
Journal name
Volume, number, pages

Copyright notice
Serial number or other reference

An Experimental Performance Comparison for Indexing Mobile Objects
on the Plane

S. Sioutas
Department of Informatics

Ionian University

G. Papaloukopoulos
Department of Computer Engineering and Informatics

University of Patras

K. Tsichlas and Y. Manolopoulos
Department of Informatics

Aristotle University of Thessaloniki

We present a time-efficient approach to index objects moving on the plane to efficiently an-
swer range queries about their future positions. Each object is moving with non small velocity
u, meaning that the velocity value distribution is skewed (Zipf) towardsumin in some range
[umin,umax], whereumin is a positive lower threshold. Our algorithm enhances a previously
described solution (Sioutas, Tsakalidis, Tsichlas, Makris, & Manolopoulos, 2007) by accom-
modating the ISB-tree access method as presented in (A. C. Kaporis et al., 2005). Experimental
evaluation shows the improved performance, scalability and efficiency of the new algorithm.

Introduction

This paper focuses on the problem of indexing mobile
objects in two dimensions and efficiently answering range
queries over the objects’ future locations. This problem is
motivated by a set of real-life applications such as intelli-
gent transportation systems, cellular communications, and
meteorology monitoring. The basic approach uses discrete
movements, where the problem of dealing with a set of mov-
ing objects can be considered as equivalent to a sequence
of database snapshots of the object positions/extents taken
at time instantst1 < t2 < . . ., with each time instant de-
noting the moment where a change took place. From this
point of view, the indexing problems in such environments
can be dealt with by suitably extending indexing techniques
from the area of spatio-temporal databases (Gaede & Gun-
ther, 1998; Salzberg & Tsotras, 1999). In (Manolopoulos,
Theodoridis, & Tsotras, 2000) it is exposed how these in-
dexing techniques can be generalized to handle efficiently
queries in a discrete spatio-temporal environment.

The common thrust behind these indexing structures lies
in the idea of abstracting each object’s position as a continu-
ous function of time,f (t), and updating the database when-
ever the function parameters change. Accordingly an object
is modelled as a pair consisting of its extent at a reference
time (design parameter) and of its motion vector. One cat-
egorization of the aforementioned structures is accordingto
the family of the underlying access method used. In par-
ticular, there are approaches based either on R-trees or on
Quadtrees as explained in (Raptopoulou, Vassilakopoulos,&

Contact informations: 49100 Corfu, Greece
e-mail:sioutas@ionio.gr

Manolopoulos, 2004, 2006). On the other hand, these struc-
tures can be also partitioned into those that: (a) are based on
geometric duality and represent the stored objects in the dual
space (Agarwal, Arge, & Erickson, 2000; Kollios, Gunopu-
los, & Tsotras, 1999; Patel, Chen, & Chakka, 2004), and (b)
leave the original representation intact by indexing data in
their native dimensional space (Beckmann, Begel, Schnei-
der, & Seeger, 1990; Papadopoulos, Kollios, Gunopulos,
& Tsotras, 2002; Saltenis, Jensen, Leutenegger, & Lopez,
2000; Saltenis et al., 2001; Tao, Papadias, & Sun, 2003).
The geometric duality transformationis a tool extensively
used in the Computational Geometry literature, which maps
hyper-planes inRd to points and vice-versa. In this paper
we present and experimentally evaluate techniques using the
duality transform as in (Kollios et al., 1999; Papadopoulos
et al., 2002) to efficiently index future locations of moving
points on the plane.
In the next section, we present a brief overview of the most
basic practical methods. In Section 3 we give a formal de-
scription of the problem. In Section 4 we introduce the du-
ality transform methods, in section 5 we briefly present our
main contribution whereas in section 6 we present the ISBs
access method that compares favourably with the solutions of
(Kollios et al., 1999; Papadopoulos et al., 2002), the TPR∗ in-
dex (Tao et al., 2003), the STRIPES index (Patel et al., 2004)
and the LBTs index (Sioutas et al., 2007) as well. In simple
words, the new solution is the most efficient in terms of up-
date I/O performance. Moreover, with respect to the query
I/O performance, solution of ISBs is 4 or 5 faster than LBTs
method and outperforms STRIPES (state of the art as of now)
in many settings. Section 7 presents a thorough experimental
evaluation, whereas Section 8 concludes the paper.

1

2 LEFT HEAD FOR JOURNAL LOOK

A Brief Overview of the Relevant
Methods

The TPR tree (Saltenis et al., 2000) in essence is an R∗-
tree generalization to store and access linearly moving ob-
jects. The leaves of the structure store pairs with the position
of the moving point and the moving point id, whereas inter-
nal nodes store pointers to subtrees with associated rectan-
gles that minimally bound all moving points or other rectan-
gles in the subtree. The difference with respect to the clas-
sical R∗-tree lies in the fact that the bounding rectangles are
time parameterized (their coordinates are functions of time).
It is considered that a time parameterized rectangle bounds
all enclosed points or rectangles at all times not earlier than
current time. Search and update algorithms in the TPR tree
are straightforward generalizations of the respective algo-
rithms in the R∗-tree; moreover, the various kinds of spa-
tiotemporal queries can be handled uniformly in 1-, 2-, and
3-dimensional spaces.

