
Pergamon in_fm-mation Systems Vol. 19, No. 5, pp. 433-446, 1994

0306-4379(94)00021-2 P
Copyright@ 1994 Elsevier Science Ltd

rinted in Great Britain. All rights reserved
0306-4379/94 $7.00 f 0.00

PERFORMANCE OF LINEAR HASHING SCHEMES
FOR PRIMARY KEY RETRIEVALS

Y. MANOLOPOULOS~~ and N. LORENTZOS~

‘Computer Science Department, University of Maryland
College Park, MD 20742, USA

21nformatics Laboratory, Agricultural University of Athens
Athens, 11855 Greece

(Received 3 August 1993; in final revised form 7 ApTi! 1994)

Abstract - Linear hashing is one of the most attractive dynamic hashing schemes. Linear hashing
with partial expansions and linear hashing with priority splitting are two variations with improved
space and time performance. Here, we propose a new structure, which is termed linear hashing with
partial expansions and priority splitting. The above four structures are compared by simulation and
it is shown that the new scheme outperforms its predecessors in both time and space costs.

1. INTRODUCTION

Static hashing schemes (i.e. open addressing and separate/coalesced chaining) suffer because of
space waste and/or time performance deterioration. During the last decade many dynamic hashing
schemes were proposed. These file organizations grow and shrink due to insertions and deletions

respectively]16]. Therefore the time performance of searches, inserts, and defetes is essentially
independent of file size. Some examples of dynamic hashing schemes are dyname’c hashing [3], linear

hashing [lo], virtual hashing [9], extendible hashing [2], and spiral hashing [12]. Each organization

from this incomplete list has been studied extensively in [l].

Linear hashing and spiral hashing have a major advantage over their counterparts; they do
not make use of an index structure, which may require so much space, so as to not fit in main
memory. In some other hashed organizations, this structure might have to be stored in secondary
storage and consequently might result in costly disk access operations. In addition, spiral hashing is
characterized by another major drawback when compared with linear hashing, i.e. the complicated
space allocation algorithms.

Because of these advantages, linear hashing has been investigated exhaustively so as to maximize

its performance. Numerous variations have been proposed which incorporate linear hashing for
primary key access organizations, such as [4, 5, 6, 7, 8, 13, 14, 151. In addition, linear hashing
schemes for multidimensional searching or for partial match retrieval with/without accommodating
the order preserving property were recently designed and proposed. Enhancements of these types

are not discussed in the present paper but the interested reader may find citations to the most
important variations of this category in [I].

The present paper focuses on the following primary key retrieval organizations: The original
Linear Hashing (LH) [lo], L inear Hashing with Partial Expansions (LHPE) [4, 51 and Linear
Hashing with Priority Splitting (LHPS) [15]. In addition, a new variation is proposed, which
extends all previous approaches. We call it Linear Hashing with Partial Expansions and
Priority Splitting (LHPEPS) and compare it with its predecessors. The remainder of this work
is divided as follows: The LH, LHPE and LHPS schemes are presented in Section 2. The LHPEPS
scheme is described in Section 3. In Section 4 the performance of LH, LHPE, LHPS, and LHPEPS
is compared by simulation. Conclusions are drawn in the last section.

tRecommended by P. O’Neil.
ton sabbatical leave from the Department of Informatics, Aristotle University, Thessaloniki, 54006 Greece

433
IS 19:5-E

434 Y. MAriOLOPOULOSand N. LORENTZOS

2. LINEAR HASHING AND EXTENSIONS

Linear hashing schemes for primary key retrieval can be classified in two types: Organizations
which store the overflow records in a separate file, and those which accommodate the overflow
records in the main file [6, 7, 8, 131. The latter will not be examined in the sequel. The structure

of Recursive Linear Hashing, which is characterized by many overflow files, will not be examined

either [14].

We start by the presentation of the LH scheme. To this end, assume that initially the file
consists of Ns x 2O (=Ne) records, where the power of 2 represents the level of the file expansion.
Hence, the file is initially at the 0-th level. A hashing function, such as ‘hi(key) = Icey mod NO’,
is then used to store and/or retrieve records. It should be noted that key is the suffix of the binary
representation of the key, whose length equals the level of file expansion (initially 0). If the file is
overloaded to the extent that the storage utilization factor exceeds a predetermined threshold value,
then the file expands by splitting the 0-th main block out of the No ones, thus creating a new main
block with address No. At the same time, the records of the original 0-th block are redistributed

in the 0-th and the No-th block, according to a new hashing function, ‘hz(key) = key mod 2No’,
where key now denotes a binary suffix of length 1 + 1 (i.e. 1 when the first split occurs). In this
way the storage utilization factor becomes smaller than the predetermined value. Whenever later

on, the threshold value is reached again, the second main block (address 1) splits in the same way,
thus creating a new address (address No + 1) and the records are redistributed accordingly, using
the second hashing function.

