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Abstract

Shadowed disk systems store identical data. Therefore, reads are satisfied by using the “nearer server rule” to choose the
appropriate disk, whereas writes are satisfied by all disks. Such systems have been studied in order to derive approximate
formulae for the expected seek distances traveled for reads and writes. In the present paper, earlier analytic models are
studied again, under a different perspective which takes into account the disk scheduling policy applied and the total number
of cylinders per disk. Our analysis is exact and results in new formulae for the expected seek distances traveled for reads
and writes. The deviation of the earlier formulae with respect to the new exact formulae decrements with decreasing number
of shadowed disks, increasing number of disk cylinders, as well as decreasing ration of reads vs. writes. Thus, it is verified
that earlier results could be used as good approximations in the asymptotic case. ©) 1997 Elsevier Science B.V.
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1. Shadowed disk systems

A shadowed disk system with replicated conven-
tional disks is considered, where in each disk identical
data are stored. Reading data is satisfied by accessing
any of the disks, since they all store exactly the same
data. The choice of the disk to be accessed is made by
applying the “nearer server rule”, i.e. we access the
disk on which the read/write heads are closest to the
requested cylinder. Writing new information must be
satisfied by all disks since they all have to be identical
copies. In [1] and [2,4] analytic models have been
developed in order to study the behavior of seek dis-
tances traveled, and expressions have been derived for
the expected read and write seek distances as functions
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of the number of disks. Thus, since the disk choice
is optimized, there is a certain reduction in expected
secks for reads, whereas seek performance for writes
will be at most the maximum of seek distances instead
of being their sum. It is, also, noted that the use of
such shadowed disk systems provides both reliability
and fault tolerance. In addition, an immediate backup
service is supported, while data are accessible when-
ever at least one disk is available.

Seek time may be approximated by the average
number of cylinders traveled by the r/w heads when
the arm moves from the current cylinder to the re-
quested one. In general, a uniform distribution of re-
quested cylinders is assumed. Although this does not
happen in practice, it serves as a good approximation.
By assuming independence between successive disk
operations, the model in {1] resulted in specific ex-
pressions for the expected seek distances traveled for
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both read and write requests:

C

E[read] = 1

and

Elwrite] =C(1 - 1),

where
2k
iy ifk>1,
L=d kvt
2/3 ifk=1,

C is the total number of cylinders per disk, and k is
the number of shadowed disks.

In [2,4] a more refined model has been developed
by using Markov chains and by taking in considera-
tion the fact that during the first few accesses follow-
ing a write access, several disks will have their r/w
heads positioned on identical cylinders. The result is
that the system will behave as if the value of k was re-
duced. A Markov chain is introduced with state-space

{1,2,...,k} and transition function p,

pi,1)=w forl <i<k, (1)
i1

sl =" ot cick, (2)
4

pi+ 1) =1 forl<i<k (3)

I

where r (respectively, w) is the percentage of read re-
quests (respectively, writes). Evidently, the following
relation holds:

r+w=1.

In addition, the boundary conditions have to be defined
as:

p(1,1)=w, (4)
p(1,2) =r, (5)
p(k.k) =r,

plk,k+1)=0.

Fig. 1 depicts the respective Markov chain for k = 5
disks.

According to [2] the explanation of p(i,i + 1) in
Eq. (3) is as follows.

w: r : r/2

o

Fig. 1. Markov chain for k = 5 according to the Lo-Matloff model.

“In State i, in which there are { distinct positions of
the r/w heads, k — (i — 1) heads will be at identical
positions, while i — 1 heads will be at singleton posi-
tions, i.e. positions which are non-duplicates. Suppose
the next request is a read. Although this request has
k physical drives from which to choose, it has only
i different head positions from which to choose, and
by symmetry, each of these i head positions is equally
likely to be the one closest to the requested cylinder.
Thus, there is probability 1/i that one of the k— (i —1)
same-position heads is the one which is chosen to ser-
vice this request. Inspection shows that this scenario
is the only one which can produce an i — i + 1 tran-
sition.”

