wall Thickness (maxWT) of the artery and the ratio of Minimum Wall 
Thickness to Maximum Wall Thickness, known as Eccentricity Index (EI). 

3.2 Reasoning and semantic rules 

As mentioned earlier, the semantic analysis system consists of a medical ontology 
representing the medical concepts related to the CVD, by means of classes and class 
hierarchy. Moreover, it takes advantage of the powerful functionalities of the Semantic 
Web, by applying SWRL rules on top of the ontology to perform reasoning about the risk 
factors of each individual patient and predict the corresponding risk assessment of the 
disease. The implementation of both the ontology and the semantic reasoning is based on 
the KAON2 reasoner (Motik and Sattler, 2006). 

The application of DL reasoning and semantic rules, on top of the domain ontology, 
simulates and expresses in an algorithmic form the process that experts follow to deduce 
facts, extract new knowledge and render the implicit knowledge explicit (Hussain et al., 
2007; Ruffolo et al., 2007). It is relatively straightforward to map structured or  
semi-structured data ontology instances. 

Eventually, the new extracted knowledge is stored back in the knowledge base, 
expanding it in every single step of the process (Figure 6). In conclusion, our approach 
offers the possibility of data integration from multiple heterogeneous sources, analysis 
and enhancement of the existing knowledge base with new facts concerning the medical 
data given as input. 
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In most reasoning systems that use ontologies, the demanded knowledge to enable 
reasoning support (e.g., the factors that affect the disease behaviour and development 
rates) is embodied in the application code or in custom rules used in combination with the 
domain ontology. It is important to mention that precise and consistent characterisation of 
the relation terms leads to more precise definition and description of the information 
represented in the ontology and, as a result, to stronger and more effective automated 
reasoning. In addition, the problem of combining rules with ontology languages has 
attracted a lot of attention, and recent research efforts have yielded the proposal of rule 
languages specific to the Semantic Web (RuleML, SWRL). Kashyap et al. (2006) used  
a business rule engine in combination with an OWL ontology to model clinical 
guidelines, with the latter being used mainly as a means to minimise the rule base rather 
than semantically describe their application domain. 

3.2.1 Syntax and semantics 

SWRL (Horrocks et al., 2004) is an acronym for Semantic Web Rule Language. SWRL 
is based on a combination of the OWL DL and OWL Lite sublanguages with the 
Unary/Binary RuleML Datalogue sublanguages of the Rule Markup Language and 
expressed through both an XML and an RDF concrete syntax. The basic idea of SWRL  
is to extend OWL DL, while maintaining the maximum backwards compatibility with 
OWL’s existing syntax and semantics. Therefore, all rules are expressed in terms of 
OWL concepts (classes, properties, individuals, literals, etc.). SWRL includes a  
high-level abstract syntax for Horn-like rules in both the OWL DL and OWL Lite 
sublanguages (Dean et al., 2003) and provides powerful reasoning and calculation 
capabilities. SWRL rules go beyond basic Horn clauses in allowing conjunctive 
consequents, class descriptions as well as class predicates as predicates in class atoms and 
mathematical functions and therefore extremely expressive for the representation of 
typical medical guidelines. 

3.2.2 SWRL rules for CVD risk prediction 

In the current implementation of the risk prediction system, SWRL rules are used on top 
of the domain ontology to perform semantic reasoning concerning the health condition of 
the individuals-patients. As a first step, SWRL rules are used for reasoning in three 
different directions. More specifically, they reason about the concepts of the Patient 
class, the Biochemical Data class and the IVUS Data class, assigning the corresponding 
number of risk factors for each patient. Figure 8(b) demonstrates all the key risk factors 
for the evolvement of the disease taken into account in the proposed model. The second 
step deals with the application of the medical guidelines followed by the physicians, 
represented in Figure 8(a). This categorisation was selected after careful and elaborate 
study of the medical information and the official medical procedures performed during 
the evaluation of the risk degree. We continue with examples, in a human-readable 
format, demonstrating the ‘algorithmic’ flow of both levels of the applied SWRL rules. 
However, not all factors involved in each step of the reasoning procedure are 
demonstrated due to simplicity reasons. 
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For instance, consider the rule where age is considered as a risk factor. If a male 
patient’s age is more than 45 years, then an appropriate rule should assign the age risk 
factor. The same rule should also consider the patient’s sex as for female patients the age 
threshold is set to 55 years. The rule, expressed in a simplified form, which will handle 
this clinical guideline, is: 

