
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 34 (2009) 328–352
0306-43

doi:10.1

� Cor

E-m

papado

(A. Nan
journal homepage: www.elsevier.com/locate/infosys
Node and edge selectivity estimation for range queries in
spatial networks
E. Tiakas, A.N. Papadopoulos �, A. Nanopoulos, Y. Manolopoulos

Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece
a r t i c l e i n f o

Article history:

Received 24 March 2008

Received in revised form

1 September 2008

Accepted 9 September 2008
Recommended by: F. Korn
determined by graph properties such as the graph order and size (i.e., number of nodes
Keywords:

Spatial networks

Selectivity estimation

Query optimization
79/$ - see front matter & 2008 Elsevier B.V. A

016/j.is.2008.09.004

responding author. Tel.: +30 231099 1918; fax

ail addresses: tiakas@csd.auth.gr (E. Tiakas),

po@csd.auth.gr (A.N. Papadopoulos), ananopo

opoulos), manolopo@csd.auth.gr (Y. Manolop
a b s t r a c t

Modern applications requiring spatial network processing pose several interesting

query optimization challenges. Spatial networks are usually represented as graphs, and

therefore, queries involving a spatial network can be executed by using the

corresponding graph representation. This means that the cost for executing a query is

and edges) and other graph parameters. In this paper, we present novel methods to

estimate the number of nodes and edges in regions of interest in spatial networks,

towards predicting the space and time requirements for range queries. The methods are

evaluated by using real-life and synthetic data sets. Experimental results show that the

number of nodes and edges can be estimated efficiently and accurately, with relatively

small space requirements, thus providing useful information to the query optimizer.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Spatial networks can be represented as graphs, where
road segments are represented by graph edges and
crossroads (and other points of interest) are represented
by graph vertices. Depending on the application, such a
graph may be weighted, directed or undirected. This way,
any spatial query on the original network can be executed
on the underlying graph G. Evidently, the performance of
such queries depends on the number of nodes and edges
found in the region of interest, which defines a subgraph
of G, as well as on the number of objects lying on the
edges.

Several query processing techniques have been pro-
posed for fundamental query types in spatial networks,
such as range and k-nearest-neighbors (k-NN) [1–3].
However, when such queries are combined, appropriate
query optimization techniques are necessary to increase
ll rights reserved.

: +30 231099 1913.

u@csd.auth.gr

oulos).
efficiency. Therefore, estimations on factors affecting the
performance of such queries are crucial for query
optimization purposes. More specifically, the number of
vertices and edges contained in a specific region is an
indication of the required computational time required to
store the corresponding subgraph, as well as the time
required to execute queries.

This paper is a first effort towards a comprehensive
study in estimating the number of vertices and edges
contained in a region of a spatial network. This region of
interest is defined by a starting vertex v0 and a network-
based distance e. The goal is to estimate the number of
nodes and edges contained in the region of interest as
accurately as possible. Such an estimation is useful in
several cases such as:
�
 In location-based services, it is important to predict the
trajectory of a moving object [4], taking into account
that the motion is not predefined (e.g., a bus). The
estimated number of junctions and street segments
that a vehicle may visit provides significant help
towards this direction, since they provide an indication
regarding the size of uncertain region.

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2008.09.004
mailto:tiakas@csd.auth.gr
mailto:papadopo@csd.auth.gr
mailto:ananopou@csd.auth.gr
mailto:ananopou@csd.auth.gr
mailto:manolopo@csd.auth.gr

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352 329
�
 By using the estimated number of nodes and edges
combined with information regarding the current
positions of moving objects one can estimate the
number of objects lying in a particular distance from
a query object. This information can be used for query
optimization purposes in spatiotemporal query proces-
sing, since it may be used for estimating the selectivity
of range and k-NN queries as well as estimating the I/O
cost of the query.

�
 In some spatiotemporal applications, there is a need

for continuous evaluation of queries. As an example,
consider a moving object for which we need to
continuously monitor the set of objects residing within
a specific distance from the query object. Our methods
may be applied in such cases towards estimating the
size of the result for each timestamp.

In this respect, several different directions are exam-
ined, each one with different requirements and estimation
accuracy. The examined methods are: (i) a simple method
based on multi-dimensional scaling (MDS), (ii) an estima-
tion with global parameters, (iii) a local estimation using
densities or kernels, and (iv) an estimation with binary
encoding techniques.

The rest of this paper is organized as follows. In Section
2, we present the related work and specify our contribu-
tions. In Section 3, we formulate the problem and present
the estimation methods in detail. Section 4 contains the
performance evaluation and related experimental results.
Section 5 presents a discussion for applications of the
proposed methods, whereas Section 6 concludes our
work.

2. Related work and contribution

Selectivity estimation has been examined in the past
with respect to spatial or spatiotemporal queries. Below,
we briefly present some fundamental work in the area.

In [5], the authors examine the performance of range
queries in R-trees and variants. More specifically, estima-
tion formulae have been proposed for the number of disk
accesses using global parameters and local densities.
Selectivity estimation for spatial joins has been studied
in [6], where the authors provide efficient methods with
relative errors below 30%. In [7] the authors propose two
approaches for the selectivity estimation of spatiotemporal
queries: a simple histogram approach and an index-
based estimator. The Power-Method [8] provides accurate
estimations for such queries by using a simple formula
with minimal computational cost, small space require-
ments and average relative error rate below 20%. In [9]
the authors propose a selectivity estimation method with
low relative estimation error (about 10%) for spatial
queries using specific global parameters formulae based
on Hausdorff fractal dimension.

The concept of local density has been studied exten-
sively in general and spatial data sets, but not in
combination with spatial networks. In the bibliography,
one can find a plethora of density estimation proposals. In
this direction, an important method is the kernel density
estimation method and its variants [10,11]. Kernel density
estimators are used in many application domains such
as clustering [12,13], outlier detection [14], and visualiza-
tion [15]. Moreover, several variations of kernel density
estimations and smoothing have been proposed in [16,17].

The basic limitation of the previous approaches is that
they are restricted to Euclidean spaces only. Our con-
tribution is the presentation of efficient methods for
spatial query estimation for spatial networks assuming
non-Euclidean spaces. More specifically, we introduce and
evaluate three novel estimation methods:

Global parameters estimation method: Which is based
on global parameters (see Section 3.3).

Local densities estimation method: Which extends
the previous method by using local density factors
(see Section 3.4). We present a new computational
model of local node densities in Section 3.4.1, as well as
an alternative approach by applying the well-known
Gaussian kernel densities estimators in Section 3.4.2.

Binary encoding estimation method: Which uses specific
graph transformations, a specific binary encoding techni-
que and a formula with only binary and basic register
operations for calculations (Section 3.5).

In addition to these three methods, a simple solution
based on MDS is also evaluated. The advantage of this
approach is that it can exploit previous results for the
selectivity estimation of multi-dimensional objects using
the Euclidean distance.

A preliminary version of this work appears in [18]
where we have presented the basic estimation methods.
The current version is more complete and in summary the
new material is described as follows:
�
 the MDS method is included for comparison purposes,

�
 a more thorough theoretical analysis is performed and

proofs of fundamental theoretical results are given,

�
 estimation of the number of edges contained in the

region of interest is given (in addition to the estimation
of the number of nodes),

�
 a discussion regarding the exploitation of the results by

the query optimizer for range and k-NN processing is
included, studying selectivity estimation issues and
processing cost with respect to the number of I/O
operations required,

�
 a more thorough experimental evaluation is carried

out.

3. Estimation approaches

In this section, we define the problem and present the
proposed methods aiming at effective estimation solu-
tions. Table 1 contains the basic symbols used.

3.1. Problem definition

Let GðVG; EGÞ be a connected weighted undirected
graph where VG and EG is the set of nodes and edges,
respectively. The distance measure dðv;uÞ denotes the
shortest path distance between nodes v and u. Given a
specific starting node v0 2 VG, and a desired distance e, we

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352330
are interested in determining two estimators, eNðv0; eÞ andeEðv0; eÞ, for the total number of nodes and edges that can
be reached from v0 within a distance less than or equal to
e. The starting vertex v0 and the distance e define the
region of interest. It is assumed that an edge is counted if
and only if it is fully contained in the region of interest.
The estimators are formally defined as follows:

Nðv0; eÞ ¼ jfv 2 VG : dðv;v0Þpegj

Eðv0; eÞ ¼ jfðvi;vjÞ 2 EG : minðdðvi;v0Þ; dðvj;v0ÞÞ þwðvi;vjÞpegj
Table 1
Frequently used symbols.

Symbol Description

G An undirected graph

VG Set of nodes of graph G

EG Set of edges of graph G

jVGj Number of nodes of graph G

jEGj Number of edges of graph G

v0 Selected starting node

e Query distance

dðvi ;vjÞ Network distance between nodes vi ;vj

DG Diameter of G, DG ¼ maxðdðvi ;vjÞ; 8vi ;vj 2 VGÞ

degðviÞ Degree of node vi

wðvi ;vjÞ Weight of the edge connecting nodes vi and vj

w Average edge weight

deg Average node degree

Nðv0 ; eÞ Exact number of nodes within distance e from v0

Eðv0; eÞ Exact number of edges within distance e from v0eNðv0 ; eÞ Estimation of Nðv0; eÞeEðv0; eÞ Estimation of Eðv0 ; eÞ

Fig. 1. A simple road network example.

Table 2
Reachable nodes and edges within distance e from node M.

e Nðv0 ; eÞ Nodes

0;1;2;3 1 M

4 3 M;N;H

5;6 4 M;N;H; L

7 8 M;N;H; L;Q ;O;K;C

8 9 M;N;H; L;Q ;O;K;C; I

9 11 M;N;H; L;Q ;O;K;C; I;G; P

10 11 M;N;H; L;Q ;O;K;C; I;G; P
Fig. 1 depicts an example of a spatial network
represented by a weighted graph. The starting position
of the car is node v0 ¼ M. Table 2 presents the number of
reachable nodes and edges from node M within the
distances e ¼ 0;1;2; . . . ;10. We observe that as the value
of e increases, the number of nodes and edges contained
in the region of interest also increases (as expected). The
challenge is to derive estimators eNðv0; eÞ and eEðv0; eÞ to
effectively estimate Nðv0; eÞ and Eðv0; eÞ by avoiding the
execution of graph processing algorithms (e.g., network
expansion or Dijkstra-like processing).
3.2. Estimation based on MDS

A simple approach that can be applied is to transform
the corresponding graph in the Euclidean space, since
several tools have been proposed in the literature for
estimating the number of points contained in a region.
Thus, as a first approach along this line, we use the
classical MDS [19–21].

MDS comprises a set of tools that can transform data
objects from a non-Euclidean space to an Euclidean space,
allowing effective visualization. MDS can also produce
representations of data objects in a low-dimensional
space (dimensionality reduction), which is frequently
desirable. Due to dimension reduction, approximation
quality may be reduced, and there are several adjustable
proposed functions [19,22–24], yielding the optimal
arrangement towards minimum loss of distance preserva-
tion (loss functions).

The raw data of an MDS analysis are typically the
dissimilarity values between the objects in the original
space, which have been calculated by using a specific
distance measure. The result of an MDS analysis is a
spatial configuration in which all objects are represented
as points into the n-dimensional Euclidean space ðRn

Þ,
which are arranged in such a way that their Euclidean
distances correspond to the original dissimilarities and
approximate their distance values in the original space.