Thus, new formulae were produced for expected
read and write distances traveled by using the above
transition function:

C

k
E[read] =Z7T,-m (6)
i=1

and

k
E[write] =Z7r,-C(l —1). (7)

=1

The quantity 7; is the long-run proportion of the time
the process spends in state i (fori=1,2,...,k),
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Table 1
Expected read and write seeks according to the Lo-Matloff model (percentages of C)
E[read) E[write]
k r=0.95 r=0.5 r=0.05 r=0.95 r=0.5 r=0.05
2 0.2066 0.2667 0.3267 0.46 04 0.34
4 0.134 0.2558 0.3266 0.5632 0.4148 0.3401
6 0.1148 0.2556 0.3266 0.5996 0.4152 0.3401
8 0.1089 0.2556 0.3266 0.6131 0.4152 0.3401
10 0.1071 0.2556 0.3266 0.6178 0.4152 0.3401
and A Markov chain is used again to describe the pro-
. cess. In the same manner, as a state we define the num-
1 ifi=1, ber of distinct values of cylinders where r/w heads lie
fi=_r/i ifl1<i<k, along the k disks, i.e. the state space is {1,2,...,k}.
0 ifi=k Being at state i means that there are exactly i dis-
ifi=k.

Table 1 represents the values of both expected read
and write seeks as a percentage of the total number of
cylinders per disk. These percentages remain the same,
no matter what the value of C is, since the parameter
C disappears after simplification.

2. The new analysis

The explanation of Eq. (3), as quoted in the previ-
ous section, has two drawbacks:

(1) It does not take into consideration the fact that,
in order to decide which r/w head should move to
satisfy the request, we apply the “nearer server rule”.

(2) The boundary conditions p(1,1) = w and
p(1,2) =r (of Egs. (4) and (5), respectively) are
simplifications. Both conditions are inexact and the
reason is the same: the calculation of these probabili-
ties should take into account the case of read request
from the cylinder where all the r/w heads reside
immediately after a write request. Thus, in reality
p(l,1) >wand p(1,2) <r.

In the sequel, we will develop a new analysis, which
is based on a different point of view. In simple words,
our analysis introduces a new parameter, i.e. the to-
tal number of disk cylinders per disk (C). This way,
it will become possible to base our analysis on the
“nearer server rule” and derive the exact probabilities
p(1,1) and p(1,2) in a unified way (and not as ex-
ceptions).

tinct cylinder positions occupied by the k r/w heads.
Therefore, at state i there are C — i cylinder positions
non-occupied by any r/w head along the k drives. In
this state, also, there is a non-singleton position with
k — (i — 1) r/w heads, whereas the { — 1 r/w heads
lie on top of i — 1 distinct positions.

It is clear, that if a write request arrives, then all £
heads will move to an identical position. Thus, easily
we derive that Eq. (1) holds in our model too:

pli, N =w forl <i<k (8)

However, the question arising is: “when do we move
from an i state to an i+ | state?” Since C is the number
of disk cylinders and each cylinder position is equally
likely to be accessed next, there is an i/C probability
that one of the occupied cylinders will be requested
next. In such a case, evidently the state remains the
same. In case that a non-occupied cylinder is hit (un-
der probability (C i) /C), there are chances that we
do move to an i + 1 state. An exact formula for the
probability p(i,i + 1) is going to be derived next.
Let us consider a simple instance of a system being
at a state i = 3, with k = 4 disks, each disk having
C = 4 cylinders. Evidently, there are 2 (= k —i + 1)
heads positioned on top of the same cylinder. In the
left column of Table 2, we show all the possible initial
head arrangements of the 4 (=24 1+1) heads on top
of the 4 cylinders. Consider, now, that a read request
arrives hitting any cylinder with equal probability. The
rest of the entries in each line of Table 2 depict all
the possible head placements which will be produced
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Table 2

Initial and final placements of head positions for i=3, k=4 and C =4

Initial head

Final head placements

placements
2110 2110 2110 2110 2101
210t 2101 2101 2110 2101
2011 2011 1111 2011 2011
0211 1111 0211 0211 0211
1210 1210 1210 1210 1201
1201 1201 1201 111 1201
1120 1120 1120 1120 1111
1021 1021 1111 1021 1021
0121 1021 0121 0121 0121
1102 1102 1102 1111 1102
1012 1012 1102 1012 1012
0112 1012 or1t2 0112 0112

after a read request arrives on each specific cylinder.
As in [2,4], it is assumed that these head placements
are produced equiprobably. In each of these cases, the
r/w head which will move depends on the relative
positions between the occupied and the hit cylinder.
According to the data of this table, we observe that
p(3,4) =6/48 = 1/8, whereas according to Eq. (3)
of the Lo-Matloff model this probability is 1/3.

