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Abstract - Linear hashing is one of the most attractive dynamic hashing schemes. Linear hashing 
with partial expansions and linear hashing with priority splitting are two variations with improved 
space and time performance. Here, we propose a new structure, which is termed linear hashing with 
partial expansions and priority splitting. The above four structures are compared by simulation and 
it is shown that the new scheme outperforms its predecessors in both time and space costs. 

1. INTRODUCTION 

Static hashing schemes (i.e. open addressing and separate/coalesced chaining) suffer because of 
space waste and/or time performance deterioration. During the last decade many dynamic hashing 
schemes were proposed. These file organizations grow and shrink due to insertions and deletions 

respectively ]16]. Therefore the time performance of searches, inserts, and defetes is essentially 
independent of file size. Some examples of dynamic hashing schemes are dyname’c hashing [3], linear 

hashing [lo], virtual hashing [9], extendible hashing [2], and spiral hashing [12]. Each organization 

from this incomplete list has been studied extensively in [l]. 

Linear hashing and spiral hashing have a major advantage over their counterparts; they do 
not make use of an index structure, which may require so much space, so as to not fit in main 
memory. In some other hashed organizations, this structure might have to be stored in secondary 
storage and consequently might result in costly disk access operations. In addition, spiral hashing is 
characterized by another major drawback when compared with linear hashing, i.e. the complicated 
space allocation algorithms. 

Because of these advantages, linear hashing has been investigated exhaustively so as to maximize 

its performance. Numerous variations have been proposed which incorporate linear hashing for 
primary key access organizations, such as [4, 5, 6, 7, 8, 13, 14, 151. In addition, linear hashing 
schemes for multidimensional searching or for partial match retrieval with/without accommodating 
the order preserving property were recently designed and proposed. Enhancements of these types 

are not discussed in the present paper but the interested reader may find citations to the most 
important variations of this category in [I]. 

The present paper focuses on the following primary key retrieval organizations: The original 
Linear Hashing (LH) [lo], L inear Hashing with Partial Expansions (LHPE) [4, 51 and Linear 
Hashing with Priority Splitting (LHPS) [15]. In addition, a new variation is proposed, which 
extends all previous approaches. We call it Linear Hashing with Partial Expansions and 
Priority Splitting (LHPEPS) and compare it with its predecessors. The remainder of this work 
is divided as follows: The LH, LHPE and LHPS schemes are presented in Section 2. The LHPEPS 
scheme is described in Section 3. In Section 4 the performance of LH, LHPE, LHPS, and LHPEPS 
is compared by simulation. Conclusions are drawn in the last section. 
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2. LINEAR HASHING AND EXTENSIONS 

Linear hashing schemes for primary key retrieval can be classified in two types: Organizations 
which store the overflow records in a separate file, and those which accommodate the overflow 
records in the main file [6, 7, 8, 131. The latter will not be examined in the sequel. The structure 

of Recursive Linear Hashing, which is characterized by many overflow files, will not be examined 

either [14]. 

We start by the presentation of the LH scheme. To this end, assume that initially the file 
consists of Ns x 2O (=Ne) records, where the power of 2 represents the level of the file expansion. 
Hence, the file is initially at the 0-th level. A hashing function, such as ‘hi(key) = Icey mod NO’, 
is then used to store and/or retrieve records. It should be noted that key is the suffix of the binary 
representation of the key, whose length equals the level of file expansion (initially 0). If the file is 
overloaded to the extent that the storage utilization factor exceeds a predetermined threshold value, 
then the file expands by splitting the 0-th main block out of the No ones, thus creating a new main 
block with address No. At the same time, the records of the original 0-th block are redistributed 

in the 0-th and the No-th block, according to a new hashing function, ‘hz(key) = key mod 2No’, 
where key now denotes a binary suffix of length 1 + 1 (i.e. 1 when the first split occurs). In this 
way the storage utilization factor becomes smaller than the predetermined value. Whenever later 

on, the threshold value is reached again, the second main block (address 1) splits in the same way, 
thus creating a new address (address No + 1) and the records are redistributed accordingly, using 
the second hashing function. 

As is obvious, this expansion process is repeated by splitting the main blocks of the original 
file, one at a time, until their total number is doubled. At that moment the first expansion has 
been completed. As it is also obvious, a pointer, ‘next’, is necessary to give the address of the main 

block which is going to split next. 