As is obvious, this expansion process is repeated by splitting the main blocks of the original
file, one at a time, until their total number is doubled. At that moment the first expansion has
been completed. As it is also obvious, a pointer, ‘next’, is necessary to give the address of the main

block which is going to split next.

During this expansion some main blocks are accessed via the first hashing function (hl (key)),
whereas some others are accessed via the second one (hz(key)). The necessity to use two hashing
functions, is a direct consequence of the lack of an index structure. The decision concerning

the function which has to be used is taken as follows: During a cycle, pointer ‘next’ equals the
‘boundary value’, i.e. the address of the first main block which should be accessed via the second
hash function. If the result of the first hashing function is (not) smaller than the boundary value
then the (first) second hashing function has really to be used.

At the end of the first cycle, the file consists of 2No main blocks and only the second hashing

function (ha (key)) is necessary. When the second cycle begins, pointer ‘next’ is set to the 0-th
main block, the first one to split. During the second cycle this pointer’s value increases linearly,
set each time to the value of the block which will split next (up to block (2No - 1)) and a new

hashing function, ‘hs(key) = key mod 4No’, is being used, where key is a binary suffix of length
2. From that point on, the process is repeated in a similar way.

Best performance is achieved if the keys are uniformly distributed in blocks. However, in
practice there is high probability for a block to have overflow records. Such records are stored
in a separate overflow file, whose blocks have a different (usually smaller) capacity than that of
the main file blocks. In addition, only one chain of overflow blocks may emanate from each main
block. It is worth noting that the decision concerning the block which is to split next and when
this split will take place does not take into consideration overflow records in some particular block.
It should also be noted that the main file blocks are split one at a time in a linear fashion. As a
consequence, long overflow chains may exist for long time intervals. This has two effects on the
performance behavior of LH:

l Space utilization varies substantially from one block to another. It is very probable that the
storage utilization factor of the blocks that have already split is approximately 50%, whereas
this factor is nearly 100% for the blocks which have not split yet.

l Overflowing causes time performance deterioration. Search and insert operations are more
costly because they have to access a chain of blocks.

Performance of Linear Hashing Schemes for Primary Key Retrieval 435

The goal of each of the variations, which are described next, is to distribute records more evenly
over the file.

The LHPE scheme aims at overcoming both of the disadvantages described above and, indeed,
this is achieved to some extent. The main difference when compared with the LH scheme is the
following: Assume that the file consists of NO main blocks, where NO is an even number. Whenever
it is determined that an expansion has to take place, the i-th and the (i + No/2 - 1)-th block are
involved in a two-to-three split. After all such pairs have been processed in this way, the file has
3iVo,/2 blocks and we say that a ‘partial expansion’ has taken place. The next step is to combine
blocks in a three-to-four split: The indices of the three blocks to be involved in the split, are i,
i + No/2 and i + NO, where 0 5 i 5 No/2 - 1. Thus, when all the groups (triplets) will have been
processed, the file will consist of 2No blocks, in which case we say that a ‘full expansion’ has taken
place. In general, a full expansion may consist of more than two partial expansions. For example,
suppose that a full expansion consists of three partial ones. In this case, if NO is the initial number
of blocks, then No/3 blocks are created during each partial expansion, therefore, the file finally
occupies 21vo main blocks.

The record redistribution after each split in the LHPE scheme is different than the original LH
scheme, i.e. redistribution is not performed by considering one more bit of the key suffix. Instead,
the home address of each key is calculated in a particular, complicated manner, called ‘rejection
technique’, by using mainly three variables:

l the level of the file,

o the size of the group to split, and

l the value of pointer ‘next’.

In addition, the following parameters are involved:

l a hashing function, h(key), to determine the order of the group in the file, and

l a sequence of hashing functions, G(hr (key), hz (key), . . .), to determine the order of the
block in the group.

Further details on this issue can be found in [4]. However, the LHPE scheme has a basic similarity
when compared with the LH scheme: The choice of the group of main blocks for which a split
is pending, depends linearly on the value of pointer ‘next’. In other words, it is irrelevant which
main block has overflowed. Hence, the LHPE scheme is an improvement over LH but it does not
drastically eliminate the disadvantages of the latter.