The TPR-tree served as the base structure for further de-
velopments in the area (Saltenis et al., 2001).TPR∗-tree, an
extension of the TPR-tree, improves the latter in update op-
erations (Tao et al., 2003). The main improvement lies in
the fact that local optimization criteria (at each tree node)
may degrade seriously the performance of the structure and
more particularly in the use of update rules that are based on
global optimization criteria. Thus, the authors of (Tao et al.,
2003) proposed a novel probabilistic cost model to validate
the performance of a spatiotemporal index and analyse with
this model the optimal performance for any data-partition in-
dex.

The STRIPES index (Patel et al., 2004) is based on the ap-
plication of the duality transformation and employs disjoint
regular space partitions (disk based quadtrees (Gaede & Gun-
ther, 1998)). Through the use of a series of implementations,
the authors claim that STRIPES outperforms TPR∗-trees for
both update and query operations.

Finally, the LBTs index (Sioutas et al., 2007) has the
most efficient update performance in all cases. Regarding
the query performance, LBTs method prevails as long as the
query rectangle length remains in realistic levels (by far su-
periority in comparison to opponent methods). If the query
rectangle length becomes huge in relation to the whole ter-
rain, then STRIPES is the best solution, however, only to a
small margin in comparison to LBTs method.

Definitions and Problem
Description

We consider a database that records the position of mov-
ing objects in two dimensions on a finite terrain. We assume
that objects move with a constant velocity vector starting
from a specific location at a specific time instant. Thus, we
can calculate the future object position, provided that itsmo-
tion characteristics remain the same. Velocities are bounded
by [umin, umax]. Objects update their motion information,
when their speed or direction changes. The system is dy-
namic, i.e. objects may be deleted or new objects may be
inserted.

Let Pz(t0) = [x0, y0] be the initial position at timet0 of
objectz. If objectz starts moving at timet > t0, its position
will be Pz(t) = [x(t), y(t)] = [x0 + ux(t − t0), y0 + uy(t − t0)],
whereU = (ux, uy) is its velocity vector.

We would like to answer queries of the form: “Report the
objects located inside the rectangle [x1q, x2q] × [y1q, y2q] at
the time instants betweent1q andt2q (wheretnow ≤ t1q ≤ t2q),
given the current motion information of all objects.”

Indexing mobile objects using
duality transformations

In general, the duality transform maps a hyper-planeh
from Rd to a point inRd and vice-versa. One duality trans-
form for mapping the line with equationy(t) = ut + a to a
point in R2 is by using the dual plane, where one axis rep-
resents the slopeu of an object’s trajectory (i.e. velocity),
whereas the other axis represents its intercepta. Thus we get
the dual point (u, a) (this is the so-calledHough-X transform
(Kollios et al., 1999; Papadopoulos et al., 2002)). By rewrit-
ing the equationy = ut+a ast = 1

uy− a
u, we arrive to a differ-

ent dual representation (the so calledHough-Y transformin
(Kollios et al., 1999; Papadopoulos et al., 2002)). The point
in the dual plane has coordinates (b,w), whereb = − a

u and
w = 1

u.
In (Kollios et al., 1999; Papadopoulos et al., 2002), mo-

tions with small velocities in the Hough-Y approach are
mapped into dual points (b,w) having largew coordinates
(w = 1/u). Thus, since few objects can have small veloc-
ities, by storing the Hough-Y dual points in an index such
as an R∗-tree, Maximum Bounded Rectangles (MBRs) with
large extents are introduced, and the index performance is
severely affected. On the other hand, by using a Hough-X
for the small velocities’ partition, this effect is eliminated,
since the Hough-X dual transform maps an object’s mo-
tion to the (u, a) dual point. The query area in Hough-X
plane is enlarged by the areaE, which is easily computed
asEHough−X = (E1hough−X + E2hough−X). By QHough−X we de-
note the actual area of the simplex query. Similarly, on the
dual Hough-Y plane,QHough−Y denotes the actual area of the
query, andEHough−Y denotes the enlargement. According to
these observations the solution in (Kollios et al., 1999; Pa-
padopoulos et al., 2002) proposes the choice of that transfor-
mation which minimizes the criterion:c = EHough−X

QHough−X
+

EHough−Y

QHough−Y
.

In order to build the index, we first decompose the 2-d
motion into two 1-d motions on the (t, x) and (t, y) planes
and then we build the corresponding index for each projec-
tion. Then we have to partition the objects according to their
velocity: Objects with small velocity are stored using the
Hough-X dual transform, whereas the rest are stored using
the Hough-Y dual transform. Motion information about the
other projection is also included.

To answer the exact 2-d query we decompose the query
into two 1-d queries, for the (t, x) and (t, y) projection. Then,
for each projection, we get the dual-simplex query and calcu-
late the criterionc and choose the one (sayp) that minimizes
it. We search in projectionp the Hough-X or Hough-Y parti-
tion and finally we perform a refinement or filtering step ”on

RUNNING HEAD FOR JOURNAL LOOK 3

the fly”, by using the whole motion information. Thus, the
result set contains only the objects satisfying the query.