During this expansion some main blocks are accessed via the first hashing function (hl (key)), 
whereas some others are accessed via the second one (hz(key)). The necessity to use two hashing 
functions, is a direct consequence of the lack of an index structure. The decision concerning 

the function which has to be used is taken as follows: During a cycle, pointer ‘next’ equals the 
‘boundary value’, i.e. the address of the first main block which should be accessed via the second 
hash function. If the result of the first hashing function is (not) smaller than the boundary value 
then the (first) second hashing function has really to be used. 

At the end of the first cycle, the file consists of 2No main blocks and only the second hashing 

function (ha (key)) is necessary. When the second cycle begins, pointer ‘next’ is set to the 0-th 
main block, the first one to split. During the second cycle this pointer’s value increases linearly, 
set each time to the value of the block which will split next (up to block (2No - 1)) and a new 

hashing function, ‘hs(key) = key mod 4No’, is being used, where key is a binary suffix of length 
2. From that point on, the process is repeated in a similar way. 

Best performance is achieved if the keys are uniformly distributed in blocks. However, in 
practice there is high probability for a block to have overflow records. Such records are stored 
in a separate overflow file, whose blocks have a different (usually smaller) capacity than that of 
the main file blocks. In addition, only one chain of overflow blocks may emanate from each main 
block. It is worth noting that the decision concerning the block which is to split next and when 
this split will take place does not take into consideration overflow records in some particular block. 
It should also be noted that the main file blocks are split one at a time in a linear fashion. As a 
consequence, long overflow chains may exist for long time intervals. This has two effects on the 
performance behavior of LH: 

l Space utilization varies substantially from one block to another. It is very probable that the 
storage utilization factor of the blocks that have already split is approximately 50%, whereas 
this factor is nearly 100% for the blocks which have not split yet. 

l Overflowing causes time performance deterioration. Search and insert operations are more 
costly because they have to access a chain of blocks. 
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The goal of each of the variations, which are described next, is to distribute records more evenly 
over the file. 

The LHPE scheme aims at overcoming both of the disadvantages described above and, indeed, 
this is achieved to some extent. The main difference when compared with the LH scheme is the 
following: Assume that the file consists of NO main blocks, where NO is an even number. Whenever 
it is determined that an expansion has to take place, the i-th and the (i + No/2 - 1)-th block are 
involved in a two-to-three split. After all such pairs have been processed in this way, the file has 
3iVo,/2 blocks and we say that a ‘partial expansion’ has taken place. The next step is to combine 
blocks in a three-to-four split: The indices of the three blocks to be involved in the split, are i, 
i + No/2 and i + NO, where 0 5 i 5 No/2 - 1. Thus, when all the groups (triplets) will have been 
processed, the file will consist of 2No blocks, in which case we say that a ‘full expansion’ has taken 
place. In general, a full expansion may consist of more than two partial expansions. For example, 
suppose that a full expansion consists of three partial ones. In this case, if NO is the initial number 
of blocks, then No/3 blocks are created during each partial expansion, therefore, the file finally 
occupies 21vo main blocks. 

The record redistribution after each split in the LHPE scheme is different than the original LH 
scheme, i.e. redistribution is not performed by considering one more bit of the key suffix. Instead, 
the home address of each key is calculated in a particular, complicated manner, called ‘rejection 
technique’, by using mainly three variables: 

l the level of the file, 

o the size of the group to split, and 

l the value of pointer ‘next’. 

In addition, the following parameters are involved: 

l a hashing function, h(key), to determine the order of the group in the file, and 

l a sequence of hashing functions, G(hr (key), hz (key), . . .), to determine the order of the 
block in the group. 

Further details on this issue can be found in [4]. However, the LHPE scheme has a basic similarity 
when compared with the LH scheme: The choice of the group of main blocks for which a split 
is pending, depends linearly on the value of pointer ‘next’. In other words, it is irrelevant which 
main block has overflowed. Hence, the LHPE scheme is an improvement over LH but it does not 
drastically eliminate the disadvantages of the latter. 

The LHPS scheme is based on the LH scheme. In fact, these schemes have identical behavior 
if there are no overflow records. However, LHPS is more complex because it rn~nt~ns data about 
overflowing blocks in two additional structures. The basic idea in LHPS is to split the block with the 
longest overflow chain rather than wait until this block is pointed at by ‘next’. The information 
concerning the block with the longest overflow chain is extracted from a ‘heap structure’. The 
number of heap nodes equals the number of main blocks of the LHPS file which have overflow 
chains. The heap is updated when: 

l a block overflows for the first time or 

l the length of a block’s overflow chain is increased or, finally, 

o a block split takes place. 

