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ABSTRACT 

Two new pattern-matching algorithms based on the Boyer-Moore algorithm are 
presented. Their performance is compared to that of earlier relevant variants in terms 
of the number of character comparisons and the required running time by exhaustive 
simulation. Experimental results show the efficiency of both these two new algorithms. 

1. I N T R O D U C T I O N  

Text-searching methods have been divided in three categories: (a) furl 
text scanning, (b) text inversion, and (c) signature files [5]. The first category 
includes the highly honored research topic of  pattern-matching. Milestones 
in this area are the BM algorithm by Boyer and Moore [4] and the KMP 
algorithm by Knuth, Morris, and Pratt [8], which appeared in the late 
1970s. Since then, many efforts have been reported; [1, 2] give pointers 
towards this rich literature. The reason that the topic still remains open is 
its importance in a number  of  applications, such as in text editors, word 
processors, lexical analyzers, information retrieval systems, or even in 
vision for two-dimensional image recognition or in biology for molecular 
sequence analysis. 
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New methods have appeared more recently. For example, Sunday 
reported three new enhancements of the BM algorithm [11]. Then, Smith 
elaborated on a variant proposed by Sunday [10]. Finally, a synthetic and 
exhaustive experimentation on a score of BM variants was reported by 
Hume and Sunday [7]. In the present paper, we experimentally test and 
compare the efficiency of some known BM variants as well as two new 
ones. In the next section, we will introduce very briefly some BM varia- 
tions. This way, we can smoothly present and explain the two new ones in 
Section 3. Experimental results comparing the algorithms' performance in 
terms of the number of character comparisons and the required running 
time are included in Section 4. 

2. A L G O R I T H M  PRESENTATION 

The simplest naive algorithm uses two pointers which are initialized to 
point to the first pattern character and the first text character. If these 
characters match, then the pointers are advanced by one position and the 
comparison of succeeding pattern and text characters continues the appar- 
ent way. In case of mismatch, the pattern pointer is initialized, whereas the 
text pointer is advanced by one position. Thus, it seems as if after a 
mismatch the pattern slides only one position on top of the text. The 
authors of [4, 8] recognized the fact that trying to search for a pattern in 
the text by shifting the pattern only one position after a mismatch is a 
memoryless procedure, e.g., the information obtained from the matches 
and the final mismatch is lost. 

BOYER-MOORE METHOD 

The Boyer-Moore algorithm is based on (a) the occurrence heuristic, and 
(b) the match heuristic (terminology according to Baeza-Yates [2]). These 
heuristic techniques are used to reposition the pattern after a mismatch. 
We also notice that a basic characteristic of the BM algorithm is that 
comparisons start from the rightmost pattern character proceeding to- 
wards the leftmost ones. 

According to the occurrence heuristic, the pattern has to be shifted 
after a mismatch, so that on top of the text character where the mismatch 
occurred, a same pattern character will be positioned. For this reason, an 
occurrence table with length equal to the alphabet size is built in a 
preprocessing phase. Entries of the table corresponding to alphabet char- 
acters which do not exist in the pattern are assigned a value equal to the 
pattern length. Entries corresponding to characters appearing in the 
pattern are assigned a value equal to the shorter distance between this 
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character and the last one. Thus, the table entry for the last pattern 
character is equal to 0. 

According to the match heuristic, we have to take into consideration 
any existing subpatterns. Thus, after a mismatch, the pattern should be 
shifted so that there are matches for all the characters that matched 
before, and, in addition, a different pattern character is positioned on top 
of the text character where the mismatch occurred. Again, a match table 
with length equal to that of the pattern is built before actual processing 
starts. Each table entry takes a value equal to the distance of the specific 
character x to a different character y such that the characters succeeding 
x to the pattern end are the same with the characters succeeding y. 

Thus, whenever a mismatch is encountered, the pattern pointer is 
initialized to point to the pattern end, whereas the text pointer is advanced 
according to the greater value of the two relevant entries of the occurrence 
and the match table. It is important, also, to notice that Rytter proposed a 
correct way to calculate the match table [9]. More specifically, to each 
match table entry we have to add the distance of the specific character 
from the last pattern character. 

