
Information and Software Technology 1994 36 (3) 131-139

Binary ranking for the signature file
method

D Dervos*
School of Computing and Information Technology, University of Wolverhampton, Wolverhampton WV1 1SB, UK

P Linardis
Department of Informatics, Aristotle University, Thessaloniki 54006, Greece

Y Manolopoulost
Department of Computer Science, University of Maryland, College Park, MD 20742 USA

A new method for ranking the output of the superimposed variation of the signature file method
(SC/SF) is presented. The method is termed 'Binary Ranking' and assigns a value ('B-rank
value') to each block candidacy of the signature file output in a way which reflects the credibility
of the signature to stand in place of the corresponding real text. In order to measure the
performance of the proposed technique, a simulation environment based on a Relational
Database Management System is established. Binary Ranking is found to be promising for a
category of real-life applications and allows for future enhancements.

The signature file method

The signature file is an information retrieval access method
suitable for processing large text databases ~. The method
has been studied extensively and a number of variations have
been proposed 2. It exhibits many advantages over alterna-
tive methods (full text scanning and inversion) and, therefore,
it has been applied in numerous systems and applications.

The superimposed coding variation of the signature file
method (SC/SF) uses a compressed binary representation
of textual data to efficiently process simple one-word or
even more sophisticated Boolean type queries. Raw text
(i.e. documents like letters, newspaper articles, etc.) is
logically broken down into blocks containing a fixed
number of distinct non-common words. Each non-common
word is then mapped on to a uniquely specified binary
pattern by using a signature pattern extraction algorithm.
As a result, a number of ls are set in an ordered, finite
sized population of binary cells/slots. The latter is the
block's signature pattern which is initialized to contain all
0s prior to the activation of the signature extraction
algorithm. The patterns of all the words in each block are

* On sabbatical leave from the Department of lnformatics, TEI,
Thessaloniki, 54101, Greece.
t On sabbatical leave from the Department of Informatics, Aristotle
University, Thessaloniki 54006, Greece.

Word Signature

Free 001 000 110 010
Text 000 010 101 001

Block signature 001 010 111 011

Figure 1 Superimposed signature file method: block signature
generation and usage.

superimposed (OR-ed) to yield a compressed binary
representation corresponding to the real text in question.

Figure 1 (adapted from Lee and Leng 3) shows the basic
principles of the technique. Each block is taken to comprise
two distinct words. Each word sets four bit positions to 1
in the [1 . . . 12] range. Ignoring the details of the word
signature pattern extraction algorithm, say that the word
text sets bit positions 5,7,9 and 12 whereas free sets bit
positions 3,7,8 and 11. The two-word signature patterns
are superimposed (OR-ed) to yield the shown block
signature pattern which comprises seven 1-valued bit
positions in the [1 . . . 12] range.

User queries are efficiently processed when checked
against the binary representation instead of having to
perform CPU and I/O intensive full text scanning
operations. More specifically, each query is processed by
scanning the binary representation plus a small portion of

0950-5849/94/030131-09 ©1994 Butterworth-Heinemann Ltd 131

Binary ranking for the signature file method: D. Dervos et al.

the large text database. For example, given a query searching
for the word ' f ree ' (or the word ' text ') , the block in Figure
1 is candidate to contain this word, as the relevant bit
positions are found to be set to 1 in its signature pattern. In
an analogous manner, by processing the query for the word
'data ' , which (say) sets to 1 the bit positions 2,6,11 and 12,
one easily concludes that the block in question does not
contain the specific word. However, when searching for the
word 'base ' , which (say) sets to 1 the bit positions 3,7,8 and
9, a false result (called 'False Drop ' , FD) is obtained,
indicating that the word is present in the block of Figure 1.

It is evident that the SC/SF method is deterministic in
saying 'No, it is not there' but contains some 'noise' or
fuzziness in indicating the presence of a word in a given
logical block of textual data. Two factors contribute to
causing the above stated fuzziness:

• the signature extraction algorithm, whereby two distinct
words may set to 1 (possibly in a different order) the
same m bits;

• the superimposition process, whereby m cells/slots may
be set to 1 not only by a single word but by OR-ing the
patterns of more than one word.

The latter gives the false impression that a word instance is
present in the logical block, whereas in reality it is not (i.e.
it is an FD).

Successfully tackling the issue of false drops plays a key
role in improving the performance of the method. The
number of distinct non-common words per block (D), the
number of bits set to 1 in each word 's pattern (m) and the
size of the block's signature pattern in bits (F) comprise a
set of design parameters (see Table 1). It has been proven
that once the equation:

F x ln2 = m x D (1)

holds, the technique is guaranteed to provide optimal
results 4. This implies maximum information content for
the intermediary binary representation next to the original
text. As a direct consequence, one then measures a
minimum false drop rate.