It is worth noting that every block is split only once during an expansion. Therefore, the nodes of 
the heap have to accommodate an additional field, which indicates whether the relevant block is 
splittable at the present level. Besides the heap structure one more bitmap structure, the ‘indicator 
set’, is required to show which block has already split. The length of the indicator set equals the 
maximum number of blocks of the main LHPS file at the current level. At the beginning (end) of 
every expansion all the bits of the indicator set are equal to zero (one). It should be noted that 
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the size of the additional structures represents a small fraction of the size of the actual file and, 
therefore, they can fit in main memory while the file remains opened. As a consequence, there is no 
need for additional disk operations and thus time cost metrics are not affected. This organization 
also m~ntains a linearly moving pointer which is actually used whenever there are no overflows 
(the heap is empty) by considering, in addition, the indicator set. 

s 
I 

NO 
I 
ben : 
Rp: : 
FR : 
MB : 
OB : 
MBC : 
OBG : 
OS : 
SUT : 
SUF : 

Successful search cost (in block accesses) 
Insertion cost (in block accesses) 
Number of initial main blocks 
Number of levels during expansion 
Length of a chain of overflow blocks 
Number of records in the i-th block of a chain 
Number of file records 
Number of main blocks 
Number of overflow blocks 
Main block capacity 
Overflow block capacity 
Overflow space (positions per file record) 
Storage utilization threshold (%) 
Storage utilization factor (%) 

Table 1. Symbol definition list. 

Figure 1 shows a comparative example of these organizations. At some point in time an 
insertion is performed and the file of Figure la is produced. This instance is valid for all three 
organizations described above. By making use of the symbols defined in Table 1, we can make 
the following observations: (a} the file consists of FR=13 records residing in MB=4 main blocks 
and OB=3 overflow blocks, (b) the main (overflow) block capacity is MBC=3 records (OBC=l 
record), and (c) the mean cost for a successful search equals S=16/13=1.23 block accesses. As a 
result, the overflow space needed is 05’=3/13=0.23 positions per record. Assume that the storage 
utilization threshold is SUT=SS%. From Figure la we derive that the storage utilization factor 
equals SUF=13/15=86.7%. Hence, a split has to take place. 

In the LH scheme the first block (address 00) must split. Figure lb shows the result of this 
expansion. Now, the new storage utilization factor is S~~=l3/18=72.2%, the successful search 
cost equals 5=16/13=1.23 block accesses, therefore the average overflow space requirement is 
OS=O.23 positions per record. In the LHPE scheme the group which consists of the first and 
the third blocks (addresses 00 and 10) has to split. Figure lc shows the result: The new storage 
utilization factor equals SUF=13/17=76.5%, the average successful search costs S=15/13=1.15 
block accesses, and, thus, the average overflow space requirement equals OS=615 positions per 
record. Finally, the expansion in the LHPS scheme is shown in Figure Id. It can easily be verified 
that the new cost metrics are the same with those of the LPHE scheme. 

3. LINEAR HASHING WITH PARTIAL EXPANSIONS AND PRIORITY SPLITTING 

In this section we present a new variation of linear hashing for primary key retrieval. It is a 
combination of the LHPE and LHPS schemes and we call it Linear Bashing vrith Partial Expan- 
sions and Priority Splitting (LHPEPS). This new organization inherits the merits of both schemes 
and, in general, it has an improved performance over both of them. The result of its use over 
the initial file instance, is shown in Figure le. In particular, now the storage utilization factor 
equals SUF=81.3%, the average successful search cost equals S=1.08 block accesses and, thus, the 
overflow space demands are OS=608 positions per record on average. 

