Journal name Copyright notice
Volume, number, pages Serial number or other reference

An Experimental Performance Comparison for Indexing Mekibjects
on the Plane

S. Sioutas
Department of Informatics
lonian University

G. Papaloukopoulos K. Tsichlas and Y. Manolopoulos
Department of Computer Engineering and Informatics Department of Informatics
University of Patras Aristotle University of Thessaloniki

We present a timefecient approach to index objects moving on the planeffigiently an-
swer range queries about their future positions. Each plg@soving with non small velocity
u, meaning that the velocity value distribution is skewedp{gtowardsum, in some range
[Unin, Umax, Where unyin is a positive lower threshold. Our algorithm enhances aipusly
described solution (Sioutas, Tsakalidis, Tsichlas, Mal&i Manolopoulos, 2007) by accom-
modating the ISB-tree access method as presented in (A.frisaet al., 2005). Experimental
evaluation shows the improved performance, scalabilityefiiciency of the new algorithm.

Introduction Manolopoulos, 2004, 2006). On the other hand, these struc-
tures can be al_so partitioned into those that: (_a) are based o
This paper focuses on the problem of indexing mobiled€ometric duality and representthe stored obj_ects in thé du
objects in two dimensions andfieiently answering range SPace (Agarwal, Arge, & Erickson, 2000; Kollios, Gunopu-
queries over the objects’ future locations. This problem is©S, & Tsotras, 1999; Patel, Chen, & Chakka, 2004), and (b)
motivated by a set of real-life applications such as intelli I€ave the original representation intact by indexing data i
gent transportation systems, cellular communications, antheir native dimensional space (Beckmann, Begel, Schnei-
meteorology monitoring. The basic approach uses discret8e!: & Seeger, 1990; Papadopoulos, Kollios, Gunopulos,
movements, where the problem of dealing with a set of mov$ Tsotras, 2002; Saltenis, Jensen, Leutenegger, & Lopez,
ing objects can be considered as equivalent to a sequengd00; Saltenis et al., 2001; Tao, Papadias, & Sun, 2003).
of database snapshots of the object posifiextents taken The geometric dual|ty_ transformatiois a tool exten_swely
at time instants; < t, < ..., with each time instant de- used in the Computational Geometry literature, which maps
noting the moment where a change took place. From thi§yper-planes iR’ to points and vice-versa. In this paper
point of view, the indexing problems in such environments/€ Present and experimentally evaluate techniques uséng th
can be dealt with by suitably extending indexing techniqueglu@lity transform as in (Kollios et al., 1999; Papadopoulos
from the area of spatio-temporal databases (Gaede & Gurst _al., 2002) to ficiently index future locations of moving
ther, 1998; Salzberg & Tsotras, 1999). In (ManolopoulosP0ints on the plane. _ _
Theodoridis, & Tsotras, 2000) it is exposed how these indn the next section, we present a brief overview of the most
dexing techniques can be generalized to hanéieiently bas_lc_pracncal methods. In Section 3 we give a formal de-
queries in a discrete spatio-temporal environment. scription of the problem. In Section 4 we introduce the du-
The common thrust behind these indexing structures Iie%“ty transf(_)t:m_methr(])ds, In section 5 \éve briefly presr?ntlglér
. . . SO " . “Thain contribution whereas in section 6 we present the s
in the idea of abstracting each object’s position as a cantin . :
ous function of timef(t)g and upd{’;\ting tphe database when- 2€C€SS method that compares favourably with the solutibns o
eve e uncion parameterschange. Accordingsyan objedfio= L2l 1958, Papadonoulos et 8, 2002) e TR
is modelled as a pair consisting of its extent at a referenc«gmd the LBTs”index (Sioutas et al., 2007) as well. In .s,im le
time (design fp?]ramfeter) and of igs motion vector. OT; €& ords, the new solution is the mo.éﬁeient in termé of up—p
egorization of the aforementioned structures is accortbn ’ :
thge family of the underlying access method used. In pgar—d ate JO performance. Moreover, \-N'th respect to the query
ticular, there are approaches based either on R-trees or 1/O performance, solution of ISBs is 4 or 5 faster than LBTs

Quadirees as explained in (Raptopoulou, Vassilakopoglos, | ethod and.outperforrjns STRIPES (state of the art as qf now)
' ’ in many settings. Section 7 presents a thorough experiinenta

evaluation, whereas Section 8 concludes the paper.

Contact informations: 49100 Corfu, Greece
e-mail:sioutas@ionio.gr

2 LEFT HEAD FOR JOURNAL LOOK

A Brief Overview of the Relevant Let P,(to)) = [Xo, Yo] be the initial position at timey of
Methods objectz. If objectz starts moving at time > to, its position

. : . will be P,(t) = [X(t), ()] = [Xo + ux(t — to), Yo + Uy(t — to)],
The TPR tree (Saltenis et al., 2000) in essence is*an R\whereU = (uy. uy) s its velocity vector.

tree generalization to store and access linearly moving ob- We would like to answer queries of the form: “Report the
jects. The I_eaves_of the structure store pairs with the foosit objects located inside the rectangle,[%] x [y1,, Y] at
of the moving point and the moving point id, whereas inter-y & time instants betwees) andty, (Wheretyo < tf <qt2 :

q - q q/?