SIMPLIFIED BOYER-MOORE ALGORITHM 

This method (in short, SBM method) has been studied experimentally 
and analytically by Baeza-Yates [3]. It does not use a match table, based on 
the conjecture that, in practice, patterns are not periodic. A minor detail is 
that the occurrence table entry for the last pattern character is equal to 1 
(instead of 0), to prevent the case of an infinite loop. 

HORSPOOL METHOD 

This method (BMH method) does not use a match table either [6]. In 
case of mismatch, the shifting size is maximized by using the occurrence 
table entry for the text character corresponding to the rightmost pattern 
character (and not for the text character where the mismatch occurred). In 
order to prevent an infinite loop, the occurrence table entry for the last 
pattern character is equal to the smallest distance from a same character 
in the pattern. Thus, if the last pattern character is met only once in the 
pattern, then this value is equal to the pattern length. 

QUICK SEARCH METHOD 

This method (QS method) was proposed recently by Sunday [11]. It is 
another simple (and therefore quick) method which does not use a match 
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table but has the following two characteristics. First, comparisons start 
from the leftmost pattern character proceeding to the rightmost one. 
Second, in case of mismatch, the shifting size is equal to the occurrence 
table entry for the first text character after the last pattern character by 
the time of mismatch. For this reason, all the occurrence table values are 
incremented by a unit. 

MAXIMAL SHIFT METHOD 

This method (MS method), which has also been proposed by Sunday 
[11], uses both the occurrence and the match tables. The occurrence table 
is built and used in the same way as for the QS method. However, the 
match table is constructed in a much more complicated manner. More 
specifically, a temporary structure (with length equal to that of the pat- 
tern) gives, for each pattern character, the distance of an identical pro- 
ceeding character in the pattern. If such a character does not exist ,  then 
the value is equal to the order of the character in the pattern. Then the 
pattern characters are ordered decreasingly according to this temporary 
table (ties are resolved in favor of the leftmost pattern character). Thus, 
finally we come up with a transformed pattern, for which the match table 
is built. The reasoning underneath this method is that, by changing the 
order of the pattern scan, the shift sizes are maximized when the new 
match table is used. 

During searching, the text pointer is initialized to point to the first text 
character, whereas the pattern pointer points to the first position of the 
transformed pattern. Comparisons are performed by examining the text 
characters according to the order of characters of the transformed pattern. 
After a mismatch, the pattern pointer is initialized again, whereas the text 
pointer is advanced according to the maximum value of the relevant 
occurrence and match tables entries. 

OPTIMAL MISMATCH METHOD 

This is another method proposed by Sunday [11] (OM method), which 
uses both the occurrence and match tables. The occurrence table is 
constructed and used in the same way as for the previous two methods (QS 
and MS methods). The match table is built for a transformed pattern 
having its characters ordered ascendingly according to the frequency of 
appearance in the text. The reasoning behind the method is: make a 
mismatch as soon as possible and then make a shift as large as possible. 
Thus, during comparisons, priority is given to the most rare text characters. 
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It is evident that this method uses a temporary table during a preprocess- 
ing step, too. It is noted that, during the same period, Baeza-Yates 
observed independently that the pattern can be scanned in any order, and 
in reverse letter frequency order in particular [3]. 

SMITH METHOD 

This is a method proposed very recently [10] (BMS method) and is based 
on the previous one. In particular, it enhances the OM method in two 
ways. First, it is language-independent and initially it uses a match table 
with arbitrary character ordering. If, during searching, a pattern character 
results in a mismatch, it is moved to the front of the match table so that in 
the next alignment, this character is tried first. Second, in case of a 
mismatch, we choose the greatest possible shifting size by inspecting all the 
occurrence table entries, which correspond to the pattern characters. 