The LHPEPS scheme makes use of three additional structures: 

l An indicator set, which is a bitmap structure. Each bit corresponds to a group of main blocks 
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Fig. 1. A file instance and four types of expansions. 

which have split during an expansion. It is recalled that in LHPS every bit of the indicator 
set corresponds to one main block, not to a group of blocks. As in the case of LHPS, at the 
beginning/end of every expansion the bits of this bitmap are reset. 

l A list structure with a number of nodes which equals the number of main blocks which have 

overflow records. Each node has two fields whose contents declare the length of the overflow 
block chain and the logical address of the main block, respectively. List nodes are sorted 

in descending order of the chain length and ascending order of the logical address. This 
structure is analogous to the heap of the LHPS scheme. and we call it ‘list of blocks’. 

l A second list structure with a number of nodes, equal to the number of groups of the main 
blocks which contain overflow records. Each of these nodes has two fields: The contents 
of the first field represents the total number of overflow blocks per group. The contents of 

the second one represents the logical address of the group. The nodes of the list are sorted 
in descending order of the total number of overflow blocks and in ascending order of the 
logical address. We call this structure ‘list of groups’. It has exclusively been designed for 
the LHPEPS scheme and its necessity stems from the fact that the number of main blocks 
per group changes in every partial expansion. Therefore, this structure is initialized at the 

beginning of every partial expansion by scanning the list of blocks which remains unaffected 
during the expansions. This list is updated whenever a chain is either created or elongated 

or split. 

In total, these structures are relatively small in size, and, therefore, while the file is opened, they can 
reside in main memory without affecting the time cost metrics. This organization also maintains 
the pointer ‘next’ but now it is used only only when there are no overflows. 

In our implementation two header nodes are used for the above list structures. The first one 
points to the blocks or the groups of blocks which have not split during the present cycle and 
the second one points to the blocks which have split or have been produced during a split. This 
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implementation is equivalent to having a ‘flag field’ in every node of the list which indicates whether 
the relevant block has split or not. 

We provide next an algorithm for the manipulation of insertions and expansions in the LHPEPS 
structure. Some abstraction over the actual implementation is necessary, in order to demonstrate 
the vital points of the organization. The algorithm has many characteristicsin common with the 
relevant ones of the LHPE and LHPS scheme. 

INSERTION AND EXPANSION ALGORITHM 

Determine the group where the record is directed, by using one of the two 
hashing functions; 

Determine the main block among those in the group where the record must be 
inserted, by using the sequence G of hashing functions; 

IF this main block is not full THEN insert the record 
ELSE {the main block is full) 

IF the record fits in the last block of the overflow chain THEN 
insert the record in this block 

ELSE ( either the record does not fit in the last block ) 

BEGIN { of the overflow chain or no such chain exists 3 
create an overflow block; insert the record in this block; 
update the chain; update the list of blocks; 
update the list of groups 

END; 
IF the storage utilization factor > the threshold value THEN 

BEGIN 
-E split 3 

IF the list of groups is empty THEN 
get the group shown by pointer ‘next'; 

ELSE get from the list of groups that one with the largest total 
number of overflows which has not yet split at this level; 

expand the group by creating a new block; 
FOR every record of the group 

IF imposed by the sequence G of hashing functions THEN 
relocate the record to the new block; 

update the list of blocks; update the list of groups 
END; 

IF a group has split THEN 
BEGIN 

update the indicator set; 
update pointer 'next' by using the indicator set 

END; 
IF a partial expansion has been completed THEN 

BEGIN 
initialize pointer 'next'; initialize the indicator set; 
increase the group size by one 

END; 
IF a full expansion has been completed THEN 

BEGIN 
initialize pointer 'next'; initialize the indicator set; 
initialize the group size; increase the level value by one; 
rebuild the list of groups by using the list of blocks 

END; 
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The original linear hashing and its three variations which were presented in the previous sections 
have been implemented in Turbo Pascal. An extensive simulation has been carried out in order to 

compare the four alternative organizations by varying the following design parameters: 

l main block capacity (MBC=10,20,50) 

l overflow block capacity (0BC=1,3,5,10,20,50,...,MBC), and 

l storage utilization threshold (SUT=70,75,80,85,90,95%), 

for the estimation of the following performance costs: 

l successful search cost, 

l insertion cost, and 

l overflow space per record. 