Our contribution

We consider the case, where the objects are moving
with non small velocitiesu, meaning that the velocity value
distribution is skewed (Zipf) towardsumin in some range
[umin, umax] and as a consequence theQHough−Y transforma-
tion is used (denote thatumin is a positive lower threshold). In
(Kollios et al., 1999; Papadopoulos et al., 2002) and (Sioutas
et al., 2007),QHough−Y is computed by querying a B+-tree
and LBTs (Lazy B-trees) respectively, each of which indexes
theb parameters. Our construction is based on the use of the
ISB-tree (A. C. Kaporis et al., 2005) instead of the B+-tree
or Lazy B-trees, achieving optimal update performance and
near-optimal query performance. Next we describe the main
characteristics of the ISB-tree.

The ISB-tree

In the following, we give some basic definitions, we de-
scribe the interpolation method of searching, we describe the
Interpolation Search Tree as the basic main memory struc-
ture and finally we give the required technical details of the
external memory Interpolation Search B-Tree (ISB-tree) pre-
sented in (A. C. Kaporis et al., 2005).

Basic definitions: regular and smooth input distri-
butions

According to Willard (Willard, 1985), a probability den-
sity µ is regular if there are constantsb1, b2, b3, b4 such that
µ(x) = 0 for x < b1 or x > b2, andµ(x) ≥ b3 > 0 and
|µ′(x)| ≤ b4 for b1 ≤ x ≤ b2. This has been further pur-
sued by Mehlhorn and Tsakalidis (Mehlhorn & Tsakalidis,
1993), who introduced thesmoothinput distributions, a no-
tion that was further generalized and refined in (Andersson
& Mattsson, 1993). Given two functionsf1 and f2, a den-
sity functionµ = µ[a, b](x) is (f1, f2)-smooth(Andersson &
Mattsson, 1993) if there exists a constantβ, such that for all
c1, c2, c3 wherea ≤ c1 < c2 < c3 ≤ b, and all integersn, it
holds that

∫ c2

c2−
c3−c1
f1(n)

µ[c1, c3](x)dx≤
β · f2(n)

n

whereµ[c1, c3](x) = 0 for x < c1 or x > c3, andµ[c1, c3](x) =
µ(x)/p for c1 ≤ x ≤ c3 wherep =

∫ c3

c1
µ(x)dx.

Intuitively, function f1 partitions an arbitrary subinter-
val [c1, c3] ⊆ [a, b] into f1 equal parts, each of length
c3−c1

f1
= O(1

f1
); that is, f1 measures how fine is the partition-

ing of an arbitrary subinterval. Functionf2 guarantees that
no part, of thef1 possible, gets more probability mass than
β· f2
n ; that is, f2 measures the sparseness of any subinterval

[c2 −
c3−c1

f1
, c2] ⊆ [c1, c3]. The class of (f1, f2)-smooth dis-

tributions (for appropriate choices off1 and f2) is a superset
of both regular and uniform classes of distributions, as well

as of several non-uniform classes (Andersson & Mattsson,
1993; A. Kaporis et al., 2003). Actually,anyprobability dis-
tribution is (f1,Θ(n))-smooth, for a suitable choice ofβ.

Searching algorithms and interpolation method

Let S = {Xi , 1 ≤ i ≤ n} an ordered set ofn elements. The
basic routine of a searching operation is described by Algo-
rithm1 as follows:

Algorithm 1 Search(x,S)
1: le f t← 1
2: right← n
3: next← k ∈

[

le f t, right
]

4: while x <> S[next] and le f t < right do
5: if x ≤ S[next] then
6: right← next− 1
7: else
8: le f t← next+ 1
9: end if

10: next← k ∈
[

le f t, right
]

11: end while
12: if x = S[next] then
13: print(′S uccess′)
14: else
15: print(′Fail′)
16: end if

If next← le f t + 1 the routine above is a linear searching
routine and the worst-case time isO(n). If next←

⌊

right+le f t
2

⌋

we refer to a binary searching routine withO(logn) worst-
case time. Ifnext←

⌊

x−S[le f t]
S[right]−S[le f t] (right − le f t)

⌋

+ le f t we
refer to an interpolation searching routine for which time im-
provements can be obtained if certain classes of input distri-
butions are considered. In particular, for random data gen-
erated according to the uniform distribution, the interpola-
tion searching routine achievesΘ(log logn) expected time.
Willard (Willard, 1985) showed that this time bound holds
for an extended class of regular distributions, as defined pre-
viously. A natural extension is to adapt interpolation search
into dynamic data structures, that is, data structures which
support insertion and deletion of elements in addition to in-
terpolation search. Thus, the first step was to develop a static
tree-like structure, which adapts the method above (the so-
calledStatic InterpolationSearchTree) and the second and
final step the dynamization of this tree.

TheInterpolationSearchTree

The static interpolation search treehas been presented
in (A. Kaporis et al., 2003). Consider a random fileS =
{X1, . . . ,Xn}, where each keyXi ∈ [a, b] ⊂ ℜ, 1 ≤ i ≤ n,
obeys an unknown distributionµ. Let P = {X(1), . . . ,X(n)} be
an increasing ordering ofS. The goal is to find the largest
key X(j) ∈ P that precedes atargetelementx.

