INTELLIGENT SYSTEMS IN ACCOUNTING, FINANCE AND MANAGEMENT
Intell. Sys. Acc. Fin. Mgmt. 20, 111-139 (2013)
Published online 17 April 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/isaf.1338

CORPORATE DIVIDEND POLICY DETERMINANTS:
INTELLIGENT VERSUS A TRADITIONAL APPROACH

PANTELIS LONGINIDIS** AND PANAGIOTIS SYMEONIDIS®
& Department of Engineering Informatics & Telecommunications, University of Western Macedonia, Karamanli & Lygeris Street,
50100 Kozani, Greece
° Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

SUMMARY

Dividend is the return that an investor receives when purchasing a company’s shares. The decision to pay these
dividends to shareholders concerns several other groups of people, such as financial managers, consulting firms,
individual and institutional investors, government and monitoring authorities, and creditors, just to name a few.
The prediction and modelling of this decision has received a significant amount of attention in the corporate finance
literature. However, the methods used to study the aforementioned question are limited to the logistic regression
method without any implementation of the advanced and expert methods of data mining. These methods have
proven their superiority in other business-related fields, such as marketing, production, accounting and auditing.
In finance, bankruptcy prediction has the vast majority among data-mining implementations, but to the best of
the authors’ knowledge such an implementation does not exist in dividend payment prediction. This paper satisfies
this gap in the literature and provides answers that help to understand the so-called ‘dividend puzzle’. Specifically,
this paper provides evidence supporting the hypothesis that data-mining methods perform better in accuracy
measures against the traditional methods used. The prediction of dividend policy determinants provides valuable
benefits to all related parties, as they can manage, invest, consult and monitor the dividend policy in a more
effective way. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary goal of financial management (FM) is to maximize the current value per share of the
existing stock. One substantial financial decision affecting this value maximization goal is the dividend
policy (DP). According to Baker (2009), dividend decisions, as determined by a firm’s DP, affect the
amount of earnings that a firm distributes to shareholders versus the amount it retains and reinvests.
DP refers to the payout policy that a firm follows in determining the size and pattern of cash distributions
to shareholders over time.

Corporate DP has captured the interest of economists since the middle of the twentieth century
and over the last six decades has been the subject of intensive theoretical modelling and empirical
examination. A number of conflicting theoretical models, which are lacking in strong empirical
support, define current attempts to explain the corporate dividend behaviour (Frankfurter and
Wood, 2002). Brealey et al. (2004) described eloquently the reason for this conflict in the DP
modelling landscape. The authors stated that the endearing feature of economics, where it can
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always accommodate not just two but three opposing points of view, is applicable and induces the
controversy about DP. On the one side there is a group which believes that an increase in dividend
payout increases firm value. On the opposite side there is a group which believes that an increase
in payout reduces value. And in the centre there is a party which claims that DP makes no
difference. Black (1976) characterized this controversy as a puzzle by arguing that the
harder we look at the dividend picture, the more it seems like a puzzle with pieces that just do
not fit together.

Despite exhaustive theoretical and empirical analysis to explain their pervasive presence,
dividends remain one of the thorniest puzzles in corporate finance (Baker et al., 2002). The
inability to resolve the dividend puzzle is mainly due to financial economists’ efforts to develop
universal models, although it is proven that DP is sensitive to factors such as market frictions,
firm characteristics, corporate governance and legal environments (Frankfurter and Wood, 1997,
Baker et al., 2008).

Frankfurter and Wood (2002) conducted an extensive literature review in order to explore whether
the puzzling reality of corporate dividend behaviour is caused by three factors; namely: (1) method
of analysis employed; (2) sample period; and (3) data frequency. The authors analysed 150 empirical
studies of corporate DP and came to the conclusion that no dividend model, either separately or jointly
with other models, is supported invariably. However, a semantic part of Frankfurter and Wood’s (2002)
analysis is the presentation of the methods utilized for each model. The vast majority of these models
utilized regression and event studies methods, and the synchronous methods of data mining (DM) were
implemented by none of these models.

The DP decision, and more specifically the decision to pay or not dividends, can be regarded as a
typical binary classification problem of assigning new observations to two predefined decisions as
classes (e.g. ‘yes’ and ‘no’ dividend payment classes). Despite the fact that many DP methods have
been applied in the financial area, an analogous model in the DP literature does not exist to the best
of our knowledge.

This gap in the existing DP literature has stimulated the research interest of this work as it
desires to fulfil the need to employ DM methods in order to model the decision to pay or not
dividends and to explore whether these techniques are capable of predicting the dividend payment
decision better and more precisely than the traditional regression approaches found scattered in
the DP literature. However, by modelling the DP decision, this study aims further to provide a
convenient and effective decision-support tool to investors. Investors will understand the financial
and nonfinancial features that paying and nonpaying companies have and will take them into
account when constructing and managing their investment portfolios. Our research effort is
summarized in the following research questions:

RQI. Are DM methods more accurate than the logistic regression in predicting the dividend payment
decision of corporations?

RQ2. Which are the financial, managerial, and corporate governance features of corporations paying
and not paying dividends to shareholders?

The rest of the paper is structured as follows. Section 2 reviews the previous and current body of
literature for both DP and DM in the FM area. Section 3 provides insights into the research methodol-
ogy employed, followed by the dataset generation process in Section 4. The available DM techniques
are applied using this dataset and the results reported and commented on in Section 5. The paper ends
with concluding remarks, managerial implications and further research directions.
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2. RELATED LITERATURE

2.1. Dividend and Dividend Policy Determinants

The seminal papers of Linter (1956) and of Miller and Modigliani (1961) (MM) were the beginning of
contemporary theoretical attempts to explain the role of DP. Since these pioneer works, the bulk of
studies followed and either support or reject their validity. As Baker (2009) states, MM’s unconventional
and controversial conclusion about DP irrelevance stirred a heated debate that has reverberated throughout
the finance community for decades. The DP theories developed are the following:

» The dividend irrelevance theory, where dividend payout policy does not affect overall firm value in
perfect capital markets (Ang and Ciccone, 2009).

* The residual DP theory, where managers exhaust all available positive net present value investments
and then pay the residual cash flow as dividend (Smith, 2009).

» The tax clientele effects theory, where investors prefer firms to retain cash instead of pay dividends
because the tax rate on dividends is typically higher than on long-term capital gains (Saadi and
Dutta, 2009).

* The cash flow signalling hypothesis, where the stock price moves in the same direction as the divi-
dend because dividend changes convey information about the firm’s future growth opportunities
(Mukherjee, 2009).

» The free cash flow hypothesis, where price reacts favourably to the announcement of a dividend
increase because this increase reduces the agency cost of free cash flow (funds available to managers
for perquisite consumption) (Mukherjee, 2009).

» The signalling theory, where unexpected dividend increases (decreases) are associated with signifi-
cant share-price increases (decreases) because dividend changes signal future prospects of the firm
and thus reduce the information asymmetries existing between firm managers and the market
(Filbeck, 2009).

