
Informatics and
Computer Science

NORI'H. HOIJAND

Experimenting with Pattern-Matching Algorithms

YANNIS MANOLOPOULOS*

Department of Informatics, Aristotle University, Thessaloniki, Greece 54006

and

CHRISTOS FALOUTSOS*

Department of Computer Science, University of Maryland, College Park, Maryland 20742

ABSTRACT

Two new pattern-matching algorithms based on the Boyer-Moore algorithm are
presented. Their performance is compared to that of earlier relevant variants in terms
of the number of character comparisons and the required running time by exhaustive
simulation. Experimental results show the efficiency of both these two new algorithms.

1. I N T R O D U C T I O N

Text-searching methods have been divided in three categories: (a) furl
text scanning, (b) text inversion, and (c) signature files [5]. The first category
includes the highly honored research topic of pattern-matching. Milestones
in this area are the BM algorithm by Boyer and Moore [4] and the KMP
algorithm by Knuth, Morris, and Pratt [8], which appeared in the late
1970s. Since then, many efforts have been reported; [1, 2] give pointers
towards this rich literature. The reason that the topic still remains open is
its importance in a number of applications, such as in text editors, word
processors, lexical analyzers, information retrieval systems, or even in
vision for two-dimensional image recognition or in biology for molecular
sequence analysis.

*Currently on leave at AT&T Bell Laboratories, Murray Hill.

INFORMATION SCIENCES 90, 75-89 (1996)
© Elsevier Science Inc. 1996 0020-0255/96/$15.00
655 Avenue of the Americas, New York, NY 10010 SSDI 0020-0255(95)00280-4

76 Y. MANOLOPOULOS AND C. FALOUTSOS

New methods have appeared more recently. For example, Sunday
reported three new enhancements of the BM algorithm [11]. Then, Smith
elaborated on a variant proposed by Sunday [10]. Finally, a synthetic and
exhaustive experimentation on a score of BM variants was reported by
Hume and Sunday [7]. In the present paper, we experimentally test and
compare the efficiency of some known BM variants as well as two new
ones. In the next section, we will introduce very briefly some BM varia-
tions. This way, we can smoothly present and explain the two new ones in
Section 3. Experimental results comparing the algorithms' performance in
terms of the number of character comparisons and the required running
time are included in Section 4.

2. A L G O R I T H M PRESENTATION

The simplest naive algorithm uses two pointers which are initialized to
point to the first pattern character and the first text character. If these
characters match, then the pointers are advanced by one position and the
comparison of succeeding pattern and text characters continues the appar-
ent way. In case of mismatch, the pattern pointer is initialized, whereas the
text pointer is advanced by one position. Thus, it seems as if after a
mismatch the pattern slides only one position on top of the text. The
authors of [4, 8] recognized the fact that trying to search for a pattern in
the text by shifting the pattern only one position after a mismatch is a
memoryless procedure, e.g., the information obtained from the matches
and the final mismatch is lost.

BOYER-MOORE METHOD

The Boyer-Moore algorithm is based on (a) the occurrence heuristic, and
(b) the match heuristic (terminology according to Baeza-Yates [2]). These
heuristic techniques are used to reposition the pattern after a mismatch.
We also notice that a basic characteristic of the BM algorithm is that
comparisons start from the rightmost pattern character proceeding to-
wards the leftmost ones.

According to the occurrence heuristic, the pattern has to be shifted
after a mismatch, so that on top of the text character where the mismatch
occurred, a same pattern character will be positioned. For this reason, an
occurrence table with length equal to the alphabet size is built in a
preprocessing phase. Entries of the table corresponding to alphabet char-
acters which do not exist in the pattern are assigned a value equal to the
pattern length. Entries corresponding to characters appearing in the
pattern are assigned a value equal to the shorter distance between this

PATI 'ERN-MATCHING A L G O R I T t t M S 77

character and the last one. Thus, the table entry for the last pattern
character is equal to 0.

