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Abstract—Online social networks (OSNs) like Facebook,
Myspace, and Hi5 have become popular, because they allow
users to easily share content or expand their social circle.
OSNs recommend new friends to registered users based on
local graph features (i.e. based on the number of common
friends that two users share). However, OSNs do not exploit
all different length paths of the network. Instead, they corsider
only pathways of maximum length 2 between a user and
his candidate friends. On the other hand, there are global
approaches, which detect the overall path structure in a
network, being computationally prohibitive for huge-sizesocial
networks. In this paper, we provide friend recommendations
also known as thelink prediction problem, by traversing all
paths of a bounded length, based on the “algorithmic small
world hypothesis”. As a result, we are able to provide more
accurate and faster friend recommendations. We perform an
extensive experimental comparison of the proposed method
against existing link prediction algorithms, using two red data
sets (Hi5 and Epinions). Our experimental results show that
our FriendLink algorithm outperforms other approaches in
terms of effectiveness and efficiency in all data sets. Firlg)
we discuss extensively various experimental consideratis,
such as a possible MapReduce implementation of FriendLink
algorithm to achieve scalability.

Keywords-Social Networks; Link Prediction; friend recom-
mendation; graph theory; similarity measure;
I. INTRODUCTION
Online social networks (OSNs) such as Facebooklgom

Myspacé, Hi5.con?, etc. contain gigabytes of data that can
be mined to make predictions about who is a friend of
whom. OSNs recommend other people to users based on
their common friends. The reason is that there is a sign'lficanSu
possibility that two users are friends, if they share a IargeCO

number of common friends.

In this paper, we focus on recommendations based og

links that connect the nodes of an OSN, known as th
Link Prediction problem, where there are two main ap-
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tures of a network, focusing mainly on the nodes structure;
the latter is based on global features, detecting the dveral
path structure in a network.

A. Motivation

Compared to approaches which are based on local features
of a network (i.e. Friend of a Friend (FOAF) algorithm or
Common Neighbors, Adamic/Adar index, Jaccard Coeffi-
cient, etc. - for more details see Section Il), we provide
friend recommendations, exploiting paths of greater lengt
In contrast, they consider only pathways of maximum length
2 between a target user and his candidate friends. In our
approach, we assume that a person can be connected to
another with many paths of different length (through human
chains). Thus, two persons connected with many unique
pathways of different length have a high probability to know
each other, proportionally to the length of the pathwayg the
are connected with.

Our method is more efficient compared to global ap-
proaches (i.e Katz status index, RWR algorithm, SimRank
algorithm etc.), which detect the overall path structure in
a network. In other words, our method, which is based
on a bounded path traversal, requires less time and space
complexity than the global based algorithms. The reason is
that we traverse only paths of lengthin a network based
on the “algorithmic small world hypothesis”, whereas globa
approaches detect the overall path structure. (for moggldet
see Section on Related Work).

The rest of this paper is organized as follows. Section |l
mmarizes the related work. The proposed approach, its
mplexity analysis, and its possible extensions to other
networks, are described in Section Ill. Experimental rssul
re given in Section V. Section V discusses basic research

equestions, such as a possible MapReduce implementation of

FriendLink algorithm, the extension of our synthetic netivo

proaches [7] to handle. The first one is based on local fear'nodel to better resemble real networks, and the use of linear
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regression to learn the attenuation factor used in FriemdLi
Finally, Section VI concludes this paper.
Il. RELATED WORK

There is a variety of local similarity measures [7] (i.e.
FOAF algorithm, Adamic/Adar index, Jaccard Coefficient,



etc.) for analyzing the “proximity” of nodes in a network. multiplication algorithm. However, instead of multiplgn
FOAF [2] is adopted by many popular OSNs, such asand adding entries, we concatenate pairs of paths together.
facebook.com and hi5.com for the friend recommendatiorFinally, in the function Compute Similarity(), we updatesth
task. FOAF is based on the common sense that two nodesmilarity between nodes j, for each length-path we find,
vg, vy are more likely to form a link in the future, if where: is the start node angl is the destination node (i.e.
they have many common neighbors. In addition to FOAFall paths of length [2¢]). Notice that, we do not take into
algorithm, there are also other local-based measures such account cyclic paths in our similarity measure.