 The firm life cycle theory, where the optimal DP of a firm is based on its life cycle. A firm will begin
paying dividends when its growth rate and profitability are expected to decline in the future (Bulan
and Subramanian, 2009).

» The catering theory, where managers cater to investor demand by paying dividends when investors
prefer dividend-paying firms and by not paying dividends (or reducing the dividend) when investors
prefer non-dividend-paying companies (De Rooij and Renneboog, 2009).

* The behavioural theory explains the impact of age, retirement status and income on the relationship
between consumer expenditures and the preference for dividends, and a psychological approach to
dividend theory explains the relationship between tolerance for risk and the preference for dividends
(Shefrin, 2009).

Many studies across various countries and time periods investigated the validity of these theories.
Denis and Stepanyan (2009) provided a synthesis of studies focused on DP determinants and concluded
that dividends are associated with several firm characteristics, such as size, profitability, growth oppor-
tunities, maturity, leverage, equity ownership and incentive compensation. Additionally, the authors
found an association between dividends and characteristics of the market in which the firm operates,
such as tax laws, investor protection, product market competition, investor sentiment and public or
private status, as well as the availability of substitute forms of corporate payout, primarily share
repurchases. Dutta and Saadi (2009) discussed different external (such as shareholder rights and legal
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environment) and internal corporate governance mechanisms (such as managerial and block-holder
ownership, compensation and board structure) that may influence a firm’s DP. The authors reported a
significant impact of these factors on DP and that the majority of studies showed that better legal
protection of minority shareholders led to a higher level of dividend payments.

Table I summarizes representative studies that highlight the state of knowledge in the field of DP
determinants. The findings of these studies provide support to all theories, and this contributes to the
‘dividend puzzle’ as no model is able to express the DP invariably and under all circumstances.
Researchers investigate a large number of financial, managerial and corporate governance features of
firms aiming to evaluate their research hypothesis and employ a variety of methods and techniques.
Logistic regression was the most popular technique employed in DP determinants studies; more impor-
tantly, DM methods were lacking.

2.2. Data Mining Applications in Financial Management

DM can be applied to many different economic and/or financial prediction problems (Seng and Chen,
2010). Statistical analysis has been available to businesses for years, but somehow DM has captured
the interest of businesses in a way that classical statistical analysis never did. The main reason for
this widespread popularity is the real financial benefit to businesses (Jessen and Paliouras, 2001;
Lee and Siau, 2001; Bose, 2009). DM in FM is an emerging field with potential benefits for both
academics and practitioners.

Forecasting stock market, currency exchange rate, bankruptcies, understanding and managing
financial risk, trading futures, credit rating, loan management, bank customer profiling and money
laundering analyses are core financial tasks for DM (Kovalerchuk and Vityaev, 2005; Tsai, 2008;
Huang et al., 2012). Wong and Selvi (1998) examined the historical trend of published finance appli-
cations of neural networks (NNs). Their survey indicated that only a few NNs were developed for
supporting the strategic planning of decision making in finance. Kirkos and Manolopoulos (2004)
conducted an excellent review of the DM applications in finance and accounting and concluded that
the most popular DM method in finance was NNs and the most popular finance task was bankruptcy
prediction. Zhang and Zhou (2004) highlighted the potential of DM techniques in finance and review
application studies existing in core financial areas. Financial fraud detection with application of DM
techniques was the topic that Ngai ef al. (2011) investigated in their review article and concluded that
insurance fraud was the most popular topic and logistic models were the most widely used. Sharma and
Panigrahi (2012) reviewed DM applications on detection of financial accounting fraud and found that
logistic models are again the most popular in application. The literature of financial crisis prediction
with machine-learning applications was surveyed by Lin et al. (2012), where they came to the
conclusion that the development of models in this area has a long way to go.

Based on the above-cited reviews, it is evident that the field of DM in finance is growing rapidly in
depth and width. However, there are some finance areas that research has not yet directed its interest
onto, and DP is among these. The only endeavours that applied DM in the DP field are two studies
by Kim and co-workers.

In their first study, Kim ef al. (2010) developed a dividend forecasting model that outperformed
the popular (in the finance community) Marsh and Merton (1987) dividend prediction model — an
econometric error correction model that utilized only past stock price (P, and P, ) and past dividends
(D,) in order to predict future dividends — in accuracy measures under different tolerance levels. The
model of Kim et al. (2010) was based on the concept of knowledge integration (KI), where the rules
derived by implementing the classification and regression trees (CART) algorithm in four different
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datasets — one with variable P, missing, one with variable P, ; missing, one with variable D, missing
and one without any missing variable — are combined and provide a meta model with 39 rules. Data
from a sample frame of 137 companies listed in the Korea Exchange market and for a time window
of 20 years, from 1980 to 1999, were used to conduct experiments aiming to compare the KI model
with the Marsh and Merton model, a CART model and a back-propagation NN. The experiments
showed that the proposed KI model, with its cumulating rules from missing datasets, improved predic-
tion performance as it reduces the error term and increases R, and this results in an excessive overall
accuracy that outperforms the other three benchmark models.

In a subsequent paper, Won ef al. (2012) suggested a knowledge refinement model that refines the
multiple rules extracted through rule-based algorithms from dividend datasets using genetic algorithms
(GAs). Through a seven-step framework, their genetic algorithm knowledge refinement (GAKR)
technique starts with rules induction from traditional algorithms (CHAID, CART, QUEST and C5.0)
and after implementing a GA iterative process that searches for the most valuable decision rule or
optimal rule set provides the DP prediction. Although the GAKR model utilized the same input variables
and the same experiment data that the KI model did, its predicted target variable was not the dividend value
but a binary variable — if D, | 2 D, then the class is +1 and if D, | < D, then the class is —1 — showing the
DP. The experiments provided evidence supporting the prediction performance superiority of the GAKR
model against the traditional rule induction algorithms (CHAID, CART, QUEST and C5.0), and these
results were verified statistically via the nonparametric Wilcoxon signed-rank test.

3. RESEARCH METHODOLOGY

The DP decision can be modelled as a typical classification problem where the outcomes are ‘pay
dividends’ or ‘do not pay dividends’. A classification technique (or classifier) is a systematic approach
to building classification models from an input dataset. Examples include decision tree (DT) classifiers,
rule-based classifiers, NNs, support vector machines, and naive Bayes classifiers. Each technique
employs a learning algorithm to identify a model that best fits the relationship between the attribute set
and class label of the input data. The model generated by a learning algorithm should both fit the input data
well and correctly predict the class labels of records it has never seen before. Therefore, a key objective of
the learning algorithm is to build models with good generalization capability (Tan ez al., 2006).