To realize the quantitative (as opposed to qualitative)
nature of the FD issue, one could consider the following
example: let F = 1000, m = 7 and D = 100. Say that the
first word in the block has just set its seven (distinct) bit
positions to 1. The most likely thing to happen next is that
the signature pattern of the second word will not have any
one of its own ls match with a 1 set by the first word. The
resulting pattern, representing just two words for the time
being, appears to accommodate

I 1 4 1 = 3 4 3 2 ' w o r d s '

Table 1. Definition of symbols

Symbol Definition

F Block signature size (in bits)
m Number of bits set to 1 by each word
D Number of distinct words in block
F' Partition size (in bits)

as there exist that many ways of choosing groups of seven
out of a given set of membership of 14. It is clear that 3430
of the above (possible) pattern-match instances are nothing
but potential FD instances.

The SC/SF method is widely accepted for implementing
text retrieval systems. When compared to inversion, SC/SF
is found to be efficient in many respects:

• One need not worry about filtering out multiple
occurrences of the same non-common word in a block
of text. The issue is automatically taken care of by the
signature extraction algorithm.

• It does not involve any type of re-organization of the
index structure during subsequent insert operations.

• It calls for a very small storage overhead (e.g.
10-15%1).

• Because of the compressed nature of the intermediary
binary representation, query processing is carried out in
a most efficient manner.

• The method easily adapts itself to handling involved
queries of a Boolean structure. For example, a query like:
Retrieve all the documents that involve the words 'Physics'
AND 'Science' AND 'Equation' AND 'Energy' AND
'Field' can easily be handled by a signature file con-
figuration, whereas it would be a tough task to be under-
taken by a Sciences database that utilizes inverted files.

However, the SC/SF method is mostly applicable in
environments calling for insert/append (as opposed to
update) operations, plus it is not exact in predicting the
existence of a word within a block of text ~'4.

Assuming that the ls in each block signature pattern
follow the binomial distribution 3, the False Drop Proba-
bility (FDP) value for the system can be approximated by 4

FDP ~, (2)

where M ' is the average number of bit positions set to 1 in
the [1 . . . F] range of the block's signature pattern. The
FDP value is by definition the rate at which a (any) single-
word query produces false drops when its signature is
checked against any one of the block signature patterns of
the binary image taken to represent the text database.

The entropy/information content maximization rule
states that the maximum amount of information is conveyed
by an information carrying bit when it has equal probability
to be 0 or 15. Such a result is obtained by maximizing the
value of the entropy function:

H(p) = - p x I n (p) - (1 - p) x l n (1 - p) (3)

One can generalize the above and say that a block signature
pattern conveys maximum information when half of its bit
positions are set to 1, the other half being set to 0. This
means that any bit position chosen at random is either a 1
or a 0 with probability equal to 0.5. A rigorous proof of the
above stated intuitive approach can be found in 4. Equation
(2) now reads as:

I½) FDP ~ (4)

132 Information and Software Technology 1994 Volume 36 Number 3

Binary ranking for the signature file method: D Dervos et al.

Equation (4) implies that once the F, D and m design
parameters are set to values satisfying Equation (1), then
the (approximate) FDP value depends on m only.

Assigning B-rank values to the SC/SF output

The SC/SF output comprises a number of block candi-
dacies. Each one of the latter is equally likely to satisfy the
condition imposed by the query. A deterministic result is
reached only after one scans through the text of all the
candidate documents.

Equation (4) indicates that a limit is reached with regard
to the maximum possible information content of the
signature pattern. To increase the information content of
the SC/SF configuration, one has to decrease the FDP value
appearing in Equation (4), and this can only be achieved by
increasing m (the number of bits set to 1 by each word).
However, upon increasing m, F (the storage overhead)
increases so that Equation (1) continues to hold.

There exists a number of reasons why a text database
user would prefer to receive the system's response ordered
according to the degree of relevance or usefulness with
respect to his/her queries. The issue of ordering the
system's response has been tackled in the context of
traditional Information Retrieval (IR). Robertson 6 justifies
the probability ranking principle in IR. More recently, the
ranking principle has been investigated in the context of
signature files 78. There exist real-life applications that
would benefit from having the output of the SC/SF method
presented in a form where each candidate block is assigned
a rank value which reflects its probability of being relevant
to the user query. Croft and Savino 7 have introduced
ranking to the signature file method by coupling it to a
probabilistic study of the corresponding textual data
contents.

It is possible for the user to have a specific document in
mind during a document retrieval session, a document the
title of which he is unable to recall. However, he is sure to
recognize the document upon inspecting part of its
contents. This means that the user may not be interested in
retrieving every document that meets the conditions of his
query. During such a special (yet, possible) SC/SF session,
the full text scanning operation on the document
candidacies will be abandoned once the specific document
has been retrieved. A ranked SC/SF output would be
particularly useful in serving such a type of query,
especially when the user accesses a remote (i.e. costly to
file transfer) environment. Another, more involved,
example, could be a case where the SC/SF environment
might be used (because of its retrieval efficiency) as a front-
end processing subsystem to an effective (yet inefficient)
back-end information retrieval (IR) environment. Allowing
for the Recall metric to achieve a less than 1 value 9, the
SC/SF output could thus comprise a representative sample
set of documents which is used by the back-end system at
an early stage of its feedback circle. Selecting the (say) 10
top ranked candidacies in such an environment would
perform better than selecting any 10 from the classical
SC/SF output.

