
Scalable Link Prediction in Social Networks based on Local Graph Characteristics

Alexis Papadimitriou
Department of Informatics

Aristotle University
Thessaloniki, Greece

Email: apapadi@csd.auth.gr

Panagiotis Symeonidis
Department of Informatics

Aristotle University
Thessaloniki, Greece

Email: symeon@csd.auth.gr

Yannis Manolopoulos
Department of Informatics

Aristotle University
Thessaloniki, Greece

Email: manolopo@csd.auth.gr

Abstract—Online social networks (OSNs) like Facebook,
Myspace, and Hi5 have become popular, because they allow
users to easily share content or expand their social circle.
OSNs recommend new friends to registered users based on
local graph features (i.e. based on the number of common
friends that two users share). However, OSNs do not exploit
all different length paths of the network. Instead, they consider
only pathways of maximum length 2 between a user and
his candidate friends. On the other hand, there are global
approaches, which detect the overall path structure in a
network, being computationally prohibitive for huge-sizesocial
networks. In this paper, we provide friend recommendations,
also known as thelink prediction problem, by traversing all
paths of a bounded length, based on the “algorithmic small
world hypothesis”. As a result, we are able to provide more
accurate and faster friend recommendations. We perform an
extensive experimental comparison of the proposed method
against existing link prediction algorithms, using two real data
sets (Hi5 and Epinions). Our experimental results show that
our FriendLink algorithm outperforms other approaches in
terms of effectiveness and efficiency in all data sets. Finally,
we discuss extensively various experimental considerations,
such as a possible MapReduce implementation of FriendLink
algorithm to achieve scalability.

Keywords-Social Networks; Link Prediction; friend recom-
mendation; graph theory; similarity measure;

I. I NTRODUCTION

Online social networks (OSNs) such as Facebook.com1,
Myspace2, Hi5.com3, etc. contain gigabytes of data that can
be mined to make predictions about who is a friend of
whom. OSNs recommend other people to users based on
their common friends. The reason is that there is a significant
possibility that two users are friends, if they share a large
number of common friends.

In this paper, we focus on recommendations based on
links that connect the nodes of an OSN, known as the
Link Prediction problem, where there are two main ap-
proaches [7] to handle. The first one is based on local fea-

This work has been partially funded by the Greek GSRT (project num-
ber 10TUR/4-3-3) and the Turkish TUBITAK (project number 109E282)
national agencies as part of Greek-Turkey 2011-2012 bilateral scientific
cooperation.

1http://www.facebook.com
2http://www.myspace.com
3http://www.hi5.com

tures of a network, focusing mainly on the nodes structure;
the latter is based on global features, detecting the overall
path structure in a network.

A. Motivation

Compared to approaches which are based on local features
of a network (i.e. Friend of a Friend (FOAF) algorithm or
Common Neighbors, Adamic/Adar index, Jaccard Coeffi-
cient, etc. - for more details see Section II), we provide
friend recommendations, exploiting paths of greater length.
In contrast, they consider only pathways of maximum length
2 between a target user and his candidate friends. In our
approach, we assume that a person can be connected to
another with many paths of different length (through human
chains). Thus, two persons connected with many unique
pathways of different length have a high probability to know
each other, proportionally to the length of the pathways they
are connected with.

Our method is more efficient compared to global ap-
proaches (i.e Katz status index, RWR algorithm, SimRank
algorithm etc.), which detect the overall path structure in
a network. In other words, our method, which is based
on a bounded path traversal, requires less time and space
complexity than the global based algorithms. The reason is
that we traverse only paths of lengthl in a network based
on the “algorithmic small world hypothesis”, whereas global
approaches detect the overall path structure. (for more details
see Section on Related Work).