Among a plethora of available DM techniques, in this study we select the DT and back-propagation
NN methods and compare their results with the logistic regression method. NNs are the most widely
used DM method in finance applications (Zhang and Zhou, 2004), while the back-propagation learning
algorithm is used most frequently in business applications (Vellido et al., 1999; Wong et al., 2000).
However, NNs lack explanation facilities when applied to DM problems as their knowledge is buried
in their structures and weights, making it difficult to extract rules (Li and Wang, 2004). This shortcom-
ing is managed by utilizing DTs, whose interpretability is very high. Moreover, these two methods had
a satisfactory applicability in the DP field (Kim ef al., 2010).

3.1. Decision Trees

A DT is a collection of decision nodes, connected by branches, extending downward from the root node
until terminating in leaf nodes. Beginning at the root node, which by convention is placed at the top of
the DT diagram, attributes are tested at the decision nodes, with each possible outcome resulting in a
branch. Each branch then leads either to another decision node or to a terminating leaf node. The
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dataset is partitioned, or split, according to the values of this attribute (Larose, 2005). There are many
measures that can be used to determine the best way to split the records and these are defined in terms of
the class distribution of the records before and after splitting. The measures developed for selecting the
best split are often based on the degree of impurity of the child nodes. The smaller the degree of impurity,
the more skewed the class distribution is. Among others, a popular impurity measure is the entropy:

Entropy(1) = — > p(ilr) logap(il1) (1)

where ¢ is the number of classes and p(i|f) denotes the fraction of records belonging to class i at a given
node . However, in order to determine how well a test condition performs, we need to compare the degree
of impurity of the parent node (before splitting) with the degree of impurity of the child nodes (after split-
ting), where the larger the difference is, the better the test condition is. The gain is a criterion that can be
used to determine the goodness of a split:

A = [(parent) — ij: X N](\?j) 1(u)) @)

where /() is the impurity measure of a given node, N is the total number of records at the parent node,
k is the number of attribute values and N(u;) is the number of records associated with the child node u;
(Tan et al., 20006).

In this study, the C5.0 DT algorithm was used. C5.0 is an extension of C4.5 (Quinlan, 1993), which
is the result of a series of improvements to the ID3 algorithm (Quinlan, 1986). These improvements
include methods for dealing with numeric attributes, missing values, noisy data and generating rules
from trees (Witten and Frank, 2005). The algorithm works by splitting the sample based on the field
that provides the maximum information gain. Each subsample defined by the first split is then split
again, usually based on a different field, and the process repeats until the subsamples cannot be split
any further. Finally, the lowest level splits are re-examined, and those that do not contribute significantly
to the value of the model are removed or pruned (IBM Corporation, 2011).

3.2. Neural Networks

An NN is composed of a set of elementary computational units, called neurons, connected together
through weighted connections. These units are organized in layers so that every neuron in a layer is
exclusively connected to the neurons of the preceding layer and the subsequent layer. These layers
can be of three types: input, output or hidden. The input layer receives information only from the
external environment without performing any calculation and transmits information to the next level.
The output layer produces the final results, which are sent by the network to the outside of the system.
Between the output and the input layer there can be one or more intermediate levels, called hidden
layers because they are not directly in contact with the external environment. These layers are exclu-
sively for analysis; their function is to take the relationship between the input variables and the output
variables and adapt it more closely to the data. Every neuron, also called a node, represents an
autonomous computational unit and receives inputs as a series of signals that dictate its activation.
Following activation, every neuron produces an output signal. All the input signals reach the neuron
simultaneously, so the neuron receives more than one input signal, but it produces only one output
signal. Every input signal is associated with a connection weight. The weight determines the relative
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importance the input signal can have in producing the final impulse transmitted by the neuron. The
weights are adaptive coefficients that are modified in response to the various signals that travel on
the network according to a suitable learning algorithm. A threshold value, called bias, is usually
introduced. A generic neuron j, with a threshold 6, receives n input signals x=[x;,x,, .. ..x,] from
the units to which it is connected in the previous layer. Each signal is attached with an importance
weight w;=[wy;,w,;, .. .,w,;]. The same neuron elaborates the input signals, their importance weights
and the threshold value through a combination function. The combination function produces a value
called the potential or net input. An activation function transforms the potential into an output signal.
The combination function is usually linear; therefore, the potential is a weighted sum of the input values
multiplied by the weights of the respective connections. The sum is compared with the threshold value.
The potential and the output signal of a neuron j is defined by the linear combination shown in
equations (3) and (4) (Giudici and Figini, 2009):

N =" (xiwy — 6) 3)

OUT; = f[zz; (riwy — 9,)} 4)

The combination of topology, learning paradigm and learning algorithm defines an NN model. There
is a wide selection of popular NN models. For DM, perhaps the back-propagation network and the
Kohonen feature map are the most popular (Bigus, 1996). In this study, a feed-forward back-
propagation NN with exhaustive prune training method was used.

4. DATASET GENERATION AND PROFILE

4.1. Population Frame, Time Frame and Data Sources

In this study, the companies listed in the Athens Exchanges (ATHEX) were our initial population frame
and the reason for this selection is at least twofold. First, the institutional framework that regulates the
operation of these companies is very strict and is governed by transparency and disclosure. The
ATHEX rulebook defines explicitly the regular or periodic reporting obligations, the extraordinary
reporting obligations and the special categories of reporting. All information that might have an
effect on a company’s stock price, such as resolutions of the general meeting, payment of main
dividends/interim dividends, corporate actions, and so on should be announced to both the authorities
and investors. Second, the financial statements prepared by issuers should be in accordance with legis-
lation in force and should be audited by a certified auditor. Consequently, the reliability and validity of
these statements is high because the certified auditor is charged with both civil and criminal liabilities in
the case of false and misleading financial statements. Thus, the quantity and quality of available
information were the dataset’s selection criteria. The data that constitute the research dataset were
collected through different resources and during a time frame of approximately 8 months, starting
from 1 September 2010. September is the month that almost all companies listed in the ATHEX have
conducted their annual ordinary shareholders’ meetings. During these meetings the board of directors
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(BoD) suggests or does not suggest a dividend payment, for the previous fiscal year, and the body of
shareholders accepts or rejects this decision based on the majority vote.

Pure financial data, such as financial ratios and financial statement accounts, were drawn
from iMENTOR, an online business information platform featured and updated by Hellastat S.A.
(http://www.hellastat.com). Hellastat is a company that operates in the areas of business information
and market research. Moreover, Hellastat is a strategic partner of Standard & Poor’s and a member
of Thomson—Reuters plc. Data related to companies’ profiles and announcements, under the rulebook
and resolutions of the ATHEX, were drawn from the official web site of the ATHEX S.A. (http://www.ase.
gr/default_en.asp). Several data triangulations were made with daily and periodic business press releases
and with data available at web sites of business information vendors. Time-series data, such as stock clos-
ing price and trading volume for a large time horizon and with a daily frequency, were drawn from the of-
ficial site of Naftemporiki Publishing S.A. (http://www.naftemporiki.gr), a leading company in economic
and business press in Greece. Finally, specialized data regarding the corporate governance of the compa-
nies, such as composition of the BoD and nationality of subsidiaries, were drawn from the annual reports
and annual financial reports of the companies. According to the ATHEX rulebook, all listed companies are
obliged to post on their official web sites the aforementioned reports; thus, these data were gathered from
the companies’ official web sites.