During the simulation we inserted approximately 20,000 records and estimated the performance 

measures many times during the insertion phase. The statistics are the mean values of ten exper- 

iments. 
The time related costs were measured in block accesses. All other overhead time costs (process- 

ing of the supporting data structures) were considered to be negligible since the relevant operations 
are performed in main memory. At each point in time, the average search time cost in block accesses 

is calculated by using the expression: 

s = & c Ri (i+ 1) (1) 
2=0 

where len is the maximum length of an overflow chain, and Ri is the number of records in the i-th 
overflow block, (& is the number of records in the main block). The insertion cost (I) equals the 
number of block accesses (either for reading or for writing) and is measured directly during the 

simulation. 
We consider as space cost only the extra overflow space. This enables us to evaluate how the 

four methods match the block to split to the block with long overflow chains. More specifically, at 
each point in time the space cost is measured as the number of overflow positions per file record 
and are calculated by the expression: 

os= OBCxOB 

FR (2) 

It is apparent that the measures of Figure 1 were produced by using the above formulae. 
Every scheme of the linear hashing variations is presented as an improvement over the previous 

organizations. However, this is not always true because: 

the three performance measures are contradictory to one another, in the sense that gain in 
one measure may result in extra cost for another, 

given a specific measure, one organization may outperform the others only for some specific 
ranges of the parameter values. 

From our experiments we have concluded that in general the LHPS and LHPEPS schemes are 
improvements over the LH and LHPE schemes respectively. Therefore, for comparison purposes, 
the four organizations should be considered as two pairs. These remarks are further explained 
next. 

In Figures 2-5, the average successful search cost is depicted as a function of the total number 
of file records. For all figures, the parameter values are: MBC = 20 records, OBC = 5 records, 
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20 40 80 160 320 640 1280 2560 5120 10240 20480 

Fig. 2. Mean search cost of the LH scheme as a function of FR. 
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20 40 80 160 320 640 1280 2560 5120 10240 20480 

Fig. 3. Mean search cost of the LHPE scheme as a function of FR. 

and SUT = 85%. It should be noted that in all figures the search performance is characterized by 
some sort of periodicity. More specifically, the form of the relevant curves remains the same after 

the fifth level (2,500 records approximately). 

In Figure 2, we notice that the search cost minima of the LH scheme occur at the beginning/end 
of each level. In contrast, in Figure 3, we can see that there is a local minimum during each level, 
which occurs at the beginning/end of every partial expansion. In addition, the LHPE performance 
is better than that of the LH scheme. Figure 4 represents the search cost of the LHPS scheme. 
The performance improvement over that of the LH scheme is obvious, i.e. the minima and maxima 
are considerably lower. Figure 5 represents the performance of the LHPEPS scheme. In a similar 
way, it is obvious that this organization outperforms both the LH and LHPE schemes. Another 
major advantage of the LHPE scheme, is that it has a very stable behavior. As a result, it has 
the least search cost variance from all organizations. From our experiments, it has been concluded 
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I I I I I I I I I I 

20 40 80 160 320 640 1260 2560 5120 10240 20480 

Fig. 4. Mean search cost of the LHPS scheme as a function of FR. 

I I I I I I I i I 1 

20 40 80 160 320 640 1280 2560 5120 10240 20480 

Fig. 5. Mean search cost of the LHPEPS scheme as a function of FR. 

that in the case of greater main block capacities and smaller overflow block capacities, the variance 
of LHPEPS is comparatively much smaller than that of the other organizations. 

Another interesting remark of the simulation is the following: Given a main block size and 
a storage utilization threshold, the time related costs are minimized for a specific value of the 
overflow block size. With respect to the main block size, this is explained as follows: For a given 
number of file records, 

small values of overflow block size result in longer overflow block chains and increased response 
time, whereas 

large values of overflow block size result in low values of the storage utilization factor, the 
expansion process is delayed and, finally, the time performance deteriorates. 
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The results of Table 2 concern the LH scheme but the same remarks apply to the other organiza- 
tions, too. This table shows the search cost as a function of the three parameters (MBC, OBC 
and SUT). Since the optimum overflow block capacity is practically independent of the threshold, 
in the remainder we neglect it for purposes of simplicity. Thus, we can see that for main block 
capacities of 10, 20 and 50 records, the optimum value of the overftow block capacity is 3, 5 and 
10 records, respectively. These optimum values have been adopted for all the tables which follow. 

SUT 
MBC OBC 70% 75% 80% 85% 90% 95% 

1 1.19 1.27 1.38 1.57 1.87 2.43 
3 

10 5 
10 
1 
3 

20 5 
10 

1.11 1.15 1.21 1.33 1.55 2.39 
1.10 1.14 1.22 1.38 1.83 3.73 
1.15 1.33 1.57 1.95 2.72 4.90 
1.15 1.27 1.44 1.67 2.03 2.85 
1.08 1.14 1.22 1.31 1.49 2.03 
1.07 1.10 1.15 1.27 1.46 2.42 
1.06 1.10 1.16 1.35 1.98 4.02 

20 1.11 1.31 1.58 1.96 2.74 4.90 
1 1.23 1.41 1.65 2.22 2.83 4.31 

Table 2. Mean search cost of the LH scheme as a function of MBC. OBC and SUT. 