The rest of this paper is organized as follows. Section II
summarizes the related work. The proposed approach, its
complexity analysis, and its possible extensions to other
networks, are described in Section III. Experimental results
are given in Section IV. Section V discusses basic research
questions, such as a possible MapReduce implementation of
FriendLink algorithm, the extension of our synthetic network
model to better resemble real networks, and the use of linear
regression to learn the attenuation factor used in FriendLink.
Finally, Section VI concludes this paper.

II. RELATED WORK

There is a variety of local similarity measures [7] (i.e.
FOAF algorithm, Adamic/Adar index, Jaccard Coefficient,

etc.) for analyzing the “proximity” of nodes in a network.
FOAF [2] is adopted by many popular OSNs, such as
facebook.com and hi5.com for the friend recommendation
task. FOAF is based on the common sense that two nodes
vx, vy are more likely to form a link in the future, if
they have many common neighbors. In addition to FOAF
algorithm, there are also other local-based measures such as
Jaccard Coefficient [7] and Adamic/Adar index [1]. Adamic
and Adar proposed a distance measure to decide when two
personal home pages are strongly “related”. In particular,
they computed features of the pages and defined the similar-
ity between two pagesx, y as follows:

∑
z

1
log(frequency(z)) ,

where z is a feature shared by pagesx, y. This refines
the simple counting of common features by weighting rarer
features more heavily.

There is a variety of global approaches [7]. In this
paper, as comparison partners of global approaches, we
consider Katz status index [6], and Random Walk with
Restart algorithm [11], [9] (RWR) algorithm. Katz defines a
measure that directly sums over all paths between any pair of
nodes in graphG, exponentially damped by length to count
short paths more heavily. RWR considers a random walker
that starts from nodevx, and chooses randomly among the
available edges every time, except that, before he makes a
choice, with probabilityα, he goes back to nodevx (restart).
The similarity matrix (i.e. Kernel) between nodes of a graph,
can be computed by Equation 1:

KernelRWR = (I − αP)−1 (1)

where I is the identity matrix andP is the transition-
probability matrix.

III. T HE PROPOSEDAPPROACH

In this section we first provide a detailed explanation
of our approach, named FriendLink. Then, we perform a
complexity analysis comparison of FriendLink with other
approaches and finally we extend Friendlink for other types
of networks.

A. The FriendLink Algorithm

Friendlink computes node similarity between any two
nodes in a graphG. The initial input of Friendlink is the
numbern of nodes ofG, the adjacency matrixA, and the
lengthℓ of paths that will be explored inG. To enumerate all
simple paths inG, Rubin’s algorithm [10] can be employed.
However, Rubin’s algorithm uses O(n3) matrix operations to
find all paths of different length between any pair of nodes.
In the following, we customize Rubin’s algorithm to create
only paths of length up toℓ for our purpose.

As shown in Figure 1, FriendLink consists of a main
program and two functions. In the main program, we modify
the adjacency matrixA so that instead of holding 0/1 values,
the A(i, j) entry is a list of paths fromi to j. Then,
in the function Combine Paths(), we perform the matrix

multiplication algorithm. However, instead of multiplying
and adding entries, we concatenate pairs of paths together.
Finally, in the function Compute Similarity(), we update the
similarity between nodesi, j, for each length-ℓ path we find,
wherei is the start node andj is the destination node (i.e.
all paths of length [2..ℓ]). Notice that, we do not take into
account cyclic paths in our similarity measure.

Algorithm FriendLink (G, A, n, ℓ)
Input

G: an undirected and unweighted graph
A: adjacency matrix of graphG,
n: number of nodes of graphG,
ℓ: maximum length of paths explored inG,
m: the length of a path

Output
sim(i, j): similarity between nodesi andj in G

1. Main Program
2. for i = 1 to n

3. for j = 1 to n
4. if A(i, j) = 1 then
5. A(i, j) = j

6. else
7. A(i, j)= 0
8. end if
9. end for j
10. end for i
11. for m = 2 to ℓ
12. Combine Paths()
13. Compute Similarity(m)
14. end for m
15. End Main Program