Jaccard Coefficient [7] and Adamic/Adar index [1]. Adamic

and Adar proposed a distance measure to decide when tv
personal home pages are strongly “related”. In particularn

they computed features of the pages and defined the similar-

ity between two pages, y as follows:) " W

where z is a feature shared by pagesy. This re%izr)1)es
the simple counting of common features by weighting rare
features more heavily.

There is a variety of global approaches [7]. In this
paper, as comparison partners of global approaches, W
consider Katz status index [6], and Random Walk with
Restart algorithm [11], [9] (RWR) algorithm. Katz defines a
measure that directly sums over all paths between any pair
nodes in grapld, exponentially damped by length to count
short paths more heavily. RWR considers a random walke
that starts from node,,, and chooses randomly among the
available edges every time, except that, before he makes
choice, with probabilityy, he goes back to node. (restart).
The similarity matrix (i.e. Kernel) between nodes of a graph
can be computed by Equation 1:

Kernelpwr = (I — aP)™!

1)

where I is the identity matrix andP is the transition-
probability matrix.

I11. THE PROPOSEDAPPROACH

In this section we first provide a detailed explanation
of our approach, named FriendLink. Then, we perform g
complexity analysis comparison of FriendLink with other
approaches and finally we extend Friendlink for other types
of networks.

A. The FriendLink Algorithm

Friendlink computes node similarity between any two
nodes in a graply. The initial input of Friendlink is the
numbern of nodes ofG, the adjacency matrixd, and the
length? of paths that will be explored ig. To enumerate all

simple paths irj, Rubin’s algorithm [10] can be employed.

Rigorithm FriendLink G, A, n, £)
, Input
G: an undirected and unweighted graph
A: adjacency matrix of grapky,
n: number of nodes of grap&,
£: maximum length of paths explored @&,
m: the length of a path
Output
stm(s, j): similarity between nodesandj in G

1. Main Program
é. fori=1ton

forj=1ton
4. if A(4,7) =1 then
5. A(i ) =
6. else
nf. A(i,5)=0
8. end if
9. end for j
r10. end for
11.for m =2 to#
12.  Combine Paths()
&3. Compute Similaritytz)
14. end for m

. End Main Program

. Function Combine Paths()
fori=1ton
forj=1ton

19. for k=1ton

20. if A(i,k) <> 0andA(k,j) <> 0 then

21. A(i, j) = concatenate(A(i, k), A(k, 7))
22. end if

23. end for k

24.  end for j

25. end for %

.return A(z, j)
. End Function

. Function Compute Similarity()
fori=1ton

130. forj=1ton
P31. denominator = 1
32. for k=2tom
33. denominator = denominator * (n - k)
34. end for k
paths™.
35. lsi'rrz(i,j? = sim(i, J) + 727 - WZ:LZLLO’!
36. end forj
37. end for ¢

38. return sim(i, j)
39. End Function

However, Rubin’s algorithm uses @) matrix operations to

find all paths of different length between any pair of nodes.

In the following, we customize Rubin’s algorithm to create
only paths of length up té for our purpose.

Figure 1. The FriendLink algorithm.