In order to formulate the following analysis, we
define the notion of the subinterval as the number
of cylinders between any two successively occupied
cylinders, or between the beginning of the disk and
the first occupied cylinder, or finally, between the last
occupied cylinder and the end of the disk. It is known
that the subinterval length, denoted by sub, obeys the
probability distribution function [3]:

P(C,sub,i) = (C '"is_“bl“l) / (f)

Following the reasoning of [2,4], we accept that
the non-singleton position can take any place before,
among or after the singleton positions with equal prob-
ability (see Table 2). In the previous example, the
non-singleton position can equiprobably be either the
first, the second or, finally, the third occupied disk
cylinder. Thus, in general, we have to consider three
distinct cases.

(1) The non-singleton position is the first occupied
cylinder. Since all cylinders are hit equiprobably, any
of the cylinders of the subinterval to the left of the
non-singleton position may be hit by a read under

probability sub/C. Thus, one head out of the k —i+1
ones will have to move, and an (i,i+ 1) state will be
produced. This case will happen with probability:

C—i C .

_ N sub L) _1c—i

A=) ¢ P(Csubi) = © Cci+l
sub=1

1

Also, if a read request arrives at the subinterval to the
right of the non-singleton position, then we will have
a transition i — i + 1 with probability

C—i

=Y [s—;ﬂ/cmc, sub, i)
sub=1
S Rpsub (C—sub—l)
em 20 )

This expression is explained by the fact that, if the
subinterval has length equal to sub, then one of the
k — i + 1 heads will move if the read request arrives
to the [sub/2] closest cylinders out of the sub ones,
whereas the neighbor singleton head will move to ser-
vice the read request if the latter refers to the closest
|sub/2| cylinders. We note that, on purpose, we move
one of the non-singleton heads to service the read re-
quest referring to the median subinterval cylinder (the
[sub/2]th one), in order to better/evenly distribute
the heads along the data band.

Therefore, if the non-singleton position is the first
occupied cylinder, then we will have an i — i+ 1
transition under probability Py +Ps.
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Table 3
Representative p (i, i+ 1) values under the Lo-Matloff and the new models as functions
of i and C
state | model new model
Lo-Matloff Cc=10 C =100 C =1000
1 1 09 0.99 0.999
2 0.5 0.4222 - 04925 0.4993
3 0.3333 0.2611 0.3266 0.3327
4 0.25 0.1786 0.2437 0.2494
5 0.2 0.1273 0.1939 0.1994
6 0.1667 0.0913 0.1607 0.1661
7 0.1429 0.0636 0.137 0.1423
8 0.125 0.0406 0.1191 0.1244
9 01111 0.02 0.1054 0.1106

(2) The non-singleton position is neither the first
nor the last occupied cylinder. With the same reasoning
as in the previous case, it can be derived that we will
have an i — i+ 1 transition with probability P, + P,.

(3) The non-singleton position is the last occupied
cylinder. This case is symmetric to the first one. There-
fore, we will have an i — i + 1 transition with proba-
bility P, + Py, too.

Since the second case may arise / — 2 times, we
conclude that the probability to have an i — [ + 1
transition after a read request is

.. (PL+P)+ (i =2)(Pa+ P)+ (P2 + Pr)
pli,i+1)y=r -

E(E-FEmen)

(9)

Given a read request, we will not have an i — i + 1
transition if one of the { occupied cylinders is hit, or
one of the singleton heads will be nearer to the request.
Therefore, we conclude that

p(iiy=1—p(i,i+1). (10)

According to our analysis the probabilities p(1, 1)
and p(1,2) are not regarded as a special boundary
conditions (see Egs. (4) and (5) respectively), since
they are easily derived from the above formulae. Thus
we have

r(C —1)

p(1,2) = C

,
1,1) = —,
p(1, 1) W+C

Thus, the only boundary cases which have to be ex-
plicitly defined are the following two,

plk, k) =r, plk,k+1) =0,

as in the model of [2,4].

As depicted in Table 3, the new values for the
transition probability p(i,i + 1) are always smaller
than the ones calculated in the previous model of
[2,4]. It is interesting to emphasize the following two
observations with respect to the contents of this ta-
ble:

(1) The transition probability values of the earlier
model converge to the new exact model’s values as
the number of cylinders C increases. For example, for
i =1 there is an 11.1% deviation when C =10, 1.1%
deviation when C = 100, and 0.1% deviation when
C = 1000, respectively.