With the above, it is understood that ranking increases

the information content of the SC/SF output. Croft and
Savino 7 have achieved this at the cost of some additional
probabilistic calculations on the corresponding text base.
The present study introduces a technique which calculates
the 'B-rank value' (to differentiate it from what ranking
came to imply up until now) at the cost of removing part
of the deterministic nature of the SC/SF method. As has
been explained in the first paragraph of this section, the
SC/SF is deterministic in rejecting blocks from being
candidates to satisfy a query by considering their signature
patterns, only.

The B-rank values calculated in the following do not
reflect any degree of relevance of each block candidacy to
the given query as done by Croft and Savino 7. Instead, the
B-rank value is calculated by decoding information
registered in addition to the binary representation of the
classical SC/SF environment. In order to encode additional
information with minimal storage overhead, a new
representation is introduced which reuses the pattern of the
first/classical one. This new binary representation can be
decoded at query processing time to calculate a B-rank
value which is then assigned next to each block candidacy.

T h e t echn ique

A special case of Equation (1) is when m = 1:

F ' x l n 2 = 1 x D (5)

Combining Equations (1) and (5) and solving for F ' one
has:

F _ m = > F ' = [F "~ (6)
F ' I m

Equation (6) suggests that rather than having each word
produce m bits, each in the [1 . . . F] range (as in Figure 2),
one could have an equivalent partitioned configuration like
the one shown in Figure 3.

Figure 3 considers the m bits corresponding to a word
signature as being an ordered set. Within a block of text,
the first bits of the D word signature patterns are directed
to and are superimposed on to partition number one of the
block signature pattern. Similarly, the second bits (D again,
in all) are directed to partition number two, etc. It is worth
noting that each partition accommodates bit positions/cells in

word

#5 #I #4 #2 #3 #m #k

0110011010111100 ... 101110001010]

[1...F] block signature pattern

Figure 2 The classical SC/SF configuration

Information and Software Technology 1994 Volume 36 Number 3 133

Binary ranking for the signature file method: D Dervos et al.

word]

/
1 lOOl...OOl] [0100...ll] 0001...10

[1...FF]] block signature partitions
m

Figure 3 The partitioned SC/SF configuration

the [1 . . [{1] range. The latter implies the existence of an
appropriately modified word signature pattern extraction
algorithm which is different from the one o f the classical
SC/SF. The use of the word partition in this study should
not be confused with other partitioning techniques which
have been found to improve the efficiency of the SC/SF
method 2.3.

Equation (5) holds true for each one of the m partitions
in Figure 3. Because of the entropy/information content
maximization rule, each one of the m partitions will thus
have half of its bit positions set to 1, on average. Assuming
that each one of the m bit positions set to 1 by a (any)
word 's pattern is independent (orthogonal) of the rest m-1
bit positions set by the same word, a word chosen at
random will have a

,Ill ~- ~- . . . ~ - = (7)

probability of producing a 'block is candidate to contain'
result when its signature pattern is checked against that o f
a (any) block. It is assumed that the membership of the
dictionary of words used is much larger than D, the
blocking factor of the specific SC/SF configuration. Thus,
the value calculated in Equation (7) is a realistic approxi-
mation of the FDP value. The FDP result just obtained for
the partitioned variation of the SC/SF is equal to that found
in Equation (4) which applies to the classical SC/SF. In
agreement with the simulation results that follow, this
proves the partitioned SC/SF variation shown in Figure 3
to be equivalent to the classical one appearing in Figure 2.
The partitioned SC/SF calls for a very small amount of
additional storage overhead which is considered to be
negligible.

Proceeding with the modified SC/SF configuration
shown in Figure 3, each logical block of textual data
corresponds to a row in each one of the m partitions of the
signature file. A (any) row of a (any) partition in the
signature file is a 0/1 pattern in the [1 . . IF1] range. A
horizontal series of m row patterns (called 'partitions' in
the following) are taken together to logically comprise the
compressed binary image of a D-word block of textual
data.

Figure 4 illustrates the structure of the proposed enhanced
SC/SF configuration with Binary Ranking. A sample case
where m = 7,F ' = 144 and D = 100 of the partitioned SC/SF
environment is considered. The B-ranking configuration is
established in addition to the partitioned SC/SF one: each
word produces its m = 7 SC/SF bits, each one of which is
directed to the corresponding block signature partition as
shown in Figure 3. In addition to this, each word produces
some extra bits, each in the [1 . . . 144] range. Labelling
the bit positions set to 1 in the SC/SF method as ml, m2,
. . . . mT, seven (say) extra bit positions that characterize
the same word could be produced by the following
expressions:

cz = ((ml + m2 + m3 + m4 + m5 + m6 + mT) mod 144) + 1
c2 = ((m~ + m2 + m3 + m4 + m5 + m6) mod 144) + 1
c3 = ((m~ + m2 + m3 + m4 + ms) mod 144) + 1
c4 = ((ml + mz + m3 + m4) mod 144) + 1
c5 = ((ml + m2 + m3) mod 144) + 1
c6 = ((ml + m2) mod 144) + 1
c7 = ((2.(ml + rnz + m 3 + m 4 + m 5 + m 6 + m7)) mod 144) + 1