nal nodes store pointers to subtrees with associated FeCtaBiven the current motion information of all objects.”
gles that minimally bound all moving points or other rectan- '

gles in the subtree. Theftirence with respect to the clas- i i i i
sical R-tree lies in the fact that the bounding rectangles are Indgﬁgﬁyrrt]?abr:lsefgr?%%%tgnugng
time parameterized (their coordinates are functions oé}im
It is considered that a time parameterized rectangle bounds In general, the duality transform maps a hyper-plane
all enclosed points or rectangles at all times not earlianth from R® to a point inRY and vice-versa. One duality trans-
current time. Search and update algorithms in the TPR treform for mapping the line with equatioy(t) = ut + ato a
are straightforward generalizations of the respectiv@-alg point in R? is by using the dual plane, where one axis rep-
rithms in the R-tree; moreover, the various kinds of spa- resents the slope of an object’s trajectory (i.e. velocity),
tiotemporal queries can be handled uniformly in 1-, 2-, andvhereas the other axis represents its interaefphus we get
3-dimensional spaces. the dual pointig, a) (this is the so-calletiough-X transform
The TPR-tree served as the base structure for further dé€Kollios et al., 1999; Papadopoulos et al., 2002)). By rewri
velopments in the area (Saltenis et al., 2000BR-tree, an ing the equatioy = ut+aast = %y— &, we arrive to a dfer-
extension of the TPR-tree, improves the latter in update opent dual representation (the so callddugh-Y transfornin
erations (Tao et al., 2003). The main improvement lies in(Kollios et al., 1999; Papadopoulos et al., 2002)). The poin
the fact that local optimization criteria (at each tree odein the dual plane has coordinatds\{), whereb = —2 and
may degrade seriously the performance of the structure ang = 1.
more particularly in the use of update rules that are based on Inu(KoIIios et al., 1999; Papadopoulos et al., 2002), mo-
global optimization criteria. Thus, the authors of (Taolgt a tions with small velocities in the Hough-Y approach are
2003) proposed a novel probabilistic cost model to validatenapped into dual pointsb(w) having largew coordinates
the performance of a spatiotemporal index and analyse witf\y = 1/u). Thus, since few objects can have small veloc-
this model the optimal performance for any data-partitieni ities, by storing the Hough-Y dual points in an index such
dex. as an R-tree, Maximum Bounded Rectangles (MBRs) with
The STRIPES index (Patel et al., 2004) is based on the aparge extents are introduced, and the index performance is
plication of the duality transformation and employs disjoi severely fected. On the other hand, by using a Hough-X
regular space partitions (disk based quadtrees (Gaede & Gufpr the small velocities’ partition, thisfiect is eliminated,
ther, 1998)). Through the use of a series of implementationssince the Hough-X dual transform maps an object's mo-
the authors claim that STRIPES outperforms TRies for tion to the (1, a) dual point. The query area in Hough-X
both update and query operations. plane is enlarged by the ar&; which is easily computed
Finally, the LBTs index (Sioutas et al., 2007) has theasEHoungX = (Ehough-x + E2hough-x)- BY Qrough-x We de-
most dficient update performance in all cases. Regardingiote the actual area of the simplex query. Similarly, on the
the query performance, LBTs method prevails as long as thgual Hough-Y planeQuough-v denotes the actual area of the
query rectangle length remains in realistic levels (by far s query, andEpough-y denotes the enlargement. According to
periority in comparison to opponent methods). If the querythese observations the solution in (Kollios et al., 1999; Pa

rectangle length becomes huge in relation to the whole tefpadopoulos et al., 2002) proposes the choice of that transfo
rain, then STRIPES is the best solution, however, only t0 3, 4tion which minimizes the criteriom: = £revanx . Etougny

ini i Q ough- Q ough- '
small margin in comparison to LBTs method. In order to build the index, we first dgcgorxnpos% gthYe 2-d
Definitions and Problem motion into two 1-d motions on thd, (&) and ¢, y) planes
Description and then we build the corresponding index for each projec-

tion. Then we have to partition the objects according torthei

We consider a database that records the position of mowelocity: Objects with small velocity are stored using the
ing objects in two dimensions on a finite terrain. We assumédough-X dual transform, whereas the rest are stored using
that objects move with a constant velocity vector startingthe Hough-Y dual transform. Motion information about the
from a specific location at a specific time instant. Thus, weother projection is also included.
can calculate the future object position, provided thatits To answer the exact 2-d query we decompose the query
tion characteristics remain the same. Velocities are bednd into two 1-d queries, for thd,(x) and ¢, y) projection. Then,
by [umin, Umax. Objects update their motion information, for each projection, we get the dual-simplex query and ealcu
when their speed or direction changes. The system is dylate the criteriorc and choose the one (spythat minimizes
namic, i.e. objects may be deleted or new objects may b#&. We search in projectiop the Hough-X or Hough-Y parti-
inserted. tion and finally we perform a refinement or filtering step "on

RUNNING HEAD FOR JOURNAL LOOK 3

the fly”, by using the whole motion information. Thus, the as of several non-uniform classes (Andersson & Mattsson,
result set contains only the objects satisfying the query. 1993; A. Kaporis et al., 2003). Actuallgnyprobability dis-
tribution is (f1, ®(n))-smooth, for a suitable choice §f