The LHPS scheme is based on the LH scheme. In fact, these schemes have identical behavior
if there are no overflow records. However, LHPS is more complex because it rn~nt~ns data about
overflowing blocks in two additional structures. The basic idea in LHPS is to split the block with the
longest overflow chain rather than wait until this block is pointed at by ‘next’. The information
concerning the block with the longest overflow chain is extracted from a ‘heap structure’. The
number of heap nodes equals the number of main blocks of the LHPS file which have overflow
chains. The heap is updated when:

l a block overflows for the first time or

l the length of a block’s overflow chain is increased or, finally,

o a block split takes place.

It is worth noting that every block is split only once during an expansion. Therefore, the nodes of
the heap have to accommodate an additional field, which indicates whether the relevant block is
splittable at the present level. Besides the heap structure one more bitmap structure, the ‘indicator
set’, is required to show which block has already split. The length of the indicator set equals the
maximum number of blocks of the main LHPS file at the current level. At the beginning (end) of
every expansion all the bits of the indicator set are equal to zero (one). It should be noted that

436 Y. MANOLOPOVLOSand N. LORENTZOS

the size of the additional structures represents a small fraction of the size of the actual file and,
therefore, they can fit in main memory while the file remains opened. As a consequence, there is no
need for additional disk operations and thus time cost metrics are not affected. This organization
also m~ntains a linearly moving pointer which is actually used whenever there are no overflows
(the heap is empty) by considering, in addition, the indicator set.

s
I

NO
I
ben :
Rp: :
FR :
MB :
OB :
MBC :
OBG :
OS :
SUT :
SUF :

Successful search cost (in block accesses)
Insertion cost (in block accesses)
Number of initial main blocks
Number of levels during expansion
Length of a chain of overflow blocks
Number of records in the i-th block of a chain
Number of file records
Number of main blocks
Number of overflow blocks
Main block capacity
Overflow block capacity
Overflow space (positions per file record)
Storage utilization threshold (%)
Storage utilization factor (%)

Table 1. Symbol definition list.

Figure 1 shows a comparative example of these organizations. At some point in time an
insertion is performed and the file of Figure la is produced. This instance is valid for all three
organizations described above. By making use of the symbols defined in Table 1, we can make
the following observations: (a} the file consists of FR=13 records residing in MB=4 main blocks
and OB=3 overflow blocks, (b) the main (overflow) block capacity is MBC=3 records (OBC=l
record), and (c) the mean cost for a successful search equals S=16/13=1.23 block accesses. As a
result, the overflow space needed is 05’=3/13=0.23 positions per record. Assume that the storage
utilization threshold is SUT=SS%. From Figure la we derive that the storage utilization factor
equals SUF=13/15=86.7%. Hence, a split has to take place.

In the LH scheme the first block (address 00) must split. Figure lb shows the result of this
expansion. Now, the new storage utilization factor is S~~=l3/18=72.2%, the successful search
cost equals 5=16/13=1.23 block accesses, therefore the average overflow space requirement is
OS=O.23 positions per record. In the LHPE scheme the group which consists of the first and
the third blocks (addresses 00 and 10) has to split. Figure lc shows the result: The new storage
utilization factor equals SUF=13/17=76.5%, the average successful search costs S=15/13=1.15
block accesses, and, thus, the average overflow space requirement equals OS=615 positions per
record. Finally, the expansion in the LHPS scheme is shown in Figure Id. It can easily be verified
that the new cost metrics are the same with those of the LPHE scheme.

3. LINEAR HASHING WITH PARTIAL EXPANSIONS AND PRIORITY SPLITTING

In this section we present a new variation of linear hashing for primary key retrieval. It is a
combination of the LHPE and LHPS schemes and we call it Linear Bashing vrith Partial Expan-
sions and Priority Splitting (LHPEPS). This new organization inherits the merits of both schemes
and, in general, it has an improved performance over both of them. The result of its use over
the initial file instance, is shown in Figure le. In particular, now the storage utilization factor
equals SUF=81.3%, the average successful search cost equals S=1.08 block accesses and, thus, the
overflow space demands are OS=608 positions per record on average.