The time frame included three consecutive years from 2007 to 2009. On 1 September 2010 the total num-
ber of ATHEX-listed companies was 280. Various companies had been listed and delisted from the ATHEX
during the 3 years prior to this date, but in order to have recent and non-missing data the 280 companies
listed on 1 September 2010 constituted the initial research sample. The first screening process on the initial
research sample concerned the elimination of companies which had specific features on their financial state-
ments making impossible any comparison with the other listed companies. These were banks and insurance
companies which use different generally accepted accounting principles. A total of 19 companies were
excluded, 15 banks and 4 insurance companies, resulting in a research sample of 261 companies. The second
screening process concerned the elimination of 15 companies whose stocks had been classified in the ‘Under
Suspension Segment’ for a period longer than 3 months. Suspension of trading in a stock means the
temporary cessation of trading therein. The suspension decision is made by the Chairman of the BoD of
ATHEX based on the Markets in Financial Instruments Directive (MiFID) and with the intention to safeguard
the market and protect the interests of investors. In such a case, time-series data and also financial reports are
lacking from most of the suspended companies, and this results in a lot of missing data to the dataset.

After having finalized the dataset’s objects, selection and justification of the variables followed. The
criteria that drive the selection decision for these variables were either scientific (previous studies in the
field) or subjective (authors’ initiations). First and foremost, dividend payments, which is the decision
variable being modelled by this study, were recorded and then various accounts from the financial
statements (balance sheet, income statement and cash flow statement) and various financial ratios were
selected and recorded. Second, various non-financial variables related to administration, ownership,
auditing, operating industry and other interesting corporate governance characteristics were gathered

and recorded. All variables’ codes, explanations and sources are provided in Table Al in APPENDIX A.

4.2. Dataset Descriptive Statistics

The variables included in the research dataset are divided into qualitative and quantitative. The former
group includes variables with nominal and ordinal values, while the latter includes variables with inter-
val and ratio values. Table II provides the frequencies, percentages and cumulative percentages of
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Variable Attribute Frequency Percent Cumulative percent

1. FSYEAR 2007 246 33.3 333
2008 246 333 66.7
2009 246 333 100.0
Total 738 100.0

2. INDUSTRY Personal and Household Goods 123 16.7 16.7
Food and Beverage 87 11.8 28.5
Industrial Goods and Services 81 11.0 394
Construction and Materials 78 10.6 50.0
Technology 66 8.9 58.9
Basic Resources 48 6.5 65.4
Travel and Leisure 45 6.1 71.5
Retail 39 53 76.8
Media 36 4.9 81.7
Financial Services 30 4.1 85.8
Real Estate 30 4.1 89.8
Chemicals 27 3.7 93.5
Health Care 24 33 96.7
Utilities 12 1.6 98.4
Oil and Gas 9 1.2 99.6
Telecommunications 3 0.4 100.0
Total 738 100.0

3. SECTOR Medium and Small Capitalization 417 56.5 56.5
Big Capitalization 173 234 79.9
Low Dispersion and Specific Features 95 12.9 92.8
Under Supervision 51 6.9 99.7
Under Suspension 2 0.3 100.0
Total 738 100.0

6. HEADQR Attiki 588 79.7 79.7
Thessaloniki 48 6.5 86.2
Herakleion 12 1.6 87.8
Viotia 12 1.6 89.4
Kilkis 9 1.2 90.7
Evros 6 0.8 91.5
Imathia 6 0.8 92.3
Larisa 6 0.8 93.1
Serres 6 0.8 93.9
Achaia 3 0.4 94.3
Aitoloakarnania 3 0.4 94.7
Chania 3 0.4 95.1
Drama 3 0.4 95.5
Evia 3 0.4 95.9
Fokida 3 0.4 96.3
Fthiotida 3 0.4 96.7
FYROM 3 0.4 97.2
Toannina 3 0.4 97.6
Kalamata 3 0.4 98.0
Kavala 3 0.4 98.4
Korinthos 3 0.4 98.8
Lesvos 3 0.4 99.2
Patra 3 0.4 99.6
Rethymno 3 0.4 100.0
Total 738 100.0

9. NSUBSD Both 420 56.9 56.9
Domestic 144 19.5 76.4
None 125 16.9 934
Foreign 49 6.6 100.0
Total 738 100.0

(Continues)
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Table II. (Continued)

Variable Attribute Frequency Percent Cumulative percent

12. SPLIT None 677 91.7 91.7
Normal 24 33 95.0
Both 20 2.7 97.7
Reverse 17 2.3 100.0
Total 738 100.0

13. CAPCGE None 586 79.4 79.4
Increase 101 13.7 93.1
Both 31 42 97.3
Decrease 20 2.7 100.0
Total 738 100.0

24. CEODUAL No 440 59.6 59.6
Yes 298 40.4 100.0
Total 738 100.0

33. AUDITOR Sol 254 344 344
Thornton 108 14.6 49.1
Bdo 103 14.0 63.0
Pwc 69 9.3 72.4
Tilly 57 7.7 80.1
Kpmg 34 4.6 84.7
Ernst 32 43 89.0
Deloitte 22 3.0 92.0
Pkf 20 2.7 94.7
Stephens 16 22 96.9
Independent 9 1.2 98.1
Orion 4 0.5 98.6
Monday 3 0.4 99.1
Nexia 3 0.4 99.5
Rps 2 0.3 99.7
Enel 1 0.1 99.9
Rsm 1 0.1 100.0
Total 738 100.0

34. AUDITOROP Unqualified 551 74.7 74.7
Qualified 187 25.3 100.0
Total 738 100.0

qualitative variables in descending frequency order and Table III provides the minimum and maximum
values, the mean and the standard deviation of quantitative variables.

Regarding qualitative variables, it is evident that some of them have a lot of possible attributes, like
the variables ‘INDUSTRY’, ‘HEADQR’, ‘AUDITOR’, to name a few. On the other hand, quantitative
variables are too many. Both of the above situations affect the dimension of the dataset and cause
problems of dimensionality in DM. In Section 4.3 this problem will be challenged and managed
effectively by employing appropriate statistical and DM techniques.