Let p denote the number of objects for which the
pairwise dissimilarities are available in the p� p matrix P.
The result of MDS is contained in a coordinate matrix S of
size p� n ðnopÞ, which represents the corresponding
points into the Euclidean space ðRn

Þ. The number of
dimensions (n) in the final Euclidean space is defined by
the positive eigenvalues of a produced matrix. Therefore, n

is a specific constant number that defines the maximum
number of required dimensions, which can reproduce the
Eðv0 ; eÞ Edges

0 –

2 MH;MN

3 MH;MN;ML

7 MH;MN;ML;MQ ;HC;NO;KL

9 MH;MN;ML;MQ ;HC;NO;KL;HI;NI

12 MH;MN;ML;MQ ;HC;NO;KL;HI;NI;HG; LG; PQ

13 MH;MN;ML;MQ ;HC;NO;KL;HI;NI;HG; LG; PQ ; LQ

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352 331
original space without significant loss of quality. The
following steps involve some linear algebra and summar-
ize the algorithm of classical MDS (more details can be
found in [19]):
�
 Compute the matrix of squared proximities Pð2Þ ¼ ½x2
ij�.

ð2Þ
�
 Compute the matrix B ¼ � 1
2 JP J using the matrix

J ¼ I � ð1=pÞU, where I is the unitary matrix, p is the
number of objects and U is the matrix which has all of
its values equal to 1. This step is also called double

centering.

�
 Extract the n largest positive eigenvalues l1; . . . ;ln of B

and the corresponding n eigenvectors e1; . . . ; en.

�

Fig. 3. Estimation with the MDS-grid method.
Compute and return the final coordinate matrix
S ¼ EnLð1=2Þ

n , where En is the matrix of the n eigenvec-
tors and Lð1=2Þ

n is the diagonal matrix of the square roots
of the n eigenvalues of B, respectively.

Often, it is desirable to select a smaller number of
dimensions kon. Apparently, the fewer dimensions we
select during dimensionality reduction, the less the
distance preservation achieved. The set of dimensions is
always selected according to the largest eigenvalues.

3.2.1. The MDS-based method

In MDS-grid method we apply the classical MDS
transformation, where the raw data P are arranged by
the coordinates of the nodes of the original network G. On
the resulted coordinate matrix S, which has p points with
n-coordinates, we perform dimensional reduction by
taking the first kon coordinates (which correspond to
the k-largest eigenvalues) into a new matrix eS. In the
sequel, by TMDS we denote the classical MDS transforma-
tion: G�!

TMDS
S � Rn.

After building the final point-set eS in the Euclidean
space Rk with the appropriate number of dimensions k,
we can apply any method for the Euclidean e-range
estimations on eS. Here, we follow a simple histogram-
based technique and apply a k-dimensional hyper-grid C,
splitting the space S into ck equal-sized hyper-rectangle
cells Cði1; i2; . . . ; ikÞ (where 1pi1; i2; . . . ; ikpc, where c is a
desired number of cells in each dimension), and comput-
ing their corresponding densities by counting all con-
tained node-points. Then, we keep all these cell densities
Fig. 2. Outline of MDS prep
in a k-dimensional matrix CD to subsequently compute
the total number of existing nodes in the desired e-range
regions. The preprocessing algorithm for building the cell
densities matrix is depicted in Fig. 2.

After the construction of the CD matrix, we can
estimate the number of nodes Nðv0; eÞ in an e-range
region of a node v0 of G, using the densities of the cells
lying in the hyper-spherical e-range region of the point
v00 ¼ TMDSðv0Þ of eS (see Fig. 3). For this estimation, we
apply the algorithm of Fig. 4. Note that the under- and
over-estimation steps scan only the cells of the hyper-grid
H, where the minimum bounded hyper-rectangle (MBR) of
the hyper-sphere A0 lies. Based on the algorithm of Fig. 4,
the node estimation formula has as follows:

eNðv0; eÞ ¼
1

2
�

X
Cði1 ;i2 ;...;ikÞ�A0

CDði1; i2; . . . ; ikÞ

0@
þ

X
Cði1 ;i2 ;...;ikÞ\A0a;

CDði1; i2; . . . ; ikÞ

1A (1)

or equivalently

eNðv0; eÞ ¼
X

Cði1 ;i2 ;...;ikÞ�A0
CDði1; i2; . . . ; ikÞ

þ
1

2
�

X
Cði1 ;i2 ;...;ikÞ\A0a;
^Cði1 ;i2 ;...;ik ÞD/ A0

CDði1; i2; . . . ; ikÞ (2)

In Eq. (2), the node estimation is performed by
summing all cell densities of the cells that are included
into the volume of the hyper-sphere A0, and by summing
the half of the cell densities of all the cells that intersect
A0. Therefore, the intersection parts are counted as the 50%
of the cells. If we calculate the intersection volume and we
rocessing algorithm.

ARTICLE IN PRESS

Fig. 4. Outline of MDS node estimation algorithm.

E. Tiakas et al. / Information Systems 34 (2009) 328–352332
include their percentages into Eq. (2), we could perform a
better estimation. However, in that case, the calculation of
all intersection parts will significantly increase the
computational time of the algorithm in Fig. 4, as the cost
of this calculation is more expensive.
3.2.2. Time, space and preprocessing requirements

The storage requirements of the MDS-grid method
comprise the required space for (a) the final k coordinates
of all nodes after the MDS transformation, plus (b) the cell
densities matrix. Apparently, the required space is
Oðk � jVGj þ ckÞ. This amount depends on the values of k

and c, which can be modified accordingly. All these data
can be kept in main memory.

The required time for the computation of the estimatoreNðv0; eÞ is the time for scanning the cells of the hyper-grid
H, in which the MBR of the hyper-sphere A0 lies. This time
equals: d2e=dx1e � d2e=dx2e � . . . � d2e=dxke according to
Formulae (1)–(2). Therefore, the total time cost for the
estimation equals to: Oð

Q
i¼1;...;kd2e=dxieÞ. A significant

observation is that the estimation time depends on the
selection of the distance e and the parameters c and k

(since these parameters affect the cell dimensions dxi).
The total preprocessing cost includes:
�
 the time for the MDS transformation, which is an
OðjVGj

3Þ time, since MDS performs array multiplica-
tions of size OðjVGj

2Þ on the dissimilarity matrix of all
nodes, as well as other less costly operations (e.g.,
finding eigenvalues, etc.), plus

�
 the time for the construction of eS by selecting the k

coordinates, which is an Oðk � jVGjÞ time, plus

�
 the time for the construction of the hyper-grid H by

finding the global minimum and maximum coordi-
nates, which is an Oðk � jVGjÞ time, plus

�
 the time for the initialization and construction of the

cell densities matrix, which is an OðckÞ time, plus
finally

�
 the time to compute the cell densities by scanning all

node-points on H, which is an OðjVGjÞ time.
Summing up, we have an OðjVGj
3 þ k � jVGj þ k � jVGj þ ck þ

jVGjÞ ¼ OðjVGj
3 þ ckÞ preprocessing cost.
3.2.3. Disadvantages of the MDS-grid-based approach

The MDS-grid method has several disadvantages,
which can turn this approach inapplicable for estimation
purposes in a spatial network:
�
 It can be used only for node estimations but not for
edge estimations, due to the nature of the transforma-
tion process.

�
 It cannot be used for very large graphs due to the high

time and space and preprocessing requirements:
OðjVGj

3 þ ckÞ time and OðjVGj
2Þ space (the dissimilarity

matrix and all intermediate matrices need quadratic
space).

�
 It requires a significant amount of space: Oðk�

jVGj þ ckÞ, i.e., the required space grows exponentially
by increasing the number of dimensions k.

�
 The estimation time grows exponentially as this radius

grows. Moreover, by increasing the number of dimen-
sions k or the number of grid cells c, the estimation
time grows significantly for large values of e.

Based on the previous observations, the MDS-grid
method may fail for the node estimation problem, as
there is a necessity for good estimation accuracy with low
time and space requirements. Evidently, there is a need to
develop estimation methods with the following desirable
properties:
�
 support of both node and edge estimations,

�
 reduced estimation time,

�
 reduced space and preprocessing requirements, and

�
 satisfactory estimation accuracy.

3.3. Global parameters estimation method

In this method, the estimation formulae eNðv0; eÞ andeEðv0; eÞ are based on two global graph parameters: the
average edge weight w and the average node degree deg.
These parameters are formally defined as follows:

w ¼
1

jEGj

X
wðvi;vjÞ

deg ¼
1

jVGj

X
i

degðviÞ ¼
2jEGj

jVGj

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352 333
where wðvi;vjÞ is the weight associated to the edge
connecting nodes vi and vj and degðviÞ is the degree of
node vi.

The global parameters estimation method is based on
simple formulae for the estimated number of nodes and
edges and requires only the global parameters w and deg:

eNðv0; eÞ ¼ eNðeÞ ¼ deg

2
�

e

w
�

e

w
þ 1

� �
þ 1 (3)

eEðv0; eÞ ¼ eEðeÞ ¼ deg �
e2

w2
(4)

3.3.1. Derivation of the proposed formulae

In order for the global method to be effective regarding
estimation accuracy, it should be applied in special types
of graphs, obeying some specific properties. These graphs
are termed regular uniform graphs and they are formally
defined as follows:

Definition 3.1. A connected graph G is called regular
uniform (RU graph) if the following properties hold: (i) all
nodes have the same degree, (ii) all edge weights are
identical, and (iii) if we select a random node v and
gradually increase the distance around v by multiples of
the constant edge weight, the number of new reachable
nodes increases by following an arithmetic growth.

An infinite RU graph is an RU graph with infinite
number of nodes and edges. Although infinite graphs do
not appear in real-life applications, they are used as
mathematical tools to investigate some properties of the
global estimation method. Using the previous definition,
an RU graph can be constructed by the following process:
�
 We add a starting central node vc .

�
 We add n new nodes around vc , where n is equal to the

constant node degree of the RU graph, and we connect
these nodes with vc . These nodes are the level-1 nodes.

�
 We add 2 � n new nodes (the level-2 nodes) around the

level-1 nodes and we connect them with the level-1
nodes, such that all level-1 nodes to have degree n

(‘‘completed’’ nodes). We can also make connections
between nodes of the same level.

�
 We repeat the previous step to construct the next level

nodes (level-3 has 3 � n nodes, level-4 has 4 � n nodes,
etc.).

�
 We continue to infinity to create an infinite RU graph or

we can stop at any level to create a finite RU graph.

�
 All generated edges are assigned the same weight.

Evidently, in a finite RU graph, the degree of the last
level nodes may be less than n. Fig. 5 presents the level-3
expanded finite RU graphs varying the node degrees from
2 to 10 using the above methodology. On several real
spatial networks there are many graph parts that are
isomorphic to finite RU graphs (expanded at low levels),
and this the reason we have chosen this graph family for
our estimations. For example, many real city road net-
works have a lot of square blocks, thus there are many
graph parts that are isomorphic to ‘‘square-like’’ parts
(upper-right graph of Fig. 5).

Lemma 3.1. Let H1 be an infinite RU graph, where all node

degrees are equal to a positive integer number deg and all

edge weights are equal to a positive real number w. Then, for

any random selected node v0 2 H1, the exact number of

nodes Nðv0; eÞ lying in the range region of v0 within a

network distance eX0 (which is a multiple of w), is

Nðv0; eÞ ¼ NðeÞ ¼
deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

Proof. Since H1 is an infinite RU graph, the exact number
of nodes Nðv0; eÞ does not depend on the selection of v0,
and depends only on the distance e, thus Nðv0; eÞ ¼ NðeÞ.

Since the distance e is a multiple of w, we have e ¼ k �w

where k is a positive integer number or zero. Following

the above-mentioned construction procedure and using

the property of the arithmetical progress increase (which

is based on), we have for the number of nodes NðeÞ the

following results:
�
 For e ¼ 0w ¼ 0: NðeÞ ¼ 1 (the node v0 only).

�
 For e ¼ 1 �w ¼ w: NðeÞ ¼ 1þ deg (the node v0 plus the

deg nodes of level-1).