Our contribution . . , ,
Searching algorithms and interpolation method
We consider the case, where the objects are moving

with non small velocities:, meaning that the velocity value LetS = {Xi,1<i < n} an ordered set af elements. The
distribution is skewed (Zipf) towardsmi, in some range pasm routine of a searching operation is described by Algo-
[Umin, Umax] @and as a consequence t@ough-y transforma- rithm1 as follows:

tion is used (denote thak,, is a positive lower threshold). In _
(Kollios et al., 1999; Papadopoulos et al., 2002) and (giput Algorithm 1 Searchx,S)

et al., 2007),Qnough-v iS computed by querying a‘Btree 1 lefte1

and LBTs (Lazy B-trees) respectively, each of which indexes 2: right < n

theb parameters. Our construction is based on the use of the3: next— k € [left, right]

ISB-tree (A. C. Kaporis et al., 2005) instead of the-BBee 4: while x <> S[nex{ and left < right do
or Lazy B-trees, achieving optimal update performance and5: if x < S[nex{ then

near-optimal query performance. Next we describe the main6: right « next-1
characteristics of the ISB-tree. 7. €ese
8: left — next+ 1
The ISB-tree 9: endif

. . . L 10: nexte k € [left, right]
In the following, we give some basic definitions, we de- 11: end while

scribe the interpolation method of searching, we deschbet 12: if x = S[nexi then
Interpolation Search Tree as the basic main memory structs: print('S ucces$
ture and finally we give the required technical details of the14: ¢se

external memory Interpolation Search B-Tree (ISB-tree} pr 1s: print(’Fail’)
sented in (A. C. Kaporis et al., 2005). 16: end if

Basic definitions: regular and smooth input distri-

butions If next« left+ 1 the routine above is a linear searching

routine and the worst-case timeQgn). If next« | et

_ Acqordinglto ¥Vigard (Willard, 19r12135)k’) abpr%babili:]y gen' we refer to a binary searching routine wifli{logn) worst-
sity u is regular if there are constarttg, b, bs, bs such that : x-Slefd -

00 = 0 Tor x < by OF x » by andy(x) > bs > 0 and . t'me'.'heXtT _ls[right]—S[Iﬁ_ft] (right - 'ef“)J E_'eh“_""e_
(X < ba for by < X < by, This has been further pur- "€fer 0 an interpolation searching routine for which tine i

sued by Mehlhorn and Tsakalidis (Mehlhorn & Tsakalidis provements can be obtained if certain classes of inputi-distr
1993), who introduced themoothinput distributions, a no- "butions are considered. In particular, for random data gen-

tion that was further generalized and refined in (Anderssor?rated accc_)rdmg to the un_lform distribution, the mt_eapol
& Mattsson, 1993). Given two functiors and f, a den- tion searching routine achievé¥loglogn) expected time.

sity functiony = u[a, b](x) is (1, f,)-smooth(Andersson & Willard (Willard, 1985) showed that this time bound holds

Mattsson, 1993) if there exists a constgnsuch that for all I/(i)(gl?gl ex/f\eggteuciailaei?e(gsﬁ?)%ﬂ?{:Sgébl:ti'r?t?r' 3|Sa(,3i§fr']n§éjafr
C1,Cp, C3 Wherea < ¢; < C; < €3 < b, and all integers, it Y. P P

into dynamic data structures, that is, data structures hwhic

holds that support insertion and deletion of elements in addition to in
C2 B fa(n) terpolation search. Thus, the first step was to developia stat
f . MIC1 CEl(¥)AX < — == tree-like structure, which adapts the method above (the so-
2" hm called Static I nterpolationSearchTree) and the second and

whereu[cy. Gs](X) = 0 for x < ¢, or x > Cs, andu[cy, cs](X) = final step the dynamization of this tree.

u(X)/pforecy < x < cgwherep = ffu(X)dx ThelnterpolationSearchTree

Intuitively, function f; partitions an arbitrary subinter- . .
val [c1,cs] € [ab] into f; equal parts, each of length The static interpolation search trebas been presented

G=C _ L1y : o <= in (A. Kaporis et al., 2003). Consider a random fée=
o e eanear o wihre G ke < (2] %1% < n
no part, of thef; possible eté more probability mass thanObe-yS an unknown Q|str|but|qn LetP - {X(l)-""’x(”)} be
ﬁ_fz_p ' 1p ' 9 P y - an increasing ordering &. The goal is to find the largest
= tla_tc!s, f, measures the sparseness of any sublptervqley X(j) € P that precedes @rgetelementx. .

[c2 — =;*.¢2] € [c1,cq]. The class of (i, f2)-smooth dis- A static interpolation search tree (SIST) corresponding to
tributions (for appropriate choices 6f and f,) is a superset P can be fully characterized by three non-decreasing func-

of both regular and uniform classes of distributions, ad weltions H(n), R(n) and|(n), which are non-decreasing and in-

4 LEFT HEAD FOR JOURNAL LOOK

vertible with a second derivative less than or equal to zero. e

H(n) denotes the tree heighR(n) denotes the root fan- zoom on st level
out, wheread(n) denotes how fine is the partition of the
set of elements. Achieving a height bf(n) dictates that
R(n) = n/H-1(H(n) - 1). MoreoverH(n) should beo(logn)

and notO(1), andH™(i) # 0, for 1 < i < H(n) - 1. To
handle an as large as possible class of distributiotise ap-
proximation of the sample density should be as fine as possi-

h=0(logglogn)

ble, implying thatl (n) should be as large as possible. Since 2oom on th leve 4 z00m on e eve
I(n) affects space, it is chosen &) = n - g(H(n)), where - -
Yig (i) = ©(1), so that the space of SIST remains linear. ﬁsaie'ements ﬁ

The aforementioned choice of functiorgn), R(n) and
I(n) ensures that a SIST on elements, drawn from a

(n - g(H(n)), H"Y(H(n) — 1))-smooth distributiorn:, can be Bucket, _ budet L s
built in O(n) time and space (A. Kaporis et al., 2003).)