4.3. Dataset Exploration, Transformation and Purification

In DM it is often possible to have a dataset with a large number of variables. In such situations it is very
likely that subsets of variables are highly correlated with each other. Including highly correlated
variables in a classification or prediction model (or including variables that are unrelated to the outcome
of interest) can lead to overfitting, and accuracy and reliability can suffer (Shmueli ez al., 2007). Also,
retaining too many variables may lead to overfitting, in which the generality of the findings is hindered
because the new data do not behave the same as the training data for all variables (Larose, 2005).
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Variable Min. Max. Mean Standard deviation
4. FDYEAR 1879 2001 1974.78 n/a
5. LDATE 22 Feb 1912 04 Jan 2008 12 Jul 1993 n/a
7. EMPL 0 34,602 610.84 2069.543
8. SUBSD 0 172 10.10 17.957
10. NSHARES 610000 1,961,200,440 51,989,635.05 1.143E8
11.NV 0.30 8.63 0.8874 0.937
14. BoDFEES 0 14,600,000 1,181,651.47 1,513,179.800
15. BoD 4 26 7.75 2.397
16. FBoD 0 7 0.37 1.015
17. DBoD 0 26 7.35 2.495
18. MBoD 0 25 6.79 2.649
19. WBoD 0 10 0.97 1.352
20. EXBoD 1 11 3.56 1.653
21. NEXBoD 0 21 4.18 2.092
22. INDPBoD 0 21 2.37 1.275
23. NINDBoD 1 13 5.36 2.181
25. NOWN 0 9 2.75 1.348
26. OWNPRC 0.00 98.40 62.62 17.889
27. NINSTOWN 0 5 0.41 0.754
28. INSTOWNPRC 0.00 96.62 7.26 18.033
29. NMANGOWN 0 5 1.21 1.127
30. MANGOWNPRC 0.00 90.61 30.18 27.775
31. NFAMLOWN 0 9 1.04 1.492
32. FAMLOWNPRC 0.00 86.31 20.71 29.511
35. DIVD 0.00 6.50 0.09 0.358
36. EPS -3.75 10.31 0.11 0.717
37. MV 0.09 64.55 3.85 6.436
38. BV —1.88 75.40 2.93 5.198
39. TGA 0.00 1.31E10 1.16E8 7.903E8
40. ITGA 0.00 4.05E8 6.17E6 3.280E7
41. INVSUB 0.00 4.73E9 8.57E7 3.811E8
42. INVASS 0.00 2.15E8 1.16E6 1.348E7
43. DTXASS 0.00 1.88E8 2.57E6 1.528E7
44. FA 940.28 1.33E10 2.44E8 9.773E8
45. INV 0.00 1.41E9 2.27E7 9.378E7
46. ARECV 0.00 1.23E9 4.55E7 1.071E8
47. CASH 0.00 1.19E9 2.12E7 8.387E7
48. CA 231,617.77 2.50E9 9.73E7 2.382E8
49. TA 1,863,333.00 1.58E10 341E8 1.170E9
50. CC 1,811,112.91 5.06E9 1.07E8 3.566E8
51. RSV —9.93E8 4.34E9 4.30E7 2.546E8
52. TRSH —856,000.00 5.26E8 1.87E6 2.117E7
53. RETEAR —2.46E8 1.54E9 2.32E7 1.250E8
54. TEQ —43,732,098.00 6.45E9 1.64E8 5.319E8
55. DTXL —283,440.39 4.91E8 5.33E6 2.428E7
56. LTDBT 0.00 6.35E9 8.70E7 4.461E8
57. TXL —271,228.40 3.96E8 3.82E6 2.429E7
58. CL 101,089.23 3.06E9 8.18E7 2.605E8
59. TDBT 116,647.23 9.32E9 1.69E8 6.717E8
60. WCPT —1.33E9 1.23E9 1.54E7 1.147E8
61. TREV —39,072,236.84 9.32E9 2.00E8 7.773E8
62. COGS 1500.00 9.33E9 1.64E8 6.959E8
63. GPRF —40,428,561.39 1.37E9 3.78E7 1.326E8
64. OPRF —1.70E8 1.13E9 1.30E7 7.773E7
65. DEPR 0.00 5.67E8 9.03E6 4.642E7
66. TX —93,747,000.00 3.50E8 4.62E6 2.556E7
67. NOPAT —2.33E8 7.22E8 9.17E6 6.131E7
68. CFOP —4.12E8 1.83E9 1.45E7 9.813E7
69. CFINV —4.47E9 1.83E9 —2.21E7 2.114E8
70. CFFIN —1.94E9 5.75E9 9.27E6 2.418E8
71. CURRAT 0.01 236.56 4.79 18.691
(Continues)
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Table III. (Continued)

Variable Min. Max. Mean Standard deviation
72. QRAT 0.01 236.56 431 18.556
73. RECTURN —111.86 3974.26 11.43 154.517
74. INVTURN 0.04 576,004.35 2709.42 37,090.095
75. PAYTURN —16.95 37.36 3.37 3.830
76. DBTEQTY —15.87 32.56 1.37 2.555
77. TDBTRAT 0.00 2.56 0.50 0.260
78. CASHCRAT —8272.00 8655.20 3.26 593.697
79. ROA —3.60 0.53 —0.00 0.169
80. ROE —-9.23 3.35 —0.01 0.584
81. FASSTURN —13,288.61 21,366.67 16.79 952.420
82. TASSTURN —0.62 8.77 0.62 0.793
83. SGA_EXPSLS —0.33 660.33 1.83 25.813
84. FIN_EXPSLS —1.44 660.33 1.45 26.371
85. SGA_EXPGPR —343.64 871.08 2.85 40.137
86. FIN_EXPGPR —147.36 871.08 2.44 37.955
87. MKTBOOKVAL —6.17 1805.84 4.76 68.391
88. LFCYCLEI —40.63 47.60 0.09 3.268
89. LFCYCLE2 —15.13 0.70 —0.09 0.947

Reducing the dimensionality of the data by deleting unsuitable attributes improves the performance of
learning algorithms, it speeds them up and, more importantly, yields a more compact and more
interpretable representation of the target concept, focusing the user’s attention on the most relevant
variables (Witten and Frank, 2005). Selecting the most relevant variables is usually suboptimal for
building a predictor, particularly if the variables are redundant. Conversely, a subset of useful variables
may exclude many redundant, but relevant, variables (Guyon and Elisseeft, 2003). The dimensionality
of a dataset is also affected by the categories included in a predictor categorical variable, as a variable
with m categories will be transformed into m — 1 dummy variables when used in the analysis, resulting
in a further dimension increase. One way to handle this is to reduce the number of categories by binning
close bins together. However, this requires incorporating expert knowledge and common sense
(Shmueli et al., 2007).

Based on the above argumentation, it clear that prior to applying DM techniques to the research
dataset a specific procedure called ‘feature/variable selection’ should be implemented in order to avoid
negative results in the next stages of the analysis. Specifically, the feature selection process will be
realized by employing the one-way analysis of variance (ANOVA) test for quantitative variables and
the Pearson’s chi-square test of independence for qualitative variables in order to find relevant and
irrelevant variables.

However, before this selection process, some new variables will be constructed, based on the raw
data presented in Tables II and III, which are necessary in predicting the target variable of our analysis;
and some of them have the advantage of being qualitative with nominal values, as many classification
algorithms deal only with these types of variables. Table IV presents the equations applied in order to
constructs the new variables.