�
 For e ¼ 2 �w: NðeÞ ¼ 1þ deg þ 2 � deg (the node v0

plus the deg nodes of level-1 and the 2 � deg nodes of
level-2), etc.

Therefore, using induction we derive the following
result for e ¼ kw:

NðeÞ ¼ 1þ deg þ 2 � deg þ 3 � deg þ � � � þ k � deg

¼ deg � ð1þ 2þ 3þ � � � þ kÞ þ 1

¼ deg �
kðkþ 1Þ

2
þ 1 ¼

deg

2
� kðkþ 1Þ þ 1

As k ¼ e=w, we finally have

NðeÞ ¼
deg

2
�

e

w
�

e

w
þ 1

� �
þ 1 &

Regarding edge estimation, again the number of edges
contained in the region of interest does not depend on the
starting vertex v0, and depends only on the selected
distance e. Therefore, Eðv0; eÞ ¼ EðeÞ. The problem with
edge estimation is that the number of estimated edges
coincides with the true number of edges in the region of
interest only when deg ¼ 4. In other words, the arithmetic
growth in the number of edges is not generally satisfied.
More specifically, for e ¼ 0 �w;1 �w;2 �w;3 �w . . . ; k �w

we have 0; deg;3 � deg;5 � deg; . . . ; ð2k� 1Þ � deg new edges,
respectively, from each level, thus for e ¼ kw we have

EðeÞ ¼ 0þ deg þ 3 � deg þ 5 � deg þ � � � þ ð2k� 1Þdeg

¼ deg � ½1þ 3þ 5þ � � � þ ð2k� 1Þ�

¼ deg � k2
¼ deg �

e2

w2

The above formula can be used for edge estimation as long
as the degree of the RU graph is near 4. For arbitrary
values the edge estimator will not provide accurate
results.

ARTICLE IN PRESS

Fig. 5. RU graphs with degrees 2–10, expanded to level-3.

E. Tiakas et al. / Information Systems 34 (2009) 328–352334
To apply the derived formulae in arbitrary graphs, we
must relax two basic assumptions used so far: (i) the
infinity assumption, and (ii) the global equality of edge
weights and node degrees. The following lemma describes
the case of a finite RU graph. As it has been noted before,
this type of graph is an RU graph, except from the fact that
nodes of the last level does not satisfy the assumption that
all node degrees are equal.

Lemma 3.2. Let H be a finite RU graph with node degrees

equal to a positive integer deg (except probably the last level

nodes) and edge weights equal to a positive real w. Moreover,
let HC denote the central region of H, which is defined by its

central node vc (the starting central node of its construction

procedure) and a network distance equal to DH=4 (where DH
is the diameter of the graph H). Then, for any region R which

is defined by a randomly selected starting node v0 from the

region HC and a network distance 0pepDH=4, the numbers

of nodes Nðv0; eÞ and edges Eðv0; eÞ contained in the region R,
are independent of the selection of v0, but depend only on the

selection of e. Thus

Nðv0; eÞ ¼ NðeÞ; Eðv0; eÞ ¼ EðeÞ; 8v0 2 HC ; 8e : 0pepDH=4

Proof. H is a finite RU graph, thus it is isomorphic to a
symmetrical graph constructed with the above presented
methodology, starting from the central node vc and
expanded till a specific level. Let n be the last expanded
level of H which contains its ‘‘border’’ nodes. Then,
assuming the network distance dðÞ, all shortest paths
from vc to any node of the last level have length equal to:

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352 335
RH ¼ n �w. This constant distance RH is the radius of the
graph H. Therefore, the diameter DH of the graph H is the
constant distance: DH ¼ 2n �w.

The central region HC of H contains all reachable nodes

and edges from vc within a network distance: DH=4 ¼

2n �w=4 ¼ ðn=2Þ �w. Therefore it is also a finite RU graph

with the same central node vc and expanded till the bn=2c

level. Thus, if v0 is a randomly selected starting node from

the region HC , it lies into a specific expansion level k of HC

with: 0pkpbn=2c. Moreover, the network distance be-

tween the nodes v0 and vc satisfies the inequality

0pdðv0;vcÞp
n

2

j k
�w

Now, the region R contains all reachable nodes and

edges from v0 within a network distance: DH=4 ¼

ðn=2Þ �w. Due to the ‘‘uniformity’’ attribute of the whole

graph, R is also a finite RU graph with central node v0 and

expanded till its bn=2c level. Thus, if v is a randomly

selected node from the region R, it must lies into a specific

expansion level m of R where 0pmpbn=2c. Moreover, the

network distance between the nodes v and v0 must satisfy

the inequality

0pdðv;v0Þp
n

2

j k
�w

Therefore, using the triangular inequality which holds

for the network distance metric and the previous inequal-

ities we take

0pdðvc ;vÞpdðvc;v0Þ þ dðv0;vÞ

p
n

2

j k
�wþ

n

2

j k
�wp2 �

n

2
�wpRH

As the node v can be any node of the region R, the whole

region R lies into the graph H so it keeps the ‘‘uniformity’’

attribute, thus Nðv0; eÞ ¼ NðeÞ, Eðv0; eÞ ¼ EðeÞ, and the

lemma has been proved. &

Therefore, by combining Lemmas 3.1 and 3.2, for any
finite RU graph H with diameter DH and central region HC

(defined by its central node vc and a network distance
equal to DH=4), the number of reachable nodes Nðv0; eÞ

and edges Eðv0; eÞ from a node v0 2 HC within a network
distance 0pepDG=4, remain the same. Thus, the same
derived formulae can be used for estimations in finite RU
graphs if we follow the mentioned restrictions for the
parameters v0 and e.

In the previous, we have examined the cases of infinite
RU graphs and finite RU graphs with equal node degrees
and edge weights. Now, if we relax this ‘‘regularity’’
attribute, we can still use the same formulae for estima-
tions, after substituting the constants deg and w with the
average degree deg and the average weight w, respec-
tively. Thus, we can use formulae (3)–(4) for estimations
on general graphs. The usage of these average values into
the formulae can lead to efficient estimation results, if the
node degrees and edge weights distributions do not
significantly deviate from these averages. However, in
case of large deviations for a large number of nodes and
edges, these formulae may produce significant errors, as it
is confirmed in the experimental results.

Definition 3.2. A connected graph G is called almost
regular uniform (ARU graph) if the following conditions
are satisfied: (i) all graph edge weights are lying in the
interval ½ð1� aÞw; ð1þ aÞw�, where a is a small positive
real (e.g., 0oao0:2), (ii) all graph node degrees are
integers in the interval: ½bdegc � 1; ddege þ 1�, and (iii)
the same as in the previous definition.

Theorem 3.3. Let G be an almost regular uniform spatial

network, and also let:
1.
 the selected starting node v0 to belong in a region of

G defined by its central node vc (at this point, as central

node we define the median node of the shortest path with

length DG, where DG is the diameter of the graph), and a

network distance equal to DG=4, and
2.
 the desired range distance e to lie in the interval ½0;DG=4�.

Then, the estimator for the number of nodes Nðv0; eÞ:

eNðv0; eÞ ¼ eNðeÞ ¼ deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

have estimation error Error½eN� which satisfy the following

upper bound:

Error½eN�pmax
ddege þ 1

degð1þ aÞ
� 1

�����
�����; bdegc � 1

degð1� aÞ
� 1

�����
�����

()
In addition, if the average degree deg is near to 4 (with the

same deviation a of the almost regular uniform definition of

G), then the estimator for the number of edges Eðv0; eÞ:

eEðv0; eÞ ¼ eEðeÞ ¼ deg �
e2

w2

have estimation error Error½eE� which satisfy the following

upper bound:

Error½eE�pmax
ddege þ 1

degð1þ aÞ2
� 1

�����
�����; bdegc � 1

degð1� aÞ2
� 1

�����
�����

()
The proof is included in the Appendix. From the latter

theorem it is observed that these estimation error bounds
are independent of the average weight w and the selected
distance e.
3.3.2. Time, space and preprocessing requirements

A significant advantage of the global parameters
estimation method is that there is no need for book-
keeping. Another advantage is that the estimators eNðv0; eÞ

and eEðv0; eÞ, can be computed instantly. The preprocessing
steps require only the computation of the global para-
meters: deg ¼ 2jEGj=jVGj and w ¼

P
wðvi;vjÞ=jEGj which

can be computed in OðVG þ EGÞ time.

3.4. Local densities estimation method

The next method uses the concept of local densities to
take into consideration the influence of sparse and dense
regions to the estimation process. The local densities are

ARTICLE IN PRESS

Table 3
Local counting density estimators for the graph of Fig. 1 with ec ¼ 7.

v0 LNDv0
LEDv0

NLNDv0
NLEDv0

A 6 6 0.75 0.6

B 6 6 0.75 0.6

C 8 8 1 0.8

D 7 8 0.875 0.8

E 6 6 0.75 0.6

F 7 8 0.875 0.8

G 7 8 0.875 0.8

H 8 8 1 0.8

I 8 10 1 1

J 7 8 0.875 0.8

K 8 9 1 0.9

L 8 9 1 0.9

M 8 7 1 0.7

N 7 7 0.875 0.7

O 6 6 0.75 0.6

P 7 7 0.875 0.7

Q 7 7 0.875 0.7

R 5 4 0.625 0.4

S 5 4 0.625 0.4

T 5 4 0.625 0.4

U 3 2 0.375 0.2

MAX 8 10

E. Tiakas et al. / Information Systems 34 (2009) 328–352336
computed in a preprocessing step and maintained in main
memory. The more representative local density factors are
used, the better estimation results are obtained. In the
sequel, we present two methods for the calculation of the
local densities: (a) the local counting density estimators
and (b) kernel density estimators.

3.4.1. Local counting density estimators

The main idea behind the local counting density
estimators is to count the number of nodes and edges
on every node v 2 G, within a small local distance ec

around node v. To derive the new expressions we first
need to define the following concepts:

The local node density of a node v 2 VG is an integer
number defined as follows:

LNDv ¼ jfvi 2 VG : dðv;viÞpecgj

The local edge density of a node v 2 VG is an integer
number defined as follows:

LEDv ¼ jfðvi;vjÞ 2 EG : minðdðv;viÞ; dðv;vjÞÞ þwðvi;vjÞpecgj

The normalized local node density of a node v 2 VG is a
real number in the interval ½0;1�, defined as follows:

NLNDv ¼
LNDv

maxfLNDvi
;vi 2 VGg

(5)

The normalized local edge density of a node v 2 VG is a
real number in the interval ½0;1�, defined as follows:

NLEDv ¼
LEDv

maxfLEDvi
;vi 2 VGg

(6)

For a better understanding of these concepts, we
present an example based on the spatial network of
Fig. 1. By setting ec ¼ 7, we count for every node all
reachable nodes and edges with shortest path distance
less than or equal to 7. Table 3 depicts all calculations.
Nodes with normalized local densities close to 1, lie on
dense regions, whereas nodes with normalized local
densities close to 0, lie in sparse regions. Moreover, the
most dense region will have both normalized local
densities set to 1.

Using these definitions new estimation formulae can
be derived by extending the global parameter estimation
formulae with the normalized local node and edge
densities:

eNðv0; eÞ ¼ NLNDv0
�

deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

 !
(7)

eEðv0; eÞ ¼ NLEDv0
� deg �

e2

w2
(8)

The usage of normalized local node and edge densities as
global factors into Eqs. (7) and (8), ensures that: (i) the
more dense regions we have around v0, the more similar
the results are to those of global method, (ii) the more
sparse regions we have around v0, the more the deviation
from the values returned by the global method. Therefore,
we parameterize the influence of sparse and dense regions
to the estimation procedure relatively to the their
corresponding sparsity or density.
This simple approach offers satisfactory results if the
distance ec is set correctly. We use ec values that are small
multiples of the average weight w. The accuracy of the
above estimators depends on this constant. In particular,
there is a multiple k of w, where the ec parameter
minimizes the estimation error. As ec takes values smaller
than k �w, the local densities are underestimated and the
estimation error increases. On the other hand, as ec takes
values larger than k �w, the local densities are over-
estimated and the estimation error again increases.
Therefore, we can tune the ec parameter by means of
the k value, to minimize the estimation error.
3.4.2. Kernel density estimators

Kernel density estimators belong to a class called non-
parametric density estimators, because they do not have a
fixed functional form with constant global parameters. In
particular, they smooth out the contribution of each
observed object over a local neighborhood of a specific
object.