3. T H E  NEW M E T H O D S  

In the previous section, we have described briefly the BM algorithm and 
six of its variations. Their main characteristics are summarized in Table 1. 
As explained, all the methods use an occurrence table, although not in an 
identical way. Also, it is evident that it is necessary to construct an 
additional auxiliary table for the methods which use a transformed pattern 
in place of  the original. We have crafted two new pattern-matching 
algorithms based on some of the reported techniques. The first one 
combines characteristics of the OM method and the BMH method; there- 

TABLE 1 
Characteristics of Pattern-Matching Methods Based on BM Algorithm 

Method name Method Match Pattern search 
and reference code table direction 

Boyer-Moore [4] BM Yes 
Simplified Boyer Moore [3] SBM No 
Boyer-Moore Horspool [6] BMH No 
Quick Search [11] QS No 
Minimal Shift [11] MS Yes 
Optimal Mismatch [11] OM Yes 
Moyer-Moore Smith [10] BMS No 
Optimal Mismatch Horspool OMH No 
Optimal Mismatch Horspool Smith OMHS No 

from end to start 
from end to start 
from end to start 
from start to end 
character ordering 
character ordering 
character ordering 
character ordering 
character ordering 
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fore, we call it, in short, the O M H  method. The second one is based on the 
O H M  and BMS methods; for this reason, we call it the OMHS method, in 
short. In the following subsections, we examine the new algorithms in 
more detail. 

OHM METHOD 

The code in "C"  for this method can be found in the Appendix. The 
method resembles the BMH method since: 

• it does not use a match table. 
• the occurrence table entry for the last pattern character is equal to 

the smallest distance from a same character in the pattern, whereas if 
this character is met  only once in the pattern, then this value is equal 
to the pattern length. 

In addition, it has common characteristics with the OM method since: 

• it uses an auxiliary table for the text character frequencies to order 
the pattern characters. 

• it builds an auxiliary structure with the pattern characters sorted 
ascendingly according to the appearance frequencies and the dis- 
tances from the last pattern character. 

• it makes comparisons considering the end of the pattern. 

The following example will demonstrate  the details of the method. 

EXAMPLE.  Suppose we seek for the l l -charac ter  pattern "abracadabra"  
in the text "abracababracadabra."  The occurrence table is illustrated in 
Table 2. Table 3 gives the frequencies of  appearance for characters in an 
English text ([11]). The pattern characters appearing in the first row of 
Table 4 are ordered according to ascending frequencies as shown in Table 
3. Integer numbers in the second row of Table 4 give the distance of the 
specific character from the last pattern character. 

Searching starts by setting the text pointer to the eleventh character in 
the text ("a"). The first two pattern characters of the auxiliary structure 
(the two "b"s)  match with their corresponding text characters in the 

TABLE 2 
Occurrence Table for the OMH Method 

... a b c d e . . .  q r s ... 

... 3 2 6 4 11 ... 11 1 ll ... 
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TABLE 3 

Appearance Frequencies of Characters in English Text (%) 
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Character a b c d e f g h i j k 1 m 
Frequency 8.9 2.3 4.5 3.2 11.1 1.5 2.4 2.9 7.8 0.2 1.1 5.5 3.2 
Character n o p q r s t u v w x y z 
Frequency 6.8 6.9 3.1 0.2 7.4 5.6 7.1 3.6 1.0 1.1 0.3 2.0 0.2 

( 1 1 - - 2 = )  ninth and the ( 1 1 - 9  = )  second positions. However ,  there is a 
mismatch between the third character  of  the structure ("d")  and the 
relevant (11 - 4  = )  seventh text character  ("b").  Thus, we have to shift the 
text pointer  a number  of  positions shown by the occurrence  table entry for 
the character  "a," which is the text character  corresponding to the last 
pat tern  character.  Now the text pointer  shows to the (11 + 3 = )  four teenth  
character  ("d"). This time, we recognize a mismatch at the first compar ison 
(pat tern 's  "b"  vs. text's "c"). So, we move the text pointer  by four  positions, 
as the occurrence table entry for "d"  shows. At  this point, we have a 
perfect  match of  the pat tern  and the corresponding port ion of  the text. 
Table 5 illustrates the method.  Bold typed text characters of  the first line 
denote  the characters  which are aligned to the last pat tern  character  at 
each successive positioning. Lines 2 to 4 correspond to the three position- 
ings of  the pat tern with respect to the text. In each of  these lines, we show 
which text characters are compared ,  and the order  of  each comparison.  

OMHS METHOD 

This new method:  

• inherits the characteristics of  the previous one, and in addition, 
• uses the technique proposed  by Smith [10], that  is, in case of  mis- 

match we may choose the greatest  shifting size by inspecting all the 
occurrence table entries (which correspond to the pat tern characters).  

TABLE 4 
Auxiliary Structure with Ordered Pattern Characters. 