MBC OBC 

10 3 

20 5 

50 10 

L 

SUT 
70% 75% 80% 85% 90% 95% 
1.11 1.15 1.21 1.33 1.55 2.39 
1.05 1.08 1.12 1.19 1.35 2.17 
1.01 1.03 1.06 1.12 1.24 2.09 
1.02 1.04 1.07 1.13 1.25 2.05 
1.07 1.10 1.15 1.27 1.46 2.42 
1.02 1.03 1.06 1.11 1.22 2.18 
1.01 1.02 1.04 1.09 1.21 2.20 
1.00 1.01 1.02 1.06 1.15 2.08 
1.04 1.08 1.13 1.20 1.37 2.16 
1.00 1.01 1.02 1.05 1.12 1.89 
1.01 1.02 1.05 1.10 1.20 2.04 
1.00 1.00 1.01 1.02 1.07 1.84 

Structure 
LH 

LHPE 
LHPS 

LHPEPS 
LH 

LHPE 
LHPS 

LHPEPS 
LH 

LHPE 
LHPS 

LHPEPS 

Table 3. Mean search cost as a function of MBC, OBC and SUT. 

We now compare the search performance of the four file organizations. We recall that, in 
general, every organization outperforms the previous ones, but we should also notice that there 
are exceptions in this remark. More specifically, we could argue that partial expansions decrease 
the search cost. Table 3 gives the mean value of the search cost as a function of MBC, OBC and 
SUT. By examining the effect of the block capacities, we can make some interesting conclusions: 

l for small values of the main block capacity (e.g. MBC=lO), the LHPS scheme performs 
better than the others. There is only one exception for large threshold values, where the 
LHPEPS scheme performs better . 
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l for large values of the main block capacity (e.g. MBC=50) the LHPEPS scheme is the most 
preferable structure for any threshold value. In this case, even LHPE is better than LHPS. 

By examining the effect of the storage utilization threshold, we can conclude the following: 

l for the threshold value of 95%, LHPEPS outperforms any other organization in the improve- 
ment over the original LH scheme. 

l for the threshold value of 90%, all organizations achieve the greatest improvement over the 

original LH scheme. More specifically, LHPEPS provides an improvement of approximately 
20% over LH, for all MBC, OBC values we have tried. 

SUT 
70% 75% 80% 85% 90% 95% 
3.06 3.23 3.49 3.92 4.66 6.92 

3.27 3.39 3.56 3.90 4.57 7.09 
2.70 2.80 2.98 3.29 3.86 6.48 
3.14 3.21 3.36 3.68 4.25 6.87 

2.68 2.86 3.10 3.58 4.29 7.00 
2.61 2.72 2.89 3.18 3.74 6.85 
2.40 2.49 2.64 2.98 3.56 6.71 

2.53 2.59 2.69 2.96 3.51 6.70 

2.42 2.65 2.91 3.27 3.98 6.49 
2.23 2.28 2.41 2.63 3.13 6.03 
2.27 2.37 2.59 2.90 3.44 6.35 
2.19 2.22 2.29 2.48 2.90 5.98 I 

Structure 

LH 

LHPE 
LHPS 

LHPEPS 

LH 

LHPE 
LBPS 

LHPEPS 

LH 

LHPE 
LHPS 

LHPEPS 

Table 4. Mean insertion cost as a function of MBC, OBC and SLIT. 

Let us now compare the four organizations with respect to the insertion cost. By examining 
again the effect of the block capacities in Table 4, we can conclude that: 

l for small values of the main block capacity (e.g. MBC=lO), the LHPS scheme is far better 
that any other. We also notice that in many cases (small threshold values) LHPE and 
LHPEPS have worse performance than that of the original LH scheme. 

l For large values of the main block capacity (e.g. MBC=50) LHPEPS is the most preferable 
structure, since it outperforms any other organization. In the last case, LHPE is better than 
LHPS. 

By examining the effect of the storage utilization threshold, we can conclude the following: 

l for the threshold value of 95%, LHPEPS outperforms any other organization in improvement 
over the original LH scheme. 

l once again, for the threshold value of 90%, all organizations yield the greatest improve- 

ment over the original LH scheme. More specifically, for this threshold value LHPEPS gives 
approximately a 25% improvement over the LH scheme. 