We apply the kernel density estimators to our problem,
where the observed objects are the nodes of the
spatial network graph G, and their contribution is their
network distance (i.e., shortest path distance). Any known
kernel function KðxÞ can be used such as Uniform,
Triangle, Epanechnikov, Quartic, Triweight, Cosinus, etc.
In Section 4.3 we examine all these functions in node and
edge estimations. For example, the normal (Gaussian)
kernel has the following form:

KðxÞ ¼
1ffiffiffiffiffiffi
2p
p e�ð1=2Þx2

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352 337
The local node density of a node v 2 VG is a positive real
number defined as follows:

LNDv ¼
X

vi2VG

K
dðv;viÞ

h

� �
The local edge density of a node v 2 VG is a positive real
number defined as follows:

LEDv ¼
X

ðvi ;vjÞ2EG

K
dðv;viÞ

h

� �
þ K

dðv;vjÞ

h

� �� �

The normalized local node and edge densities are
defined as in Eqs. (5) and (6), whereas the final estimation
is performed again by Eqs. (7) and (8). The parameter h40
is the bandwidth of the kernel function, which is a
constant used for smoothing.

Next, we present an example based on the spatial
network of Fig. 1. Assuming a bandwidth h ¼ 7, Table 4
depicts the results of local densities using the Gaussian
kernel. The calculations of LND for node A are based on the
calculation of all shortest paths from A which are:
f0;2;7;11;14;3;5;10;14;17;
7;9;14;18;21;12;14;18;16;19;22g, respectively. Thus

LNDA ¼ K
0

7

� �
þ K

2

7

� �
þ K

7

7

� �
þ K

11

7

� �
þ K

14

7

� �
þ � � � þ K

22

7

� �
¼

1ffiffiffiffiffiffi
2p
p ðeð�1�02

Þ=ð2�72
Þ þ eð�1�22

Þ=ð2�72
Þ þ eð�1�72

Þ=ð2�72
Þ

þ eð�1�112
Þ=ð2�72

Þ þ eð�1�142
Þ=ð2�72

Þ þ � � � þ eð�1�222
Þ=ð2�72

ÞÞ

¼
1ffiffiffiffiffiffi
2p
p ð1þ 0:960005441þ 0:60653066

þ 0:290923807þ 0:135335283þ � � � þ 0:007163364Þ

¼ � � � ¼ 2:778
Table 4

Kernel density estimators for the graph of Fig. 1 with h ¼ 7.

v0 LNDv0
LEDv0

NLNDv0
NLEDv0

A 2.778 17.305 0.723 0.661

B 3.112 19.932 0.810 0.761

C 3.297 21.432 0.858 0.818

D 3.057 19.571 0.796 0.747

E 2.491 15.361 0.648 0.586

F 3.313 21.525 0.862 0.822

G 3.681 24.582 0.958 0.938

H 3.842 26.199 1 1

I 3.547 23.719 0.923 0.905

J 2.854 18.489 0.743 0.706

K 3.443 22.568 0.896 0.861

L 3.712 25.180 0.966 0.961

M 3.685 25.750 0.959 0.983

N 3.439 23.449 0.895 0.895

O 2.719 17.888 0.708 0.683

P 3.182 20.096 0.828 0.767

Q 3.307 21.782 0.861 0.831

R 2.986 19.211 0.777 0.733

S 2.478 14.605 0.645 0.557

T 2.279 12.990 0.593 0.496

U 1.759 9.531 0.458 0.364

MAX 3.842 26.199
The accuracy of the estimators eNðv0; eÞ and eEðv0; eÞ

depend on h. More specifically, there is a real value hm

where the estimation error is minimized. As h take values
smaller than hm, the distances are elongated into the
kernel ðdðv;viÞ=hÞ, thus the local densities are under-
estimated and the estimation error increases. Also, as h

takes values larger than hm, the distances shrink into the
kernel, the local densities are overestimated and, thus, the
estimation error again increases. Therefore, we can tune
the h parameter to minimize the estimation error.
3.4.3. Time, space and preprocessing requirements

In both variations of the local densities estimation
method, the required space for all pre-computed data is
OðjVGjÞ. These data can be kept in memory and, thus, the
estimation values eNðv0; eÞ and eEðv0; eÞ can be computed in
constant time. The total preprocessing cost depends on
the specific method used:
�

wh

0.0

wh

ker
Local counting density estimators need to compute all
shortest path distances in the ec-range region. There-
fore, for a starting node v0, we need Oððec=DGÞ � jVGj �

log jVGjÞ time (e.g., by implementing the Dijkstra
algorithm with binary heaps). Finally, for all graph
nodes we need Oððec=DGÞ � jVGj

2 � log jVGjÞ time.

�
 Kernel density estimators need to compute all shortest

path distances between all nodes. By using a common
‘‘all to all’’ shortest path algorithm (i.e. Dijkstra), we
reach an OðjVGj

2 � log jVGjÞ time. However, in large
graphs, large distances from a node cannot affect
significantly its kernel densities. Thus, we can prune
some terms of the summations on kernel densities
without significant changes to their values, if we select
only the nodes with shortest paths less than or equal
to a constant multiple of h (k � h).1 Then, the total
preprocessing cost can be reduced to Oðk � ðh=DGÞ�

jVGj
2 � log jVGjÞ.

3.5. Binary encoding estimation method

The next method is applicable in any graph type and its
efficiency is independent of the parameters e and v0. Its
rationale is based on the following observations. As
mentioned, all local densities pre-computations require
some or all of the shortest path distances between the
graph nodes. Therefore, a process that could encode all
shortest path distances into node labels in a preprocessing
step would avoid all computations of network distances.

Along this lines, in [25] the authors present an efficient
encoding technique based on hypercube embedding for
assigning labels to graph nodes so that the network
distance between any two nodes can be calculated
directly by using their labels. More specifically, after the
encoding process, the node labels are binary numbers and
1 In the above calculations the shortest path from nodes A to U is 22,

ereas the contribution of node U to kernel densities of node A is only

07163364. Thus, in the above example we can choose the nodes

ich have shortest path distance p3h (3h ¼ 3 � 7 ¼ 21), and then the

nel densities calculations will remain efficient enough.

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352338
the network distance of any two nodes can be approxi-
mated by the Hamming distance of the respective binary
codes. This method requires a unitary weighted graph (i.e.,
all edge weights are equal to 1). Therefore, to apply this
technique, we first have to transform the spatial network
graph. During this transformation all network distances
on the final graph must closely approximate the corre-
sponding original distances. For this purpose, we propose
the following preprocessing steps:
1.
 Select a real value wu for unitary distance from the
interval ð0;w�. This constant affects the precision of
distance approximations. If it takes values close to w

then we will have low precision and possibly a high
estimation error. If instead it takes values close to 0,
then we will have high precision and an almost zero
estimation error.
2.
 Transform the graph G into a new graph G0 ¼ TðGÞ, by
dividing all weights by wu and by adding intermediate
nodes. In particular, in every edge ðvi;vjÞ of G we add
a number of intermediate nodes. This number is equal
to the closest integer of wðvi;vjÞ=wu minus 1 (i.e.
dwðvi;vjÞ=wue � 1 or bwðvi;vjÞ=wuc � 1). If AG is the set
of all new nodes, then graph G0 will have jVG0 j ¼

jVGj þ jAGj and jEG0 j ¼ jEGj þ jAGj, whereas all edge
weights of graph G0 will be equal to 1.

Given G0, we can execute the encoding algorithms of
[25], and construct these binary codes of length k bits,
where k equals the number of edges contained in the
perimeter of graph G0. According to [25], k ¼ Oð

ffiffiffi
n
p
Þ, where

n is the number of nodes of G0, thus k ¼ Oð
ffiffiffiffiffiffiffiffiffiffi
jVG0 j

p
Þ ¼

Oð
ffi
jVGj þ jAGj

p
Þ.

Given the binary encoding for all nodes of graph G after
the preprocessing phase, we can proceed with the
derivation of estimations. Some definitions are first
necessary:
�
 Cv is the binary code of a node v 2 VG.

�
 Hðcvi

; cvj
Þ is the Hamming distance between the binary

codes cvi
; cvj

, and equals

Hðcvi
; cvj
Þ ¼

X
bits¼1

ðcvi
	 cvj
Þ

where 	 stands for the XOR binary operator.

�
 uðxÞ is the simple signal function that returns 1 if xX0

and 0 otherwise.

As mentioned, we can estimate all shortest path
distances on graph G by computing the Hamming distance
of the corresponding binary codes. It can be proven that
an estimate for the shortest path distance of two nodes
vi;vj on the original graph G is

dðvi;vjÞ

Hðcvi

; cvj
Þ

2
�wu

Therefore, we derive the following estimation formulae
for the binary encoding method:

eNðv0; eÞ ¼
X

vi2VG

u e�
Hðcv0

; cvi
Þ �wu

2

� �
(9)
eEðv0; eÞ ¼
X

ðvi ;vjÞ2EG

u e�wu �
minfHðcv0

; cvi
Þ;Hðcv0

; cvj
Þg

2
�wðvi;vjÞ

� �
(10)

Next, we will first prove a proposition that will be
helpful for the subsequent space and time complexity
calculations.

Proposition 3.1. The number of added nodes and edges jAGj

on graph G to produce graph G0 is

jAGj
 jEGj �
w�wu

wu
(11)

Proof. In every edge ðvi;vjÞ of G we have added
ðdwðvi;vjÞ=wue � 1Þ or ðbwðvi;vjÞ=wuc � 1Þ intermediate
nodes, thus the total number of added nodes is

jAGj

X

ðvi ;vjÞ2EG

wðvi;vjÞ

wu
� 1

� �
¼

P
ðvi ;vjÞ2EG

wðvi;vjÞ

wu
� jEGj

However, by the definition of w we have

w ¼

P
ðvi ;vjÞ2EG

wðvi;vjÞ

jEGj
3

X
ðvi ;vjÞ2EG

wðvi;vjÞ ¼ w � jEGj

Therefore

jAGj

w � jEGj

wu
� jEGj ¼ jEGj �

w�wu

wu
&

Based on this proposition we can calculate the total
number of nodes and edges of graph G0 using only basic
parameters from the original graph G and Eq. (11):

n ¼ jVG0 j ¼ jVGj þ jAGj
 jVGj þ jEGj �
w�wu

wu
(12)

jEG0 j ¼ jEGj þ jAGj
 jEGj þ jEGj �
w

wu
� 1

� �
¼ jEGj �

w

wu
(13)

Thus, the length of each binary code is

k ¼ Oð
ffiffiffi
n
p
Þ ¼ Oð

ffiffiffiffiffiffiffiffiffiffi
jVG0 j

p
Þ ¼ O

ffi
jVGj þ jEGj �

w�wu

wu

s !
(14)
3.5.1. Time, space and preprocessing requirements

From Eqs. (12)–(14), we observe that the parameter wu

affects the number of nodes and edges on graph G0, and
subsequently the length of the binary encoding k. As
parameter wu takes values close to 0, k becomes larger,
and thus more space is needed for the encoding. There-
fore, there is a trade-off between the required space and
the estimation accuracy of this method.

According to Eq. (14), we need OðjVGj �ffi
jVGj þ jEGj � ðw�wuÞ=wu

p
Þ space for the binary codes.