The Number is the Offset of an Occurrence 
of this Character, from the 

End of the Pattern 

b b d c r r a a a a a 
2 9 4 6 1 8 0 3 5 7 10 



82 Y. M A N O L O P O U L O S  AND C. FALOUTSOS 

TABLE 5 
Order of Comparisons to Text Characters in Each Pattern Positioning 

Text 
1st pattern 

positioning 
2nd pattern 

positioning 
3rd pattern 

positioning 

a b r a c a b a b  

2 3 1 

r a c a d a b r a 

4 

15 6 10 14 8 13 7 12 5 9 11 

This technique has its own processing cost and may result in excess 
searching time for patterns with many different characters. After experi- 
mentation, we decided to partially adopt it by considering only two 
occurrence table entries: the ones for the two text characters which 
correspond to the last two pattern characters. The following example 
demonstrates this new algorithm, whereas the "C"  code may be found in 
the Appendix. 

EXAMPLE.  Suppose, again, that we search for the six-character pattern 
"abacab" in the text "bacabadabacab."  The occurrence table is illustrated 
in Table 6, whereas the additional auxiliary structure is depicted in 
Table 7. 

Searching starts by initializing the text pointer to point to the sixth 
character in the text, whereas the pattern pointer points to the beginning 
of the auxiliary structure. The first character of the auxiliary structure 
("b")  does not match to the sixth text character ("a"). The shifting size is 
equal to the greater of the occurrence table entries for the two text 
characters ("b"  and "a")  corresponding to the two last pattern characters. 
The two entries are 4 and 1, respectively; thus, we have to advance the text 
points (4 - 1 = ) three positions, as shown by the occurrence table entry for 
the character "b ."  After one match between the text's "b"  and the 
pat tern 's  "b,"  we have a mismatch between the pattern character "b"  and 
the text character "a." This time, the shift size is equal to the greater of 
the two numbers ( 1 -  1 = )  0 and 4, which correspond to the two text 
characters ("a" and "b,"  respectively). After we advance the text pointer by 

TABLE 6 
Occurrence Table for the OMHS Method 

... a b c d ... 

... 1 4 2 6 ... 
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TABLE 7 

Auxiliary Structure with the Ordered Pattern Characters 

b b c a a a 
0 3 2 1 4 5 
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four positions, we have a perfect match of the pattern and the correspond- 
ing portion of the text. Table 8 is similar to Table 5 and summarizes the 
example. 

4. RESULTS AND DISCUSSION 

To compare our new methods to the previous ones, we ran an experi- 
ment with a methodology similar to that of [11]. More specifically, we 
created an English text of approximate size 65 Kbytes with approximately 
7600 distinct lexicographically ordered patterns categorized in 15 classes of 
length from 1 to 15 characters. We implemented all the methods using the 
Turbo C optimizing compiler on a 486 workstation. We greatly used the 
code presented in [2, 11] for the known methods. Our cost metrics were 
the required number of comparisons as well as the required execution 
time. More specifically, to understand better the merits and pitfalls of each 
algorithm, we counted: 

• the number of direct comparisons, 
• the number of indirect comparisons, 
• the elapsed searching time, and 
• the elapsed preprocessing time. 

The number of direct comparisons (which occur by an "if ... then ... 
else" statement) is a classical criterion for analyzing algorithms. However, 
the total number of comparisons is also a crucial measure, since the 
number of indirect comparisons (which are performed when accessing the 
occurrence table) is an important overhead. It is also interesting to have a 
measure of the preprocessing cost, which varies significantly between 

TABLE 8 
Order of Comparisons to Text Characters in Each Pattern Positioning 

Text b a c a b a d a b a c a b 
1st pattem positioning 1 
2nd pattern positioning 3 2 
3rdpattern positioning 9 8 5 6 7 4 
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TABLE 9 