One notes that each one of the c~, c2 , c7 bits lies in the
[1 . . . 144] range just like each one of the mt, m2 m7

does. The Cl, c2 , . . . , c7 bits may be taken to comprise a set
of 'colour' bits in order to differentiate them from the
mr, m2 m 7 of the SC/SF method. By superimposing the
patterns of all the cl colour bits for the D = 100 words in
a block, one obtains yet one more (colour) signature pattern
which is 144 bits wide. In a similar way, six more (colour-2
to colour-7) colour signature patterns are produced. The
seven colours represent additional information for the textual
data contents of each logical block. However, each colour
pattern never gets registered as such in the extended signature
file structure. If this were the case, one would simply obtain
an SC/SF configuration where the entropy/information
content maximization norm would have been violated. An
F = 1008, m = 14 and D = 100 configuration would no
longer satisfy Equation (1). Instead, for each logical row of

Partit ions Colours

Block PI P2 . . . P7 sl cl s2 c2 . . . s7 c7

1 0 1 . . . 1 1 1 . . . 0 . . . 0 0 . . . 1 0 110 0 101 . . . 1 001
2 1 1 . . . 1 0 1 . . . 1 . . . 1 0 . . . 0 1 010 1 001 . . . 1 101

100 0 0 . . . 0 0 1 . . . 1 . . . 1 0 . . . 0 0 111 1 010 . . . 0 010

134

Figure 4 Structure of the signature file in the proposed technique

Information and Software Technology 1994 Volume 36 Number 3

Binary ranking for the signature file method: D Dervos et al.

the partitioned signature file, each of the block's colour
patterns is checked against the existing partitions and what
gets registered is the identifier of the partition which most
closely resembles the colour pattern in question.

Two partitions (an SC/SF one and a colour one in this
case) are identified to mostly resemble to one another by
counting the number of 1-to-1 matches as well as the
number of 1-to-0 mismatches in the corresponding bit
positions of their patterns. Each partition is 144-bits long
in the configuration considered here. For example, say that
colour pattern C is found to have 74 match instances with
partition P1 and 68 match instances with partition P2.
Then, C is said to resemble to P1 more than P2. It is worth
noting that a 74 matches degree of resemblance thus defined
would be equivalent to a 74 mismatches one. The latter is
so because 74 mismatches to a given binary pattern imply
74 matches to its inverted (O's replaced by l ' s and l ' s by
O's) image. The sign bit registered in the s~, s2 s7
columns of the structure shown in Figure 4 encodes the
extra information needed to cater for in this case.

The scheme described in the above gives each colour
partition a total of 2*7 = 14 chances to identify one of the
existing SC/SF partitions it most closely resembles to. This
is done by checking the image of the colour partition in
question next to the direct as well as to the inverse images
of each SC/SF partition registered to represent the textual
block in question.

Considering Figure 4, one reads the information off the
specific example as follows: for block number 2 and colour
number 1 the colour pattern produced was found to mostly
resemble the direct (s~ = 1) image of partition number
2 (c~ = 010) whereas for block number 100 and colour
number 7, the colour pattern is registered to mostly
resemble the inverted (sT = 0) image of partition number 2
(C7=010), etc. This information is used at query
processing time to calculate a B-rank value for each one of
the SC/SF block candidacies. The B-rank value is an
integer equal to the number of times a colour bit (a total of
seven to consider for each word in this case) is found to
comply with the binary value stored in the corresponding
binary position in the SC/SF partition registered to mostly
resemble the colour pattern in question and for the specific
word-block pair.

Referring to the example in Figure 4 again, say that while
processing a single word query, block number 2 appears to
be one of the candidates to contain the word in accordance
with the classical SC/SF method. Let the seven colour bits
set by the word in question be (each in the [1 . . . 144]
range): c~ = 15, c 2 = 3, c 3 = 143, c 4 : 14, c 5 = 3, c 6 = 99
and c7 = 76. This means that for the specific colour
pattern, bit positions 15, 3, 143, 14, 3, 99 and 76 are
meant to be set to 1. The B-ranking algorithm is now to
check the binary values stored in the seven bit positions in
the corresponding dominant partition (i.e. the one
registered to mostly resemble the colour pattern in
question). Table 2 shows the values read off the dominant
partition this way. The B-rank value for the block
candidacy in question is then easily calculated to be
the sum of the match instances appearing in Table 2
(i.e. 1 + 0 + 0 + 0 + 1 + 1 + 1 = 4) . It is noted that the

Table 2. Calculation of the B-rank value

Bit Dominant Bit value
position partition Sign Read Match

Colour- 1 15 2 1 l 1
Colour-2 3 1 1 0 0
Colour-3 143 6 0 1 0
Colour-4 14 6 1 0 0
Colour-5 3 4 0 0 1
Colour-6 99 3 0 0 1
Colour-7 76 5 1 1 1

Rank value 4

sign value in Table 2 indicates whether the direct (sign = 1)
or the inverse (sign = 0) image of the dominant partition
should be considered in each case.