Thus, in shortage of space, we can calibrate the wu value to
the available space and keep these data in memory.

The required time for computations of estimatorseNðv0; eÞ and eEðv0; eÞ, will be only the time required for
the calculations of their formulae, which are OðjVGjÞ and
OðjEGjÞ, respectively. However, this time cost is negligible,
since these calculations have only binary and basic
register operations.

ARTICLE IN PRESS

Table 6
Graph parameters values for the four used spatial networks.

Global parameters Oldenburg California San Francisco Synthetic

jVGj 6105 21,048 174,956 250,000

jEGj 7035 21,693 223,001 499,000

deg 2.304668 2.061289 2.549224 3.992

w 73.67902 0.01618624 8.782676 15.00156

DG 12,985.97 16.4288 16,828.54 13,366.2

E. Tiakas et al. / Information Systems 34 (2009) 328–352 339
The preprocessing cost is composed of the time
required for the construction of G0 from G:

OðjV 0Gj þ jE
0
GjÞ ¼ jVGj þ jEGj �

w�wu

wu
þ jEGj �

w

wu

¼ jVGj þ jEGj �
2w�wu

wu

plus the time required for the encoding of G0, which
according to [25] and Eq. (14) is

Oðn
ffiffiffi
n
p
Þ ¼ O jVGj þ jEGj �

w�wu

wu

� �
�

ffi
jVGj þ jEGj �

w�wu

wu

s !

3.6. Comparison of methods

Table 5 summarizes the theoretical results regarding
the performance of the estimation methods. Note that, for
the MDS method only node estimation time is given since
edge estimation is not supported. These results are
discussed below:

Estimation time: The MDS-grid method is not efficient
due to high time, space and preprocessing requirements.
On the contrary, the global, local and kernel methods
perform fast calculations for both node and edge estima-
tions. In addition, as desired, the estimation time does not
depend on the parameters v0, e, ec , h, jVGj, jEGj.

The binary method requires jVGj and jEGj binary and
register operations for the node and edge estimation,
respectively. This cost is independent of the parameters v0

and e, but depends on the graph parameters jVGj and jEGj

and the unitary distance wu, which affects the code length.
However, due to the usage of only binary and register
operations, the estimation time is expected to be low.

Required space: The global method does not have any
additional space requirements. Local and kernel methods
require OðjVGjÞ space, which is independent of the
parameters v0; e; ec ;h.

The binary method requires an OðjVGj �ffi
jVGj þ jEGj � ðw�wuÞ=wu

p
Þ space. By decreasing the value

of wu, the required space increases significantly, due to the
increase of the required number of bits for the encoding
(k), thus, achieving more accurate estimations.

Preprocessing time: The global method has the shortest
preprocessing time, which is linear on the number of
edges. The local and kernel methods have quadratic
preprocessing time due to the shortest path computations.
Table 5
Complexities for estimation, space requirements and preprocessing.

Method Estimation time (node/edge) Space req

MDS-grid
O
Q

i¼1;...;k

2e

dxi

� 	� �
Oðk � jVGj

Global Oð1Þ/Oð1Þ Oð1Þ

Local Oð1Þ/Oð1Þ OðjVGjÞ

Kernel Oð1Þ/Oð1Þ OðjVGjÞ

Binary OðjVGjÞ=OðjEGjÞ
O jVGj �

r�
There is a significant gain in the local method (e.g., the
coefficient ec=DG), because all shortest path computations
end when the ec-range is reached. Also, there is a
significant gain in the kernel method (the coefficient
k � h=DG), if we end all shortest path computations when
the ðk � hÞ-range is reached.

The binary method has a sub-quadratic preprocessing
time, which depends on both the graph size and the wu

parameter. It is evident that by decreasing the value of wu,
the preprocessing time is expected to increase signifi-
cantly.
4. Experiments and results

In this section, we present experimental results for all
the presented estimation methods, which have been
implemented on a Pentium IV 3 GHz CPU, with 1 GB
RAM. We have used both real-life and synthetic spatial
networks and we have tested the proposed methods for
several parameter values. For brevity, we present only a
small set of representative results, which depict the most
significant performance issues and trade-offs.

The three real-life networks have been downloaded
from [26] and correspond to the road networks of
Oldenburg (OL), California (CA) and San Francisco (SF).
The synthetic network (UN) is a grid-based graph
constructed as in [27]. The grid is a square of 500�500
nodes corresponding to points with coordinates ði; jÞ, for
1pi; jp500. Each node has edges to its neighbors (left,
right, up, down), if present. These edges have random
real weights chosen uniformly from the interval [12,18].
Table 6 depicts the graph parameters for the four spatial
networks, whereas Fig. 6 depicts the three real-life
networks used.

In all experimental results, we have randomly selected
a set S of starting nodes v0, where jSj ¼ 5%jVGj. We also
uired Preprocessing time

þ ckÞ OðjVGj
3 þ ckÞ

OðVG þ EGÞ

O
ec

DG
� jVGj

2 � log jVGj

� �
O

k � h

DG
jVGj

2 � log jVGj

� �
ffi
jVGj þ jEGj �

w�wu

wu

�
Oðn

ffiffiffi
n
p
Þ; n ¼ jVGj þ jEGj �

w�wu

wu

� �

ARTICLE IN PRESS

Fig. 6. Data sets. (a) Oldenburg (OL); (b) California (CA); (c) San

Francisco (SF).

E. Tiakas et al. / Information Systems 34 (2009) 328–352340
performed e-range queries with e varying from 0 to

DG=4 (which is half of the graph radius), with a small
increasing step (0.01 in CA and 10 in OL, SF, UN). We
calculated the Nðv0; eÞ; Eðv0; eÞ values and the correspond-
ing estimations eNðv0; eÞ and eEðv0; eÞ for all methods with
several parameters setups. For the local, kernel and binary
methods, for tuning reasons we varied their parameters in
high (using values near multiples 1–40 of w) and low
ranges (using values near subdivisions 1

15–30
15 of w). Table 7

depicts the final selected ranges for all parameters. Note
that in the kernel method we tested both high and low
bandwidth ranges, because h can give efficient estimation
results in both cases.

Next, we have calculated all average real values NavgðeÞ

and EavgðeÞ and estimates eNavgðeÞ and eEavgðeÞ, as follows:

NavgðeÞ ¼
1

jSj

X
v02S

Nðv0; eÞ; EavgðeÞ ¼
1

jSj

X
v02S

Eðv0; eÞ

eNavgðeÞ ¼
1

jSj

X
v02S

eNðv0; eÞ; eEavgðeÞ ¼
1

jSj

X
v02S

eEðv0; eÞ

In all methods we have used the following formulae as
estimation error functions:

Error½N�ðeÞ ¼
jNavgðeÞ � eNavgðeÞj

NavgðeÞ

Error½E�ðeÞ ¼
jEavgðeÞ � eEavgðeÞj

EavgðeÞ

4.1. Experimental results for the MDS-grid method

Due to the significant preprocessing requirements, we
have applied this method only to the OL data set, which
has a small number of nodes (6105). For this setting, a
dissimilarity matrix with 61052

¼ 37;271;025 shortest
path distances has been constructed. The applied MDS
transformation returns a 6105� 3221 matrix, thus all
node-points may be considered as objects in a 3221-
dimensional Euclidean space. Evidently, we have 3221
positive eigenvalues, where we can select some
2pko3221 dimensions for dimension reduction pur-
poses. Table 8 depicts the 20 greatest eigenvalues sorted
in descending order and normalized to the interval ½0;1�.

We observe that the first four eigenvalues are much
greater than the remaining ones. Therefore, a reduction to
four dimensions is fair, whereas a reduction to two or
three dimensions is rather poor. Fig. 7 depicts the OL
node-points after the MDS transformation with a reduc-
tion to two dimensions, where the general shape of the
graph has been kept only roughly. All eigenvalues after the
fourth one are much smaller, thus selecting more than
four dimensions will not result in any significant increase
of distance preservation quality.

Fig. 8 depicts the estimation error for the MDS-grid
method. As we increase the number of cells c or the
number of dimensions k, we observe smaller peaks in the
estimation error. However, the estimation error in general
remains high. For k ¼ 2 dimensions we have a maximum
estimation error peak of 220%, 250%, 225%, 150% when
c ¼ 8;16;32;64, respectively, which falls under 50% for
large ranges. For k ¼ 4 dimensions we have a maximum
estimation error peak of 78%, 87%, 65%, 46%, when

ARTICLE IN PRESS

−8000 −6000 −4000 −2000 0 2000 4000 6000
−8000

−6000

−4000

−2000

0

2000

4000

6000

Fig. 7. OL node-points set after MDS transformation in two dimensions.

Table 7
Adjustable parameters ranges table.

Parameter Oldenburg California San Francisco Synthetic

e 0–3250 step 10 0–4.1 step 0.01 0–4200 step 10 0–3340 step 10

ec (local) 75–3000 step 75 0.015–0.600 step 0.015 9–360 step 9 15–600 step 15

h (kernel-Hi) 75–3000 step 75 0.015–0.600 step 0.015 9–360 step 9 15–600 step 15

h (kernel-Lo) 5–150 step 5 0.001–0.030 step 0.001 0.5–15 step 0.5 1–30 step 1

wu (binary) 5–150 step 5 0.001–0.030 step 0.001 0.5–15 step 0.5 1–30 step 1

Table 8
Top-20 normalized eigenvalues of MDS transformation in OL data set.

1 0.47461 0.17330 0.11724 0.05526

0.02900 0.02306 0.01964 0.01564 0.01340

0.01160 0.01095 0.00967 0.00841 0.00722

0.00627 0.00569 0.00507 0.00484 0.00464

E. Tiakas et al. / Information Systems 34 (2009) 328–352 341
c ¼ 8;16;32;64, respectively, which falls under 10% for
large ranges.

Table 9 presents the space requirements for the MDS-
grid method (assuming 8 bytes per real number). We
observe that the required space grows exponentially as we
increase the number of the selected dimensions k.

In conclusion, the MDS transformation of the OL data
set returned a large number of positive eigenvalues, thus
we must use many of the k dimensions to achieve efficient
estimation results. Also, even if we use many dimensions,
we must increase the number of cells c to decrease the
error peaks. Moreover, even if we increase both para-
meters c and k, this method gives efficient estimation
results for large e values (e.g., 42000). However, as we
increase k; c and e, we result in significant time/space
complexities and deteriorated estimation performance.
4.2. Kernel density estimator functions comparison

We have examined the accuracy of the following kernel
functions embedded in the kernel density estimation
method:

Triangle: ð1� jxjÞIðjxjp1Þ

Epanechnikov: 3
4ð1� x2ÞIðjxjp1Þ

Quartic: 15
16ð1� x2Þ

2Iðjxjp1Þ

Triweight: 35
32ð1� x2Þ

3Iðjxjp1Þ

Gaussian:
1ffiffiffiffiffiffi
2p
p e�ð1=2Þx2

Cosinus:
p
4

cos
p
2

x
� �

Iðjxjp1Þ

where the function Iðjxjp1Þ is defined as

IðxÞ ¼ 1 if jxjp1 and IðxÞ ¼ 0 otherwise

The following proposition unifies the two local densities
estimation methods, i.e. the local counting density
estimators and the kernel density estimators. The local
method is a special case of the kernel method when used
with uniform kernels.

Proposition 4.1. The kernel density estimator method with

uniform kernels provides the same results with the local

counting method, when h ¼ ec .

Proof. We will prove that in this case the estimation
formulae of the two methods are identical. We present the
proof for node estimation only, since the proof for edge
estimation is similar.

Let us denote the number jfvi 2 VG : dðv;viÞpecgj as Lv.