Total Number of Direct Comparisons Per Character 

Length Freq BM SBM BMH QA MS OM BMS OMH OMHS 

1 26 1.000 1.000 1.000 0.509 0.509 0.509 0.509 1.000 1.000 
2 38 0.538 0.552 0.538 0.382 0.384 0.373 0.363 0.536 0.536 
3 343 0.370 0.382 0.371 0.294 0.294 0.284 0.271 0.367 0.359 
4 880 0.289 0.302 0.290 0.241 0.247 0.234 0.219 0.283 0.271 
5 1031 0.239 0.251 0.210 0.209 0.213 0.201 0.184 0.233 0.218 
6 1204 0.207 0.218 0.208 0.185 0.190 0.177 0.160 0.201 0.184 
7 1192 0.183 0.193 0.183 0.166 0.170 0.159 0.141 0.177 0.159 
8 963 0.164 0.173 0.165 0.152 0.154 (I.144 0.127 0.158 0.140 
9 780 0.150 0.159 0.151 0.141 0.142 0.134 0.115 0.145 0.126 

10 533 0.140 0.148 0.141 0.132 0.133 0.125 0.107 0.134 0.115. 
11 336 0.130 0.138 0.132 0.125 0.124 (I.118 (I.099 0.126 0.106 
12 166 0.122 0.130 0.123 0.117 0.117 0.111 0.093 0.117 0.098 
13 90 0.117 0.124 0.118 0.112 0.112 0.107 0.088 0.112 0.093 
14 39 0.111 0.117 0.113 0.106 0.105 0.100 0.083 0.106 0.087 
15 13 0.104 0.109 0.106 0.101 0.099 0.094 0.077 0.100 0.082 

Average 7634 0.206 0.216 0.207 0.181 0.173 0.173 0.156 0.198 0.184 

simple and complicated methods. However, if the text size is large (i.e., 
> 10 Kb), then the preprocessing time should be ignored since the search- 
ing time is considerably larger. 

Tables 9 through 12 depict our results. The values for the number of 
comparisons (either direct or indirect and the elapsed time (either for 
processing or for preprocessing) are produced in the following way: for 
each pattern class and metric, we have divided the measuredvalue by the 
population of the class and the size of the text. Thus, all values have been 
normalized and denote the cost per character. 

Closer inspection of the results obtained in the next four tables results 
in the following remarks. 

• Direct comparisons (See Table 9). The average number of direct 
comparisons is calculated by taking into account the probability distribu- 
tion of pattern length. The methods are ranked as follows: BMS, MS, OM, 
QS, OMHS, and OMH. More specifically, for small patterns, the ranking is 
BMS, OM, QS, and MS, whereas for larger patterns, the ranking is BMS, 
OMHS, and OM. This means that embedding the technique proposed by 
Smith in the OMH method improves the latter substantially for long 
patterns. Thus, in general, the Smith method is the best regardless of the 
pattern class. Therefore, an interesting problem is to analyze its complex- 

ity. 
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TABLE 10 

Total Number of Comparisons Per Character 
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Length Freq BM SBM BMH QS MS OM BMS OMH OMHS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 

26 1.000 1.000 1.000 1.017 1.017 1.017 1.017 1.000 1.000 
38 0.538 0.552 0.538 0.732 0.734 0.723 0.708 0.536 0.536 

343 0.371 0.382 0.371 0.563 0.563 0.553 0.532 (}.367 0.359 
880 0.289 0.302 0.290 0.464 0.469 0.456 0.430 (}.283 0.271 

1031 0.239 0.251 0.240 0.400 (I.403 0.392 (}.362 0.233 0.218 
1204 0.207 0.218 0.208 0.354 0.357 0.346 0.314 0.201 0.184 
1192 0.183 (I.193 0.183 0.318 0.320 0.311 0.277 0.177 0.159 
963 0.164 0.173 0.165 0.290 0.290 0.283 (}.249 0.158 0.140 
780 0.150 0.159 0.151 0.269 0.268 0.261 0.227 0.145 0.126 
533 0.140 0.148 0.141 0.252 0.251 0.245 0.209 0.134 0.115 
336 0.130 0.138 0.132 0.238 0.235 0.231 0.195 0.126 0.106 
166 0.122 0.130 0.123 0.223 0.221 0.217 0.182 0.117 0.098 
90 0.117 0.124 0.118 0.215 0.212 0.209 0.173 0.112 0.093 
39 0.111 0.117 0.113 0.202 0.199 0.196 0.163 0.106 0.087 
13 0.104 0.109 0.106 0.193 0.188 0.186 0.152 0.100 0.082 