For the benefit of feature selection, Table V presents the results of the one-way ANOVA test, and the
Pearson’s chi-square test results for qualitative variables are presented in Table VI. In Table V the
dataset is divided into those records having BVID = ‘no’ and those having BVID = ‘yes’. For each var-
iable (columns 1 and 6) the mean within each sample is presented (columns 2, 3, 7and 8) and also the F
statistic (columns 4 and 9) along with the p-values (columns 5 and 10) are provided. Those variables
where the significance is lower than 0.05 are included in the next stage of the analysis, as a
variable is salient if it has a high variance compared with others (Guyon and Elisseeff, 2003).
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Table IV Dataset’s variables transformation®

Code

Explanation

yes if DIVD > 0

90. BDIVD = { no if DIVD = 0

yes if SUBSD > 0

o1. BSUBSD = { no if SUBSD = 0
92. BODFEESAVG = BopEEES

— EBoD
93. FBoDPRC = B4

94. DBoDPRC = DBeD

_ MBoD
95. MBODPRC = MBI

96. WBoDPRC = WBoD

97. EXBoDPRC = EXBoD
98. NEXBoDPRC = NEXEoD

__ INDPBoD
99. INDPBoDPRC = INDPBoD

100. NINDPBoDPRC = NINDEBoD
yes if NOWN > 0
no if NOWN = 0

yes if NINSTOWN > 0
no if NINSTOWN = 0

yes if NMANGOWN > 0
no if NMANGOWN = 0

yes if NFAMLOWN > 0
no if NFAMLOWN = 0

101. BNOWN = {
102. BNINSTOWN = {
103. BNMANGOWN = {

104. BNFAMLOWN = {

Attiki if HEADQR = Attiki

Binarization of the amount of dividends
paid to shareholders

Binarization of the number of
subsidiaries owned by the company

Average amount of fees delivered to
BoD and management staff

Percentage of foreign members of
the BoD

Percentage of domestic members
of the BoD

Percentage of men members of
the BoD

Percentage of women members
of the BoD

Percentage of executive members of
the BoD

Percentage of nonexecutive members
of the BoD

Percentage of independent members
of the BoD

Percentage of non independent members
of the BoD

Binarization of the number of persons/
companies owning more than 5% of a
company’s stocks

Binarization of the number of
institutional investors owning more
than 5% of a company’s stocks

Binarization of the number of the
company’s management staff owning
more than 5% of a company’s stocks

Binarization of the number of persons
having family relationships
(same surname) and owning more
than 5% of a company’s stocks

105. DHEADQR = ¢ Thessaloniki if HEADQR = Thessaloniki Discretization of the company’s
Other if HEADQR # Attiki or Thessaloniki headquarters

[ yesif CAPCGE = Increase or Both or Decrease L ,
106. BCAPCGE = { 0 if CAPCGE — None Binarization of the company’s

contributed capital increase/decrease
yes if AUDITOR = Kpmg or Pwc or Ernst or Deloitte

no if AUDITOR # Kpmg or Pwc or Ernst or Deloitte Binarization of the company’s

107. BAUDITOR = {
independent auditor

108. GLDR if AUDITOR = Sol Discretization of the company’s
DAUDITOR = ¢ B4 if AUDITOR = Kpmg or Pwc or Ernst or Deloitte independent auditor
Other if AUDITOR # Sol or Kpmg or Pwc or Ernst or Deloitte

109. In variable SECTOR the attributes ‘Under Supervison’ and ‘Under Suspension’ were merged in to attribute ‘Under Suspevision’

#Atributes 90, 91, 101-109 are Nominal and attributes 92—100 are Ratio.

Moreover, Table VI shows for each qualitative variable (column 1) the calculated chi-squared statistic
(column 2), the degrees of freedom (column 3) and the p-values (column 4), where, again, variables
with significance lower than 0.0001 are included in the next stage of the analysis. The feature selection
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Table VI Feature selection results: qualitative variables

Variable® e Df Sig.

2. INDUSTRY 56.26 15 0.00000
3. SECTOR 106.09 4 0.00000
6. HEADQR 48.03 23 0.00166
9. NSUBSD 16.38 3 0.00094
12. SPLIT 0.55 3 0.90601
13. CAPCGE 8.50 3 0.03674
24. CEODUAL 0.82 1 0.36295
33. AUDITOR 40.47 16 0.00066
34. AUDITOROP 5.99 1 0.01433
91. BSUBSD 232 1 0.12724
101. BNOWN 1.33 1 0.24883
102. BNINSTOWN 2.26 1 0.13260
103. BNMANGOWN 1.50 1 0.22026
104. BNFAMLOWN 0.04 1 0.82846
105. DHEADQR 7.11 2 0.02856
106. BCAPCGE 0.75 1 0.38600
107. BAUDITOR 13.96 1 0.00019
108. DAUDITOR 14.70 2 0.00064

“Variables in bold italic are independent based on the chi-square test with 99.99% confidence interval.

has eliminated 66 out of 87 quantitative variables and 16 out of 18 qualitative variables based on their sta-
tistical properties. In conclusion, 23 variables remain in order to conduct the basic stage of the analysis.

5. EXPERIMENTAL RESULTS

After having finalized the dataset’s objects, through the feature selection process, the next phase
included the implementation of DM algorithms in order to predict the dividend payment decision.
All algorithms’ runs were made with the use of IBM® SPSS® Modeler 14.2 software (formerly SPSS
Clementine) which is a powerful, versatile DM workbench that helps to build accurate predictive
models quickly and intuitively, without programming. Three experiments were conducted. In the first
experiment the algorithms were trained and validated on the whole sample data. In the second experi-
ment the data were randomly partitioned into a training sample and validating sample with a 75%-25%
analogy. In the third experiment the algorithms were trained on the records from fiscal year 20072008
and were validated on the records from fiscal year 2009.

In each one of the three experiments the DM algorithms were implemented with the same build
settings. The C5.0 DT algorithm parameters were 75% pruning severity, global pruning and minimum
five records per child branch. The feed-forward back-propagation NN algorithm parameters were
exhaustive prune training method (persistence: 200; overall persistence: 4; hidden persistence: 100;
hidden rate: 0.02; input persistence: 100; input rate 0.01) with a stopping criterion of 90% accuracy, one
input layer with 41 neurons, and two hidden layers, one with 30 neurons and the other with 20 neurons.