16. Function Combine Paths()
17. for i = 1 to n
18. for j = 1 to n

19. for k = 1 to n
20. if A(i, k) <> 0 andA(k, j) <> 0 then
21. A(i, j) = concatenate(A(i, k), A(k, j))
22. end if
23. end for k
24. end for j
25. end for i
26. return A(i, j)
27. End Function

28. Function Compute Similarity()
29. for i = 1 to n

30. for j = 1 to n
31. denominator = 1
32. for k = 2 to m

33. denominator = denominator * (n - k)
34. end for k

35. sim(i, j) = sim(i, j) + 1

m−1
·

∣

∣

∣
pathsm

i,j

∣

∣

∣

denominator
36. end for j
37. end for i
38. return sim(i, j)
39. End Function

Figure 1. The FriendLink algorithm.

B. Complexity Analysis

RWR [9] and Katz index [6] as representatives of the
global approaches, are computationally prohibitive for large
graphs, because they require matrix inversion. For instance,
the time complexity of Katz index is mainly determined

by this operation which costsO(n3). RWR algorithm also
requires a matrix inversion, which can be, however, pre-
computed [11] and stored for faster on-line operations. In
the same direction, there is also a faster version [5] of Katz
status index that reduces the computational complexity from
time O(n3) to O(n+m), wherem is the number of edges.

FOAF as representative of the local-based methods, con-
siders very small paths (only length-2 paths) between any
pair of nodes inG. In particular, for eachvx node, FOAF
traverses all its neighbors and then traverses the neighbors of
each ofvx’s neighbor. Since the time complexity to traverse
the neighborhood of a node is simplyh (h is the average
nodes degree in a network) and our graphG is sparse, it
holds thath << n. Thus, the time complexity of FOAF is
O(n× h2). The space complexity for FOAF is O(n× h).

In contrast to FOAF algorithm which traverses only
length-2 paths, our FriendLink algorithm considers also
paths with higher length (l-length paths). Based on Mil-
gram’s [8] “small-world hypothesis”,l can take integer val-
ues in the interval [2,6], where forl=2 our FriendLink equals
to the FOAF algorithm. Thus, FriendLink’s time complexity
is O(n × hl). The space complexity for FriendLink is also
O(n× h). Notice that in our code we store adjacent nodes
using adjacency lists and not a matrix structure. However,
for simplicity reasons, in Figure 1 we present our algorithm
using a matrix structure.

C. Extending FriendLink for different types of Networks

Applying FriendLink to directed graphs can be achieved
by: (i) simply disregarding the edge directions [12], or (ii)
replacing the original adjacency matrixA with an asymmet-
ric one [12]. For weighted networks, if edges weights are
positive, FriendLink applies trivially.

IV. EXPERIMENTAL EVALUATION

In this section, we compare experimentally FriendLink
with RWR, Katz and FOAF algorithms, respectively. Our
experiments were performed on a 3 GHz Pentium IV, with
2 GB of memory, running Windows XP. All algorithms were
implemented in Matlab.

A. Real Data Sets

To evaluate the examined algorithms, we have used two
real data sets from the Hi5 and Epinions web sites. We
crawled the graph data from the Hi5 web site at two different
time periods. In particular, we crawled the Hi5 web site on
the 15th of April, 2010 and on the 20th of June, 2010. Our
data crawling method was the following: for each useru,
we traverse all his friends and then traverse the friends of
each ofu’s friends etc.

From the first crawl of Hi5 web site we created a training
data set with 63329 users and 88261 edges among them,
denoted as Hi5 63K4, where the initial starting node of our

4http://delab.csd.auth.gr/∼symeon

crawling was a random user in the US. From the second
crawl of Hi5 web site we created the probe data set with the
same users by only preserving 16512 new emerged edges
connecting them. The graph data from the first crawl are
used to predict the new links emerging in the second crawl.