According to the match heuristic, we have to take into consideration
any existing subpatterns. Thus, after a mismatch, the pattern should be
shifted so that there are matches for all the characters that matched
before, and, in addition, a different pattern character is positioned on top
of the text character where the mismatch occurred. Again, a match table
with length equal to that of the pattern is built before actual processing
starts. Each table entry takes a value equal to the distance of the specific
character x to a different character y such that the characters succeeding
x to the pattern end are the same with the characters succeeding y.

Thus, whenever a mismatch is encountered, the pattern pointer is
initialized to point to the pattern end, whereas the text pointer is advanced
according to the greater value of the two relevant entries of the occurrence
and the match table. It is important, also, to notice that Rytter proposed a
correct way to calculate the match table [9]. More specifically, to each
match table entry we have to add the distance of the specific character
from the last pattern character.

SIMPLIFIED BOYER-MOORE ALGORITHM

This method (in short, SBM method) has been studied experimentally
and analytically by Baeza-Yates [3]. It does not use a match table, based on
the conjecture that, in practice, patterns are not periodic. A minor detail is
that the occurrence table entry for the last pattern character is equal to 1
(instead of 0), to prevent the case of an infinite loop.

HORSPOOL METHOD

This method (BMH method) does not use a match table either [6]. In
case of mismatch, the shifting size is maximized by using the occurrence
table entry for the text character corresponding to the rightmost pattern
character (and not for the text character where the mismatch occurred). In
order to prevent an infinite loop, the occurrence table entry for the last
pattern character is equal to the smallest distance from a same character
in the pattern. Thus, if the last pattern character is met only once in the
pattern, then this value is equal to the pattern length.

QUICK SEARCH METHOD

This method (QS method) was proposed recently by Sunday [11]. It is
another simple (and therefore quick) method which does not use a match

78 Y. MANOLOPOULOS AND C. FALOUTSOS

table but has the following two characteristics. First, comparisons start
from the leftmost pattern character proceeding to the rightmost one.
Second, in case of mismatch, the shifting size is equal to the occurrence
table entry for the first text character after the last pattern character by
the time of mismatch. For this reason, all the occurrence table values are
incremented by a unit.

MAXIMAL SHIFT METHOD

This method (MS method), which has also been proposed by Sunday
[11], uses both the occurrence and the match tables. The occurrence table
is built and used in the same way as for the QS method. However, the
match table is constructed in a much more complicated manner. More
specifically, a temporary structure (with length equal to that of the pat-
tern) gives, for each pattern character, the distance of an identical pro-
ceeding character in the pattern. If such a character does not exist , then
the value is equal to the order of the character in the pattern. Then the
pattern characters are ordered decreasingly according to this temporary
table (ties are resolved in favor of the leftmost pattern character). Thus,
finally we come up with a transformed pattern, for which the match table
is built. The reasoning underneath this method is that, by changing the
order of the pattern scan, the shift sizes are maximized when the new
match table is used.

During searching, the text pointer is initialized to point to the first text
character, whereas the pattern pointer points to the first position of the
transformed pattern. Comparisons are performed by examining the text
characters according to the order of characters of the transformed pattern.
After a mismatch, the pattern pointer is initialized again, whereas the text
pointer is advanced according to the maximum value of the relevant
occurrence and match tables entries.

OPTIMAL MISMATCH METHOD

This is another method proposed by Sunday [11] (OM method), which
uses both the occurrence and match tables. The occurrence table is
constructed and used in the same way as for the previous two methods (QS
and MS methods). The match table is built for a transformed pattern
having its characters ordered ascendingly according to the frequency of
appearance in the text. The reasoning behind the method is: make a
mismatch as soon as possible and then make a shift as large as possible.
Thus, during comparisons, priority is given to the most rare text characters.

P A T T E R N - M A T C H I N G A L G O R I T H M S 79

It is evident that this method uses a temporary table during a preprocess-
ing step, too. It is noted that, during the same period, Baeza-Yates
observed independently that the pattern can be scanned in any order, and
in reverse letter frequency order in particular [3].