Then, for the local counting method it holds that

LNDv ¼ Lv, whereas for the kernel density estimators

method we have

LNDv ¼
X

vi2VG

K
dðv;viÞ

h

� �
¼

X
vi2VG :dðv;viÞ=hp1

K
1

2

� �

¼
X

vi2VG :dðv;viÞph

K
1

2

� �

¼
1

2
� jfvi 2 VG : dðv;viÞphgj

¼
1

2
� jfvi 2 VG : dðv;viÞpecgj ¼

1

2
� Lv

Therefore, the corresponding normalized local node

density for the local counting method is NLNDv ¼

Lv=maxLv, whereas for the kernel method is: NLNDv ¼

ðð1=2Þ � LvÞ=ðð1=2Þ �maxLvÞ ¼ Lv=maxLv. &

Next we present comparative results for the kernel
method using all the aforementioned kernel functions
except the uniform one because of Proposition 4.1 and the

ARTICLE IN PRESS

Fig. 8. Estimation error with MDS-grid method.

Table 9
Space requirements for the MDS-grid method (in bytes).

k ¼ 2 k ¼ 3 k ¼ 4

c ¼ 8 97,936 148,568 211,744

c ¼ 16 98,704 162,904 457,504

c ¼ 32 101,776 277,592 4,389,664

c ¼ 64 114,064 1,195,096 67,304,224

E. Tiakas et al. / Information Systems 34 (2009) 328–352342
fact that the local counting method has been studied
separately. For this purpose, we vary the bandwidth of the
kernel method for any selected kernel function in high
and low ranges and record the average node and edge
estimation errors for the used e values. Fig. 9 depicts the
final results for the California network (CA) for large
e values, since similar results are obtained for the other
spatial networks. We observe that:
�
 The Gaussian function appears to have the best average
estimation error for both node and edge estimations,
for h
 12 �w. In particular, it produces a minimum
average estimation error about 51% in node estima-
tions and about 170% in edge estimations.

�
 All other kernel functions have similar variations in node

and edge estimations, where their minimum average
estimation error is reached for higher multiples of w.
More specifically, for the Triangle, Epanechnikov, Quar-
tic, Triweight, Cosinus kernel functions, the global
minimum is reached in h
 30 �w;27 �w;33 �w;37�
w;27 �w, respectively. For those bandwidths, the node
average estimation errors are: 58%, 54%, 56%, 57%, 54%,
respectively, and the edge average estimation errors are:
180%, 171%, 175%, 177%, 172%, respectively.

For the rest of the performance evaluation we adopt
the Gaussian kernel function for kernel method estima-
tions since it provides better estimation accuracy.

4.3. Tuning the proposed methods

It has been mentioned that by tuning the parameters of
the local, kernel and binary methods the estimation error
can be reduced significantly. Fig. 10 depicts the results for
all methods where we observe that:
�
 The local method has been examined in high ranges
of the distance ec , because if ecow then we under-
estimate many local densities and the estimation error
increases.

�
 The kernel method has been tested in both high and

low bandwidth ranges, because the hm may appear in
both ranges.

�
 The binary method has been tested only in low ranges,

because if wu4w, then the node and edge estimation
errors grow significantly.

�
 In all cases, the values that minimize the node average

estimation error, minimize also the edge average
estimation error.

�
 In many cases, local minimum values may appear, but

there is only one global minimum value in the whole
parameter range in which we must attune the methods.

�
 In local methods, often the global minimum is reached

in high parameter values but the gain in estimation
error is not significant. Therefore, we must wisely
choose the lower parameter value that produces
an estimation error near the global minimum’s to
minimize the average estimation error and the corre-
sponding preprocessing cost.

�
 In the binary method, the average node and edge

estimation errors decrease by decreasing the wu value,
but space requirements increase. Therefore, we must
wisely choose the maximum parameter value that
produces node and edge average estimation error
under a small threshold (e.g., 3%), to minimize the
average estimation error and the corresponding space
requirements.

Table 10 summarizes the final selected parameter
values for the local, kernel and binary methods. These
values achieve the best estimation accuracy with the
shortest preprocessing time.

4.4. Estimation results after tuning

In this section, we present comparative results regard-
ing the accuracy of the four methods tuned as above for
the whole spectrum of e values. Fig. 11 depicts the
respective node and edge estimation errors.

With respect to the OL network we observe that:
�
 The global method achieves a node estimation error
below 15% and an edge estimation error near 40%. The
node estimation error is significantly better because

ARTICLE IN PRESS

Fig. 9. Kernel method functions accuracy comparison in California network.

E. Tiakas et al. / Information Systems 34 (2009) 328–352 343
the nodes in OL graph are almost uniformly distributed
in space, but edge weights differ significantly.

�
 The local and kernel methods achieve node a estima-

tion error near 50% and an edge estimation error under
20%. The edge estimation error is significantly better
because local methods can detect easier the edge
weights distribution through the used local densities.

�
 The binary method returns node and edge estimation

errors under 5%, being the most accurate estimation
method for the OL data set.

In conclusion, in graphs with an almost uniform distribu-
tion of nodes in space but non-uniform distribution of
edges (like the OL data set), the global method returns
good node estimation results, the local methods return
good edge estimation results, whereas the binary method
returns the most accurate results for both node and edge
estimations.

With respect to the CA network we observe that:
�
 The global method does not perform well, returning
node and edge estimation error above 100% even for
small e values. This happens because the CA graph
contains mostly highways (i.e. long paths with many
nodes) and, therefore, most node degrees are equal to
2. The global method fails to estimate the numbers of
nodes and edges in such cases.

�
 The kernel method achieves good node estimation

error for low ranges, but the error increases above 40%
for high e values. In addition, it achieves high edge
estimation error (above 100%). Thus, the kernel
method is better than global method, but not effective
enough.

�
 The local method returns better results than the kernel

method, with an improvement of 20% in node estima-
tion error and 40% in edge estimation error, but again
these results are not satisfactory.

�
 The binary method returns node and edge estimation

errors under 5%, being the most accurate estimation
method for the CA data set.

In conclusion, in graphs with an average degree around 2
(like the CA data set, where deg ¼ 2:06), the global
method fails, the local and kernel methods give better
but not efficient estimations, whereas the binary method
prevails in accuracy and efficiency.

With respect to the SF network we observe that:
�
 The global method achieves a node estimation error
under 30% for small e values, whereas the error
increases above 100% for large values. In addition, the
edge estimation error in several cases raises above
100%. As the SF graph is a non-regular uniform graph
with diverse node and edge densities, the global
method fails to achieve satisfactory results.

�
 The local method returns a node estimation error near

75% for small e values, which falls under 30% for large
e values. Also, the edge estimation error is near 70% for
small e values and under 20% for large e values. Therefore,
the local method gives better estimation results than the
global method, but with large error rate variations.

�
 The kernel method returns better results than the local

method, showing an 20% improvement in node and
10% in edge estimation error. However, the kernel
method is not stable and efficient enough.

�
 The binary method returns node and edge estimation

error under 5%, being the most accurate estimation
method for the SF network.

In conclusion, in non-regular uniform graphs (like the SF
data set), the global method returns inaccurate estima-
tions, the local and kernel methods return better but not
stable estimations as they are sensitive to the parameters
h and ec , whereas the binary method outperforms the
other methods.

Finally, regarding the synthetic (UN) network we
observe that:
�
 The global method gives excellent node and edge
estimation results with an error rate under 7%. This
happens because the UN graph is almost regular uniform.

�
 The local and kernel methods give good node and edge

estimation results with error rates under 17% and 13%,
respectively. Therefore, local node and edge densities
are inferior in comparison to the global method.

�
 The binary method returns node and edge estimation

errors under 5%, being the most accurate method for
the UN network.

ARTICLE IN PRESS

Fig. 10. Tuning parameters in proposed methods.

E. Tiakas et al. / Information Systems 34 (2009) 328–352344
In regular uniform and almost regular uniform graphs
(like the UN data set), all methods return good estimation
results (error under 20%). Moreover, the global method
offers better estimation results than the local methods,
whereas the binary method again achieves the most
accurate results in comparison to the other approaches.

ARTICLE IN PRESS

Table 10
Final selected parameter values after tuning.

Network Local Kernel Binary

Oldenburg ec ¼ 39w h ¼ 32w
wu ¼

7w

15
California ec ¼ 18w h ¼ 12w wu ¼ w

San Francisco ec ¼ 35w
h ¼

2w

15

wu ¼ w

Synthetic ec ¼ 15w
h ¼

2w

15
wu ¼

14w

15

E. Tiakas et al. / Information Systems 34 (2009) 328–352 345
4.5. Space requirements

We applied the proposed methods on the four presented
networks, with parameters tuned as in Section 4.2, and we
measured the required space. For fairness, we measured
also the required space to store only the original graph data
(node IDs, edges and weights) as a table of linked lists in
main memory. Table 11 depicts the corresponding results.

We observe that the results comply with the observa-
tions in Sections 3.3–3.6. Moreover, all methods require
less space than the graph data. More specifically:
�
 The global method needs no extra space, and therefore
it does not appear in the results.

�
 The local and kernel methods require much less space

than the graph data.

�
 The tuned binary method requires more space than the

local/kernel methods but still less than the graph data.

4.6. Estimation time comparison and experiments

In this section, we further study the estimation times
of the proposed methods, which are also significant for
their efficiency. As presented in Section 3.6, the global,
local and kernel methods perform estimations in constant
time and therefore the estimation cost does not depend
on the values of the parameters.

As we have already presented in Section 3.6, binary
method’s estimation times are independent of the para-
meters v0; e, but depend on the graph parameters
ðjVGj and jEGjÞ and the unitary distance wu. Therefore,
we expect the estimation time to grow in larger graphs or
small unitary distances. However, the binary method’s
formulae involve binary and register operations, thus the
expected estimation times are still satisfactory.

To evaluate these observations, we measure the
node and edge estimation times for all proposed methods
after tuning and for all spatial networks, by varying the
e parameter as shown in Table 7. For fairness, we also
measure the time required by the Dijkstra algorithm (i.e.,
an implementation with priority queues similar to [28]),
which has an ðOðjEGj þ jVGj log log jVGjÞÞ performance,
applied in those networks for the same e values. The
corresponding results are given in Fig. 12.

We observe that all the proposed methods are time
efficient. Moreover, we confirm that:
�
 The global, local and kernel methods give almost
constant node and edge estimation (in the level of ns).
�
 The binary method gives almost constant node and
edge estimation times (i.e., less than 1 ms), which
grows slowly and almost linearly by increasing the
distance e.

�
 The Dijkstra algorithm implementation returns scan-

ning times at the level of ms, which increase by
increasing the distance e. In addition, this time cost is
always greater than that of the other methods.

5. Discussion

In this section, we present some interesting aspects
regarding the usability of the estimation methods.

5.1. Avoid tuning

The proposed methods (except from global) require
fine-tuning of their basic parameters to minimize the
estimation errors. However, the exhaustive tuning leads to
high preprocessing calculations and time, especially for
large graphs. Therefore, an important question is: ‘‘can we
decide the parameter values without exhaustive tuning?’’.

By observing the tuning results of Fig. 10, we can see
that in many cases the average estimation error gain from
value to value is not important. Thus, we can avoid to
select the parameter values that produce the global
minimum average estimation errors, and to select differ-
ent values that produce average estimation errors close to
the global minimums. Therefore, we performed clustering
on average estimation error results for several real and
synthetic data sets and for the same parameter ranges,
and we observed the following:
�
 The local method with global constant radius ec ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DG=ð4wÞ

p
returns average estimation errors close to

the global minimums for the most graphs.

�
 The kernel method with bandwidth h ¼ w=3 again

returns average estimation errors close to the global
minimums for the most graphs.