As shown in Figure 1, FriendLink consists of a main B- Complexity Analysis

program and two functions. In the main program, we modify RWR [9] and Katz index [6] as representatives of the
the adjacency matri¥d so that instead of holding 0/1 values, global approaches, are computationally prohibitive fogéa

the A(i,j) entry is a list of paths fromi to j. Then, graphs, because they require matrix inversion. For instanc
in the function Combine Paths(), we perform the matrixthe time complexity of Katz index is mainly determined



by this operation which cost®(n?). RWR algorithm also crawling was a random user in the US. From the second
requires a matrix inversion, which can be, however, precrawl of Hi5 web site we created the probe data set with the
computed [11] and stored for faster on-line operations. Irsame users by only preserving 16512 new emerged edges
the same direction, there is also a faster version [5] of Katzonnecting them. The graph data from the first crawl are
status index that reduces the computational complexitnfro used to predict the new links emerging in the second crawl.
time O(n?) to O(n +m), wherem is the number of edges. ~ We also use in our experiments the Epinfouiata set,
FOAF as representative of the local-based methods, cowhich is a who-trusts-whom social network. In particular,
siders very small paths (only length-2 paths) between anysers of Epinions.com express their Web of Trust, i.e.
pair of nodes inG. In particular, for eachy, node, FOAF reviewers whose reviews and ratings they have found to be
traverses all its neighbors and then traverses the neiglafor valuable. The Epinions data set is a directed network and,
each ofv,’s neighbor. Since the time complexity to traversethus, we treat it by simply disregarding the directions of
the neighborhood of a node is simply (i is the average links [12]. It contains 49K users and 487K edges among
nodes degree in a network) and our graphs sparse, it pairs of users.
holds thath << n. Thus, the time complexity of FOAF is ~ We calculated several topological properties of the real
O(n x h?). The space complexity for FOAF is @< h). data sets, which are presented in Figure 2. As shown,
In contrast to FOAF algorithm which traverses only Epinions 49K presents (i) a large clustering coefficient
length-2 paths, our FriendLink algorithm considers also(LCC) equal to 0.26, and (ii) a small average shortest path
paths with higher lengthi{ength paths). Based on Mil- length (ASD) equal to 4.01. These topological features can
gram’s [8] “small-world hypothesis’l, can take integer val- be mainly discovered in small-worlds networks. Small-worl
ues in the interval [2,6], where fé=2 our FriendLink equals networks have sub-networks that are characterized by the
to the FOAF algorithm. Thus, FriendLink’s time complexity presence of connections between almost any two nodes
is O(n x h'). The space complexity for FriendLink is also within them (i.e.high LCC). Moreover, most pairs of nodes
O(n x h). Notice that in our code we store adjacent nodesare connected by at least one short path (i.e. small ASD).
using adjacency lists and not a matrix structure. However, In contrast, as also shown in Figure 2, Hi5 63K has a
for simplicity reasons, in Figure 1 we present our algorithmvery small LLC (0.02) and a quite big ASD (7.18). In other
using a matrix structure. words, Hi5 data set cannot be considered as a small-world
network, since: (i) most of its nodes cannot be reached from
every other by a small number of hops or steps, and (ii) does
Applying FriendLink to directed graphs can be achievednot have sub-networks that can be considered as cliques.
by: (i) simply disregarding the edge directions [12], o) (i
replacing the original adjacency matrkwith an asymmet- TOPOLOGICAL PROPERTIES
ric one [12]. For weighted networks, if edges weights are N = total number of nodes
pOSitiVE, FriendLink applies trivially. iS_I;O:taeli\?ef;gt::e;loérf:s%?ath distance between pair nodes

ADEG = average node degree
LCC = average local clustering coefficient

C. Extending FriendLink for different types of Networks

IV. EXPERIMENTAL EVALUATION

In this section, we compare experimentally FriendLink GD = graph diameter (maximum shortest path distance)
with RWR, Katz and FOAF algorithms, respectively. Our DataSet N E | ASD | ADEG [LCC| GD
experiments were performed on a 3 GHz Pentium IV, with Hi5 63K 63329 | 88261 | 7.18 | 278 | 0.02 | 19