SMITH METHOD

This is a method proposed very recently [10] (BMS method) and is based
on the previous one. In particular, it enhances the OM method in two
ways. First, it is language-independent and initially it uses a match table
with arbitrary character ordering. If, during searching, a pattern character
results in a mismatch, it is moved to the front of the match table so that in
the next alignment, this character is tried first. Second, in case of a
mismatch, we choose the greatest possible shifting size by inspecting all the
occurrence table entries, which correspond to the pattern characters.

3. T H E NEW M E T H O D S

In the previous section, we have described briefly the BM algorithm and
six of its variations. Their main characteristics are summarized in Table 1.
As explained, all the methods use an occurrence table, although not in an
identical way. Also, it is evident that it is necessary to construct an
additional auxiliary table for the methods which use a transformed pattern
in place of the original. We have crafted two new pattern-matching
algorithms based on some of the reported techniques. The first one
combines characteristics of the OM method and the BMH method; there-

TABLE 1
Characteristics of Pattern-Matching Methods Based on BM Algorithm

Method name Method Match Pattern search
and reference code table direction

Boyer-Moore [4] BM Yes
Simplified Boyer Moore [3] SBM No
Boyer-Moore Horspool [6] BMH No
Quick Search [11] QS No
Minimal Shift [11] MS Yes
Optimal Mismatch [11] OM Yes
Moyer-Moore Smith [10] BMS No
Optimal Mismatch Horspool OMH No
Optimal Mismatch Horspool Smith OMHS No

from end to start
from end to start
from end to start
from start to end
character ordering
character ordering
character ordering
character ordering
character ordering

80 Y. M A N O L O P O U L O S A N D C. FALOUTSOS

fore, we call it, in short, the O M H method. The second one is based on the
O H M and BMS methods; for this reason, we call it the OMHS method, in
short. In the following subsections, we examine the new algorithms in
more detail.

OHM METHOD

The code in "C" for this method can be found in the Appendix. The
method resembles the BMH method since:

• it does not use a match table.
• the occurrence table entry for the last pattern character is equal to

the smallest distance from a same character in the pattern, whereas if
this character is met only once in the pattern, then this value is equal
to the pattern length.

In addition, it has common characteristics with the OM method since:

• it uses an auxiliary table for the text character frequencies to order
the pattern characters.

• it builds an auxiliary structure with the pattern characters sorted
ascendingly according to the appearance frequencies and the dis-
tances from the last pattern character.

• it makes comparisons considering the end of the pattern.

The following example will demonstrate the details of the method.

EXAMPLE. Suppose we seek for the l l -charac ter pattern "abracadabra"
in the text "abracababracadabra." The occurrence table is illustrated in
Table 2. Table 3 gives the frequencies of appearance for characters in an
English text ([11]). The pattern characters appearing in the first row of
Table 4 are ordered according to ascending frequencies as shown in Table
3. Integer numbers in the second row of Table 4 give the distance of the
specific character from the last pattern character.

Searching starts by setting the text pointer to the eleventh character in
the text ("a"). The first two pattern characters of the auxiliary structure
(the two "b"s) match with their corresponding text characters in the

TABLE 2
Occurrence Table for the OMH Method

... a b c d e . . . q r s ...

... 3 2 6 4 11 ... 11 1 ll ...

P A T F E R N - M A T C H I N G A L G O R I T H M S

TABLE 3

Appearance Frequencies of Characters in English Text (%)

81

Character a b c d e f g h i j k 1 m
Frequency 8.9 2.3 4.5 3.2 11.1 1.5 2.4 2.9 7.8 0.2 1.1 5.5 3.2
Character n o p q r s t u v w x y z
Frequency 6.8 6.9 3.1 0.2 7.4 5.6 7.1 3.6 1.0 1.1 0.3 2.0 0.2