The accuracy prediction results of all experiments are presented in Table VII. In the first experiment
(EXA), where all models were trained and evaluated in the same dataset of 738 records, the C5.0
algorithm constructed a DT that reached an overall prediction accuracy of 93%, with only 5.70% of non-
dividend-paying companies predicted incorrectly as dividend-paying companies (type I error) and only
8.83% of dividend-paying companies predicted incorrectly as non-dividend-paying companies (type II
error). The NN also reached a high prediction accuracy as it succeeded in classifying correctly approxi-
mately 90% of companies, with 7.84% of non-dividend-paying companies predicted incorrectly as
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Table VII Prediction accuracy of each model in each experiment®

Model BDIVD Pay dividends Not pay dividends Total Errors (%)
Count % Count % Count % Type I Type I

EXA

Cs5.0 Correct 289 91.17 397 94.30 686 92.95 5.70 8.83
Wrong 28 8.83 24 5.70 52 7.05
Total 317 100.00 421 100.00 738 100.00

NN Correct 277 87.38 388 92.16 665 90.11 7.84 12.62
Wrong 40 12.62 33 7.84 73 9.89
Total 317 100.00 421 100.00 738 100.00

Logistic regression Correct 238 75.08 358 85.04 596 80.76 14.96 24.92
Wrong 79 24.92 63 14.96 142 19.24
Total 317 100.00 421 100.00 738 100.00

EXB

C5.0 Correct 61 83.56 99 93.39 160 89.39 6.61 16.44
Wrong 12 16.44 7 6.61 19 10.61
Total 73 100.00 106 100.00 179 100.00

NN Correct 59 80.82 95 89.62 154 86.03 10.38 19.18
Wrong 14 19.18 11 10.38 25 13.97
Total 73 100.00 106 100.00 179 100.00

Logistic regression Correct 55 75.34 78 73.58 133 74.30 26.42 24.66
Wrong 18 24.66 28 26.42 46 25.70
Total 73 100.00 106 100.00 179 100.00

EXC

Cs5.0 Correct 66 85.71 146 86.39 212 86.18 13.61 14.29
Wrong 11 14.29 23 13.61 34 13.82
Total 77 100.00 169 100.00 246 100.00

NN Correct 67 87.01 136 80.47 203 82.52 19.53 12.99
Wrong 10 12.99 33 19.53 43 17.48
Total 77 100.00 169 100.00 246 100.00

Logistic regression Correct 58 75.32 134 79.29 192 78.05 20.71 24.68
Wrong 19 24.68 35 20.71 54 21.95
Total 77 100.00 169 100.00 246 100.00

“EXA: whole sample; EXB: random sample partition with 75% training and 25% validating; EXC: sample partition with
FSYEAR=°2007, 2008’ training and FSYEAR = 2009’ validating.
®Numbers in bold show the most accurate method in each experiment and in each attribute prediction.

dividend-paying companies and 12.62% of dividend-paying companies predicted incorrectly as non-
dividend-paying companies. However, the logistic regression model had an almost 12% prediction accuracy
lag with the C5.0 DT and an almost 10% prediction accuracy lag with the NN. Specifically, it achieved an
overall prediction accuracy of 81%, with 14.96% of non-dividend-paying companies predicted incorrectly
as dividend-paying companies and 24.92% of dividend-paying companies predicted incorrectly as non-
dividend-paying companies. The lower prediction accuracy of the logistic regression model is evident from
the comparison of type I and type II errors, where that of the DM method is two to three times lower.

In order to minimize the overfitting to data, where models achieve high performance in the training
sample but suffer in predicting out-of-the-training-sample records, outliers and unknown records, we
conducted a second experiment (EXB). The algorithms, in this experiment, were trained on a randomly
selected sample of 599 records and were validated on the remaining sample of 179 records. The C5.0
DT reached an overall prediction accuracy of 89%, with only 6.61% of non-dividend-paying companies
predicted incorrectly as dividend-paying companies and 16.44% of dividend-paying companies
predicted incorrectly as non-dividend-paying companies. The NN reached an analogous prediction
accuracy as it succeeded in classifying correctly approximately 86% of companies, with 10.38% of
non-dividend-paying companies predicted incorrectly as dividend-paying companies and 19.18% of
dividend-paying companies predicted incorrectly as non-dividend-paying companies. The prediction
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accuracy lag of the logistic regression model has been increased with the C5.0 DT to almost 15% and
with the NN to almost 12%. Specifically, it achieved an overall prediction accuracy of 74%, with
26.42% of non-dividend-paying companies predicted incorrectly as dividend-paying companies and
24.66% of dividend-paying companies predicted incorrectly as non-dividend-paying companies. The
lower prediction accuracy of the logistic regression model is evident from the type I and type II errors,
wherein one out of four records was predicted incorrectly.

In our third experiment (EXC) the algorithms were trained on all records from the fiscal years
2007-2008 (492 records) and were validated on all records from the fiscal year 2009 (246 records).
This experiment reveals financial knowledge, as it uses data from preceeding years to forecast future
outcomes. The C5.0 DT reached an overall prediction accuracy of 86%, with 13.61% of non-
dividend-paying companies predicted incorrectly as dividend-paying companies and 14.29% of
dividend-paying companies predicted incorrectly as non-dividend-paying companies. The NN
reached an analogous prediction accuracy as it succeeded in classifying correctly approximately
82% of companies, with 19.53% of non-dividend-paying companies predicted incorrectly as
dividend-paying companies and 12.99% of dividend-paying companies predicted incorrectly as
non-dividend-paying companies. In contrast to previous experiments, the prediction accuracy lag
of the logistic regression model decreased with the C5.0 DT to almost 8% and with the NN to almost
5%. Specifically, it achieved an overall prediction accuracy of 78%, with 20.71% of non-dividend-
paying companies predicted incorrectly as dividend-paying companies and 24.68% of dividend-paying
companies predicted incorrectly as non-dividend-paying companies.

The major finding of these experiments is the prediction accuracy superiority of the DM approaches
against logistic regression. However, a secondary finding is the fact that the accuracy divergence is
increased in the case where models face new and unknown records and is decreased when models
are trained with time-consecutive records.

The results presented so far allow us to conclude that the implementation of DM methods in model-
ling the debatable question of dividend payment has the potential to yield better results than those
gained by the, so far, mainstream method of logistic regression. Consequently, the answer to RQ1 is
positive. However, this research has another scope concerning the development of a convenient and
effective decision-support tool to investors that want to construct and manage a portfolio of securities.

In line with that objective, Table VIII presents the five variables that contributed most in constructing each
model. This variable importance ranking indicates the relative importance of each variable in estimating
each model. Since the values are relative, their sum is equal to unity, for all variables included in each model.
Variable importance is determined by computing the reduction in variance of the target attributable to each
predictor, via a sensitivity analysis. It does not relate to model accuracy; rather, it only relates to the impor-
tance of each variable in making a prediction, not whether or not the prediction is accurate.

Regarding DTs constructed with the C5.0 algorithm: in all experiments, the two most important vari-
ables are ‘NOPAT’ and ‘RETEAR’. In the NN, the three most important variables are ‘EPS’, ‘NOPAT’
and ‘INDUSTRY’, while logistic regression has ranked ‘ROA’ as the most important variable without
having a consistency, among experiments, regarding the second most important variable. The three
selected methods do not agree on which variables affect the dividend payment decision more. The
results gained from DTs show that the features dictating the decision to “pay’ or ‘not pay’ dividends are
a company’s fundamentals, while in NNs and in logistic regression some non-pure financial features,
namely operating industry and sector classification in the stock market, play a catalytic role.