A static interpolation search tree (SIST) corresponding to
P can be fully characterized by three non-decreasing func-
tions H(n), R(n) andI (n), which are non-decreasing and in-

4 LEFT HEAD FOR JOURNAL LOOK

vertible with a second derivative less than or equal to zero.
H(n) denotes the tree height,R(n) denotes the root fan-
out, whereasI (n) denotes how fine is the partition of the
set of elements. Achieving a height ofH(n) dictates that
R(n) = n/H−1(H(n) − 1). Moreover,H(n) should beo(logn)
and notO(1), andH−1(i) , 0, for 1 ≤ i ≤ H(n) − 1. To
handle an as large as possible class of distributionsµ, the ap-
proximation of the sample density should be as fine as possi-
ble, implying thatI (n) should be as large as possible. Since
I (n) affects space, it is chosen asI (n) = n · g(H(n)), where
∑∞

i=1 g(i) = Θ(1), so that the space of SIST remains linear.
The aforementioned choice of functionsH(n), R(n) and

I (n) ensures that a SIST onn elements, drawn from a
(n · g(H(n)),H−1(H(n) − 1))-smooth distributionµ, can be
built in O(n) time and space (A. Kaporis et al., 2003).

The root node of SIST corresponds to the ordered fileP of
sizen. Each child corresponds to a part ofP of size n

R(n) , i.e.,
the subtree rooted at each child of the root hasn′ = n/R(n)
leaves and heightH(n′) = H(n)−1. The fan-out of each child
is R(n′) = Θ(H−1(H(n) − 1)/H−1(H(n) − 2)), while I (n′) =
n′ · g(H(n′)). In general, consider an internal nodev at depth
i and assume thatni leaves (elements ofP) are stored in the
subtree rooted atv, whose keys take values in [ℓ, u]. Then,
we have thatR(ni) = Θ(H−1(H(n) − i + 1)/H−1(H(n) − i)),
andI (ni) = ni · g(H(n) − i).

Each internal tree nodev at depthi is associated with an
array REP[1..R(ni)] of sample elements, containing one sam-
ple element for each of its subtrees, and an array ID[1..I (ni)]
that stores a set of sample elements approximating the in-
verse distribution function. The role of the ID array is to
partition the interval [ℓ, u] into I (ni) equal parts, each of
length u−ℓ

I (ni)
. The role of the REP array is to partition its

associated ordered sub-file ofP into R(ni) equal subfiles,
each of size ni

R(ni)
. By using the ID array, we can interpolate

the REP array to determine the subtree in which the search
procedure will continue. In particular, for the ID[1..I (ni)]
array associated with nodev, it holds that ID[i] = j iff
REP[j] < ℓ + i(u − ℓ)/I (ni) ≤ REP[j + 1]. Let x be the
element we seek. To interpolate REP, compute the index
j = ID[⌊(I (ni)(x−ℓ)/(u−ℓ))⌋], and then search the REP array
from REP[j + 1] until the appropriate subtree is located. For
each node we explicitly maintain parent and child pointers.
The required pointer information can be easily incorporated
in the construction of the static interpolation search tree.

The ISB-tree: a dynamic Interpolation Search Tree
in external memory

The ISB-tree is a two-level data structure (see Figure 1).
The upper level is a non-straightforward externalization of
the Static Interpolation Search Tree (SIST).

The lower level of the ISB-tree is a forest of buckets, each
one implemented by a new variant of the classical B-tree,
the Lazy B-tree, introduced in (A. C. Kaporis et al., 2005)
and used in (Sioutas et al., 2007). Each bucket contains a
subset of the stored elements and is represented by a unique
representative. The representatives of the buckets as wellas
some additional elements are stored in the upper level struc-

h=O(log
B
logn)

zoom on 2nd level

zoom on i-th level

EID[] array

EREP[] array

elements
S
 B
 _

1

0

elements
S
 B
 _
2

1

0

elements
S
 i
B
 _

1

0

zoom on first level

zoom on 2nd level

zoom on i-th level

1
Bucket
 i
Bucket

Root

of External SIST

Lazy B-trees

..
 ..

Bucket

p

Figure 1. The ISB-tree Index

ture.The following theorem provides the complexities of the
Lazy B-tree:

Theorem 1. The Lazy B-Tree supports the search opera-
tion in O(logB N) worst-case block transfers and update op-
erations inO(1) worst-case block transfers, provided that the
update position is given.

Proof. See (A. C. Kaporis et al., 2005; Sioutas et al.,
2007).

The upper level data structure is an external versionT of
the static interpolation search tree (SIST) (A. Kaporis et al.,
2003), with parametersR(s) = sδ, I (s) = s/(log logs)1+ǫ ,
whereǫ > 0, δ = 1 − 1

B, ands is the number of stored el-
ements in the tree. The specific choice ofδ guarantees the
desirableO(logB log s) height of the upper level structure.
For each node that stores more thanB1+ 1

B−1 elements in its
subtree, we represent its REP and ID arrays as static exter-
nal sorted arrays; otherwise, we store all the elements in a
constant number of disk blocks. In particular, letv be a node
andnv be the number of stored elements in its subtree, with
nv ≥ B1+ 1

B−1 . Nodev is associated with two external arrays
EREPv and EIDv that represent the REPv and IDv arrays of
the original SIST structure. The EIDv array usesO

(

I (nv)
B

)

contiguous blocks, the EREPv array usesO
(

R(nv)
B

)

contiguous
blocks, while an arbitrary element of the arrays can be ac-
cessed withO(1) block transfers, given its index. Moreover,
the choice of the parameterB1+ 1

B−1 guarantees that each of
the EREPv and EIDv arrays contains at leastB elements, and
hence we do not waste space (in terms of underfull blocks)
in the external memory representation.