(1 1 - - 2 =) ninth and the (1 1 - 9 =) second positions. However , there is a
mismatch between the third character of the structure ("d") and the
relevant (11 - 4 =) seventh text character ("b"). Thus, we have to shift the
text pointer a number of positions shown by the occurrence table entry for
the character "a," which is the text character corresponding to the last
pat tern character. Now the text pointer shows to the (11 + 3 =) four teenth
character ("d"). This time, we recognize a mismatch at the first compar ison
(pat tern 's "b" vs. text's "c"). So, we move the text pointer by four positions,
as the occurrence table entry for "d" shows. At this point, we have a
perfect match of the pat tern and the corresponding port ion of the text.
Table 5 illustrates the method. Bold typed text characters of the first line
denote the characters which are aligned to the last pat tern character at
each successive positioning. Lines 2 to 4 correspond to the three position-
ings of the pat tern with respect to the text. In each of these lines, we show
which text characters are compared , and the order of each comparison.

OMHS METHOD

This new method:

• inherits the characteristics of the previous one, and in addition,
• uses the technique proposed by Smith [10], that is, in case of mis-

match we may choose the greatest shifting size by inspecting all the
occurrence table entries (which correspond to the pat tern characters).

TABLE 4
Auxiliary Structure with Ordered Pattern Characters.

The Number is the Offset of an Occurrence
of this Character, from the

End of the Pattern

b b d c r r a a a a a
2 9 4 6 1 8 0 3 5 7 10

82 Y. M A N O L O P O U L O S AND C. FALOUTSOS

TABLE 5
Order of Comparisons to Text Characters in Each Pattern Positioning

Text
1st pattern

positioning
2nd pattern

positioning
3rd pattern

positioning

a b r a c a b a b

2 3 1

r a c a d a b r a

4

15 6 10 14 8 13 7 12 5 9 11

This technique has its own processing cost and may result in excess
searching time for patterns with many different characters. After experi-
mentation, we decided to partially adopt it by considering only two
occurrence table entries: the ones for the two text characters which
correspond to the last two pattern characters. The following example
demonstrates this new algorithm, whereas the "C" code may be found in
the Appendix.

EXAMPLE. Suppose, again, that we search for the six-character pattern
"abacab" in the text "bacabadabacab." The occurrence table is illustrated
in Table 6, whereas the additional auxiliary structure is depicted in
Table 7.

Searching starts by initializing the text pointer to point to the sixth
character in the text, whereas the pattern pointer points to the beginning
of the auxiliary structure. The first character of the auxiliary structure
("b") does not match to the sixth text character ("a"). The shifting size is
equal to the greater of the occurrence table entries for the two text
characters ("b" and "a") corresponding to the two last pattern characters.
The two entries are 4 and 1, respectively; thus, we have to advance the text
points (4 - 1 =) three positions, as shown by the occurrence table entry for
the character "b ." After one match between the text's "b" and the
pat tern 's "b," we have a mismatch between the pattern character "b" and
the text character "a." This time, the shift size is equal to the greater of
the two numbers (1 - 1 =) 0 and 4, which correspond to the two text
characters ("a" and "b," respectively). After we advance the text pointer by

TABLE 6
Occurrence Table for the OMHS Method

... a b c d ...

... 1 4 2 6 ...

P A T F E R N - M A T C H I N G A L G O R I T H M S

TABLE 7

Auxiliary Structure with the Ordered Pattern Characters

b b c a a a
0 3 2 1 4 5

83

four positions, we have a perfect match of the pattern and the correspond-
ing portion of the text. Table 8 is similar to Table 5 and summarizes the
example.

4. RESULTS AND DISCUSSION

To compare our new methods to the previous ones, we ran an experi-
ment with a methodology similar to that of [11]. More specifically, we
created an English text of approximate size 65 Kbytes with approximately
7600 distinct lexicographically ordered patterns categorized in 15 classes of
length from 1 to 15 characters. We implemented all the methods using the
Turbo C optimizing compiler on a 486 workstation. We greatly used the
code presented in [2, 11] for the known methods. Our cost metrics were
the required number of comparisons as well as the required execution
time. More specifically, to understand better the merits and pitfalls of each
algorithm, we counted:

• the number of direct comparisons,
• the number of indirect comparisons,
• the elapsed searching time, and
• the elapsed preprocessing time.