The root node of SIST corresponds to the orderedibé \ /
sizen. Each child corresponds to a partRbf size 555, i.e., ~ L e —

the subtree rooted at each child of the root hlas n/R(n)

leaves and heighi(n’) = H(n)—1. The fan-out of each child .

is R(') = ®(H’1(H(n) _ 1)/H’1(H(n) — 2)), while I(n") = Figure L The ISB-tree Index

n’ - g(H(n")). In general, consider an internal nodat depth

i and assume that leaves (elements d?) are stored in the

subtree rooted at, whose keys take values ifi,lj]. Then, ture.The following theorem provides the complexities & th

we have thaR(n) = O(H Y(H(n) — i + 1)/H"}(H(n) - i)), Lazy B-tree:

andl(n;) = n; - g(H(n) —i). Theorem 1. The Lazy B-Tree supports the search opera-
Each internal tree nodeat depthi is associated with an tion in O(logg N) worst-case block transfers and update op-

array REP[1R(n;)] of sample elements, containing one sam-erations inO(1) worst-case block transfers, provided that the

ple element for each of its subtrees, and an array.IOf1)] update position is given.

that stores a set of sample elements approximating the in- proof See (A. C. Kaporis et al., 2005 Sioutas et al.,

verse distribution function. The role of the ID array is to 2007).

partition }he interval {, u] into 1(n;) equal parts, each of

length f‘% The role of the REP array is to partition its g X :

associagce)d ordered sub-file Bfinto R(n) equal subfiles, the static interpolation search tree (SIST) (A. Kaporislet a

! . . 2003), with parameterR(s) = &, 1(s) = s/(loglogs)**e,
each of Sizesry - By using the ID array, we can interpolate wheree > 0,6 = 1— %, ands is the number of stored el-

the REP array to determine the subtree in which the searcBments in the tree. The specific choicesafuarantees the
procedure will continue. In particular, for the ID[UM)] desirableO(logg logs) height of the upper level structure.

array associated with node it holds that ID[] = j iff For each node that stores more tHaet elements in its

EIEE[Je]n:W{; t—,é(éjk_ Q(/) I i(r?itzergogtzepl[]?EPl](.:olr_ne;u)fteb?htehien de)s(ubtree, we represent its REP and ID arrays as static exter-

i = ID[L(1(n)(x-€)/(u—£))]], and then search the REP array hal sorted arrays; otherwise, we store all the elements in a

)) . constant number of disk blocks. In particular,ydie a node
from REP] + 1] until the appropriate subtree is located. Izorand ny be the number of stored elements in its subtree, with

each node we explicitly maintain parent and child pointers. 1oLl devi iated with |
The required pointer information can be easily incorpatate n > B B’é' No ﬁv IS assouateh wit twc(; externa arr?ys
in the construction of the static interpolation search.tree ERER, and EID, that represent the RERnd Dy, arrays o

the original SIST structure. The EjDarray usesO('32)
The ISB-tree: a dynamic Interpolation Search Tre€ontiguous blocks, the ERERrray use@(@) contiguous

in external memory blocks, while an arbitrary element of the arrays can be ac-
The ISB-tree is a two-level data structure (see Figure 1)g:essed withD(1) block transfers, given its index. Moreover,

The upper level is a non-straightforward externalizatién o the choice of the paramet&“s guarantees that each of
the Static Interpolation Search Tree (SIST). the ERER and EID, arrays contains at leaBtelements, and

The lower level of the ISB-tree is a forest of buckets, eacHe€nce we do not waste space (in terms of underfull blocks)
one implemented by a new variant of the classical B-treein the external memory representation.
the Lazy B-tree introduced in (A. C. Kaporis et al., 2005) To insertdelete an element, given the position (block)
and used in (Sioutas et al., 2007). Each bucket contains af the update, we simply have to ingedlete the element
subset of the stored elements and is represented by a uniqtafrom the Lazy B-tree storing the elements of the corre-
representative. The representatives of the buckets asawell sponding bucket. Note that the external SIST is rifaced
some additional elements are stored in the upper level-strudy these updates. Each time the number of updates exceeds

The upper level data structure is an external ver3iaf

RUNNING HEAD FOR JOURNAL LOOK

5

cny, Wherecis a predefined constant, the whole data structure Lemma 3: Searching for an element in a bucket of the

is reconstructed.
The search procedure for locating a query elemecdn

ISB-tree take€O(logg logn) expected block transfers with
high probability.

be decomposed into two phases: (i) the traversal of internal Proof: This is an immediate result from Theorem 1 and

nodes of the external SIST to locate a bucBetand (ii) the
search forx in the Lazy B-tree storing the elements 8f.
For more technical details see (A. C. Kaporis et al., 2005)
Algorithms 2-5 provide the description of ISB-tree’s basic
operations in pseudocode.

Lemma 2: The traversal of internal nodes of the exter-
nal SIST require®(logg log n) expected block transfers with
high probability.