The scheme is equivalent to having each block candidacy
toss a coin seven times. The number of 'head' instances
achieved is assigned to be its B-rank value. The important
thing to note is that the coin tossed by any NFD (no false
drop, one where the word is present in the block) instance
is biased to produce 'heads' more often than the one tossed
by any false drop (FD) instance. The latter may be
considered to be tossing an 'ideal' coin: i.e. one which has
a 50% probability to produce either 'heads' or 'tails' result
in accordance with the entropy/information content
maximization rule (Equation (4)). The degree of the 'coin
bias' value achieved depends on the performance of the
ranking technique used and has to do with the number of
chances each colour pattern is given to maximize its degree
of resemblance to one of the existing partitions (14 chances
is the number for the case considered in this paper). In this
respect, the proposed technique allows for improvement by
increasing the number of patterns each colour pattern is
checked against.

The storage overhead introduced by the m = 7, F ' = 144,
D = 100 configuration shown in Figure 4 is: 7 x 4 = 28
extra bits for each SC/SF row instance, i.e. nearly 3%
when compared to the classical method. Considering that
the classical signature file method calls for only 10-15%
storage overhead and comparing it to the 100-300% figure
of the inverted file model t, one can say that the storage
overhead introduced by the proposed technique is a
negligible cost to pay provided that reasonable performance
improvement is achieved.

T h e s i m u l a t i o n e n v i r o n m e n t

For the purpose of measuring the performance of the
proposed technique, a simulation environment based on a
Relational Database Management System (RDBMS) was
set up. Until now, a DBMS environment has been used only
in information retrieval related research as part of the
'retrieval engine' : the 'inexact match' retrieval model is
mapped on to the 'exact match' DBMS environment ~°. In
the current study, advantage has been taken of the
RDBMS's flexibility while setting up a testbed in order to
measure the performance of the proposed technique. The
simulation environment was implemented on a Data
General (UNIX) minicomputer by embedding SQL
(ORACLE) command syntax in C.

Information and Software Technology 1994 Volume 36 Number 3 135

Binary ranking for the signature file method: D Dervos et al.

A 'vocabulary" equivalent was established, making use of
a random number generator. It consisted of 10 000 distinct
'words', a number which in accordance with Dewey ~
corresponds to a 100 000 word textual database. The
overall setup was controlled in the sense that it was known
in advance which 'word' was contained in which
'document' or, rather, logical block of textual data. The
scheme allowed for monitoring the behaviour of a number
of performance metrics defined in the next section. Care
was taken to ensure that no two words shared the same
word signature pattern, i.e. the signature extraction phase
introduced no fuzziness/information loss in this respect.

Every single word of the vocabulary was placed in just
one block of text (document equivalent). This means that at
query processing time it was known in advance that there
was one and only one NFD instance in the corresponding
block candidacies. This is definitely not the case in a real-
life environment. However, with respect to the B-ranking
technique considered, such an assumption considers a
'worse-case' equivalent: the more NFD instances present in
the ranked output of a query processing session, the more
likely it becomes for the top ranked one to result into a 'Hit '
(the numbers of hits being one of the performance metrics
introduced in the next section).

Each logical block of data consisted of 100 distinct words
(100 logical blocks in total). The SC/SF structure was
partitioned in accordance to the configuration shown in
Figure 3 with design parameter values: m = 7, D = 100
and F ' = 144. The m, D and F ' parameters (shown in Table
1) were chosen so that they comply with Equation (1). As
a result, an average number of 71.72 ls was measured in
each block signature partition. This compares well to the
value expected (144/2=72) . Each block signature
partition was thus nearly half-full with Is, conveying
maximum entropy/information content.

A total of 10 000 single word queries (one for each word
in the vocabulary) was processed against the binary
representation of the text database equivalent. As a result,
17 844 logical block candidacies were measured. In the
controlled environment of the specific simulation this
means that 7844 false drop (FD) instances were observed.
Dividing this value by the number of queries as well as by
the number of logical block patterns considered, one
calculates the false drop probability value:

~7
7844 = 0.007844 z (8)

100 x 10 000

In this respect, the number of FD instances measured
during the simulation compares well with the value
expected. The latter is calculated by substituting m = 7 into
Equation (4). One may use this fact to establish confidence
for the specific (controlled) simulation setup: the 'worst
case' assumption that has been made (i.e. only one NFD
instance per each set of block candidacies) does not affect
the validity of the results obtained with regard to the
general (real-life) case. Plus, it was the same false drop
value appearing in Equation (8) that was measured both for
the classical as well as for the partitioned SC/SF con-

figurations. As expected, the partitioned (Figure 3) scheme
introduced in this paper is thus proven to be equivalent
to the SC/SF setup in terms of the false drop rate it
produces.