The number of direct comparisons (which occur by an "if ... then ...
else" statement) is a classical criterion for analyzing algorithms. However,
the total number of comparisons is also a crucial measure, since the
number of indirect comparisons (which are performed when accessing the
occurrence table) is an important overhead. It is also interesting to have a
measure of the preprocessing cost, which varies significantly between

TABLE 8
Order of Comparisons to Text Characters in Each Pattern Positioning

Text b a c a b a d a b a c a b
1st pattem positioning 1
2nd pattern positioning 3 2
3rdpattern positioning 9 8 5 6 7 4

84 Y. M A N O L O P O U L O S AND C. FALOUTSOS

TABLE 9

Total Number of Direct Comparisons Per Character

Length Freq BM SBM BMH QA MS OM BMS OMH OMHS

1 26 1.000 1.000 1.000 0.509 0.509 0.509 0.509 1.000 1.000
2 38 0.538 0.552 0.538 0.382 0.384 0.373 0.363 0.536 0.536
3 343 0.370 0.382 0.371 0.294 0.294 0.284 0.271 0.367 0.359
4 880 0.289 0.302 0.290 0.241 0.247 0.234 0.219 0.283 0.271
5 1031 0.239 0.251 0.210 0.209 0.213 0.201 0.184 0.233 0.218
6 1204 0.207 0.218 0.208 0.185 0.190 0.177 0.160 0.201 0.184
7 1192 0.183 0.193 0.183 0.166 0.170 0.159 0.141 0.177 0.159
8 963 0.164 0.173 0.165 0.152 0.154 (I.144 0.127 0.158 0.140
9 780 0.150 0.159 0.151 0.141 0.142 0.134 0.115 0.145 0.126

10 533 0.140 0.148 0.141 0.132 0.133 0.125 0.107 0.134 0.115.
11 336 0.130 0.138 0.132 0.125 0.124 (I.118 (I.099 0.126 0.106
12 166 0.122 0.130 0.123 0.117 0.117 0.111 0.093 0.117 0.098
13 90 0.117 0.124 0.118 0.112 0.112 0.107 0.088 0.112 0.093
14 39 0.111 0.117 0.113 0.106 0.105 0.100 0.083 0.106 0.087
15 13 0.104 0.109 0.106 0.101 0.099 0.094 0.077 0.100 0.082

Average 7634 0.206 0.216 0.207 0.181 0.173 0.173 0.156 0.198 0.184

simple and complicated methods. However, if the text size is large (i.e.,
> 10 Kb), then the preprocessing time should be ignored since the search-
ing time is considerably larger.

Tables 9 through 12 depict our results. The values for the number of
comparisons (either direct or indirect and the elapsed time (either for
processing or for preprocessing) are produced in the following way: for
each pattern class and metric, we have divided the measuredvalue by the
population of the class and the size of the text. Thus, all values have been
normalized and denote the cost per character.

Closer inspection of the results obtained in the next four tables results
in the following remarks.

• Direct comparisons (See Table 9). The average number of direct
comparisons is calculated by taking into account the probability distribu-
tion of pattern length. The methods are ranked as follows: BMS, MS, OM,
QS, OMHS, and OMH. More specifically, for small patterns, the ranking is
BMS, OM, QS, and MS, whereas for larger patterns, the ranking is BMS,
OMHS, and OM. This means that embedding the technique proposed by
Smith in the OMH method improves the latter substantially for long
patterns. Thus, in general, the Smith method is the best regardless of the
pattern class. Therefore, an interesting problem is to analyze its complex-

ity.