The variables presented in Table VIII provide some initial evidence on DP determinants. However,
we need to define the sign and magnitude of each determinant variable so as to provide a scientific an-
swer to RQ2. It is necessary to know which values (range or attribute) of these variables are dictating
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Table VIII The top five significant variables of each model in each experiment

Model® Ist 2nd 3rd 4th 5th
EXA
C5.0 (8 VARs) VAR NOPAT RETEAR ROA OPRF MV
RI 0.383 0.259 0.162 0.126 0.059
NN (23 VARs) VAR EPS NOPAT INDUSTRY MV OPRF
RI 0.093 0.075 0.073 0.067 0.067
Logistic regression (5 VARs) VAR ROA EPS LFCYCLE2 SECTOR MV
RI 0.347 0.251 0.174 0.163 0.065
EXB
C5.0 (7 VARs) VAR NOPAT RETEAR ROE MV TDBTRAT
RI 0.461 0.247 0.187 0.073 0.016
NN (23 VARs) VAR EPS NOPAT INDUSTRY OPRF ROA
RI 0.088 0.076 0.075 0.066 0.063
Logistic regression (10 VARs) VAR ROA OPRF EPS LFCYCLE2 SECTOR
RI 0.323 0.208 0.180 0.111 0.085
EXC
C5.0 (6 VARs) VAR NOPAT RETEAR ROE MV CA
RI 0.471 0.303 0.189 0.018 0.016
NN (23 VARs) VAR EPS INDUSTRY NOPAT ROA TDBTRAT
RI 0.077 0.074 0.068 0.062 0.061
Logistic regression (3 VARs) VAR ROA LFCYCLE2 EPS — —
RI 0.510 0.296 0.194 — —

“EXA: whole sample; EXB: random sample partition with 75% training and 25% validating; EXC: sample partition with
FSYEAR =‘2007, 2008’ training and FSYEAR = 2009’ validating.

®VAR: variable; RI: relative importance.

“Text in parentheses provides the total number of variables included in each model.

the decision to ‘pay’ dividends and which are not. For this purpose, Table IX presents the rules derived
from the DT generated by the C5.0 algorithm in the third experiment (an illustrative presentation of the
DT can be found in APPENDIX A). Since the C5.0 algorithm proved to be the most accurate under all
experiments, since an effective DP model should be capable of predicting the next year’s results based
on the data from preceding years, and due to the complicated and hardly interpretable nature of NNs the
DT of the third experiment was selected in order to answer the RQ2.

Focusing on the two rules that represent almost 80% of the instances, a better answer to RQ2 is pro-
vided. A company having more than 478,000 in net operating profits after taxes, more than 193,000 in

Table IX The rules derived from the DT of the EXC

Rule Description INS?* CFD®

Pay dividend

1 If NOPAT < = 477793 and NOPAT > 92146.540 and CA > 12072901.280 and 12 (2.44%) 0.750
MV > 0.790 then yes

2 If NOPAT > 477793 and RETEAR > 192899 and ROE < = 0.024 and SUBSD < = 11 then yes 16 (3.25%) 0.625

3 If NOPAT > 477793 and RETEAR > 192899 and ROE > 0.024 then yes 227 (46.14%)  0.903

Not pay dividend

4 If NOPAT < = 477793 and NOPAT < = 92146.540 then no 162 (32.92%)  0.981

5 If NOPAT < = 477793 and NOPAT > 92146.540 and CA <= 12072901.280 then no 13 (2.64%) 1.000

6 If NOPAT < = 477793 and NOPAT > 92146.540 and CA > 12072901.280 and 6 (1.22%) 1.000
MV <= 0.790 then no

7 If NOPAT > 477793 and RETEAR <= 192899 then no 45 (9.15%) 0.778

8 If NOPAT > 477793 and RETEAR > 192899 and ROE < = 0.024 and SUBSD > 11 then no 11 (2.24%) 0.727

YINS: Instances =the number of records to which the rule applies.
°CFD: Confidence =the proportion of those records for which the entire rule is true, (number of records where rule is correct)/
(number of records for which the rule’s antecedents are true).
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retained earnings, and a return on equity ratio greater than 2.4% has great possibilities to pay dividends
(Rule 3). On the other hand, a company having less than 92,000 in net operating profits after taxes has
great possibilities to not pay dividends (Rule 4).

The results are consistent with the life cycle theory of dividends, where, according to pioneers of this
theory (DeAngelo et al., 2006), dividends tend to be paid by mature, established firms, plausibly reflecting
a financial life cycle in which young firms face relative abundant investment opportunities with limited
resources so that retention dominates distribution, whereas mature firms are better candidates to pay
dividends because they have higher profitability and fewer attractive investment opportunities.

6. CONCLUSIONS

Understanding the issue of what determines the magnitude of dividend payout is very important as many
corporations distribute a substantial amount of their resources to shareholders every year. Moreover, secu-
rity analysts and consulting firms need to know the proposed DP of a firm as they make recommendations
to their clients/potential investors.

During the last quarter of the twentieth century, advances in computer science (theoretical and
applied) and in computer engineering enabled companies to gain semantic benefits via the utilization
of DM models. These models have gained much popularity in the fields of marketing, production,
accounting, auditing and finance. In finance, and more precisely in the DP field, the studies implementing
DM methods are very limited.

This study investigated, via two research questions, whether DM methods are more effective than
traditional logistic regression techniques in gaining insights into the DP issue and, aiming to assist
decision making, moved a step further by providing those variables contributing most in the decision to
pay or not pay dividends. The results show that DM methods are more accurate in predicting the dividend
payment decision and that profitability is the most important factor in deciding to pay dividends.

The findings can be used by various parties. First, academics that instigate the DP of companies might
gradually start utilizing DM methods in their studies as these have been proved to be more accurate.
Second, individual investors or even more portfolio management companies could use the DT created
by this study in order to select securities for their portfolio as dividend is a semantic criterion to select a
security. However, as with any study, this research has limitations. These concern the domain of the dataset.
The fact that the dataset refers to a 3 year time frame of listed companies in the ATHEX makes any gen-
eralization of the findings to other countries doubtful. Stock exchange markets in other countries may have
other regulation directives and different corporate governance rules resulting in different DPs. One avenue
for future research is driven by the limitation previously noted. A similar study in other countries examin-
ing and comparing the DP results of DM methods could serve to further extend and enhance these findings.

7. DATASET ACCESS

Our dataset is maintained under the Data Engineering Laboratory (DELAB) in the department of
Informatics at Aristotle University of Thessaloniki. It can be found at http://delab.csd.auth.gr/
~symeon/index.php (file name: Athens_Stock_Exchange_Dataset.xIsx).
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