The LHPEPS scheme makes use of three additional structures:

l An indicator set, which is a bitmap structure. Each bit corresponds to a group of main blocks

Performance of Linear Hashing Schemes for Primary Key Retrieval 437

(8)
SUF=86.7%

kkl.23

O&O.23

tb) LH
SVF= 72.2%

fb1.23

L! OS=&23

(c) LHPE

SUF=76.5%

s1.15

oso.15

ooo 001 10 11 101 (cl) LHPS

SUF=76.5%

s1.15

OCkO.15

(e) LHPEPS

SUF=81.3%

S=1.08

OS=o.O8

Fig. 1. A file instance and four types of expansions.

which have split during an expansion. It is recalled that in LHPS every bit of the indicator
set corresponds to one main block, not to a group of blocks. As in the case of LHPS, at the
beginning/end of every expansion the bits of this bitmap are reset.

l A list structure with a number of nodes which equals the number of main blocks which have

overflow records. Each node has two fields whose contents declare the length of the overflow
block chain and the logical address of the main block, respectively. List nodes are sorted

in descending order of the chain length and ascending order of the logical address. This
structure is analogous to the heap of the LHPS scheme. and we call it ‘list of blocks’.

l A second list structure with a number of nodes, equal to the number of groups of the main
blocks which contain overflow records. Each of these nodes has two fields: The contents
of the first field represents the total number of overflow blocks per group. The contents of

the second one represents the logical address of the group. The nodes of the list are sorted
in descending order of the total number of overflow blocks and in ascending order of the
logical address. We call this structure ‘list of groups’. It has exclusively been designed for
the LHPEPS scheme and its necessity stems from the fact that the number of main blocks
per group changes in every partial expansion. Therefore, this structure is initialized at the

beginning of every partial expansion by scanning the list of blocks which remains unaffected
during the expansions. This list is updated whenever a chain is either created or elongated

or split.

In total, these structures are relatively small in size, and, therefore, while the file is opened, they can
reside in main memory without affecting the time cost metrics. This organization also maintains
the pointer ‘next’ but now it is used only only when there are no overflows.

In our implementation two header nodes are used for the above list structures. The first one
points to the blocks or the groups of blocks which have not split during the present cycle and
the second one points to the blocks which have split or have been produced during a split. This

438 Y. MANOLOPOULOSand N. LORENTZOS

implementation is equivalent to having a ‘flag field’ in every node of the list which indicates whether
the relevant block has split or not.

We provide next an algorithm for the manipulation of insertions and expansions in the LHPEPS
structure. Some abstraction over the actual implementation is necessary, in order to demonstrate
the vital points of the organization. The algorithm has many characteristicsin common with the
relevant ones of the LHPE and LHPS scheme.

INSERTION AND EXPANSION ALGORITHM

Determine the group where the record is directed, by using one of the two
hashing functions;

Determine the main block among those in the group where the record must be
inserted, by using the sequence G of hashing functions;

IF this main block is not full THEN insert the record
ELSE {the main block is full)

IF the record fits in the last block of the overflow chain THEN
insert the record in this block

ELSE (either the record does not fit in the last block)

BEGIN { of the overflow chain or no such chain exists 3
create an overflow block; insert the record in this block;
update the chain; update the list of blocks;
update the list of groups

END;
IF the storage utilization factor > the threshold value THEN

BEGIN
-E split 3

IF the list of groups is empty THEN
get the group shown by pointer ‘next';

ELSE get from the list of groups that one with the largest total
number of overflows which has not yet split at this level;

expand the group by creating a new block;
FOR every record of the group

IF imposed by the sequence G of hashing functions THEN
relocate the record to the new block;

update the list of blocks; update the list of groups
END;

IF a group has split THEN
BEGIN

update the indicator set;
update pointer 'next' by using the indicator set

END;
IF a partial expansion has been completed THEN

BEGIN
initialize pointer 'next'; initialize the indicator set;
increase the group size by one

END;
IF a full expansion has been completed THEN

BEGIN
initialize pointer 'next'; initialize the indicator set;
initialize the group size; increase the level value by one;
rebuild the list of groups by using the list of blocks

END;

Performance of Linear Hashing Schemes for Primary Key Retrieval

4. NUMERICAL RESULTS

439

The original linear hashing and its three variations which were presented in the previous sections
have been implemented in Turbo Pascal. An extensive simulation has been carried out in order to

compare the four alternative organizations by varying the following design parameters:

l main block capacity (MBC=10,20,50)

l overflow block capacity (0BC=1,3,5,10,20,50,...,MBC), and

l storage utilization threshold (SUT=70,75,80,85,90,95%),

for the estimation of the following performance costs:

l successful search cost,

l insertion cost, and

l overflow space per record.