 
A similar rule that would express the guideline of EI, an important parameter that is 
calculated from the IVUS morphometric measurements and is defined as EI =  
(maxWT – minWT)/maxWT, is formulated as: 

 
After the determination of risk factors for each of the patients, the second level of 
classification would be to assign each patient to a risk category according to the 
guidelines depicted in Figure 10(a). Inspection of these guidelines reveals that risk 
categorisation involves not only the number of risk factors, but other parameters like 
arterial pressure or the presence of diabetes, thus making the classification more complex. 
For evaluation purposes, two methods for patient categorisation were introduced.  
The first one categorises patients using OWL definitions and restrictions, while the 
second uses SWRL rules as previously described for risk factor determination.  
As an example, the Mid-CVD Risk guideline will be used. Expressing the table from 
Figure 10(a) in natural language yields: 

A patient is in medium risk for developing a CVD IF he/she suffers from one or two 
risk factors and has arterial pressure of 1st or 2nd degree OR he/she suffers from 
no risk factors and has arterial pressure of 2nd degree. 

The guideline can be logically divided into two parts separated by the OR. Translation in 
OWL definitions yields: 

MidCVDRisk ≡ ((( ∃ hasArterialPressureDegree (Degree_1 ∪ Degree_2)) ∩  
(∃ hasNumberOfRiskFactors OneOrTwoRFs))) ∪ (( ∃ hasArterialPressureDegree 
Degree_2) ∩ ( ∃ hasNumberOfRiskFactors ZeroRFs)) 

The same guideline translated in SWRL would need to be broken down to two logical 
parts it consists of. In human-readable SWRL form, it will be expressed as: 

isInRiskCategory(?patient,MidCVDRisk) ← hasArterialPressureDegree(?patient, 
(Degree_1 ∨ Degree_2)) ∧ hasNumberOfRiskFactors(?patient,OneOrTwoRFs) 

isInRiskCategory(?patient,MidCVDRisk) ← hasArterialPressureDegree(?patient, 
Degree_1) ∧ hasNumberOfRiskFactors(?patient,ZeroRFs) 

From the above rule and OWL definitions, it can be observed that their formulation 
follows the natural language expression of the guidelines of Figure 10. Using the above 
methodology, all the guidelines of Figure 10(b) were translated in SWRL rules, while the 
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risk classification of Figure 10(a) was formulated in both SWRL rules and OWL 
definitions for the purposes of the evaluation discussed in Section 4. 

Figure 8 (a) Guidelines used for patient risk classification and (b) patient risk factors 
incorporated in the knowledge base (see online version for colours) 

 
 (a) 

 
 (b) 

4 Evaluation and discussion 

4.1 IVUS segmentation method evaluation 

The developed IVUS image analysis methodology of Section 2 was applied to a set of 40 
images randomly selected from a pool of approximately 300 images belonging to five 
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different human arterial segments; 40 randomly selected images were segmented 
manually by experts to generate ground truth results. The arterial segments were captured 
using a mechanical imaging system and a 2.6 F sheath-based catheter, incorporating  
a 40 MHz single-element transducer rotating at 1800 rpm and generating 30 images/s. A 
motorised pullback device was used to draw out the catheter at a constant speed  
of 0.5 mm/s. The ultrasound data were recorded in a 0.5-inch S-VHS videotape.  
The S-VHS data were digitised by a frame grabber integrated to the IVUS console at 
512 × 512 pixels with 8-bit grey scale in a rate of 7.5 images/sec and the end-diastolic 
images were selected (peak of R-wave on ECG). Indicative results of the proposed 
approach on the employed data set are presented in Figure 9, where the boundaries 
manually detected by a domain expert are also shown, along with results from our 
previous approach. 