Performance metrics

In the simulation environment considered, it is known in
advance that each set of block candidacies produced by any
of the 10 000 queries, comprises only one NFD (no false
drop) and zero or more FD (false drop) instances. It has
been shown already that this is of no harm to the general
case where the SC/SF output involves more than one NFD
instance.

It was measured that the F ' = 1 4 4 , m = 7 , D = 100
(partitioned) SC/SF configuration produces false drops at
a rate of 0.78 when any one of the single word queries is
processed against all of the 100 block signature patterns.
This means that the one and only NFD instance associated
to each query is accompanied by 0.78 FD instances, on
average. In this respect, it is possible for the NFD instance
not to be accompanied by any FD instances. The latter
(called no-conflict) case introduces some type of 'noise'
when it comes to measuring the performance of the B-
ranking technique. This is due to the fact that the NFD
instance 'wins" regardless of the B-rank value it is assigned:
no FD instances exist for the NFD.

In the specific simulation environment, the number of
block candidacies in the SC/SF output varies from one
single-word query to another. For each query processed, its
type is labelled by 'rng', where n is an integer, r stands for
'real' and g stands for 'ghost'. Thus rlg means that one
NFD instance competes against one FD, r2g implies one
NFD against two FDs, etc. A no-conflict case, as it is
defined in the previous paragraph, is labelled by r0g. The
simulation considers all the rng types of NFD-to-FD
conflicts measured for the 10 000 single-word queries
issued. In theory, n could take very large values but the
results revealed the highest value of n to be equal to 6 for
the specific environment.

The proposed ranking scheme helps the NFD instances
'float' by achieving higher rank values when compared to
the FD instances which thus 'sink deeper" by achieving
lower rank values, on average. A satisfactory result would
be to measure the B-ranking technique as performing better
than a 'Random Select' case. The latter models a classical
SC/SF configuration. A metric called 'depth' is thus
established, measuring the order in which an NFD instance
is retrieved next to its FD companions in the corresponding
query/rng instance. For example: during a r4g type of
query processing result, say that the NFD instance is
assigned a B-rank value that ranks it as number three in its
group. This means that the NFD block will be the third one
to be retrieved in accordance with the order implied by the
ranking scheme. For the specific case, one then speaks of
a 'depth' value which is equal to 3.

To be more precise, it is not the FD or the NFD instance
that is retrieved in each case but the corresponding logical
block containing textual data. Such a block retrieval is a
necessary step to be taken prior to having a subsequent full

136 Information and Software Technology 1994 Volume 36 Number 3

text scanning operation categorize the block candidacy to
being a successful (NFD) or a false drop (FD) instance. A
reasonable assumption to make is that each logical block
retrieval comes at the cost of an I/O operation for the
system. In this respect, the 'depth' metric is really a value
that needs to be measured in order to calculate the I/O
savings involved.

Considering the configuration described in the previous
section, one deals with a total of 10 000 NFD and 7844 FD
instances. An ideal ranking scheme would force all the FD
instances to obtain rank values, each one of which would
lie below the lowest rank value assigned to any one of the
NFD instances. Having a total of 10 000 rng types of query
processing results, each one of them would ideally rank its
NFD instance higher than any one (if any) of its FD
companions. The depth~ value (where 1 < i < 10 000) for
each one of the rng instances would thus be equal to unity.
The 'sum of depths' (labelled as: M depth) metric value
would then be:

10000

Mdepth = ~ depth~ = 10 000 (9)

i = l

In the above described (ideal) SC/SF output ranking
scheme, one avoids 7844 out of a total of 7844 FD
instances, thus achieving a 100% 'FD avoidance' or I /0
savings value.

At this point it is worth noting that the absence of an
output ranking mechanism in the classical CS/SF method is
equivalent to assigning a rank value to each block
candidacy at random. The latter may be simulated by means
of a random number generator. Even the scheme where
block candidacies are picked up at random manages to
'avoid" some I/O operations along the lines of the ' I /0
avoidance' and 'depth' metrics defined in the previous
paragraph. The performance of the proposed B-ranking
technique is checked against such a 'select at random'
equivalent to the classical SC/SF configuration which is
simulated by having a random number generator assign 'B-
rank' values to block candidacies.

Table 3 defines the metrics used in the next section.
Covg, Cmin and C~x measure the degree of resemblance
between any colour partition and the corresponding SC/SF
partition which is found to be the one that mostly resembles
it (dominant). They are established during signature file
creation time by measuring the number of 1-to-1 match
instances present in such colour-dominant pairs of
partitions. It is noted that the Cavg, Cmi, and C,~_~ metrics
comprise a measure of the 'coin-bias' achieved by the
simulation setup along the lines of the model presented in
the section above headed 'The technique'.