P A T F E R N - M A T C H I N G A L G O R I T H M S

TABLE 10

Total Number of Comparisons Per Character

85

Length Freq BM SBM BMH QS MS OM BMS OMH OMHS

1
2
3
4
5
6
7
8
9

10
II
12
13
14
15

26 1.000 1.000 1.000 1.017 1.017 1.017 1.017 1.000 1.000
38 0.538 0.552 0.538 0.732 0.734 0.723 0.708 0.536 0.536

343 0.371 0.382 0.371 0.563 0.563 0.553 0.532 (}.367 0.359
880 0.289 0.302 0.290 0.464 0.469 0.456 0.430 (}.283 0.271

1031 0.239 0.251 0.240 0.400 (I.403 0.392 (}.362 0.233 0.218
1204 0.207 0.218 0.208 0.354 0.357 0.346 0.314 0.201 0.184
1192 0.183 (I.193 0.183 0.318 0.320 0.311 0.277 0.177 0.159
963 0.164 0.173 0.165 0.290 0.290 0.283 (}.249 0.158 0.140
780 0.150 0.159 0.151 0.269 0.268 0.261 0.227 0.145 0.126
533 0.140 0.148 0.141 0.252 0.251 0.245 0.209 0.134 0.115
336 0.130 0.138 0.132 0.238 0.235 0.231 0.195 0.126 0.106
166 0.122 0.130 0.123 0.223 0.221 0.217 0.182 0.117 0.098
90 0.117 0.124 0.118 0.215 0.212 0.209 0.173 0.112 0.093
39 0.111 0.117 0.113 0.202 0.199 0.196 0.163 0.106 0.087
13 0.104 0.109 0.106 0.193 0.188 0.186 0.152 0.100 0.082

Average 7634 0.206 0.216 0.207 0.346 0.348 0.339 0.307 0.198 0.184

TABLE I l

Mean Pattern-Matching Time (in MS)

Length Freq BM SBM BMH QS MS OM BMS OMH OMHS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

26 0.115 0.100 0.099 0.082 0.151 0.145 0.112 0.154 0.197
38 0.059 0.053 0.052 0.059 0.107 0.102 0.078 0.082 0.104

343 0.041 0.037 0.036 0.045 0.082 0.078 0.059 (I .056 0.071
880 0.031 0.029 0.028 0.037 0.068 0.065 0.048 0.043 0.053

1031 0.026 0.024 0.023 0.032 0.059 0.056 0.040 0.036 0.043
1204 0.022 0.021 0.020 0.029 0.052 0.049 0.035 0.031 0.036
1192 0.020 0.018 0.017 0.026 0.047 0.044 0.031 0.027 0.032
963 0.018 0.017 0.016 0.023 0.042 0.040 0.028 0.024 0.028
780 0.016 0.015 0.014 0.022 0.039 0.037 0.025 0.022 0.025
533 0.015 (I.014 0.013 0.020 0.036 0.035 0.023 0.021 0.023
336 0.014 0.013 0.013 0.019 0.034 0.033 0.022 0.019 0.021
166 0.013 0.012 0.012 0.018 (}.032 0.031 0.020 0.018 0.020
90 0.012 0.012 0.011 0.017 0.031 0.030 0.019 0.017 0.019
39 0.012 0.011 0.011 0.016 0.029 0.028 0.018 0.017 0.017
13 0.011 0.011 0.010 0.016 0.028 0.027 0.018 0.015 0.016

Average 7634 0.022 0.021 0.020 0.028 0.051 0.048 0.034 0.031 0.036

86 Y. M A N O L O P O U L O S AND C. FALOUTSOS

TABLE 12
Mean Preprocessing Time (in MS)

Length Freq BM SBM BMH QS MS OM BMS OMH OMHS

1 26 0.047 0.012 0.041 0.029 0.049 0.049 0.036 0.044 0.011
2 38 0.051 0.012 0.041 0.031 0.064 0.071 0.052 0.050 0.019
3 343 0.054 0.013 0.042 0.031 0.086 0.103 0.077 0.061 0.029
4 880 0.058 0.013 0.042 0.033 0.127 0.187 0.151 0.075 0.043
5 1031 0.062 0.014 0.043 0.034 0.143 0.225 0.183 0.094 0.061
6 1204 0.066 0.014 0.043 0.035 0.175 0.289 0.238 0.116 0.083
7 1192 0.069 0.015 0.044 0.037 0.199 0.350 0.291 0.142 0.108
8 963 0.073 0.015 0.044 0.038 0.240 0.416 0.350 0.171 0.137
9 780 0.076 0.016 0.045 0.039 0.276 0.480 0.407 0.205 0.170