To insert/delete an element, given the position (block)
of the update, we simply have to insert/delete the element
to/from the Lazy B-tree storing the elements of the corre-
sponding bucket. Note that the external SIST is not affected
by these updates. Each time the number of updates exceeds

RUNNING HEAD FOR JOURNAL LOOK 5

cn0, wherec is a predefined constant, the whole data structure
is reconstructed.

The search procedure for locating a query elementx can
be decomposed into two phases: (i) the traversal of internal
nodes of the external SIST to locate a bucketBi , and (ii) the
search forx in the Lazy B-tree storing the elements ofBi .
For more technical details see (A. C. Kaporis et al., 2005).
Algorithms 2-5 provide the description of ISB-tree’s basic
operations in pseudocode.

Lemma 2: The traversal of internal nodes of the exter-
nal SIST requiresO(logB logn) expected block transfers with
high probability.

Proof: See (A. C. Kaporis et al., 2005).
The insertions and deletions of elements into the ISB-tree

were simulated by a combinatorial game of balls and bins
described in (A. Kaporis et al., 2003) for an internal finger-
search data structure. In particular, balls correspond to el-
ements and bins to buckets. Insertions of elements into the
ISB-tree were simulated by the insertion of balls into bins
according to an unknown smooth probability densityµ. Sim-
ilarly, the deletion of an element from the ISB-tree was sim-
ulated by the deletion of an element from a bin uniformly at
random. For this process the following has been proven in
(A. Kaporis et al., 2003).

Algorithm 2 Sist Search(x,S IS T)
1: v← root(S IS T)
2: while (v <> lea f) do
3: i = ⌊ x−lv

uv−lv
R(nv)⌋ {Let v be a node on the search path for

x, nv the number of leaves in its subtree,lv anduv the
minimum and maximum element respectively, stored
in Tv}

4: Retrieve the
⌈

i
B

⌉

-th block of theEIDv array
5: j = EIDv[i]
6: l =

⌈

j
B

⌉

7: repeat
8: l ← l + 1
9: until EREPv[l] ≤ x < EREPv[l + 1]

10: end while
11: follow the pointer from leafv {Let Bini the correspond-

ing bin which is organized as a Lazy B-tree}

Algorithm 3 ISB Search(x, ISB-tree)
1: Sist Search(x,S IS T) {Let Bini the corresponding Bin of

the static interpolation search tree SIST}
2: LazyTreeSearch(x, Bini) {search in the lazy B-tree was

implemented in (Sioutas et al., 2007)}

Theorem 2: Consider the combinatorial game of balls
and bins described in (A. Kaporis et al., 2003). Then, the
expected number of balls in a bin isO(logn) with high prob-
ability.

The following lemma establishes the searching bound
within a bucket of the ISB-tree.

Lemma 3: Searching for an element in a bucket of the
ISB-tree takesO(logB logn) expected block transfers with
high probability.

Proof: This is an immediate result from Theorem 1 and
the size of each bucket, which is determined by Theorem 2.

The main theorem presented in (A. C. Kaporis et al.,
2005) follows and holds for the very broad class of
(n/(log logn)1+ǫ , n1−δ)-smooth densities, whereδ = 1 − 1

B
and includes the uniform, regular, bounded as well as several
non-uniform distributions.

Algorithm 4 ISB Insert(x, ISB-tree)
1: Sist Search(x,S IS T) {Let Bini the corresponding Bin}
2: LazyTreeInsert(x, Bini) {Bini is a lazy B-tree and its in-

sert operation was implemented in (Sioutas et al., 2007)}
3: numbero f updates← numbero f updates+ 1
4: if numbero f updates= cn0 then
5: Rebuild(S IS T) {n0 is the total number of elements

stored in the initial ISB-tree}
6: end if

Algorithm 5 ISB Delete(x, ISB-tree)
1: Sist Search(x,S IS T) {Let Bini the corresponding Bin}
2: LazyTreeDelete(x, Bini) {Bini is a lazy B-tree and its

delete operation was implemented in (Sioutas et al.,
2007)}

3: numbero f updates← numbero f updates+ 1
4: if numbero f updates= cn0 then
5: Rebuild(S IS T) {n0 is the total number of elements

stored in the ISB-tree at the initial state}
6: end if

Theorem 3: Suppose that the upper level of the ISB-tree
is an external static interpolation search tree with parameters
R(s0) = sδ0, I (s0) = s0/(log logs0)1+ǫ , whereǫ > 0,δ = 1− 1

B,
s0 = n0, n0 is the number of elements in the latest reconstruc-
tion, and that the lower level is implemented as a forest of
Lazy B-trees. Then, the ISB-tree supports search operations
in O(logB logn) expected block transfers with high proba-
bility, wheren denotes the current number of elements, and
update operations inO(1) worst-case block transfers, if the
update position is given. The worst-case update bound is
O(logB n) block transfers, and the structure occupiesO(n/B)
blocks.