Proof: See (A. C. Kaporis et al., 2005).

The insertions and deletions of elements into the ISB-tree 2:
were simulated by a combinatorial game of balls and bins

described in (A. Kaporis et al., 2003) for an internal finger-
search data structure. In particular, balls correspond-to e

ements and bins to buckets. Insertions of elements into the>:

ISB-tree were simulated by the insertion of balls into bins
according to an unknown smooth probability dengitysim-

ilarly, the deletion of an element from the ISB-tree was sim-
ulated by the deletion of an element from a bin uniformly at

the size of each bucket, which is determined by Theorem 2.
The main theorem presented in (A. C. Kaporis et al.,

2005) follows and holds for the very broad class of

(n/(loglogn)**¢, n'~%)-smooth densities, whei® = 1 - 1

and includes the uniform, regular, bounded as well as skvera

non-uniform distributions.

Algorithm 4 ISB_Insertf, ISB-tree)

1. SistSearchx,S IS T) {Let Bin; the corresponding Bin
LazyTreelnsert, Bin) {Bin; is a lazy B-tree and its in-
sert operation was implemented in (Sioutas et al., 2007)
3: numberofupdates- numberofupdates 1

4: if numbero fupdates cny then

RebuildS IST) {ng is the total number of elements
stored in the initial ISB-trele

6: end if

random. For this process the following has been proven iftlgorithm 5 ISB_Delete, ISB-tree)

(A. Kaporis et al., 2003).

Algorithm 2 Sist Search¥, SIS T)

1: V< root(SIST)
2: while (v <> leaf) do

3 0= Llfv’_'lvv R(ny)] {Letv be a node on the search path for
X, Ny the number of leaves in its subtrégandu, the
minimum and maximum element respectively, stored .
in Ty} :

4: Retrieve the{ é}—th block of theEID, array

5. j=EIDJ[I]

6: I=|%

7: repeat

8: |l —1+1

9: until ERER][I] < x< ERER[l +1]

10: end while

11: follow the pointer from leaf/ {Let Bin; the correspond-
ing bin which is organized as a Lazy B-tjee

Algorithm 3 ISB_Searchy, ISB-tree)

1: SistSearchx, S 1S T) {Let Bin; the corresponding Bin of
the static interpolation search tree S}ST

2: LazyTreeSearchy, Bin) {search in the lazy B-tree was
implemented in (Sioutas et al., 2007)

Theorem 2: Consider the combinatorial game of balls
and bins described in (A. Kaporis et al., 2003). Then, th
expected number of balls in a bin@logn) with high prob-
ability.

The following lemma establishes the searching bound

within a bucket of the ISB-tree.

1: SistSearchx, SIST) {Let Bin; the corresponding Bin
2: LazyTreeDeletek, Bin;) {Bin; is a lazy B-tree and its
delete operation was implemented in (Sioutas et al.,
2007)
numbero fupdates- numberofupdates 1
4: if numbero fupdates cny then
RebuildS IST) {ng is the total number of elements
stored in the ISB-tree at the initial state
end if

Theorem 3: Suppose that the upper level of the ISB-tree
is an external static interpolation search tree with patarse
R(s0) = S, (o) = so/(loglogso)**, wheree > 0,6 = 1- £,

So = No, N is the number of elements in the latest reconstruc-
tion, and that the lower level is implemented as a forest of
Lazy B-trees. Then, the ISB-tree supports search opegation
in O(logg logn) expected block transfers with high proba-
bility, wheren denotes the current number of elements, and
update operations i®(1) worst-case block transfers, if the
update position is given. The worst-case update bound is
O(logg n) block transfers, and the structure occup¥s/ B)
blocks.

Proof 1: From Lemmas 2 and 3, the searching operation
takesO(logg logn) expected number of block transfers with
high probability. Considering the update bound, between re
constructions the block transfers for an update are clearly
0O(2), since we only have to update the appropriate Lazy B-
tree which can be done i®(1) block transfers (see Theo-
rem 1). The reconstructions can be easily handled by us-

dng the technique of global rebuilding (Levcopoulos & Over-

mars, 1988). With this technique the linear work spent dur-
ing a global reconstruction of the upper level structure may

'We quote a brief description of the proof presented in
(A. C. Kaporis et al., 2005)

6 LEFT HEAD FOR JOURNAL LOOK

be spread out on the updates in such a way that a rebuildin
NA vs. update num. (LA)

cost ofO(1) block transfers is spent at each update. node accesses
;) 1000,000 +
Experimental Evaluation 000,000 .
800,000
node accesses 700,000
NA vs. update num. (LA)
600,000 —— TPR*-tree
—e—LBTs
1000000 500,000] —a— B+ trees
000000 by oo, I —m- STRIPES
' —x— ISBs

800,000

300,000

700,000

200,000

—&— TPR*-tree
600,000 100,000
—e—LBTs
500,000 —a— B+ trees 0,000 T T T T T
400,000 —@— STRIPES 0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1E+05
’ —%— ISBs number of updates

300,000

200,000

Figure 4 grlen= 200Q gylen= 5, grlen= 50

100,000

[T S -
0,000

0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05

number of updates movement, and (b) the velocity value distribution is skewed
(zipf) towards 30 in the range [30,50], and (c) the velocity
can be either positive or negative with equal probability.