10 533 0.080 0.016 0.045 0.041 0.309 0.548 0.466 0.242 0.207
11 336 0.084 0.017 0.046 0.042 0.345 0.619 0.531 0.283 0.247
12 166 0.086 0.018 0.047 0.043 0.380 0.695 0.600 0.328 0.292
13 90 0.091 0.018 0.047 0.044 0.418 0.756 0.654 0.375 0.338
14 39 0.094 0.019 0.047 0.046 0.463 0.814 0.707 0.430 0.392
15 13 0.098 0.019 0.049 0.046 0.501 0.930 0.809 0.489 0.450

Average 7634 0.069 0.015 0.044 0.037 0.209 0.354 0.296 0.151 0.118

• Indirect compar isons (See Table 10). The methods QS, MS, OM, and
BMS perform indirect comparisons, whereas the remaining methods BM,
SBM, BMH, OMH, and OMHS) do not. In other words, the relative
weight of the advantage of the Smith method is decreased. Thus, on the
average, the ranking according to the total number of comparisons is
OMHS, OMH, BM, BMH, and SBM. Let us notice that this ranking does
not change with the pattern length. It is also interesting to note that the
new methods OMH and OMHS outperform the BMH, OM, and BMS
methods, although they are chemical unions of the latter ones.

• Searching t ime (See Table 11). Again, the average searching time is
calculated by taking into account the probability distribution of pattern
length. The ranking is BMH, SBM, BM, QS, OMH, BMS, and OMHS.
However, for long patterns, it seems that (a) the performance of the QS
and OMH algorithms is very similar, and (b) the new OMHS method
outperforms the S method. We also remark that the embedding of the
Horspool technique in the OM method is successful performance-wise.
This remark does not hold for the embedding of the Smith technique in
the OMH method.

• Preprocessing t ime (See Table 12). It is evident that it increases with
increasing pattern length. After averaging, we conclude that the ranking
sequence is SBM, QS, BMH, BM, OMHS, and OMH. As expected, this

PATI 'ERN-MATCHING ALGORITHMS 87

ranking is very similar to the ranking according to the searching time
metric. We also remark that the cost increase for the patterns of length 15
in comparison to the cost for patterns of length 1 is very small (ratio less
than 1 : 2) for the BMH, QS, and SBM methods. This observation does not
hold for the other methods. For example, for the BMS and OMHS
methods, this ratio is greater than 1 : 20.

Concluding, in this paper we have presented the results of an extensive
experiment of the most well-known pattern-matching algorithms based on
the Boyer-Moore method. We have described two new variations (the
OMH and OMHS methods) by building blocks of previous variations.
Summarizing the previous comments with regard to the new methods, we
have the following.

• From thetheore t ica l point of view, the OMHS method is always the
best method, since the total number of comparisons is the most
important metric in such a case. If we are interested in the number of
direct comparisons, the OMHS method is second best after the BMS
method (for length > 6).

• From the practical point of view, thanks to their simplicity, the BMH
and SBM methods seem to be very stable methods, outperforming the
other variants in terms of searching time.

APPENDIX

The names of the variables used in the following fragments of code are
summarized in Table 13.