During the simulation we inserted approximately 20,000 records and estimated the performance

measures many times during the insertion phase. The statistics are the mean values of ten exper-

iments.
The time related costs were measured in block accesses. All other overhead time costs (process-

ing of the supporting data structures) were considered to be negligible since the relevant operations
are performed in main memory. At each point in time, the average search time cost in block accesses

is calculated by using the expression:

s = & c Ri (i+ 1) (1)
2=0

where len is the maximum length of an overflow chain, and Ri is the number of records in the i-th
overflow block, (& is the number of records in the main block). The insertion cost (I) equals the
number of block accesses (either for reading or for writing) and is measured directly during the

simulation.
We consider as space cost only the extra overflow space. This enables us to evaluate how the

four methods match the block to split to the block with long overflow chains. More specifically, at
each point in time the space cost is measured as the number of overflow positions per file record
and are calculated by the expression:

os= OBCxOB

FR (2)

It is apparent that the measures of Figure 1 were produced by using the above formulae.
Every scheme of the linear hashing variations is presented as an improvement over the previous

organizations. However, this is not always true because:

the three performance measures are contradictory to one another, in the sense that gain in
one measure may result in extra cost for another,

given a specific measure, one organization may outperform the others only for some specific
ranges of the parameter values.

From our experiments we have concluded that in general the LHPS and LHPEPS schemes are
improvements over the LH and LHPE schemes respectively. Therefore, for comparison purposes,
the four organizations should be considered as two pairs. These remarks are further explained
next.

In Figures 2-5, the average successful search cost is depicted as a function of the total number
of file records. For all figures, the parameter values are: MBC = 20 records, OBC = 5 records,

Y. MANOLOPOULOSand N. LORENTZOS

t I I I I I 1 I I I I
20 40 80 160 320 640 1280 2560 5120 10240 20480

Fig. 2. Mean search cost of the LH scheme as a function of FR.

I I I I I I I I I I I

20 40 80 160 320 640 1280 2560 5120 10240 20480

Fig. 3. Mean search cost of the LHPE scheme as a function of FR.

and SUT = 85%. It should be noted that in all figures the search performance is characterized by
some sort of periodicity. More specifically, the form of the relevant curves remains the same after

the fifth level (2,500 records approximately).

In Figure 2, we notice that the search cost minima of the LH scheme occur at the beginning/end
of each level. In contrast, in Figure 3, we can see that there is a local minimum during each level,
which occurs at the beginning/end of every partial expansion. In addition, the LHPE performance
is better than that of the LH scheme. Figure 4 represents the search cost of the LHPS scheme.
The performance improvement over that of the LH scheme is obvious, i.e. the minima and maxima
are considerably lower. Figure 5 represents the performance of the LHPEPS scheme. In a similar
way, it is obvious that this organization outperforms both the LH and LHPE schemes. Another
major advantage of the LHPE scheme, is that it has a very stable behavior. As a result, it has
the least search cost variance from all organizations. From our experiments, it has been concluded

Performance of Linear Hashing Schemes for Primary Key Retrieval 441

I I I I I I I I I I

20 40 80 160 320 640 1260 2560 5120 10240 20480

Fig. 4. Mean search cost of the LHPS scheme as a function of FR.

I I I I I I I i I 1

20 40 80 160 320 640 1280 2560 5120 10240 20480

Fig. 5. Mean search cost of the LHPEPS scheme as a function of FR.

that in the case of greater main block capacities and smaller overflow block capacities, the variance
of LHPEPS is comparatively much smaller than that of the other organizations.

Another interesting remark of the simulation is the following: Given a main block size and
a storage utilization threshold, the time related costs are minimized for a specific value of the
overflow block size. With respect to the main block size, this is explained as follows: For a given
number of file records,

small values of overflow block size result in longer overflow block chains and increased response
time, whereas

large values of overflow block size result in low values of the storage utilization factor, the
expansion process is delayed and, finally, the time performance deteriorates.

442 Y. MANOLOPOVLOSand N. LORENTZOS

The results of Table 2 concern the LH scheme but the same remarks apply to the other organiza-
tions, too. This table shows the search cost as a function of the three parameters (MBC, OBC
and SUT). Since the optimum overflow block capacity is practically independent of the threshold,
in the remainder we neglect it for purposes of simplicity. Thus, we can see that for main block
capacities of 10, 20 and 50 records, the optimum value of the overftow block capacity is 3, 5 and
10 records, respectively. These optimum values have been adopted for all the tables which follow.