Figure 2 qylen=5,grlen= 50, gglen= 100

node accesses NA vs. update num. (LA)
NA vs. update num. (LA) 600,000 -
node accesses
1000,000 -
500,000
900,000 d o
800,000
400,000
700,000 —e—TPR*tree
—e—LBTs
—e&— TPR*-tree
600000 300,000 —a— B+ trees
—e—LBTs
500,000 B+ trees —m- STRIPES
—x—ISBs
—@- STRIPES 200,000
400,000
—x%—ISBs
300,000 e e BN B e mw
100,000
200,000
3 3 3t 23+t 2 ¢t
100000 Y oo A
0,000 0E+00 2E+04 4E+04 6E+04 8E+04 1E+05
0,E+00 2,E+04 4,E+04 6,E+04 8E+04 1,E+05 number of updates
number of updates

Figure 5 qylen= 10, grlen= 50, gglen = 400
Figure 3 qylen=5,grlen= 50, grlen = 1000))
We will use a page size of 1 Kbyte so that the number

This section compares the qugrngdate performance of of index nodes simulates realistic situations. Also, fdr al
our solution with STRIPES as well as with those ones thaexperiments, the key length is 8 bytes, whereas the pointer
use B-trees, Lazy B-trees (LBTs) and TPRee, as well. length is 4 bytes. Thus, the maximum number of entries
We deploy spatio-temporal data that contain insertions at & x > or < y >, respectively) in both Lazy B-trees and
single timestamp 0. In particular, objects’ MBRs are takenB*-trees is 10248+4)=85. In the same way, the maximum
from the LA spatial datas&étWe want to simulate a situation number of entries (2-d rectanglesoxl, y1, X2, y2 > tuples)
where all objects move in a space with dimensions 100x1000 TPR'-tree is 10244*8+4)=27. On the other hand, the
kilometers. For this purpose each axis of the space is noiSTRIPES index maps predicted positions to points in a dual
malized to [0,100000]. For the TPRree, each object is
associated with a VBR (Velocity Bounded Rectangle) such 2Downloaded 128.971 MBRs fronhttp://www.census.
that (a) the object does not change spatial extents dusng ilgov/geo/www/tiger/

RUNNING HEAD FOR JOURNAL LOOK 7

node accesses
NA vs. update num. (LA) NA vs. upate num. (LA)
node accesses

600,000 ~ 250,000

200,000 -

400,000

—e— TPR*-tree 150,000 @ oo |—@—TPR*-tree
—e—LBTs —@—LBTs
300,000 —a— B+ trees —a— B+ trees
—— STRIPES
—l— STRIPES 100,000 -
—%— —%—ISBs
200,000 ISBs

H_-.——.—I——I—.—._.—H

50,000

100,000

99

0,000 T T T T T 1 0,000 -+ T T T T T
0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05 0,E+00 2E+04 4E+04 6,E+04 B8E+04 1,E+05
number of updates number of updates
Figure 6 qylen= 10, grlen= 50, grlen = 1000 Figure 8 qylen= 5, grlen= 1, grlen= 1000

NA vs. update num. (LA) terval isqr = [0, grlen]. The query cost is measured as the

node accesses

160,000 - average number of node accesses in executing a workload

e of 200 queries with the same parameters. Implementations
140,000 ; ; ; ; ; ; ;

were carried out in €+ including particular libraries from

120,000 / SECONDARY LEDA v4.1.
100000 TR Query cost comparison
o0 e s We measure the performance of our technique described
60,000 —x—1s8s previously (in particular one 1SB-tree for each projection

plus the query processing between the two answers), in com-
parison to that of the LBTs method (Sioutas et al., 2007),

40,000 fomoay gy TN

20,000 the traditional technique presented in (Kollios et al., 999
o000 Papadopoulos et al., 2002), the TPtiRee (Tao et al., 2003)
TOEH00 26404 4508 GEF04 BESOA LEt0S and the STRIPES method (Patel et al., 2004), using the same

number of updates query workload, after every 10000 updates. Figures 2-6 show

the query cost (for datasets generated from LA as described
above) as a function of the number of updates, using work-
loads with diferent parameters. In these figures our solution
is almost 4-5 times mordigcient (in terms of the number of
) .) o I/0s) than the solution using LBTs and #ees. This fact
transformed space and indexes this space using a disjgintrejs an immediate result of the sublogarithmi®Isearching
ular partitioning of space. Each of the two dual planes, argomplexity of ISB-tree in comparison to the logarithmyi®|
equally partitioned into four quads. This partitioningults searching complexities of both structures-Bee and Lazy
in a total of # = 16 partitions, which we calyrids. Thus, B-tree. In particular, we have to index the appropriate
the fan-out of each internal node is 16. The ISB-ife@s an parameters in each projection and then to combine the two
exponentially decreased fan-out and 2 levels at most. answers by detecting and filtering all pair permutations. As
For each dataset, all indexes except for STRIPES and consequence, the ISBs method is significantly faster than
ISBs have similar sizes. Specifically, for LA, each tree had.BTs and traditional B-trees methods.
4 levels and around 6700 leaves with the exception of: (a) Figures 2 and 3 depict thefiency of our solution in
the STRIPES index which has a maximum height of severtomparison to that of the TPRree and STRIPES. In figure
and consumes about 2.4 times larger disk space, and (i2) where the length of the query rectangle is 100 and as a con-
the ISB index which has a maximum height of 2. Eachsequence the query’s surface is equal to 1060 1 hectare
queryq has three parametergglen, qvlen, andagrlen, such (the surface of the whole spatial terrain is® Ictares) the
that: (a) its MBRgR is a square, with lengtigglen, uni-
formly generated in the data space, (b) its VBRqis = 3source code of ISB-tree access method is available at
—qvlen/2, gvlen/2, —qvlen/2, qylen/2, and (c) its query in- httpy/www.ionio.gy~sioutagNew-Software.htm