We also use in our experiments the Epinions5 data set,
which is a who-trusts-whom social network. In particular,
users of Epinions.com express their Web of Trust, i.e.
reviewers whose reviews and ratings they have found to be
valuable. The Epinions data set is a directed network and,
thus, we treat it by simply disregarding the directions of
links [12]. It contains 49K users and 487K edges among
pairs of users.

We calculated several topological properties of the real
data sets, which are presented in Figure 2. As shown,
Epinions 49K presents (i) a large clustering coefficient
(LCC) equal to 0.26, and (ii) a small average shortest path
length (ASD) equal to 4.01. These topological features can
be mainly discovered in small-worlds networks. Small-world
networks have sub-networks that are characterized by the
presence of connections between almost any two nodes
within them (i.e.high LCC). Moreover, most pairs of nodes
are connected by at least one short path (i.e. small ASD).

In contrast, as also shown in Figure 2, Hi5 63K has a
very small LLC (0.02) and a quite big ASD (7.18). In other
words, Hi5 data set cannot be considered as a small-world
network, since: (i) most of its nodes cannot be reached from
every other by a small number of hops or steps, and (ii) does
not have sub-networks that can be considered as cliques.

TOPOLOGICAL PROPERTIES

N = total number of nodes

E = total number of edges
ASD = average shortest path distance between pair nodes
ADEG = average node degree

LCC = average local clustering coefficient
GD = graph diameter (maximum shortest path distance)

Data-Set N E ASD ADEG LCC GD

Hi5 63K 63329 88261 7.18 2.78 0.02 19

Epinions 49K 49288 487183 4.01 19.76 0.26 14

Figure 2. Topological properties of the real data sets.

B. Experimental Protocol and Evaluation Metrics

As already described in previous Section, in our eval-
uation we consider the division of Hi5 63K data set into
two sets, according to the exact time stamp of the links
downloaded: (i) the training setET is treated as known
information and, (ii) the probe setEP is used for testing.
No information in the probe set is allowed to be used for
prediction. It is obvious thatET ∩ EP = ⊘. For each
user that has at least one new friend inEP we generate
friend recommendations based on his friends inET . Then,

5http://www.trustlet.org/wiki/

we average the results for each user and compute the final
performance of each algorithm. Epinions data sets do not
have time stamps of the edges. The performance of the
algorithms is evaluated by applying double cross-validation
(internal and external). Each data set was divided into 10
subsets. Each subset (EP) was in turn used for performance
estimation in the external cross-validation. The 9 remaining
subsets (ET) were used for the internal cross-validation. In
particular, we performed an internal 9-fold cross-validation
to determine the best values of the algorithms’ needed
parameters. In particular, for RWR we set parameterα=
0.001, whereas for Katz we set parameterβ=0.005. We
chose as values for the parameters those providing the best
performance on the internal 9-fold cross-validation. Then,
their performance is averaged on the external 10-fold cross-
validation. The presented results, based on two-tailed t-test,
are statistically significant at the 0.05 level.

We use the classic precision/recall metric as performance
measure for friend recommendations. For a test user receiv-
ing a list of k recommended friends (top-k list), precision
and recall are defined as follows:Precision is the ratio of
the number of relevant users in the top-k list (i.e., those in
the top-k list that belong in the probe setEP of friends of
the target user) tok. Recall is the ratio of the number of
relevant users in the top-k list to the total number of relevant
users (all friends in the probe setEP of the target user).

Moreover, since we provide to a test useru a top-k list of
friends, it is important to consider the order of the presented
friends in this list. That is, it is better to have a correct guess
in the first places of the recommendation list. Thus, we use
the Mean Average Precision (MAP)to emphasize ranking
of relevant users higher. We define MAP by Equation 2:

MAP =
1

|N |

|N |∑

u=1

1

ru

ru∑

k=1

Precisionu@k (2)

whereN is the number of users in the probe data set,ru is
the number of relevant users to a useru andPrecisionu@k

is the precision value at thek-th position in the recommen-
dation list foru. Notice that MAP takes into account both
precision and recall and is geometrically referred as the area
under the Precision-Recall curve.