SUT
MBC OBC 70% 75% 80% 85% 90% 95%

1 1.19 1.27 1.38 1.57 1.87 2.43
3

10 5
10
1
3

20 5
10

1.11 1.15 1.21 1.33 1.55 2.39
1.10 1.14 1.22 1.38 1.83 3.73
1.15 1.33 1.57 1.95 2.72 4.90
1.15 1.27 1.44 1.67 2.03 2.85
1.08 1.14 1.22 1.31 1.49 2.03
1.07 1.10 1.15 1.27 1.46 2.42
1.06 1.10 1.16 1.35 1.98 4.02

20 1.11 1.31 1.58 1.96 2.74 4.90
1 1.23 1.41 1.65 2.22 2.83 4.31

Table 2. Mean search cost of the LH scheme as a function of MBC. OBC and SUT.

MBC OBC

10 3

20 5

50 10

L

SUT
70% 75% 80% 85% 90% 95%
1.11 1.15 1.21 1.33 1.55 2.39
1.05 1.08 1.12 1.19 1.35 2.17
1.01 1.03 1.06 1.12 1.24 2.09
1.02 1.04 1.07 1.13 1.25 2.05
1.07 1.10 1.15 1.27 1.46 2.42
1.02 1.03 1.06 1.11 1.22 2.18
1.01 1.02 1.04 1.09 1.21 2.20
1.00 1.01 1.02 1.06 1.15 2.08
1.04 1.08 1.13 1.20 1.37 2.16
1.00 1.01 1.02 1.05 1.12 1.89
1.01 1.02 1.05 1.10 1.20 2.04
1.00 1.00 1.01 1.02 1.07 1.84

Structure
LH

LHPE
LHPS

LHPEPS
LH

LHPE
LHPS

LHPEPS
LH

LHPE
LHPS

LHPEPS

Table 3. Mean search cost as a function of MBC, OBC and SUT.

We now compare the search performance of the four file organizations. We recall that, in
general, every organization outperforms the previous ones, but we should also notice that there
are exceptions in this remark. More specifically, we could argue that partial expansions decrease
the search cost. Table 3 gives the mean value of the search cost as a function of MBC, OBC and
SUT. By examining the effect of the block capacities, we can make some interesting conclusions:

l for small values of the main block capacity (e.g. MBC=lO), the LHPS scheme performs
better than the others. There is only one exception for large threshold values, where the
LHPEPS scheme performs better .

Performance of Linear Hashing Schemes for Primary Key Retrieval 443

l for large values of the main block capacity (e.g. MBC=50) the LHPEPS scheme is the most
preferable structure for any threshold value. In this case, even LHPE is better than LHPS.

By examining the effect of the storage utilization threshold, we can conclude the following:

l for the threshold value of 95%, LHPEPS outperforms any other organization in the improve-
ment over the original LH scheme.

l for the threshold value of 90%, all organizations achieve the greatest improvement over the

original LH scheme. More specifically, LHPEPS provides an improvement of approximately
20% over LH, for all MBC, OBC values we have tried.

SUT
70% 75% 80% 85% 90% 95%
3.06 3.23 3.49 3.92 4.66 6.92

3.27 3.39 3.56 3.90 4.57 7.09
2.70 2.80 2.98 3.29 3.86 6.48
3.14 3.21 3.36 3.68 4.25 6.87

2.68 2.86 3.10 3.58 4.29 7.00
2.61 2.72 2.89 3.18 3.74 6.85
2.40 2.49 2.64 2.98 3.56 6.71

2.53 2.59 2.69 2.96 3.51 6.70

2.42 2.65 2.91 3.27 3.98 6.49
2.23 2.28 2.41 2.63 3.13 6.03
2.27 2.37 2.59 2.90 3.44 6.35
2.19 2.22 2.29 2.48 2.90 5.98 I

Structure

LH

LHPE
LHPS

LHPEPS

LH

LHPE
LBPS

LHPEPS

LH

LHPE
LHPS

LHPEPS

Table 4. Mean insertion cost as a function of MBC, OBC and SLIT.

Let us now compare the four organizations with respect to the insertion cost. By examining
again the effect of the block capacities in Table 4, we can conclude that:

l for small values of the main block capacity (e.g. MBC=lO), the LHPS scheme is far better
that any other. We also notice that in many cases (small threshold values) LHPE and
LHPEPS have worse performance than that of the original LH scheme.

l For large values of the main block capacity (e.g. MBC=50) LHPEPS is the most preferable
structure, since it outperforms any other organization. In the last case, LHPE is better than
LHPS.