Figure 7. gylen= 5, grlen= 1, grlen = 400

8 LEFT HEAD FOR JOURNAL LOOK

ISBs method is consistently about 53 times faster than thaotably even in the latter case (see Figure 6), our method is
STRIPES method, 212 times faster than the TBRe, 7.5 about 2.7 times faster with respect to the STRIPES method,
times faster than the'Btrees method and 2 times faster than 8.3 times wrt the TPRtree, 1.3 times wrt the Btrees and
the LBTs method. The superiority of our solution decreased.06 times wrt the LBTs method. Obviously, the velocity
as the query rectangle length grows from 100 to 1000. Thudactor is very important for TPR-like solutions, but not for
in figure 3, where the spatial query’s surface is equal to 10@he other methods, for LBTs and ISBs in particular, which
hectares, again our method is faster about 2.2 times with radepend exclusively on the query surface. Figures 7 and 8
spect to the STRIPES method, 8.3 times wrt the T-BRBe, depict the performance of all methods when the time inter-
1.25 times wrt the B-trees methods and 1.05 times wrt the val length approaches the 1 value. However, notably even
LBTs method. in this case (see Figure 7), the ISBs method is about 1.6
times faster with respect to the STRIPES method, 4.6 times
NA VS, und faster wrt the TPRtree, 1.3 times faster wrt the*Brees
. update num. (LA) .
nade accesses and 1.2 times faster wrt the LBTs method. As query rect-
250,000 - angle length grows from 400 to 1000, the ISBs method ad-
vantage decreases; from the bottom figure, we remark that
STRIPES is about 3 times faster, whereas our method is 1.03

00 times faster than the TPRree, 1.07 times faster than th&-B
trees and 1.03 times faster than the LBTs method. Figure 9
150,000 —&—TPRyee depicts the fliciency of our solution in comparison to that
D of TPR-trees and STRIPES when the time interval length
100,000 —m- STRIPES reaches the value of 100. In particular, the ISBs method is
—¥— 185 consistently about 10 times faster than STRIPES, 37 times

faster than TPRtree, 3.5 times faster than the Brees and
2 times faster than the LBTs method. As required in practice,
the query surface remainsiealistic levels (16 hectares).

50,000 -

0,000 # T T T T T
0,E+00 2,E+04 4,E+04 6,E+04 8,E+04 1,E+05

number of updates NA vs. update num. (LA)
node accesses

45,000 -

Figure 9 grlen= 400,qylen= 5, grlen= 100

40,000

45000 - N

¥

In real GIS applications, for a vast spatial terrain of 10

hectares, e.g. the road network of a big town where each 30000 - Ngr

road square covers no more than 1 hectare (0DQ0AY) - ——TPR*tree
the most frequent queries consider spatial query’s surface ' DEn
more than 100 road squares (or 100 hectares) and future tim 20000 —a STRIPES
interval no larger than 100 seconds. However, to test the 16,000 —k—ISBs

methods’ performance in extreme cases we conducted th
following experiment. When the query rectangle length or

10,000

T T F F 3 F 53

equivalently the query surface becomes extremely large (e. 5,000 AR
2000, or equivalently 400 hectares), then the STRIPES in- 0,000 ‘ ‘ ‘ ‘ :
dex shows better performance as depicted in Figure 4. Ir OE+00 2E+04 4E+04 GE+04 BEA LE+0S
particular, our method is still 1.9 times faster than the PR number of updates

tree, however, the STRIPES method is twice faster than our
one. The apparent explanation is that as the surface of the
query rectangle grows, the answer size in each projection
grows as well, thus the performance of the ISBs method that
combines and filters the two answers becomes less attraScaIabiIity and update cost comparison

tive. However, we do not consider such extreme case-as

alistic scenarios. Figures 5 and 6 depict the performance Figure 10 compares the average cost (amortized over in-
of all methods for a growing velocity vector. In particular, sertions and deletions) as a function of the number of up-
in figure 5 the ISBs method consistently prevails about 33ates. ISBs and LBTs methods have optimal update per-
times in comparison to the STRIPES method, 137 times iformance and consistently outperform the TRFRee by a
comparison to the TPRree, 5 times in comparison to the wide margin as well as the STRIPES index by a narrow mar-
B*-trees and 2 times in comparison to the LBTs methodgin. In particular, ISBs and LBTs methods require a con-
The superiority of our solution becomes less strong as thetant number of 4 and 6 block transfers respectively(3 and
query rectangle length grows from 400 (16 hectares of querg block transfers respectively for each projection, foadst
surface) to 1000 (100 hectares of query surface). Howevegee (A. C. Kaporis et al., 2005)) and this update performance

Figure 10 Update Cost Comparison

RUNNING HEAD FOR JOURNAL LOOK 9

is independent of the dataset size. On the other hand, the a ram. InProceedings of 12th annual european symposium on
other 3 solutions do not have constant update performance; algorithms(pp. 325-336). Springer.