The reason why these remarks are different than the remarks holding for the search cost, is that 
during an insertion, both LHPE and LHPEPS process whole groups of blocks whereas, in contrast, 
the other two organizations process individual blocks. This implies that the partial expansions 
approach increases the insertion cost. 

Now the four file organizations are compared with respect to the required overflow space per 
file record. By examining the effect of the storage utilization threshold in Table 5, the following 
can be deduced: 
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MBC OBC 70% 75% 80% 85% 90% 95% Structure 
0.11 0.14 0.18 0.25 0.34 0.54 LH 

10 
0.07 0.10 0.13 0.19 0.28 0.52 LHPE 

3 0.02 0.05 0.09 0.15 0.24 0.52 LHPS 
1 0.04 0.06 0.09 0.16 0.24 0.51 1 LHPEPS 
1 0.08 0.11 0.14 0.21 0.30 0.52 1 LH 

0.03 0.05 0.09 0.13 0.22 0.51 LHPE 
20 5 0.02 0.04 0.07 0.12 0.21 0.51 LHPS 

0.01 0.02 0.05 0.10 0.19 0.50 LHPEPS 
0.05 0.08 0.12 0.16 0.24 0.45 LH 
0.01 0.02 0.04 0.07 0.15 0.43 LHPE 

50 10 0.02 0.04 0.07 0.11 0.18 0.44 LHPS 
0.00 0.00 0.02 0.05 0.11 0.43 LHPEPS 

Table 5. Mean overflow space as a function of MBC, OBC and SUT. 

l the smaller the threshold value is, the smaller the required overflow space per file record is. 

l the smaller the threshold value is, the greater the relative gain of using the variations over 
the original organization is. In general, if the threshold value is 95% then the improvement 
over the original organization is negligible, whereas if the threshold value is 70% then the 
relative gain is impressive. Notice, however, that the absolute value of the gain is maximized 
when the threshold value is 90%. 

The examination of the effect of the block capacities, yields the following results: 

l for small block capacities (e.g. MBC=lO) the LHPS scheme has the best performance. 
There is only one exception: For a threshold value of 95% the LHPEPS scheme is the best. 

l for large block capacities (e.g. MBC=JO) LHPEPS shows the greatest improvement over 
the original LH scheme. It is worth noting, in particular, that if the threshold value is 70%, 
then the gain due to LHPEPS is impressive (nearly 98%). 

In order to make conclusions about the space performance, we can equivalently, use the search 
cost in place of the required overflow space. This is due to the fact that space and search costs are 
not contradictory in nature. In other words, it is implied that more dense packing results in faster 
search and vice versa. 

5. CONCLUSIONS 

Linear hashing for primary key retrieval is considered to be one of the the best dynamic schemes 
since it does not use an index and has a very good time performance. This organization and two of 
its variations, linear hashing with partial expansions and linear hashing with priority splitting, have 
been presented in this paper. In addition, a new variation of linear hashing has been presented, 
the Linear Hashing with Partial Expansions and Priority Splitting (LHPEPS). 

This organization is a generalization of all the previous approaches and inherits all their merits. 
Insertion and expansion pseudo-algorithms of this organizations have been given. Deletion is 
performed in an analogous manner, therefore the relevant algorithm has been omitted for brevity 
reasons. 

We have compared by simulation all four organizations with respect to search and insertion 
costs and with respect to overflow space. Tables 6 and 7, which summarize the remarks of the 
previous sections, concern the search and insertion costs. The results for the overflow space have 
been omitted, since they are almost identical to those of Table 6. By ‘small’, ‘medium’ and ‘large’ 
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SUT 
MBC,OBC small medium large 

LHPS LHPS LHPEPS 

small LHPEPS LHPEPS LHPS 
LHPEPS LHPEPS LHPEPS 

medium LHPS LHPS LHPE 

LHPEPS LHPEPS LHPEPS 

large LHPE LHPE LHPE 

Table 6. Classification with respect to the search cost. 