By examining the effect of the storage utilization threshold, we can conclude the following:

l for the threshold value of 95%, LHPEPS outperforms any other organization in improvement
over the original LH scheme.

l once again, for the threshold value of 90%, all organizations yield the greatest improve-

ment over the original LH scheme. More specifically, for this threshold value LHPEPS gives
approximately a 25% improvement over the LH scheme.

The reason why these remarks are different than the remarks holding for the search cost, is that
during an insertion, both LHPE and LHPEPS process whole groups of blocks whereas, in contrast,
the other two organizations process individual blocks. This implies that the partial expansions
approach increases the insertion cost.

Now the four file organizations are compared with respect to the required overflow space per
file record. By examining the effect of the storage utilization threshold in Table 5, the following
can be deduced:

444 Y. MANoLOPOuLOSand N. LORENTZOS

MBC OBC 70% 75% 80% 85% 90% 95% Structure
0.11 0.14 0.18 0.25 0.34 0.54 LH

10
0.07 0.10 0.13 0.19 0.28 0.52 LHPE

3 0.02 0.05 0.09 0.15 0.24 0.52 LHPS
1 0.04 0.06 0.09 0.16 0.24 0.51 1 LHPEPS
1 0.08 0.11 0.14 0.21 0.30 0.52 1 LH

0.03 0.05 0.09 0.13 0.22 0.51 LHPE
20 5 0.02 0.04 0.07 0.12 0.21 0.51 LHPS

0.01 0.02 0.05 0.10 0.19 0.50 LHPEPS
0.05 0.08 0.12 0.16 0.24 0.45 LH
0.01 0.02 0.04 0.07 0.15 0.43 LHPE

50 10 0.02 0.04 0.07 0.11 0.18 0.44 LHPS
0.00 0.00 0.02 0.05 0.11 0.43 LHPEPS

Table 5. Mean overflow space as a function of MBC, OBC and SUT.

l the smaller the threshold value is, the smaller the required overflow space per file record is.

l the smaller the threshold value is, the greater the relative gain of using the variations over
the original organization is. In general, if the threshold value is 95% then the improvement
over the original organization is negligible, whereas if the threshold value is 70% then the
relative gain is impressive. Notice, however, that the absolute value of the gain is maximized
when the threshold value is 90%.

The examination of the effect of the block capacities, yields the following results:

l for small block capacities (e.g. MBC=lO) the LHPS scheme has the best performance.
There is only one exception: For a threshold value of 95% the LHPEPS scheme is the best.

l for large block capacities (e.g. MBC=JO) LHPEPS shows the greatest improvement over
the original LH scheme. It is worth noting, in particular, that if the threshold value is 70%,
then the gain due to LHPEPS is impressive (nearly 98%).

In order to make conclusions about the space performance, we can equivalently, use the search
cost in place of the required overflow space. This is due to the fact that space and search costs are
not contradictory in nature. In other words, it is implied that more dense packing results in faster
search and vice versa.

5. CONCLUSIONS

Linear hashing for primary key retrieval is considered to be one of the the best dynamic schemes
since it does not use an index and has a very good time performance. This organization and two of
its variations, linear hashing with partial expansions and linear hashing with priority splitting, have
been presented in this paper. In addition, a new variation of linear hashing has been presented,
the Linear Hashing with Partial Expansions and Priority Splitting (LHPEPS).

This organization is a generalization of all the previous approaches and inherits all their merits.
Insertion and expansion pseudo-algorithms of this organizations have been given. Deletion is
performed in an analogous manner, therefore the relevant algorithm has been omitted for brevity
reasons.

We have compared by simulation all four organizations with respect to search and insertion
costs and with respect to overflow space. Tables 6 and 7, which summarize the remarks of the
previous sections, concern the search and insertion costs. The results for the overflow space have
been omitted, since they are almost identical to those of Table 6. By ‘small’, ‘medium’ and ‘large’

Performance of Linear Hashing Schemes for Primary Key Retrieval 445

SUT
MBC,OBC small medium large

LHPS LHPS LHPEPS

small LHPEPS LHPEPS LHPS
LHPEPS LHPEPS LHPEPS

medium LHPS LHPS LHPE

LHPEPS LHPEPS LHPEPS

large LHPE LHPE LHPE

Table 6. Classification with respect to the search cost.