The 'Hit ratio' metric in Table 3 is the percentage of
'Hits' measured during the simulation. A 'Hit' is the case
where an NFD instance is assigned the highest B-rank value
within its rng group. This means that the corresponding
block candidacy is the first to undergo a full text scan
operation at query processing time. Once the word being
sought is found to be present in the block, all the other (FD)
candidacies are dropped at no further I/O cost.

Binary ranking for the signature file method: D Dervos et al.

Table 3. Definition of quantities measured/calculated

Cavg

C.~

Rov~(aLL)
Rav~(NFD)

Ravg(FD)

Mdepth

1/0 savings

Hits

Hit ratio

Average number of 1-to-I matches between any colour
partition and the corresponding dominant SC/SF partition

Minimum number of 1-to-1 matches between any colour
partition and the corresponding dominant SC/SF partition

Maximum number of l-to-1 matches between any colour
partition and the corresponding dominant SC/SF partition

Average B-rank value (all word/block candidacies)

Average B-rank value (NFD instances only)

Average B-rank value (FD instances only)

Number of I/O operations to retrieve all the NFD
instances
Calculated a s : NumberOITDs - (Mdepth - NumberOfQueries)

NuraberO~Ds

Number of instances where the NFD word/block
candidacy achieves the highest rank value within its
rng group

Percentage of Hit instances over the total number of
single word queries considered

At this stage, one can easily realize why an r0g type of
query processing output measures a misleading number of
'Hit' instances: no FD instances exist for the NFD to
compete against, so the latter will 'win' no matter what B-
rank value is assigned to it. In the course of the simulation,
a total of 4500 r0g instances were measured. This is a little
less than half the number of single word queries processed
(10 000). It is very important that all this r0g introduced
'noise' is filtered out while measuring the 'Hit ratio' value
for the proposed method. Otherwise, the performance of
the proposed technique would be measured to be of a much
higher (however, misleading) value.

Results and discussion

As already mentioned, the B-ranking method involves a
classical SC/SF part which is 'deterministic" in its output.
The membership of each rng type of SC/SF output is
independent of the B-ranking technique used. In this
respect, the values appearing in Table 4 only relate to the
SC/SF and not to the (satellite) B-ranking configuration of
the simulation environment. Table 4 shows that rng types
up to n = 6 were observed in the specific simulation. As a
check, the sum of all the rng (n = 0 . . . 6) instances in the
table is equal to the (expected) value 10 000: the total
number of single-word queries generated and tested.

Tables 5 and 6 contain simulation results that directly
relate to the performance improvement introduced by the
proposed ranking technique when checked against the
'Random Select' (classical SC/SF equivalent) one. One
notes that the lower part of Table 5 involves only the rng
instances where n > 0, i.e. the 4500 r0g instances have
been filtered out. For the SC/SF setup, the 68.4% Hit ratio
value appearing in the upper part of Table 5 is reduced to
42.5% in the lower part of the same table. The former is
higher due to the presence of the r0g noise.

Table 4. Number of instances measured for each type of an rng output

rOg rig r2g r3g r4g r5g r6g r7g ~7 .~ i rng

4500 3709 1334 371 78 6 2 0 10 000

b~formation and Software Technology 1994 Volume 36 Number 3 137

Binary ranking for the signature file method: D Dervos et al.

Table 5. Performance of the B-ranking technique next to that of the
classical SC/SF (with tOg instances included or filtered out)

Technique tOg FDs + Mdepth I/0 Hits Hit
included NFDs savings ratio

SC/SF Yes 17 844 14 008 48.9% 6 8 3 8 68.4%
B-ranking Yes 17 844 13 087 60.6% 7 5 1 8 75.2%

SC/SF No 13 344 9508 48.9% 2 3 3 8 42.5%
B-ranking No 13 344 8587 60.6% 3 0 1 8 54.9%

Table 6. Hit ratio values for the B-ranking technique next to those of
the classical SC/SF configuration

Type Instances Technique Hits Hit ratio

rig 3709 SC/SF 1795 48.4%
B-ranking 2271 61.2 %

r2g 1334 SC/SF 444 33.3 %
B-ranking 574 43.0%

r3g 371 SC/SF 77 20.8 %
B-ranking 145 39.1%

r4g 78 SC/SF 22 28.2 %
B-ranking 25 32.0 %

r5g 6 SC/SF 0 0%
B-ranking 3 50.0%

r6g 2 SC/SF 0 0 %
B-ranking 0 0%

For the rlg instances in the SC/SF configuration (Table
6), the Hit ratio value measured (48.4%) is close to the
expected 50.0% value. This shows that the simulation
environment behaved reasonably well in assigning random
B-rank values to the SC/SF output thus managing to
simulate the latter successfully. One more observation to be
made is that the "I/0 savings' value is independent of the
presence or absence of the r0g type queries in Table 5. By
comparing the proposed B-ranking configuration with the
classical SC/SF, one notes an improved Hit ratio (54.9%
vs. 42.5%) as well as considerable I /0 savings (60.6% vs.
48.9%).