SUT 
MBC,OBC small medium large 

LHPS LHPS LHPS 

small 1 LHPEPS LHPEPS LHPEPS 

1 LHPS LHPS LHPEPS 

medium LHPEPS LHPEPS LHPS 

LHPEPS LHPEPS LHPEPS 
large LHPE LHPE LHPE 

Table 7. Classification with respect to the insertion cost. 

block capacities, we mean the pairs (10,3), (20,5) and (50,lO) respectively, where the first (second) 
component indicates the MBC (OBC). By ‘small’, ‘medium’ and ‘large’ threshold values, we 
mean the pairs (70%,75%), (80%,85%) and (90%,95%) respectively. Every entry in each of these 
tables contains the first and second choice for the particular capacity and threshold value. 

These tables illustrate clearly the enhanced performance of LHPEPS over its counterparts. We 
notice that in most of the cases, it has the best performance. In some others it is second but its 

performance is also close to the best. The tables in the previous section show that the performance 
of all four techniques deteriorates for a storage utilization threshold equal to 95%. LHPEPS has 

the best performance, if this threshold value equals 90%, independently of the cost metric. In 
addition, the accompanying structures of LHPEPS are small and can thus reside in main memory. 

Future research includes the integration of the technique of priority splitting in multidimensional 
linear hashing and recursive linear hashing. More specifically for the first case, it is expected that 
the number of recursive overflow files will be reduced, since the technique of priority splitting 
reduces the length of overflow block chains. Another direction involves the integration of our new 

scheme to accommodate variable length records, along the lines of the technique presented in (111. 

Acknowledgements - Thanks are due to Mr. G. Dedeoglou and Mr. G. Papadimos for their valuable help during 

the experimentation. We are also grateful to the referees, whose comments greatly improved the presentation of 

this paper. 

REFERENCES 

[l] R. J. Embody and H.C. Du. Dynamic Hashing. ACM Computing Surveys, 20(2), pp. 85-113 (1988). 

[2] R.. Fagin ,J. Nievergelt ,N. Pippenger and H. R. Strong. Extendible Hashing - a Fast Access Method for 
Dynamic Files, ACM Transactions on Database Systems, 4(3), pp. 315-344 (1979). 

[3] P.A Larson. Dynamic Hashing, BIT,18 (2), pp. 184-201 (1978). 

[4] P.A Larson. Linear Hashing with Partial Expansions. Proceedings of the 6th International Conference on Very 
Large Data Bases, pp. 224-232 (1980). 



446 Y. MANoLoPouLosand N. LORENTZOS 

[5] P.A Larson. Performance Analysis of Linear Hashing with Partial Expansions. ACM Transactions on Database 
Systems, 7 (4), pp. 566-587 (1982). 

(61 P.A Larson. A Single-file Version of Linear Hashing with Partial Expansions. Proceedings of the 8th Inlerna- 
tional Conference on Very Large Data Bases, pp. 300-309 (1982). 

[7] P.,& Larson. Performance Analysis of a Single-file Version of Linear Hashing. The Computer Journal, 28 (3), 
pp. 319-329 (1985). 

[B] P.A Larson P.A. Linear Hashing with Overflow Handling by Linear Probing. ACM Transactions on Database 
Systems, 10,(l), pp. 75-89 (1985). 

[9] W. Litwin Virtual Hashing - a Dynamically Changing Hsshing,.Proceedinga of the 4th International Confer- 
ence on Very Large Data Bases, pp. 517-523 (1978). 

[lo] W. Litwin. Linear Hashing - a New Tool for File and Table Addressing. Proceedings of Ihe 6th International 
Conference on Very Large Data Bases, pp. 212-223 (1980). 

[ll] Y. Manolopoulos and N. Fistas . Algorithms for a Hash Based File with Variable Length Records. Information 
Sciences, 03, pp. 229-243 (1992). 

(121 G.N.N. Martin. Spiral Storage - Incrementally Augmentable Hash Addressed Storage. Theory of Computation 
Report #27, University of Warwick, England (1979). 

[13] J.K. Mullin Tightly Controlled Linear Hashing without Separate Overflow Storage. BIT, 21, pp. 390-400 
(1981). 

[14] K. Ramamohanarao and Ft. Sacks-Davis. Recursive Linear Hashing. ACM Transactions on Database Systems, 
9 (3), pp. 369-391 (1984). 

[15] W. Ruchte and A. Tharp. Linear Hashing with Priority Splitting. Proceedings of Ihe 3th International IEEE 
Conference on Data Engineering, pp. 2-9 (1987). 

[16] A. Tharp. File Organization and Processing, Wiley (1988). 