Figure 9 Indicative experimental results of the proposed approach (b), (d), (f), (h), (j)  
and corresponding contours manually generated by experts (a), (c), (e), (g), (i) 

  
 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 
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Figure 9 Indicative experimental results of the proposed approach (b), (d), (f), (h), (j)  
and corresponding contours manually generated by experts (a), (c), (e), (g), (i) 
(continued) 

  
(g) (h) 

  
 (i) (j) 

The results seem consistent with the ground truth data generated by experts, showing 
good contour localisation. These results are further exploited in this work by providing 
the basis for the estimation of various morphometric measures of the vessel as is the 
maximum and minimum wall thickness or the lumen radius. Additionally, these contours 
can be used for the 3D reconstruction of the vessel model. Table 2 summarises the mean 
differences between manually and automatically generated results (Md ± SD, i.e., mean 
and standard deviation of the differences between automated and manual tracings) for 
three IVUS parameters, namely lumen, vessel and wall area. The results reveal that the 
proposed method performs adequately well, showing small differences from the ground 
truth measurements. Papadogiorgaki et al. (2008) provide comparison results of other 
methods for automatic IVUS segmentation to the proposed approach, which prove its 
superiority. 

Table 2 Mean difference and standard deviation between automated and manually generated 
results regarding three IVUS parameters. LCSA = Lumen Cross Section Area, 
VCSA = Vessel Cross Section Area, WCSA = Wall Cross Section Area 

Lumen area (LCSA, mm2) Vessel area (VCSA, mm2) Wall area (WCSA, mm2) 

0.127 ± 1.209 0.059 ± 1.589 –0.067 ± 1.363 
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4.2 Semantic analysis evaluation 

Using the methodology and system architecture described in Section 3, we were able to 
evaluate the risk factors and assess the danger for patients developing CVDs. We were 
able to test the system to measure its scalability in terms of knowledge base size and draw 
conclusions based on these measures. Another interesting part of the employed evaluation 
was the performance difference measurement for query answering between pure  
rule-based reasoning for decision-making and the combined use of rule-based and  
OWL reasoning. 

For this purpose, two configurations of the knowledge base were used. In the first, 
SWRL rules were used for the determination of the risk factors each patient had,  
a process that includes numerical comparisons and mathematical calculations, and final 
judgement on risk categorisation was decided using OWL reasoning by appropriate 
formulation of conditions in each of the Low, Mid, High and Very High CVD Risk 
classes. In the second configuration, pure SWRL rule-based reasoning was used for both 
risk factor determination and risk categorisation. For each configuration, the mean 
response time for a set of queries was measured when the knowledge base was populated 
with a different number of patients (instances). Figure 10 shows the results for four 
queries to the knowledge base asking to retrieve the patients who belong to each of the 
Risk Category classes. Note that the choice between using rule- and OWL-based 
reasoning is not always feasible, as some reasoning tasks can be too complex to be 
formulated into OWL restrictions only, as is the case e.g., with numerical comparisons, 
so rules have to be used for that purpose. 

Some interesting conclusions can be drawn from these tests. It can be seen that the 
rise in response time is not always proportional to the number of patients (instances) that 
are integrated in the knowledge base. For example, regarding the rule-reasoning case,  
in Figure 10(d), doubling the number of patients from 500 to 1000 brings an increase  
in response time from 91 ms to 120 ms (32% increase) while increasing from 1000 to 
2000 patients response time is almost tripled as it rises from 120 ms to 343 ms (185% 
increase). The same stands for Figure 10(c) where increasing from 2000 to 4000 patients 
increases response time from 266 to 739 (178% increase). Differences in performance  
are not as significant when OWL-based reasoning is applied. However, what can be seen 
in both cases is that there seems to be a critical point after which an increase in instances 
number has an unproportionally large increase in response time and it is different for 
every rule or OWL class definition as it depends on their complexity. For example,  
in Figure 10(c) for rule-based reasoning, this point mark is at 2000 patients, while for 
OWL-based it is at 1000. It should be noted that adding one patient to the ontology  
adds not only one but many more instances in the knowledge base, typically one for 
every property of the patient. This performance variability seems to originate  
from the KAON2 reasoner that was used and how it is optimised to handle large numbers 
of instances. More information on KAON2 performance details can be found in Hustadt 
et al. (2007). 