Proof 1: From Lemmas 2 and 3, the searching operation
takesO(logB logn) expected number of block transfers with
high probability. Considering the update bound, between re-
constructions the block transfers for an update are clearly
O(1), since we only have to update the appropriate Lazy B-
tree which can be done inO(1) block transfers (see Theo-
rem 1). The reconstructions can be easily handled by us-
ing the technique of global rebuilding (Levcopoulos & Over-
mars, 1988). With this technique the linear work spent dur-
ing a global reconstruction of the upper level structure may

1 We quote a brief description of the proof presented in
(A. C. Kaporis et al., 2005)

6 LEFT HEAD FOR JOURNAL LOOK

be spread out on the updates in such a way that a rebuilding
cost ofO(1) block transfers is spent at each update.

Experimental Evaluation

NA vs. update num. (LA)

0,000

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1000,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 2. qV len= 5, qT len= 50, qRlen= 100

NA vs. update num. (LA)

0,000

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1000,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 3. qV len= 5, qT len= 50, qRlen= 1000

This section compares the query/update performance of
our solution with STRIPES as well as with those ones that
use B+-trees, Lazy B-trees (LBTs) and TPR∗-tree, as well.
We deploy spatio-temporal data that contain insertions at a
single timestamp 0. In particular, objects’ MBRs are taken
from the LA spatial dataset2. We want to simulate a situation
where all objects move in a space with dimensions 100x100
kilometers. For this purpose each axis of the space is nor-
malized to [0,100000]. For the TPR∗-tree, each object is
associated with a VBR (Velocity Bounded Rectangle) such
that (a) the object does not change spatial extents during its

NA vs. update num. (LA)

0,000

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1000,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 4. qRlen= 2000, qV len= 5, qT len= 50

movement, and (b) the velocity value distribution is skewed
(Zipf) towards 30 in the range [30,50], and (c) the velocity
can be either positive or negative with equal probability.

NA vs. update num. (LA)

0,000

100,000

200,000

300,000

400,000

500,000

600,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 5. qV len= 10, qT len= 50, qRlen= 400

We will use a page size of 1 Kbyte so that the number
of index nodes simulates realistic situations. Also, for all
experiments, the key length is 8 bytes, whereas the pointer
length is 4 bytes. Thus, the maximum number of entries
(< x > or < y >, respectively) in both Lazy B-trees and
B+-trees is 1024/(8+4)=85. In the same way, the maximum
number of entries (2-d rectangles or< x1, y1, x2, y2> tuples)
in TPR∗-tree is 1024/(4*8+4)=27. On the other hand, the
STRIPES index maps predicted positions to points in a dual

2 Downloaded 128.971 MBRs fromhttp://www.census.
gov/geo/www/tiger/

RUNNING HEAD FOR JOURNAL LOOK 7

NA vs. update num. (LA)

0,000

100,000

200,000

300,000

400,000

500,000

600,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 6. qV len= 10, qT len= 50, qRlen= 1000

NA vs. update num. (LA)

0,000

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 7. qV len= 5, qT len= 1, qRlen= 400

transformed space and indexes this space using a disjoint reg-
ular partitioning of space. Each of the two dual planes, are
equally partitioned into four quads. This partitioning results
in a total of 42 = 16 partitions, which we callgrids. Thus,
the fan-out of each internal node is 16. The ISB-tree3 has an
exponentially decreased fan-out and 2 levels at most.

For each dataset, all indexes except for STRIPES and
ISBs have similar sizes. Specifically, for LA, each tree has
4 levels and around 6700 leaves with the exception of: (a)
the STRIPES index which has a maximum height of seven
and consumes about 2.4 times larger disk space, and (b)
the ISB index which has a maximum height of 2. Each
queryq has three parameters:qRlen, qVlen, andqT len, such
that: (a) its MBRqR is a square, with lengthqRlen, uni-
formly generated in the data space, (b) its VBR isqV =

−qVlen/2, qVlen/2,−qVlen/2, qVlen/2, and (c) its query in-

NA vs. upate num. (LA)

0,000

50,000

100,000

150,000

200,000

250,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 8. qVlen= 5, qT len= 1, qRlen= 1000

terval isqT = [0, qTlen]. The query cost is measured as the
average number of node accesses in executing a workload
of 200 queries with the same parameters. Implementations
were carried out in C++ including particular libraries from
SECONDARY LEDA v4.1.

Query cost comparison

We measure the performance of our technique described
previously (in particular one ISB-tree for each projection,
plus the query processing between the two answers), in com-
parison to that of the LBTs method (Sioutas et al., 2007),
the traditional technique presented in (Kollios et al., 1999;
Papadopoulos et al., 2002), the TPR∗-tree (Tao et al., 2003)
and the STRIPES method (Patel et al., 2004), using the same
query workload, after every 10000 updates. Figures 2-6 show
the query cost (for datasets generated from LA as described
above) as a function of the number of updates, using work-
loads with different parameters. In these figures our solution
is almost 4-5 times more efficient (in terms of the number of
I/Os) than the solution using LBTs and B+-trees. This fact
is an immediate result of the sublogarithmic I/O searching
complexity of ISB-tree in comparison to the logarithmic I/O
searching complexities of both structures B+-tree and Lazy
B-tree. In particular, we have to index the appropriateb
parameters in each projection and then to combine the two
answers by detecting and filtering all pair permutations. As
a consequence, the ISBs method is significantly faster than
LBTs and traditional B+-trees methods.