Average 7634 0.206 0.216 0.207 0.346 0.348 0.339 0.307 0.198 0.184 

TABLE I l 

Mean Pattern-Matching Time (in MS) 

Length Freq BM SBM BMH QS MS OM BMS OMH OMHS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

26 0.115 0.100 0.099 0.082 0.151 0.145 0.112 0.154 0.197 
38 0.059 0.053 0.052 0.059 0.107 0.102 0.078 0.082 0.104 

343 0.041 0.037 0.036 0.045 0.082 0.078 0.059 (I .056 0.071 
880 0.031 0.029 0.028 0.037 0.068 0.065 0.048 0.043 0.053 

1031 0.026 0.024 0.023 0.032 0.059 0.056 0.040 0.036 0.043 
1204 0.022 0.021 0.020 0.029 0.052 0.049 0.035 0.031 0.036 
1192 0.020 0.018 0.017 0.026 0.047 0.044 0.031 0.027 0.032 
963 0.018 0.017 0.016 0.023 0.042 0.040 0.028 0.024 0.028 
780 0.016 0.015 0.014 0.022 0.039 0.037 0.025 0.022 0.025 
533 0.015 (I.014 0.013 0.020 0.036 0.035 0.023 0.021 0.023 
336 0.014 0.013 0.013 0.019 0.034 0.033 0.022 0.019 0.021 
166 0.013 0.012 0.012 0.018 (}.032 0.031 0.020 0.018 0.020 
90 0.012 0.012 0.011 0.017 0.031 0.030 0.019 0.017 0.019 
39 0.012 0.011 0.011 0.016 0.029 0.028 0.018 0.017 0.017 
13 0.011 0.011 0.010 0.016 0.028 0.027 0.018 0.015 0.016 

Average 7634 0.022 0.021 0.020 0.028 0.051 0.048 0.034 0.031 0.036 
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TABLE 12 
Mean Preprocessing Time (in MS) 

Length Freq BM SBM BMH QS MS OM BMS OMH OMHS 

1 26 0.047 0.012 0.041 0.029 0.049 0.049 0.036 0.044 0.011 
2 38 0.051 0.012 0.041 0.031 0.064 0.071 0.052 0.050 0.019 
3 343 0.054 0.013 0.042 0.031 0.086 0.103 0.077 0.061 0.029 
4 880 0.058 0.013 0.042 0.033 0.127 0.187 0.151 0.075 0.043 
5 1031 0.062 0.014 0.043 0.034 0.143 0.225 0.183 0.094 0.061 
6 1204 0.066 0.014 0.043 0.035 0.175 0.289 0.238 0.116 0.083 
7 1192 0.069 0.015 0.044 0.037 0.199 0.350 0.291 0.142 0.108 
8 963 0.073 0.015 0.044 0.038 0.240 0.416 0.350 0.171 0.137 
9 780 0.076 0.016 0.045 0.039 0.276 0.480 0.407 0.205 0.170 

10 533 0.080 0.016 0.045 0.041 0.309 0.548 0.466 0.242 0.207 
11 336 0.084 0.017 0.046 0.042 0.345 0.619 0.531 0.283 0.247 
12 166 0.086 0.018 0.047 0.043 0.380 0.695 0.600 0.328 0.292 
13 90 0.091 0.018 0.047 0.044 0.418 0.756 0.654 0.375 0.338 
14 39 0.094 0.019 0.047 0.046 0.463 0.814 0.707 0.430 0.392 
15 13 0.098 0.019 0.049 0.046 0.501 0.930 0.809 0.489 0.450 

Average 7634 0.069 0.015 0.044 0.037 0.209 0.354 0.296 0.151 0.118 

• Indirect compar isons  (See Table 10). The methods QS, MS, OM, and 
BMS perform indirect comparisons, whereas the remaining methods BM, 
SBM, BMH, OMH, and OMHS) do not. In other words, the relative 
weight of the advantage of the Smith method is decreased. Thus, on the 
average, the ranking according to the total number of comparisons is 
OMHS, OMH, BM, BMH, and SBM. Let us notice that this ranking does 
not change with the pattern length. It is also interesting to note that the 
new methods OMH and OMHS outperform the BMH, OM, and BMS 
methods, although they are chemical unions of the latter ones. 