The proposed B-ranking technique calls for just a 3%
additional storage overhead when compared to the classical
SC/SF method. However, this comes at the cost of an
increase in the CPU overhead involved. Fortunately, it is
noted that most of this CPU overhead cost is paid only
once, during creation time of the combined (SC/SF and B-
ranking) binary pattern as well as only during any
subsequent document insert/append operation in the text
database. The technique introduces minimal CPU overhead
at query processing time. Such an increased 'one time only'
CPU overhead cost appears to be acceptable when dealing
with textual databases updated mainly in the 'append new
text' as opposed to the 'modify existing document' mode:
office automation environments and library/bibliographic
databases are typical examples. One last thing to note is that
the proposed technique achieves the stated performance
improvement for the SC/SF method with the measured

Table 7. Coin bias and B-rank values measured during the simulation

C,,g C .~ . C ~ R.,t(ALL) R , ~ s (N F D) R.,z(FD)

59.4 57.0 62.0 3.95 4.19 3.65

'coin bias' and average B-rank values appearing in Table
7. It is clear that there is room to further increase the
performance of the B-ranking technique in the future by
making Covg get closer to the D = 100 value.

Epilogue
The technique presented in this paper provides a means for
ranking the output of the superimposed variation of the
classical signature file method. It establishes a new view
to recording additional information into an environment
already optimized to provide maximum entropy/
information content. B-ranking manages to increase the
information content of a given binary representation by
introducing an extension to it which reuses part of the
existing pattern. Such a 'satellite' representation calls for
negligible additional storage overhead at the cost of an
increased CPU overhead incurred only during creation time
for the combined representation. An additional cost
incurred is that the new technique encodes information
which is of a non-deterministic nature, i.e. it can only be
used for assigning a B-rank value to each block candidacy
in the classical SC/SF output.

For the purpose of measuring the performance of the
proposed technique, a simulation environment based on a
relational database system (RDBMS) was introduced. The
flexibility inherent to the relational DBMS allows for the
creation of a controlled simulation environment which was
used to break down the SC/SF output into a number of rng
instances by considering the number of FDs that
accompany the one NFD instance in each case.

It is interesting to note that the technique provides a means
to rank the candidacies in the output of the classical SC/SF
by considering only the binary representation part of the
method. Croft and Savino 7 introduce ranking by consider-
ing the textual part of the environment, their ranking
mechanism being tailored to function in parallel to the SC/SF
method. In principle, one could calculate a combined rank
value for each SC/SF block candidacy by considering both
the text present in each logical block as well as the corres-
ponding binary representation. The B-ranking configuration
could thus co-exist with one which assigns rank values by
considering the textual part of the text database. It would
then be possible to assign a combined rank value to each
block candidacy; one that would reflect the credibility of both
the textual and the binary representations to successfully
represent the information that is meant to be communicated
in each logical block of text.

A number of partioned variations 2'3 of the SC/SF
method exist and increase its retrieval efficiency. The
partitioned scheme introduced in this study does not
interfere with any of those variations. One may thus
introduce B-ranking, by building on top of any classical
(partitioned) signature file, in a modular fashion.

Acknowledgements
The authors wish to thank Rob Moreton, Mike Jackson and
Graham Bosworth for the useful comments they have made
on earlier versions of this paper.

138 Information and Software Technology 1994 Volume 36 Number 3

Binary ranking for the signature file method: D Dervos et al.

References

1 Faloutsos, C "Access methods for text' ACM Comput. Surveys Vol 17
No 1 (1985) pp 49-74

2 Faloutsos, C 'Signature based text retrieval methods--a survey' IEEE
Data Eng. Bulletin Vol 13 No 1 (1990) pp 25-32

3 Lee, D L and Leng, C W 'Partitioned signature files--design issues
and performance evaluation' ACM Trans. on Office Inf. Systems Vol
7 No 2 (1989) pp 158-180

4 Christodoulakis, S and Faloutsos, C 'Design considerations for a
message file server' IEEE Trans. on Soft. Eng. Vol 10 No 2 (1984)
pp 201-210

5 Reingold, E and Hansen, W Data structures in Pascal Little, Brown,
(1986) pp 410-413.

6 Robertson, S E 'The probability ranking principle in information

retrieval' J. of Documentation Vol 33 No 4 (1977) pp 294-304
7 Croft, W B and Savino, P 'Implementing ranking strategies using text

signatures' ACM Trans. on Office Inf. Systems Vol 6 No 1 (1988) pp
46-62

8 Wong, W Y P and Lee, D L 'Signature file methods for implementing
a ranking strategy' Inf. Proc. and Management Vol 26 No 5 (October
1990) pp 641-653

9 Salton, G Automatic text processing: the transformation, analysis and
retrieval of information by computer Addison-Wesley (1989) pp
277-278

10 Belkin, N and Croft, W B 'Retrieval techniques' Annual Review of
Information Science and Technology (ARIST), Williams, M E (ed),
Elsevier, No 22 (1987) pp 110-145

11 Dewey, C Relative frequency of English speech sounds Harvard
University Press (1950)

Information and Software Technology 1994 Volume 36 Number 3 139