SUT
MBC,OBC small medium large

LHPS LHPS LHPS

small 1 LHPEPS LHPEPS LHPEPS

1 LHPS LHPS LHPEPS

medium LHPEPS LHPEPS LHPS

LHPEPS LHPEPS LHPEPS
large LHPE LHPE LHPE

Table 7. Classification with respect to the insertion cost.

block capacities, we mean the pairs (10,3), (20,5) and (50,lO) respectively, where the first (second)
component indicates the MBC (OBC). By ‘small’, ‘medium’ and ‘large’ threshold values, we
mean the pairs (70%,75%), (80%,85%) and (90%,95%) respectively. Every entry in each of these
tables contains the first and second choice for the particular capacity and threshold value.

These tables illustrate clearly the enhanced performance of LHPEPS over its counterparts. We
notice that in most of the cases, it has the best performance. In some others it is second but its

performance is also close to the best. The tables in the previous section show that the performance
of all four techniques deteriorates for a storage utilization threshold equal to 95%. LHPEPS has

the best performance, if this threshold value equals 90%, independently of the cost metric. In
addition, the accompanying structures of LHPEPS are small and can thus reside in main memory.

Future research includes the integration of the technique of priority splitting in multidimensional
linear hashing and recursive linear hashing. More specifically for the first case, it is expected that
the number of recursive overflow files will be reduced, since the technique of priority splitting
reduces the length of overflow block chains. Another direction involves the integration of our new

scheme to accommodate variable length records, along the lines of the technique presented in (111.

Acknowledgements - Thanks are due to Mr. G. Dedeoglou and Mr. G. Papadimos for their valuable help during

the experimentation. We are also grateful to the referees, whose comments greatly improved the presentation of

this paper.

REFERENCES

[l] R. J. Embody and H.C. Du. Dynamic Hashing. ACM Computing Surveys, 20(2), pp. 85-113 (1988).

[2] R.. Fagin ,J. Nievergelt ,N. Pippenger and H. R. Strong. Extendible Hashing - a Fast Access Method for
Dynamic Files, ACM Transactions on Database Systems, 4(3), pp. 315-344 (1979).

[3] P.A Larson. Dynamic Hashing, BIT,18 (2), pp. 184-201 (1978).

[4] P.A Larson. Linear Hashing with Partial Expansions. Proceedings of the 6th International Conference on Very
Large Data Bases, pp. 224-232 (1980).

446 Y. MANoLoPouLosand N. LORENTZOS

[5] P.A Larson. Performance Analysis of Linear Hashing with Partial Expansions. ACM Transactions on Database
Systems, 7 (4), pp. 566-587 (1982).

(61 P.A Larson. A Single-file Version of Linear Hashing with Partial Expansions. Proceedings of the 8th Inlerna-
tional Conference on Very Large Data Bases, pp. 300-309 (1982).

[7] P.,& Larson. Performance Analysis of a Single-file Version of Linear Hashing. The Computer Journal, 28 (3),
pp. 319-329 (1985).

[B] P.A Larson P.A. Linear Hashing with Overflow Handling by Linear Probing. ACM Transactions on Database
Systems, 10,(l), pp. 75-89 (1985).

[9] W. Litwin Virtual Hashing - a Dynamically Changing Hsshing,.Proceedinga of the 4th International Confer-
ence on Very Large Data Bases, pp. 517-523 (1978).

[lo] W. Litwin. Linear Hashing - a New Tool for File and Table Addressing. Proceedings of Ihe 6th International
Conference on Very Large Data Bases, pp. 212-223 (1980).

[ll] Y. Manolopoulos and N. Fistas . Algorithms for a Hash Based File with Variable Length Records. Information
Sciences, 03, pp. 229-243 (1992).

(121 G.N.N. Martin. Spiral Storage - Incrementally Augmentable Hash Addressed Storage. Theory of Computation
Report #27, University of Warwick, England (1979).

[13] J.K. Mullin Tightly Controlled Linear Hashing without Separate Overflow Storage. BIT, 21, pp. 390-400
(1981).

[14] K. Ramamohanarao and Ft. Sacks-Davis. Recursive Linear Hashing. ACM Transactions on Database Systems,
9 (3), pp. 369-391 (1984).

[15] W. Ruchte and A. Tharp. Linear Hashing with Priority Splitting. Proceedings of Ihe 3th International IEEE
Conference on Data Engineering, pp. 2-9 (1987).

[16] A. Tharp. File Organization and Processing, Wiley (1988).