instead their performance depends on the dataset size evaporis, A. C., Makris, C., Mavritsakis, G., Sioutas, S.aRalidis,

if as in the experiment of Figure 10*Brees and STRIPES A K., Tsichlas, K., et al. (2005). Isb-tree: A new indexing
reach the optimal performance of ISBs and LBTs methods Scheme with fiicient expected behaviour. IRroceedings of
requiring 8 and 7 block transfers respectively (TRRe re- 13th3:2t8er§ggongl symposium on algorithms and computatio
quires 35 block transfers in {;werage). The experiments&abokolfﬁ)%, G.,_Gun())bulgg,n%e_’r'& Tsotras, V. J. (1999). On inhex
show that ISBs methOd, achieves a near optimal performanc’e mobile objects. IProceedings of 18th symposium on principles
for the most cases. This stems from the fact that the MBRS’ ot gatabase systengsp. 261-272). ACM.

projections from the LA spauall datasets follow an aI.mo_stLevcopOmOS, C.. & Overmars, M. H. (1988). A balanced search
uniform (the most popular density of smooth family) distri- e with o(1) worst case update tinfecta Inf, 26(3), 269-277.
bution, due to the almost uniform decomposition of spatialvanolopoulos, Y., Theodoridis, Y., & Tsotras, V. J. (200®d-
maps. In particular, LA dataset constitutes a dense spatial vanced database indexingluwer Academic Publishers.

map and hence the derived one-dimensional data produdéehlhorn, K., & Tsakalidis, A. K. (1993). Dynamic interpdiian
densely populated elements. Thus, the interpolation tech- search.J. ACM, 40(3), 621-634.

nique of ISBs method works very well and its expected ex-Papadopoulos, D., Kollios, G., Gunopulos, D., & Tsotras,JV.

cellent behavior follows with high probability. (2002). Indexing mobile objects on the plane. Aroceedings
of 13th international workshop on database and expert gyste

. applications(pp. 693 — 697). IEEE Computer Society.
Conclusions Patel, J. M., Chen, Y., & Chakka, V. P. (2004). Stripes: An ef-
ficient index for predicted trajectories. Rroceedings of the

We have used a new access method for indexing moving 2004 acm sigmod international conference on management of
objects on the plane tdiciently answer range queries about data(pp. 637-646). ACM.
their future location. Its update performance is the mést e Raptopoulou, K., Vassilakopoulos, M., & Manolopoulos, 3004).
cientin all cases with no exception. Regarding the query per ~ Towards quadtree-based moving objects databasdotreed-
formance, the superiority of our structure has been shown as ings of 8th east-european conference on advanced databases

long as the query rectangle length remains in realistidseve Ra;?o%i)nljglzna}(tio(]/ :gssiltzlr:g?)gﬁ 50380‘642-,\/'1%2?3;& l0s, 2006)
thus by far outperforming the opponent methods. If the query on past-ti'me'indexing of movi’ng 6bjectslournal of éystems

rectangle length becomes extremely huge in relation to the and Software79(8), 1079-1091.

whole terrain (which apparently is a non-practical ins&gnc Saltenis, S., Jensen, C. S., (codirector), C. S. J., BolMerH.,

then the STRIPES method is the best solution, however, only Gregersen, H., Pfoser, D., et al. (2001). Indexing of moving

to a small margin in comparison to our method. We antici- objects for location-based services.Rroceedings of 18th ieee

pate that for synthetic gigantic datasets the ISBs methtdd wi international conference on data engineerifp. 463-472).

be superior in any case. IEEE Computer Society.

Saltenis, S., Jensen, C. S., Leutenegger, S. T., & Lopez, M. A
(2000). Indexing the positions of continuously moving @lge
References ACM SIGMOD Recor29(2), 331-342.

Salzberg, B., & Tsotras, V. J. (1999). Comparison of accesthm
ods for time-evolving data. ACM Comput. Sury.31(2), 158—
221.

Sioutas, S., Tsakalidis, K., Tsichlas, K., Makris, C., & Méowpou-
los, Y. (2007). Indexing mobile objects on the plane reeisit

Agarwal, P. K., Arge, L., & Erickson, J. (2000). Indexing mov
ing points. InProceedings of 19th symposium on principles of
database systenfpp. 175-186). ACM.

Andersson, A., & Mattsson, C. (1993). Dynamic interpolatio

search .in o(log log n) time. IRroceedings of 20th international In Proceedings of 11th east european conference on advances in
colloguium on automata, languages and program{ing. 15— databases and information syste(pp. 189-204). Springer.

27). Springer. . N
. Tao, Y., Papadias, D., & Sun, J. (2003). The tpr*-tree: an-opt
Beckmann, N., Begel, H.-P., Schneider, R., & Seeger, B. Q199 mized spatio-temporal access method for predictive gsietie

The r*-tree: an fiicient and robust access method for points and : ; ;
rectanglesACM SIGMOD Record19(2), 322—331. E;Z‘;Z&%”?SSESZS{? International conference an very lafgta
Gaede, V., & Gunther, O. (1998). Multidimensional accesthme Willard, D. E. (1985). Searching unindexed and nonunifgrgen-

ods. ACM Computing Survey80(2), 170-231. ted files in log | timeSIAM J. C 14(4). 1013-
Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., T$ash K., igazge_ res infog fog n fime - Comput.14(4),

& Zaroliagis, C. (2003). Improved bounds for finger search on