�
 The binary method with unitary distance wu ¼ w=2

returns excellent average estimation errors for most
graphs. Moreover, with the choice wu ¼ w=3 the
estimations are very accurate with average errors
under 5% for almost all graphs. At the same time, both
choices keep the required space for the encoding low.

5.2. Networks with spatial objects

In this section, we give some useful directions on how
the proposed estimation methods can be applied on data
sets with spatial objects that are uniformly distributed on
the spatial network, in order to estimate: (i) the selectivity
of range and k-NN queries, and (ii) the corresponding I/O
cost of these queries.

5.2.1. Selectivity estimation of range queries

Let G be a spatial network and S a data set with spatial
objects that are uniformly distributed on the edges of G.
Then, the total number of edges in the graph G is jEGj and
the total number of spatial objects is jSj. The average

ARTICLE IN PRESS

Fig. 11. Estimation results after tuning.

E. Tiakas et al. / Information Systems 34 (2009) 328–352346
number of spatial objects that lie on an edge (which we
denote as s) is the total number of the objects multiplied
by the average distance of an edge and divided by the sum
of distances of all edges of the graph (due to the uniform
distribution of objects on the edges). Thus, if we assume
that the weights of all edges are their corresponding
distances, we have

s ¼ jSj �
wP

wðvi;vjÞ
¼
jSj �w

jEGj �w
¼
jSj

jEGj

ARTICLE IN PRESS

Table 11
Space requirements for all methods and networks (in MB).

Network Graph size Local-kernel Binary

OL 0.254 0.047 0.069

CA 0.818 0.161 0.291

SF 7.774 1.335 6.979

UN 15.236 1.907 12.742

E. Tiakas et al. / Information Systems 34 (2009) 328–352 347
A range query initiated at a node v0 2 G with a positive
range distance e returns eEðv0; eÞ total edges. Therefore, we
can estimate the selectivity of such a range query on the
spatial objects data set (which we denote eSðv0; eÞ) with the
following formula:

eSðv0; eÞ ¼ s � eEðv0; eÞ ¼
jSj � eEðv0; eÞ

jEGj

The estimator eEðv0; eÞ in the last formula can be
computed with any of the previously discussed methods.

5.2.2. Selectivity estimation of k-NN queries

Nearest-neighbor queries on spatial objects can be
efficiently estimated using the proposed methods. For a k-
NN query initiated at node v0 2 G, we can estimate the
selectivity (which we denote eSðv0; kÞ) by finding the
minimum proper range distance radius emin40 such that
the number of returned spatial objects is at least k, and by
using this radius in the previous range query estimators.
Ideally, the selectivity of a k-NN query must be equal to k,
but using the range queries estimators the returned
objects may be more than k. Thus, we must have

eSðv0; kÞ ¼ eSðv0; eminÞ ¼
jSj � eEðv0; eminÞ

jEGj
Xk

or

eEðv0; eminÞX
k � jEGj

jSj

The computation of the minimum proper range distance
radius emin is different for the proposed methods. In the
global method the edges estimator is equal toeEðv0; eÞ ¼ deg � e2=w2, thus we have

deg �
e2

min

w2
X

k � jEGj

jSj

or

eminXw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � jEGj

jSj � deg

s

In local and kernel method the edge estimator is equal to:eEðv0; eÞ ¼ NLEDv0
� deg � e2=w2, thus we have:

NLEDv0
� deg �

e2
min

w2
X

k � jEGj

jSj

or

eminXw

ffi
k � jEGj

jSj � deg � NLEDv0

s

The normalized local edge density NLEDv0
for node v0 is

computed using the presented formulae of local and
kernel methods.

In the binary method the computation of emin is based
on the inequality eEðv0; eminÞXk � jEGj=jSj and the algorith-
mic procedure of Fig. 13.

5.2.3. I/O cost of range queries

The I/O cost of spatial queries is strongly depended on
the storage scheme of the spatial objects and the spatial
network. In this section, we estimate the I/O cost
assuming a storage scheme similar to that of [2]. More
specifically, Papadias et al. [2], propose to separate the
storage of spatial objects from that of the underlying
spatial network, to index the spatial objects using an
R-tree, and to index the spatial network using a second
R-tree and adjacency components which contain the
adjacency lists of the network. The adjacency lists of
nodes close in space are placed in the same disk page
using Hilbert ordering.

Let us assume that we follow the range query
processing methodology of [2], and more specifically the
range Euclidean restriction (RER) algorithm. As RER first
performs a range query into the spatial objects data set
within Euclidean distance e from the starting node v0 by
accessing the spatial objects R-tree, we will have the first
significant I/O cost. This I/O cost is equal to the total
number of disk accesses required to execute the range
query using the R-tree indexing the spatial objects. This
cost is denoted by DAS. In the next step of the algorithm, a
network expansion is performed by examining all edges
within network distance e from v0, in order to detect and
delete the false positives objects which may have been
returned by the previous step. For simplicity, we assume
that this is achieved again by executing another range
query within distance e in the network R-tree. Evidently,
this way we over-estimate the number of disk accesses,
since we perform a Euclidean-based range query on the
network R-tree which may produce false alarms that
therefore must be eliminated. The associated I/O cost is
equal to the total number of disk accesses required for the
execution of the range query in the network R-tree. We
denote this cost by DAG. As both range queries are
performed only once, we can estimate the total I/O cost
of the spatial range query by summing the two compo-
nents: DAS þ DAG.

An efficient estimator of total disk accesses for spatial
range queries on R-trees is presented in [5]. More
specifically, having the data set size and density, the
average node capacity of the R-tree and the query window
size, the total disk accesses of the query can be efficiently
estimated.

For simplicity, let us assume that the spatial objects are
two-dimensional points and the underlying spatial net-
work is two-dimensional too. Then, using the formula
proposed by [5], the total disk accesses of the spatial
objects R-tree for a range query with radius e, are

DAS ¼ 1þ
X1þdlogf S
ðjSj=f SÞe

j¼1

ffiffiffiffiffi
Dj

q
þ

2e

DG
�

ffiffiffiffiffiffi
jSj

f j
S

s !2

ARTICLE IN PRESS

Fig. 12. Estimation costs.

E. Tiakas et al. / Information Systems 34 (2009) 328–352348
where

Dj ¼ 1þ

ffiffiffiffiffiffiffiffiffiffi
Dj�1

p
� 1ffiffiffiffiffi

f S

p !2
D0 ¼ 0 is the density of the data set S (which is 0 as
it contains only points), f S is the average node capacity
of the spatial objects R-tree, jSj is the data set size and
DG is the diameter of the underlying network G. We
must note that the proposed formula actually works for

�

ARTICLE IN PRESS

Fig. 13. Computing the emin with binary method.

E. Tiakas et al. / Information Systems 34 (2009) 328–352 349
hyper-rectangular window queries and not hyper-sphe-
rical. Thus, always we take the MBR of the hyper-sphere to
apply the formula, making an overestimation. In our
example of two-dimensional spaces, we take the square
range area with edge equal to 2e.

Similarly, we can estimate the total disk accesses of the
network R-tree:

DAG ¼ 1þ
X1þdlogf G
ðjGj=f GÞe

j¼1

ffiffiffiffiffi
D0j

q
þ

2e

DG
�

ffiffiffiffiffiffi
jGj

f j
G

s !2

where

D0j ¼ 1þ

ffiffiffiffiffiffiffiffiffiffi
D0j�1

q
� 1ffiffiffiffiffi

f G

p
0@ 1A2

D00 is the density of the network G (which can be
computed from the MBRs of the poly-line components),
f G is the average node capacity of the network R-tree, jGj is
the total number of the network R-tree nodes and DG is
the diameter of the network G.

Therefore the total I/O cost for an e-range query is

DAS þ DAG ¼ 2þ
X1þdlogf S
ðjSj=f SÞe

j¼1

ffiffiffiffiffi
Dj

q
þ

2e

DG
�

ffiffiffiffiffiffi
jSj

f j
S

s !2

þ
X1þdlogf G
ðjGj=f GÞe

j¼1

ffiffiffiffiffi
D0j

q
þ

2e

DG
�

ffiffiffiffiffiffi
jGj

f j
G

s !2

5.2.4. I/O cost of k-NN queries

Having computed the corresponding emin distance for
the k-NN queries using all the proposed methods, we can
efficiently estimate the I/O cost of such queries using the
presented storage scheme and formulae of Section 5.3.3.
Therefore, by substituting in these formulae the range
distance e with the emin distance, we have the total I/O cost
for k-NN queries:

DAS þ DAG ¼ 2þ
X1þdlogf S
ðjSj=f SÞe

j¼1

ffiffiffiffiffi
Dj

q
þ

2emin

DG
�

ffiffiffiffiffiffi
jSj

f j
S

s !2

þ
X1þdlogf G
ðjGj=f GÞe

j¼1

ffiffiffiffiffi
D0j

q
þ

2emin

DG
�

ffiffiffiffiffiffi
jGj

f j
G

s !2
where
�
 for the global method: emin ¼ w
ffi
ðk � jEGjÞ=ðjSj � degÞ

q

for the local and kernel method: emin ¼

w
ffi
ðk � jEGjÞ=ðjSj � deg � NLEDv0

Þ

q
and
�
 for the binary method: emin ¼ Binary-emin(EG; jSj; k).

6. Conclusions

We have presented methods to estimate the number of
vertices and edges that are lying within a distance e from a
vertex in a spatial network. First, as a baseline method, we
introduced a naive approach, the MDS-grid method,
which gives efficient estimations only for small graphs,
at the expense of large space and time requirements.
Then, three different methods have been also examined:
(a) the global parameters estimation method, (b) the local
densities method, and (c) the binary encoding method.
We have given analytic solutions for all methods, as well
as specific space and time bounds. We have applied the
proposed methods in both synthetic and real spatial
networks, and we have demonstrated performance re-
sults. In conclusion: (a) the global parameters estimation
method performs efficient estimations in regular uniform
or almost regular uniform graphs, (b) the local densities
methods offer better estimations in non-regular uniform
graphs, (c) the binary encoding method offers the most
accurate estimations in all graph types, with small
adjustable space requirements.

An interesting direction for future work is to study the
application of the proposed techniques in other network
types (e.g., directed networks) and for more complex
queries (e.g., spatial joins).

Appendix A
Theorem A.1. Let G be an almost regular uniform spatial

network, and also let:
1.
 the selected starting node v0 to belong in a region of G

defined by its central node vc (at this point, as central

node we define the median node of the shortest path with

length DG, where DG is the diameter of the graph), and a

network distance equal to DG=4, and
2.
 the desired range distance e to lie in the interval ½0;DG=4�.