Additionally, a direct observation of the above charts reveals that the performance  
in terms of response time for rule-based and OWL-based reasoning is almost similar with 
a small favour over rule-based reasoning. This is true for almost every case except from 
Figure 10(c) and 10(d) at the 4000 and 2000 patients mark, respectively, where OWL 
reasoning has a slightly better response time. This variation in performance derives from 
rule and OWL definitions formulation. 



   

 

   

   
 

   

   

 

   

   22 C. Doulaverakis et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 10 Response time of the system regarding querying for patients in each of the risk 
categories using pure rule based reasoning and mixed OWL + rule based reasoning:  
(a) low CVD risk; (b) mid CVD risk; (c) high CVD risk and (d) very high CVD risk 

 
 (a) 

 
 (b) 

 
 (c) 
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Figure 10 Response time of the system regarding querying for patients in each of the risk 
categories using pure rule based reasoning and mixed OWL + rule based reasoning:  
(a) low CVD risk; (b) mid CVD risk; (c) high CVD risk and (d) very high CVD risk 
(continued) 

 
 (d) 

According to the above observations, it is shown that when there is a choice between 
using rule- or OWL-based reasoning, in terms of actual system performance, it makes  
a small difference on which to choose. The largest response time difference in absolute 
numbers was 132 ms (Figure 10(a) for 4000 patients), which corresponds to a 16% 
difference. Which type of reasoning shall be used is clearly a matter of knowledge base 
design principles and convenience. Using rule-based reasoning, developers and rule 
authors can make changes or corrections to the reasoning process more easily as rules can 
be edited, added or removed with ease, while with OWL-based reasoning there is a more 
concrete integration of domain knowledge and restrictions within the ontology and the 
knowledge base. 

5 Conclusions and future work 

We have presented a system that has the capability of performing risk assessment for 
CVDs by integrating patient data from different modalities. A method for the automatic 
detection of lumen borders in IVUS images, which makes use of texture characteristics 
and employing RBF approximation, was presented. Results of this method are illustrated 
and are very promising by showing great similarity to the actual ground truth images. 

Measurements regarding the arterial wall thickness and lumen diameter are 
automatically extracted from IVUS images and are combined along with biochemical and 
medical record patient data to populate a knowledge base constructed specifically for 
CVD risk prediction. The ontology of the knowledge base is authored in OWL and 
reasoning is performed using rules expressed in SWRL and OWL reasoning. This 
proposed approach was evaluated, in terms of performance, against a system developed 
to use pure rule-based reasoning where it was shown that there is no actual difference 
between OWL- and rule-based reasoning. The evaluation concluded that the type of 
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reasoning to be employed should be decided having design principles in mind, rather than 
performance enhancement. 

The proposed architecture could be the basis for integration of a larger set of medical 
methodologies in clinical care as guidelines specify the practices that are intended to 
provide safety and quality in patient care. The ontology of the proposed system was 
authored based on standard definitions of the medical field and it can be easily extended 
to support a wider range of clinical cases. As is shown, guidelines could be either added 
as rules or as OWL definitions depending on development choice. 

Future work that will deal with the implementation of a graphical user interface for 
the insertion of patient’s data, and for easy viewing of the results is currently being 
developed in close cooperation with the medical staff on the project. Additionally, the 
system has to be tested in a hospital environment to be able to evaluate its clinical 
usefulness and applicability in real-life cases, as is the case with the development of 
every medical system. 
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