OMH METHOD

typedef struct pa~tern_scan_element
typedef {

int]oc; char c;
}

a U K ;

TABLE 13
Names of Variables Used and Definitions

Variable Definition Variable
text text pointer ASIZE
tlen text length occ
pattern pattern pointer freq
plen pattern length aux
MAXPAT maximum pattern length auxptr

Definition
alphabet size
occurrence table
frequency table
auxiliary structure
auxiliary table

88 Y. MANOLOPOULOS A N D C. FALOUTSOS

static aux auxptr[MAXPAT];

void prep(unsigned char *pattern, unsigned char plen)

unsigned char h; register int i;
register unsigned char *c, *ce; register aux *p, *pl, *ps;

for (i 0; i<ASIZE; i++) occ[i] plen;

for (c-pattern, ce-pattern+plen i; c<ce; c++) occ[*c]-ce c;
for (i-plen-l, p-auxptr; i> 0; i--, pattern++, p++)
{

p->loc i; p->c-*pattern;
}

p >c-0; p->loc 0;
for (p auxptr+plen i, ps-auxptr~l; p> ps; p)

for (pl=p-l; pl> auxptr; pl--)
{

if (freq[pl->c-97]<freq[p >c 97]) continue;
h-p->c; i-p >loc; p->c-pl >c;
p >loc pl->loc; pl->c-h; pl->loc-i;

}

long OMHsearch(unsigned char *text, unsigned int tlen)
{

register aux *p; register unsigned char *tx;
register unsigned int found;

tx=texteplen i; found-0;
while (tx< text+tlen)
(

for (p auxptr; p >c; p++) if (p >c ! *(tx-p >loc
mismatch;

found++;
mismatch: tx+ occ[*tx];

}

return found;
}

OMHS METHOD

long OMHSsearch(unsigned char *text, unsigned int tlen)
(

register aux *p; register unsigned char *tx;
register unsigned int found;

tx text+plen-l; found-0;
while (tx< text+tlen)
{
for (p auxptr; p->c; p++) if (p->c ! *(tx-p->loc

mismatch;

) goto

) goto

PATTERN-MATCHING ALGORITHMS 89

found++;
mismatch: tx+ (occ[*tx]>occ[*(tx-l)]-i

}

return found;

? OCC[* (tx-l)]-i) ;

This research was performed while Y. Manolopoulos was on sabbatical leave at the
University of Maryland at College Park and the Institute for Systems Research (ISR). The
research of C Faloutsos was partially funded by the Institute for Systems Research (ISR), by
the National Science Foundation under Grants IR1-9205273 and IR1-8958546 (PYI), with
matching funds from EMPRESS Software Inc. and Thinking Machines Inc. Thanks are due
to Mr. Apostolos Papadopoulos and Mr. Michael Timoleon for their valuable assistance in
the course of this effort.

REFERENCES

1. A. V. Aho, Algorithms for finding patterns in strings, in J. VanLeeuwen (ed.),
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity,
Elsevier, Amsterdam, The Netherlands, 1990, pp. 255-300.

2. R. A. Baeza-Yates, Algorithms for string searching--A survey, ACM S1GIR Forum
23(3-4):34-58 (1989).

3. R. A. Baeza-Yates, Improved string searching, Software--Practice and Experience
19:257-271 (1989).

4. R. S. Boyer and J. S. Moore, A fast string searching algorithm, Comm. ACM
20(10):762-772 (1977).

5. C. Faloutsos, Access methods for text, ACM Comput. Sur. 17(1):49-74 (1985).
6. R. N. Horspool, Practical fast searching in strings, Software--Practice and Experience

10:501-506 (1980).
7. A. Hume and D. Sunday, Fast string searching, Software--Practice and Experience

21(11):1221-1248 (1991).
8. D. E. Knuth, J. H. Morris, and V. R. Pratt, Fast pattern matching in strings, SIAMJ.

Comput. 6(2):323-349 (1977).
9. W. Rytter, A correct preprocessing algorithm for the Knuth-Morris-Pratt algorithm,

SIAM J. Comput. 9:509-512 (1980).
10. P. D. Smith, Experiments with a very fast substring search, Software--Practice and

Experience 21(10):1065-1074 (1991).
11. D. Sunday, A very fast substring search algorithm, Commun. ACM 33(4):132-142

(1990); Commun. ACM 35(4):132-137 (1992).

Received l March 1995; revised 11 August 1995