Figures 2 and 3 depict the efficiency of our solution in
comparison to that of the TPR∗-tree and STRIPES. In figure
2, where the length of the query rectangle is 100 and as a con-
sequence the query’s surface is equal to 10000m2 or 1 hectare
(the surface of the whole spatial terrain is 106 hectares) the

3 source code of ISB-tree access method is available at
http://www.ionio.gr/∼sioutas/New-Software.htm

8 LEFT HEAD FOR JOURNAL LOOK

ISBs method is consistently about 53 times faster than the
STRIPES method, 212 times faster than the TPR∗-tree, 7.5
times faster than the B+-trees method and 2 times faster than
the LBTs method. The superiority of our solution decreases
as the query rectangle length grows from 100 to 1000. Thus,
in figure 3, where the spatial query’s surface is equal to 100
hectares, again our method is faster about 2.2 times with re-
spect to the STRIPES method, 8.3 times wrt the TPR∗-tree,
1.25 times wrt the B+-trees methods and 1.05 times wrt the
LBTs method.

NA vs. update num. (LA)

0,000

50,000

100,000

150,000

200,000

250,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 9. qRlen= 400,qV len= 5, qT len= 100

In real GIS applications, for a vast spatial terrain of 106

hectares, e.g. the road network of a big town where each
road square covers no more than 1 hectare (or 10.000m2)
the most frequent queries consider spatial query’s surfaceno
more than 100 road squares (or 100 hectares) and future time
interval no larger than 100 seconds. However, to test the
methods’ performance in extreme cases we conducted the
following experiment. When the query rectangle length or
equivalently the query surface becomes extremely large (e.g.
2000, or equivalently 400 hectares), then the STRIPES in-
dex shows better performance as depicted in Figure 4. In
particular, our method is still 1.9 times faster than the TPR∗-
tree, however, the STRIPES method is twice faster than our
one. The apparent explanation is that as the surface of the
query rectangle grows, the answer size in each projection
grows as well, thus the performance of the ISBs method that
combines and filters the two answers becomes less attrac-
tive. However, we do not consider such extreme case asre-
alistic scenarios. Figures 5 and 6 depict the performance
of all methods for a growing velocity vector. In particular,
in figure 5 the ISBs method consistently prevails about 33
times in comparison to the STRIPES method, 137 times in
comparison to the TPR∗-tree, 5 times in comparison to the
B+-trees and 2 times in comparison to the LBTs method.
The superiority of our solution becomes less strong as the
query rectangle length grows from 400 (16 hectares of query
surface) to 1000 (100 hectares of query surface). However,

notably even in the latter case (see Figure 6), our method is
about 2.7 times faster with respect to the STRIPES method,
8.3 times wrt the TPR∗-tree, 1.3 times wrt the B+-trees and
1.06 times wrt the LBTs method. Obviously, the velocity
factor is very important for TPR-like solutions, but not for
the other methods, for LBTs and ISBs in particular, which
depend exclusively on the query surface. Figures 7 and 8
depict the performance of all methods when the time inter-
val length approaches the 1 value. However, notably even
in this case (see Figure 7), the ISBs method is about 1.6
times faster with respect to the STRIPES method, 4.6 times
faster wrt the TPR∗-tree, 1.3 times faster wrt the B+-trees
and 1.2 times faster wrt the LBTs method. As query rect-
angle length grows from 400 to 1000, the ISBs method ad-
vantage decreases; from the bottom figure, we remark that
STRIPES is about 3 times faster, whereas our method is 1.03
times faster than the TPR∗-tree, 1.07 times faster than the B+-
trees and 1.03 times faster than the LBTs method. Figure 9
depicts the efficiency of our solution in comparison to that
of TPR∗-trees and STRIPES when the time interval length
reaches the value of 100. In particular, the ISBs method is
consistently about 10 times faster than STRIPES, 37 times
faster than TPR∗-tree, 3.5 times faster than the B+-trees and
2 times faster than the LBTs method. As required in practice,
the query surface remains inrealistic levels (16 hectares).

NA vs. update num. (LA)

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0,E+00
 2,E+04
 4,E+04
 6,E+04
 8,E+04
 1,E+05
 1,E+05

number of updates

node accesses

TPR*-tree

LBTs

B+ trees

STRIPES

ISBs

Figure 10. Update Cost Comparison

Scalability and update cost comparison

Figure 10 compares the average cost (amortized over in-
sertions and deletions) as a function of the number of up-
dates. ISBs and LBTs methods have optimal update per-
formance and consistently outperform the TPR∗-tree by a
wide margin as well as the STRIPES index by a narrow mar-
gin. In particular, ISBs and LBTs methods require a con-
stant number of 4 and 6 block transfers respectively(3 and
2 block transfers respectively for each projection, for details
see (A. C. Kaporis et al., 2005)) and this update performance

RUNNING HEAD FOR JOURNAL LOOK 9

is independent of the dataset size. On the other hand, the
other 3 solutions do not have constant update performance;
instead their performance depends on the dataset size even
if as in the experiment of Figure 10 B+-trees and STRIPES
reach the optimal performance of ISBs and LBTs methods
requiring 8 and 7 block transfers respectively (TPR∗-tree re-
quires 35 block transfers in average). The experiments above
show that ISBs method achieves a near optimal performance
for the most cases. This stems from the fact that the MBRs’
projections from the LA spatial datasets follow an almost
uniform (the most popular density of smooth family) distri-
bution, due to the almost uniform decomposition of spatial
maps. In particular, LA dataset constitutes a dense spatial
map and hence the derived one-dimensional data produce
densely populated elements. Thus, the interpolation tech-
nique of ISBs method works very well and its expected ex-
cellent behavior follows with high probability.