• Searching t ime (See Table 11). Again, the average searching time is 
calculated by taking into account the probability distribution of pattern 
length. The ranking is BMH, SBM, BM, QS, OMH, BMS, and OMHS. 
However, for long patterns, it seems that (a) the performance of the QS 
and OMH algorithms is very similar, and (b) the new OMHS method 
outperforms the S method. We also remark that the embedding of the 
Horspool technique in the OM method is successful performance-wise. 
This remark does not hold for the embedding of the Smith technique in 
the OMH method. 

• Preprocessing t ime (See Table 12). It is evident that it increases with 
increasing pattern length. After averaging, we conclude that the ranking 
sequence is SBM, QS, BMH, BM, OMHS, and OMH. As expected, this 
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ranking is very similar to the ranking according to the searching time 
metric. We also remark that the cost increase for the patterns of length 15 
in comparison to the cost for patterns of length 1 is very small (ratio less 
than 1 : 2) for the BMH, QS, and SBM methods. This observation does not 
hold for the other methods. For example, for the BMS and OMHS 
methods, this ratio is greater than 1 : 20. 

Concluding, in this paper we have presented the results of an extensive 
experiment of the most well-known pattern-matching algorithms based on 
the Boyer-Moore method. We have described two new variations (the 
OMH and OMHS methods) by building blocks of previous variations. 
Summarizing the previous comments with regard to the new methods, we 
have the following. 

• From thetheore t ica l  point of view, the OMHS method is always the 
best method, since the total number of comparisons is the most 
important metric in such a case. If we are interested in the number of 
direct comparisons, the OMHS method is second best after the BMS 
method (for length > 6). 

• From the practical point of view, thanks to their simplicity, the BMH 
and SBM methods seem to be very stable methods, outperforming the 
other variants in terms of searching time. 

APPENDIX 

The names of the variables used in the following fragments of code are 
summarized in Table 13. 

OMH METHOD 

typedef struct pa~tern_scan_element 
typedef { 

int ]oc; char c; 
} 

a U K ;  

TABLE 13 
Names of Variables Used and Definitions 

Variable Definition Variable 
text text pointer ASIZE 
tlen text length occ 
pattern pattern pointer freq 
plen pattern length aux 
MAXPAT maximum pattern length auxptr 

Definition 
alphabet size 
occurrence table 
frequency table 
auxiliary structure 
auxiliary table 
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static aux auxptr[MAXPAT]; 

void prep(unsigned char *pattern, unsigned char plen) 

unsigned char h; register int i; 
register unsigned char *c, *ce; register aux *p, *pl, *ps; 

for (i 0; i<ASIZE; i++) occ[i] plen; 

for (c-pattern, ce-pattern+plen i; c<ce; c++) occ[*c]-ce c; 
for (i-plen-l, p-auxptr; i> 0; i--, pattern++, p++) 
{ 

p->loc i; p->c-*pattern; 
} 

p >c-0; p->loc 0; 
for (p auxptr+plen i, ps-auxptr~l; p> ps; p ) 

for (pl=p-l; pl> auxptr; pl--) 
{ 

if (freq[pl->c-97]<freq[p >c 97]) continue; 
h-p->c; i-p >loc; p->c-pl >c; 
p >loc pl->loc; pl->c-h; pl->loc-i; 

} 

long OMHsearch(unsigned char *text, unsigned int tlen) 
{ 

register aux *p; register unsigned char *tx; 
register unsigned int found; 

tx=texteplen i; found-0; 
while (tx< text+tlen) 
( 

for (p auxptr; p >c; p++) if ( p >c ! *(tx-p >loc 
mismatch; 

found++; 
mismatch: tx+ occ[*tx]; 

} 

return found; 
} 

OMHS METHOD 

long OMHSsearch(unsigned char *text, unsigned int tlen) 
( 

register aux *p; register unsigned char *tx; 
register unsigned int found; 

tx text+plen-l; found-0; 
while (tx< text+tlen) 
{ 
for (p auxptr; p->c; p++) if ( p->c ! *(tx-p->loc 

mismatch; 

) goto 

) goto 
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found++; 
mismatch: tx+ (occ[*tx]>occ[*(tx-l)]-i 

} 

return found; 

? OCC[* (tx-l) ]-i) ; 
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