C. Sensitivity Analysis for the FriendLink Algorithm

In this Section, we study the sensitivity of FriendLink
accuracy performance in real networks with: (i) different
possible attenuation factors or (ii) differentℓ values for path
traversal.

The attenuation factor that was mentioned in our algo-
rithm in Figure 1, weights paths according to their length
ℓ. In this section, we test other possible attenuation factors
to discover the best precision value that we can attain. In
particular, we have tested the following possible attenuation
factors: (i) 1

m−1 (ii) 1
2·m (iii) 1

m2 (iv) 1
log(m) , and (v) the

Katz’s index attenuation factorβm, wherem is the path
length. The attenuation factors performance can be seen in
Table I, for all data set. As shown, the best performance in
both data sets is attained by1

m−1 . In the following, we keep
the 1

m−1 as the default attenuation factor of the FriendLink
algorithm.

Table I
MAP FOR 5 ATTENUATION FACTORS ON OUR REAL DATA SETS.

Attenuation Epinions Hi5
Factor 49K 63K

1/(m − 1) 0.445 0.154
1/(2m) 0.390 0.139
1/(m2) 0.322 0.099
1/log(m) 0.287 0.045

bm 0.235 0.012

In Section III-A, one of the required input values for the
FriendLink algorithm is the lengthℓ of paths considered
in a graph. To improve our recommendations, it is impor-
tant to fine-tune theℓ variable. Based on Milgram’s [8]
“small-world hypothesis”,ℓ should take integer values in
the interval [2,6]. Figures 3c and 3d illustrate precision
for varying ℓ values for the Epinions 49K, and Hi5 63K
data sets, respectively. As expected, precision decreasesas
the number of recommended friends is increased. The best
precision is attained byℓ = 3 in both data sets. Notice that
we omit to show results forℓ = 6 because precision follows
a degraded performance forℓ = 4 and ℓ = 5, respectively.
In the following, we keep theℓ = 3 as the default maximum
length of paths of the FriendLink algorithm.

D. Accuracy Comparison of FriendLink with other methods

We proceed with the comparison of FriendLink with
RWR, Katz, and FOAF algorithms, in terms of precision
and recall. This reveals the robustness of each algorithm
in attaining high recall with minimal losses in terms of
precision. We examine the ranked list, which is recom-
mended to a target user, starting from the top friend. In
this situation, the recall and precision vary with increasing
number of recommended friends. For the Epinions 49K data
set, as shown in Figure 3e, our FriendLink algorithm again
attains the best precision value of 55% when we recommend
a top-1 list of friends. The precision of FriendLink is
impressive in this specific data set. The main reason is the
topological characteristics of Epinions 49K data set (i.e.
high LCC and small ASD). Thus, Epinions 49K can be
considered as a small-world network. This experiment shows
that FriendLink is more robust in finding relevant users
for the test user. The reason is that FriendLink exploits
proportionally theℓ-length pathways between two graph
nodes. In contrast, RWR and Katz traverse globally the
social network, missing to capture adequately the local
characteristics of the graph. Moreover, FOAF fails to provide

0

10

20

30

40

50

60

1 2 3 4

%
 P

re
ci

si
o
n

Recommended Friends

Length 2 Length 3 Length 4 Length 5

(a)

��

��

��

��

�
��
�	

�
��

�

�	������ �	������ �	������ �	������

�

�

��

��

��

��

� � � �

�
��
�	

�
��

�

���	
��	��	�����	���

�	������ �	������ �	������ �	������

(b)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

%
 P

r
e

c
is

io
n

% Recall

FriendLink RWR Katz FOAF

(c)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

%
 P

r
e

c
is

io
n

% Recall

FriendLink RWR Katz FOAF

(d)
Figure 3. (a) Precision vs. number of recommended friends for Epinions 49K data set, (b) Precision vs. number of recommended friends for Hi5 63K
data sets. (c) Precision vs. Recall diagram for Epinions 49Kdata set, (d) Precision vs. Recall diagram for Hi5 63K data set.

accurate recommendations because it exploits only length-2
paths.