Conclusions

We have used a new access method for indexing moving
objects on the plane to efficiently answer range queries about
their future location. Its update performance is the most effi-
cient in all cases with no exception. Regarding the query per-
formance, the superiority of our structure has been shown as
long as the query rectangle length remains in realistic levels,
thus by far outperforming the opponent methods. If the query
rectangle length becomes extremely huge in relation to the
whole terrain (which apparently is a non-practical instance),
then the STRIPES method is the best solution, however, only
to a small margin in comparison to our method. We antici-
pate that for synthetic gigantic datasets the ISBs method will
be superior in any case.

References

Agarwal, P. K., Arge, L., & Erickson, J. (2000). Indexing mov-
ing points. InProceedings of 19th symposium on principles of
database systems(pp. 175–186). ACM.

Andersson, A., & Mattsson, C. (1993). Dynamic interpolation
search in o(log log n) time. InProceedings of 20th international
colloquium on automata, languages and programming(pp. 15–
27). Springer.

Beckmann, N., Begel, H.-P., Schneider, R., & Seeger, B. (1990).
The r*-tree: an efficient and robust access method for points and
rectangles.ACM SIGMOD Record, 19(2), 322–331.

Gaede, V., & Gunther, O. (1998). Multidimensional access meth-
ods.ACM Computing Surveys, 30(2), 170–231.

Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.,
& Zaroliagis, C. (2003). Improved bounds for finger search on

a ram. InProceedings of 12th annual european symposium on
algorithms(pp. 325–336). Springer.

Kaporis, A. C., Makris, C., Mavritsakis, G., Sioutas, S., Tsakalidis,
A. K., Tsichlas, K., et al. (2005). Isb-tree: A new indexing
scheme with efficient expected behaviour. InProceedings of
13th international symposium on algorithms and computation
(pp. 318–327). Springer.

Kollios, G., Gunopulos, D., & Tsotras, V. J. (1999). On indexing
mobile objects. InProceedings of 18th symposium on principles
of database systems(pp. 261–272). ACM.

Levcopoulos, C., & Overmars, M. H. (1988). A balanced search
tree with o(1) worst case update time.Acta Inf., 26(3), 269–277.

Manolopoulos, Y., Theodoridis, Y., & Tsotras, V. J. (2000).Ad-
vanced database indexing. Kluwer Academic Publishers.

Mehlhorn, K., & Tsakalidis, A. K. (1993). Dynamic interpolation
search.J. ACM, 40(3), 621-634.

Papadopoulos, D., Kollios, G., Gunopulos, D., & Tsotras, V.J.
(2002). Indexing mobile objects on the plane. InProceedings
of 13th international workshop on database and expert systems
applications(pp. 693 – 697). IEEE Computer Society.

Patel, J. M., Chen, Y., & Chakka, V. P. (2004). Stripes: An ef-
ficient index for predicted trajectories. InProceedings of the
2004 acm sigmod international conference on management of
data(pp. 637–646). ACM.

Raptopoulou, K., Vassilakopoulos, M., & Manolopoulos, Y. (2004).
Towards quadtree-based moving objects databases. InProceed-
ings of 8th east-european conference on advanced databases
and information systems(pp. 230–245). Springer.

Raptopoulou, K., Vassilakopoulos, M., & Manolopoulos, Y. (2006).
On past-time indexing of moving objects.Journal of Systems
and Software, 79(8), 1079-1091.

Saltenis, S., Jensen, C. S., (codirector), C. S. J., Bohlen,M. H.,
Gregersen, H., Pfoser, D., et al. (2001). Indexing of moving
objects for location-based services. InProceedings of 18th ieee
international conference on data engineering(pp. 463–472).
IEEE Computer Society.

Saltenis, S., Jensen, C. S., Leutenegger, S. T., & Lopez, M. A.
(2000). Indexing the positions of continuously moving objects.
ACM SIGMOD Record, 29(2), 331–342.

Salzberg, B., & Tsotras, V. J. (1999). Comparison of access meth-
ods for time-evolving data.ACM Comput. Surv., 31(2), 158–
221.

Sioutas, S., Tsakalidis, K., Tsichlas, K., Makris, C., & Manolopou-
los, Y. (2007). Indexing mobile objects on the plane revisited.
In Proceedings of 11th east european conference on advances in
databases and information systems(pp. 189–204). Springer.

Tao, Y., Papadias, D., & Sun, J. (2003). The tpr*-tree: an opti-
mized spatio-temporal access method for predictive queries. In
Proceedings of 29th international conference on very largedata
bases(pp. 790–801). VLDB Endowment.

Willard, D. E. (1985). Searching unindexed and nonuniformly gen-
erated files in log log n time.SIAM J. Comput., 14(4), 1013-
1029.