Then, the estimator for the number of nodes Nðv0; eÞ:

eNðv0; eÞ ¼ eNðeÞ ¼ deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

have estimation error Error½eN� which satisfy the following

upper bound:

Error½eN�pmax
ddege þ 1

degð1þ aÞ
� 1

�����
�����; bdegc � 1

degð1� aÞ
� 1

�����
�����

()

In addition, if the average degree deg is close to 4 (with the

same deviation a of the almost regular uniform definition

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352350
of G), then the estimator for the number of edges Eðv0; eÞ:

eEðv0; eÞ ¼ eEðeÞ ¼ deg �
e2

w2

have estimation error Error½eE� which satisfy the following

upper bound:

Error½eE�pmax
ddege þ 1

degð1þ aÞ2
� 1

�����
�����; bdegc � 1

degð1� aÞ2
� 1

�����
�����

()

Proof. If G is almost regular uniform, then its edge
weights and node degrees must satisfy the following:

ð1� aÞwpwðvi;vjÞpð1þ aÞw; 8ðvi;vjÞ 2 EG

degðviÞ 2 fbdegc � 1; bdegc; ddege; ddege þ 1g; 8vi 2 VG

where a is a small positive real number (e.g., 0oao0:2).
j �Nðv0; eÞ � eNðv0; eÞjeNðv0; eÞ

¼

bdegc � 1

2
�

e

ð1� aÞw
�

e

ð1� aÞw
þ 1

� �
þ 1

" #
�

deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

" #�����
�����

deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

¼

bdegc � 1

2
�

e

ð1� aÞw
�

e

ð1� aÞw
þ 1

� �" #
�

deg

2
�

e

w
�

e

w
þ 1

� �" #�����
�����

deg

2
�

e

w
�

e

w
þ 1

� �
þ 1

p

bdegc � 1

2
�

e

ð1� aÞw
�

e

ð1� aÞw
þ 1

� �" #
�

deg

2
�

e

w
�

e

w
þ 1

� �" #
deg

2
�

e

w
�

e

w
þ 1

� �
����������

����������
¼

ðbdegc � 1Þ �
e

ð1� aÞw
þ 1

� �
deg � ð1� aÞ �

e

w
þ 1

� � � 1

��������
��������

¼
ðbdegc � 1Þ

deg � ð1� aÞ2
� 1�

a
e

w
þ 1

0B@
1CA� 1

�������
�������p
bdegc � 1

degð1� aÞ
� 1

�����
�����
As the edge weights of G fall into the interval ½ð1� aÞw;

ð1þ aÞw�, and the node degrees can be any of the four

integers: bdegc � 1; bdegc; ddege; ddege þ 1, it is evident

that the largest deviations from averages will produce

the maximum estimation errors. These worst cases are:
1.
 for edges and nodes contained in the region of interest,
all edge weights are equal to ð1� aÞw and all node
degrees are equal to bdegc � 1, and
2.
 for edges and nodes contained in the region of interest,
all edge weights are equal to ð1þ aÞw and all node
degrees are equal to ddege þ 1.

Thus, let �G and Ĝ be the graphs that satisfy the former and
latter case, respectively. As on these graphs the properties
dðv0;vcÞpDG=4 and 0pepDG=4 continue to hold, we can
apply Lemmas 3.1 and 3.2 to derive the numbers of nodes
lying in the region defined by node v0 and the network
distance e:

�Nðv0; eÞ ¼ �NðeÞ ¼
bdegc � 1

2
�

e

ð1� aÞw
�

e

ð1� aÞw
þ 1

� �
þ 1

N̂ðv0; eÞ ¼ N̂ðeÞ ¼
ddege þ 1

2
�

e

ð1þ aÞw
�

e

ð1þ aÞw
þ 1

� �
þ 1

Therefore, the node estimation error satisfies the follow-
ing property:

0pError½eN�pmax
j �Nðv0; eÞ � eNðv0; eÞjeNðv0; eÞ

;
jN̂ðv0; eÞ � eNðv0; eÞjeNðv0; eÞ

()

The node estimation error bounds can be computed as
Similarly we have that

jN̂ðv0; eÞ � eNðv0; eÞjeNðv0; eÞ
p
ddege þ 1

degð1þ aÞ
� 1

�����
�����

Then, we have

0pError½eN�pmax
ddege þ 1

degð1þ aÞ
� 1

�����
�����; bdegc � 1

degð1� aÞ
� 1

�����
�����

()

Based on the discussion in the text regarding the
accuracy of edge estimation, if the average degree deg is
close to 4 (with the same deviation a, e.g., 0oao0:2), then
the estimator for the number of edges of the graph �G

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352 351
and Ĝ are

�Eðv0; eÞ ¼ �EðeÞ ¼ ðbdegc � 1Þ �
e2

ð1� aÞ2w2

Êðv0; eÞ ¼ ÊðeÞ ¼ ðddege þ 1Þ �
e2

ð1þ aÞ2w2

Then, the edge estimation error satisfies the following
property:

0pError½eE�pmax
j �Eðv0; eÞ � eEðv0; eÞjeEðv0; eÞ

;
jÊðv0; eÞ � eEðv0; eÞjeEðv0; eÞ

()

Therefore, the edge estimation error bounds have as
follows:

j �Eðv0; eÞ � eEðv0; eÞjeEðv0; eÞ
¼

�Eðv0; eÞeEðv0; eÞ
� 1

�����
�����

¼

ðbdegc � 1Þ �
e2

ð1� aÞ2w2

deg �
e2

w2

� 1

���������

���������
¼
bdegc � 1

degð1� aÞ2
� 1

�����
�����

jÊðv0; eÞ � eEðv0; eÞjeEðv0; eÞ
¼

Êðv0; eÞeEðv0; eÞ
� 1

�����
����� ¼
ðddege þ 1Þ �

e2

ð1þ aÞ2w2

deg �
e2

w2

� 1

���������

���������
¼
ddege þ 1

degð1þ aÞ2
� 1

�����
�����

Thus, we have

0pError½eE�pmax
ddege þ 1

degð1þ aÞ2
� 1

�����
�����; bdegc � 1

degð1� aÞ2
� 1

�����
�����

()

and this completes the proof. &

As an example of checking these bounds, we can take
the UN network, which is an almost regular uniform graph
with a ¼ 0:2 and deg ¼ 3:992. According to the theorem,
we have

Error½eN�pmax
d3:992e þ 1

3:992ð1þ 0:2Þ
� 1

���� ����; b3:992c � 1

3:992ð1� 0:2Þ
� 1

���� ����
 �
¼maxf0:044;0:374g ¼ 37:4%

Error½eE�pmax
d3:992e þ 1

3:992ð1þ 0:2Þ2
� 1

�����
�����; b3:992c � 1

3:992ð1� 0:2Þ2
� 1

�����
�����

()
¼ maxf0:130;0:217g ¼ 21:7%

Indeed, Fig. 11 shows that for the whole e-range spectrum,
the node and edge estimation errors remain under 20% for
the global method’s formulae.
References

[1] C.S. Jensen, J. Kolarvr, T.B. Pedersen, I. Timko, Nearest neighbor
queries in road networks, in: Proceedings of the 11th ACM
International Symposium on Advances in Geographic Information
Systems, New Orleans, LO, 2003, pp. 1–8.

[2] D. Papadias, J. Zhang, N. Mamoulis, Query processing in spatial
network databases, in: Proceedings of the 29th International
Conference on Very Large Databases, Berlin, Germany, 2003,
pp. 802–813.

[3] J. Sankaranarayanan, H. Alborzi, H. Samet, Efficient query processing
on spatial networks, in: Proceedings of the 13th ACM International
Symposium on Geographic Information Systems, Bremen, Germany,
2005, pp. 200–209.

[4] J. Chen, X. Meng, Y. Guo, S. Grumbach, H. Sun, Modeling and
predicting future trajectories of moving objects in a constrained
network, in: Proceedings of the 7th International Conference on
Mobile Data Management, Nara, Japan, 2006, p. 156.

[5] Y. Theodoridis, T. Sellis, A model for the prediction of R-tree
performance, in: Proceedings of the 15th ACM Symposium on
Principles of Database Systems, Montreal, Canada, 1996, pp. 161–171.

[6] C. Faloutsos, B. Seeger, A. Traina, C. Traina, Spatial join selectivity
using power laws, in: Proceedings of the ACM International
Conference on Management of Data (SIGMOD), Dallas, TX, 2000,
pp. 177–188.

[7] M. Hadjieleftheriou, G. Kollios, V. Tsotras, Performance evaluation of
spatiotemporal selectivity estimation techniques, in: Proceedings of
the 15th International Conference on Scientific and Statistical
Database Management, Cambridge, MA, 2003, pp. 202–211.

[8] Y. Tao, C. Faloutsos, D. Papadias, Spatial query estimation without
the local uniformity assumption, Geoinformatica 10 (3) (2006)
261–293.

[9] A. Belussi, C. Faloutsos, Estimating the selectivity of spatial queries
using the (correlation) fractal dimension, in: Proceedings of the
21st International Conference on Very Large Data Bases, Zurich,
Switzerland, 1995, pp. 299–310.

[10] J. Hwang, S. Lay, A. Lippman, Nonparametric Multivariate Density
Estimation: A Comparative Study, 1994.

[11] B.W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman & Hall, London, 1986.

[12] M. Klusch, S. Lodi, G. Moro, Distributed clustering based
on sampling local density estimates, in: Proceedings of the
18th International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, 2003, pp. 485–490.

[13] E. Schikuta, Grid-clustering: an efficient hierarchical clustering
method for very large data sets, in: Proceedings of the 13th
International Conference on Pattern Recognition, Banff, Canada,
1996, pp. 101–105.

[14] X. Shen, S. Agrawal, Kernel density estimation for an anomaly based
intrusion detection system, in: Proceedings of the International
Conference on Machine Learning; Models, Technologies and
Applications, Las Vegas, NV, 2006, pp. 161–167.

[15] D.W. Scott, Multivariate Density Estimation: Theory, Practice and
Visualization, Wiley, New York, 1992.

[16] M.C. Jones, Simple boundary correction for kernel density estima-
tion, Statistics and Computing 3 (1993) 135–146.

[17] M.P. Wand, M.C. Jones, Kernel Smoothing, Chapman & Hall, London,
1995.

[18] E. Tiakas, A.N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos,
Selectivity Estimation in Spatial Networks, in: Proceedings of the
23rd ACM Symposium on Applied Computing, Track: Advances in
Spatial and Image-Based Information Systems, Fortaleza, Ceara,
Brazil, March 16–20, 2008.

[19] I. Borg, P. Groenen, Modern Multidimensional Scaling, Springer,
Berlin, 1997.

[20] T.F. Cox, M.A.A. Cox, Multidimensional Scaling, Chapman & Hall,
London, 1994.

[21] G.A.F. Seber, Multivariate Observations, Wiley, New York, 1984.
[22] J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit

to a nonmetric hypothesis, Psychometrika 29 (1964) 1–27.
[23] D.G. Weeks, P.M. Bentler, A comparison of linear and monotone

multidimensional scaling models, Psychological Bulletin 86 (1976)
349–354.

[24] L.R. Tucker, A method for the synthesis of factor analysis studies,
Technical Report 984, Department of the Army, 1951.

[25] S. Gupta, S. Kopparty, C. Ravishankar, Roads, codes, and spatiotem-
poral queries, in: Proceedings of the 23rd ACM Symposium
on Principles of Database Systems, Paris, France, June 2004,
pp. 115–124.

ARTICLE IN PRESS

E. Tiakas et al. / Information Systems 34 (2009) 328–352352
[26] R-tree Portal hhttp://www.rtreeportal.org/main.htmli.
[27] A.V. Goldberg, H. Kaplan, R. Werneck, Reach for A*: efficient point-

to-point shortest path algorithms, Technical Report MSR-TR-2005-
132, Microsoft Research, 2005.
[28] M. Thorup, Integer priority queues with decrease key in constant
time and the single source shortest paths problem, in: Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, San
Diego, CA, 2003, pp. 149–158.

http://www.rtreeportal.org/main.html

	Node and edge selectivity estimation for range queries in spatial networks
	Introduction
	Related work and contribution
	Estimation approaches
	Problem definition
	Estimation based on MDS
	The MDS-based method
	Time, space and preprocessing requirements
	Disadvantages of the MDS-grid-based approach

	Global parameters estimation method
	Derivation of the proposed formulae
	Time, space and preprocessing requirements

	Local densities estimation method
	Local counting density estimators
	Kernel density estimators
	Time, space and preprocessing requirements

	Binary encoding estimation method
	Time, space and preprocessing requirements

	Comparison of methods

	Experiments and results
	Experimental results for the MDS-grid method
	Kernel density estimator functions comparison
	Tuning the proposed methods
	Estimation results after tuning
	Space requirements
	Estimation time comparison and experiments

	Discussion
	Avoid tuning
	Networks with spatial objects
	Selectivity estimation of range queries
	Selectivity estimation of k-NN queries
	I/O cost of range queries
	I/O cost of k-NN queries

	Conclusions
	References