For the Hi5 63K data set, as shown in Figure 3f, our
FriendLink algorithm attains the best results. However, the
overall performance of FriendLink, RWR and Katz algo-
rithms is significantly decreased compared with the results
in the Epinions data set. The first reason is the high sparsity
(i.e. ADEG equal to 2.78) of the Hi5 63K data set. The
second reason is the fact that Hi5 cannot be considered as
a small-world network.

E. Time Comparison of FriendLink with other Methods

In this Section, we compare FriendLink against RWR,
Katz and FOAF algorithms in terms of efficiency using both
real and synthetic data sets. We measured the clock time for
the off-line parts of all algorithms. The off-line part refers
to the building of the similarity matrix between any pair
of nodes in a graph. The results are presented in Table II.
As shown, FriendLink outperforms RWR and Katz, since
they calculate the inverse of ann× n matrix. As expected,
FOAF algorithm, outperforms the other algorithms due to its
simpler complexity. Notice that the results depict the time
needed to compute the whole similarity matrix. On the other
hand, if we were to calculate the similarity matrix of only
one user, then the computation would require only part of a
second to produce a recommendation.

V. M AP REDUCE IMPLEMENTATION FORFRIENDL INK

ALGORITHM

There are many difficulties in the study of the link
prediction problem. A first problem is the huge size of
real systems. For instance, Facebook has over 500 million

Algorithm Epinions Hi5
49K 63K

FriendLink 245 sec 340 sec
RWR 380 sec 520 sec
Katz 460 sec 617 sec

FOAF 55 sec 221 sec

Table II
T IME COMPARISON OF ALL TESTED ALGORITHMS FOR THE SYNTHETIC

AND REAL DATA SETS.

users with an average of roughly 100 friends each. For
our algorithm to run for huge sized networks, it should
be adjusted to support a MapReduce [4] implementation.
MapReduce is a distributed computing model for processing
large volumes of data. MapReduce is implemented in three
steps: (i) Splitting up the computing job into chunks that
standard machines can process in a short time, (ii) parallel
processing on each sub-part by an independent machine
and, (iii) the collection of intermediate values, produced
by each machine, to calculate the final result. In our case,
the calculation of the similarity matrix could be assigned
to many machines in the following way. Each machine
calculates one of the2 . . . ℓ-length paths for a specific pair
of users and then sum up the paths to calculate the final
similarity value. An example is shown in Figure 4. As shown
in Figure 4, each Map function on every machine receives
as input a pair of users and produces the similarity value
for a designated path lengthℓ. All values for each pair of
users are collected into one final value in the reduce phase.
In our example, the similarity values produced by the Map
function, which are0.03, 0.2, 0.14 and 0.07 for path length

ℓ = 2, 3, 4, 5 respectively, will be “reduced” to one final
similarity value, which is 0.44, for the respective pair of
users.

Schema of map and reduce functions

map: input àlist(p, ℓ, s)

reduce: list(p, ℓ, s) àoutput

Instantiation of the schema for similarity calculation

map: user pair àlist(user pair, length ℓ, similarity)

reduce: (user pair, length ℓ, similarity) à(user pair, total similarity)

Example for similarity calculation

map: (user1, user2) à(áuser1, user2, 2, 0.03ñ, áuser1, user2, 3, 0.2ñ ,

áuser1, user2, 4, 0.14ñ , áuser1, user2, 5, 0.07ñ)

reduce: (áuser1, user2, 2, 0.1ñ, áuser1, user2, 3, 0.4ñ , à(áuser1, user2 ñ, 0.44)

 áuser1, user2, 4, 0.3ñ , áuser1, user2, 5, 0.2ñ)

Figure 4. Map and Reduce functions in MapReduce.