(2) The transition probability values of the earlier
model converge to new exact model’s values as the
number of state i (and evidently, the number of shad-
owed disks k) decreases. More specifically, when C =
10, the earlier model deviates from the new one by
11.1% fori = 1,57.1% fori = 5, and 455.6% for i = 9,
respectively.

Therefore, by using this alternative point of view
(i.e. by taking into account the “nearer server rule”
and introducing the number of cylinders per disk
C), we overcome the analytical simplifications of
the transition probability function p(i,i + 1) in
[2,4], and verify the validity of theses earlier re-
sults as a good approximation in the asymptotic
case.
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Fig. 2. Deviation percentages of Lo-Matloff model for expected
seek of reads, C = 10.
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Fig. 3. Deviation percentages of Lo-Matloff model for expected
seek of writes, C = 10.

By using the new probability measures introduced
here (i.e. Egs. (8)-(10)), we derive new values for
the r; as

i
™ =1 ng,
J=1

where
k i —1
10
=l j=1
and
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Fig. 4. Deviation percentages of Lo-Matloff model for expected
seek of reads, C = 1000.
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Fig. 5. Deviation percentages of Lo-Matloff model for expected
seek of writes, C = 1000.

1 ifi=1,
Rl lOr e g
&= pli,i+Dr+w
k—1,k e
plk=Llr o
w

These values are introduced in the formulae given in
the previous section for expected seek for both reads
and writes (Egs. (6) and (7)).

Figs. 2 and 3 represent the percentage deviation of
the seek performance of the previous model [24],
when compared to the exact model presented here, for
C = 10. Similarly, Figs. 4 and 5 represent the same



A. Vakali, Y. Manolopoulos/ Information Processing Letters 61 (1997) 323-329 329

percentage deviation of the seek performance, for C =

1000. From these figures we observe that:

¢ reading according to the earlier model is optimistic.
In other words, our exact model results in expected
seek values bigger than those of the previous model.
For example, when C = 10, the biggest deviation
(8.5%) occurs for the largest values of both the
number of shadowed disks & = 10, and read ratio
r = 0.95. For the same value of C, the deviation
percentage decreases for less disks (e.g. for r =
0.95, there is a 5.05% deviation for k = 6 and 0.33%
deviation for k = 2). The lowest percentages appear
for the smallest values of both k and r, e.g. 0.19%
when k£ =2 and r = 0.05. When C increases, there
is a convergence between the earlier and new model,
and the deviation percentages appear to be quite low
(e.g. for C = 1000, we remark a 0.07% deviation
for k = 10, r = 0.95 and 0.002% deviation for k =
2,r=0.05).

e writing according to the earlier model is pes-
simistic. Thus, our model behaves better than the
previous model. Again for C = 10 the biggest devi-
ation (—3.2%) occurs for the largest values of both
k = 10 and r = 0.95. The percentage decreases as
the number of shadowed disks becomes less (e.g.
for r = 0.95, there is a —1.7% deviation for k = 6
and —0.15% deviation for k = 2). The lowest de-
viation percentages appear for the smallest values
of both k£ and r, e.g. —0.19% deviation when &k = 2
and r = 0.05. Models converge again as C increases
(e.g. for C = 1000, we remark a —0.02% deviation
for k = 10, r = 0.95, and —0.002% deviation for
k=2,r=0.05).

In both cases (i.e. reading and writing), we remark

that the deviation of the earlier approximate model

decreases with increasing number of cylinders C, de-
creasing number of shadowed disks &, and decreasing
read ratio r. We note that in practice, k& is not much

larger than 2, whereas C is much larger that 100. Thus,
again we verify the validity of the earlier results as a
good approximation in the asymptotic case.

3. Epilogue

Shadowed disk systems provide both reliability and
fault tolerance. In addition, an immediate backup ser-
vice is supported, while data are accessible whenever
at least one disk is available. Analytic models have
been developed in [1,2,4] in order to derive expres-
sions for the expected read and write seek distances
traveled, as functions of the number of available disks.

In the present paper, we re-examine these earlier
approaches and derive new exact formulae for the ex-

pected read and write seeks by taking into account the

“nearer server rule”. It is shown that the earlier expres-
sions in [2,4] for reads (respectively, writes) were

optimistic (respectively, pessimistic) in the sense that

produced values smaller (respectively, larger) than the
exact ones. However, it is shown that this earlier model

can be used as a close approximate model for large

numbers of disk cylinders per disk C and small num-
bers of available disks k. Thus, we effectively close
the case.
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