Real networks have many complex structural proper-
ties [3], such as degree heterogeneity, the rich-club phe-
nomenon, the mixing pattern, etc. These network properties
are not considered by our synthetic network model, since
they are out of the scope of this paper. However, our
synthetic network model can be easily extended to better
resemble real networks. For example, by applying the degree
heterogeneity index [3] with a probabilityp, a synthetic
network with different level of degree heterogeneity can be
composed.

Finally, as it was shown in Section IV-C, the attenuation
factor weight for each path of given length plays an impor-
tant role in the performance of our FriendLink algorithm.
One could suggest learning these optimal weights instead of
guessing them. One way would be through linear regression.
Linear regression analyzes the linear relationship between
two variables,Y,X , where in our caseY is a vector that
contains the similarities between a given user and the other
users in a graph, whereasX is a matrix that contains the
paths of different length between the given user and the
others of the graph (i.e. the training data of a user). Based on
linear regression, it stands thatY = AX , whereA is a vector
containing the optimal coefficient values of the attenuation
factor. To find the best coefficient values of the attenuation
factor,A can be calculated by equationA = (X ′X)−1X ′Y .
Since the similaritiesY between a given user and the other
users of a graph are not available from the beginning, we
can instead considerY to contain values from the testing
data of the user. The computed values ofA can then be
used as attenuation optimal weights.

VI. CONCLUSIONS

In this paper, we introduced a framework to provide friend
recommendations in OSNs. We defined a new node similar-
ity measure that exploits local and global characteristicsof a
network. We performed extensive experimental comparison
of the proposed method against existing link prediction
algorithms showing that our FriendLink algorithm provides
more efficient and more accurate friend recommendations.
We also discussed a possible MapReduce implementation of

FriendLink, as well as ways to improve our synthetic model
to better resemble real networks and also learn the optimal
attenuation factor used in FriendLink instead of guessing it.
In the future, we want to examine other ways of improving
friend recommendations based on other features that OSNs
offer, such as photo and video tagging, groups and common
applications. The combination of such features can provide
information on different ways that users are connected and
therefore yield to more accurate friend recommendations.

REFERENCES

[1] L. Adamic and E. Adar. How to search a social network.
Social Networks, 27(3):187–203, 2005.

[2] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy. Make
new friends, but keep the old: recommending people on social
networking sites. InProceedings International Conference on
Human factors in Computing Systems (CHI), pages 201–210,
2009.

[3] L. Costa, F. Rodrigues, G. Travieso, and P. Boas. Charac-
terization of complex networks: A survey of measurements.
56(1):167–242, 2007.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters.Communications of the ACM,
51:107–113, January 2008.

[5] K. C. Foster, S. Q. Muth, J. J. Potterat, and R. B. Rothenberg.
A faster katz status score algorithm.Computational and
Mathematical Organization Theory, 7:275–285, 2001.

[6] L. Katz. A new status index derived from sociometric
analysis.Psychometrika, 18(1):39–43, 1953.

[7] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks.Proceedings International Con-
ference on Information and Knowledge Management (CIKM),
2003.

[8] S. Milgram. The small world problem.Psychology Today,
22:61–67, 1967.

[9] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Automatic
multimedia cross-modal correlation discovery. InProceed-
ings ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 653–658, 2004.

[10] F. Rubin. Enumerating all simple paths in a graph.IEEE
Transactions on Circuits and Systems, 25(8):641–642, 1978.

[11] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with
restart and its applications. InProceedings International
Conference on Data Mining (ICDM), pages 613–622, 2006.

[12] S. Wasserman and K. Faust. Social network analysis: Methods
and applications. 1994.