Epinions 49K | 49288 | 487183 | 4.01 | 19.76 | 0.26 | 14

2 GB of memory, running Windows XP. All algorithms were
implemented in Matlab.

A. Real Data Sets Figure 2. Topological properties of the real data sets.

To evaluate the examined algorithms, we have used two
real data sets from the Hi5 and Epinions web sites. WéB. Experimental Protocol and Evaluation Metrics
crawled the graph data from the Hi5 web site at two different As already described in previous Section, in our eval-
time periods. In particular, we crawled the Hi5 web site onuation we consider the division of Hi5 63K data set into
the 15th of April, 2010 and on the 20th of June, 2010. Ourtwo sets, according to the exact time stamp of the links
data crawling method was the following: for each user downloaded: (i) the training sef” is treated as known
we traverse all his friends and then traverse the friends oihformation and, (ii) the probe set” is used for testing.
each ofu’s friends etc. No information in the probe set is allowed to be used for
From the first crawl of Hi5 web site we created a trainingprediction. It is obvious that” N £ = @. For each
data set with 63329 users and 88261 edges among themser that has at least one new frienddf we generate
denoted as Hi5 63K where the initial starting node of our friend recommendations based on his friend<i Then,
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we average the results for each user and compute the finilatz's index attenuation factof™, wherem is the path
performance of each algorithm. Epinions data sets do ndength. The attenuation factors performance can be seen in
have time stamps of the edges. The performance of th&able I, for all data set. As shown, the best performance in
algorithms is evaluated by applying double cross-valadati both data sets is attained Igy;—l In the following, we keep
(internal and external). Each data set was divided into 1@he —L- as the default attenuation factor of the FriendLink
subsets. Each subsétf{) was in turn used for performance algorithm.

estimation in the external cross-validation. The 9 renmgjni

subsets §7) were used for the internal cross-validation. In Table |
particular, we performed an internal 9-fold cross-valiiat MAP FORS ATTENUATION FACTORS ON OUR REAL DATA SETS
to determine the best values of the algorithms’ needed Attggggt;on Ep‘ggns ('3"3'5K
parameters. In particular, for RWR we set parameier Tom =1 TR
0.001, whereas for Katz we set parame;ﬁarO.(_)O_S. We 1/0m) 0390 | 0.139
chose as values for the parameters those providing the best 1/(m?) 0.322 | 0.099
performance on the internal 9-fold cross-validation. Then 1/log(m) 0.287 | 0.045

Ui 0.235 | 0.012

their performance is averaged on the external 10-fold eross
validation. The presented results, based on two-tailedtt-t

are statistically significant at the 0.05 level. In Section IlI-A, one of the required input values for the
We use the classic precision/recall metric as performancgyiendLink algorithm is the lengti of paths considered
measure for friend recommendations. For a test user receiys 5 graph. To improve our recommendations, it is impor-

ing a list of k recommended friends (topAist), precision  ant {0 fine-tune the! variable. Based on Milgram's [8]
and recall are defined as followBrecisionis the ratio of  «gmai1-world hypothesis”¢ should take integer values in
the number of relevant users in the tbprsltp (e, those in e interval [2,6]. Figures 3c and 3d illustrate precision
the top# list that belong in the probe sét” of friends of o yarying ¢ values for the Epinions 49K, and Hi5 63K
the target user) td. Recall is the ratio of the number of 4515 sets, respectively. As expected, precision decresses
relevant users in the topfist to the total number of relevant o humber of recommended friends is increased. The best
users (all friends in the probe sét’ of the target user).  precision is attained by = 3 in both data sets. Notice that
_Moreover, since we provide to a test usea top# list of e omit to show results fof = 6 because precision follows
friends, it is important to consider the order of the presént degraded performance fér= 4 and¢ = 5, respectively.
friends in this list. That is, it is better to have a correcegsl | the following, we keep thé = 3 as the default maximum
in the first places of the recommendation list. Thus, we USength of paths of the FriendLink algorithm.
the Mean Average Precision (MAP)to emphasize ranking
of relevant users higher. We define MAP by Equation 2:

D. Accuracy Comparison of FriendLink with other methods
[N

1 1 &
W — Z Precision,Qk (2
[ Uk

=1 =1

We proceed with the comparison of FriendLink with
RWR, Katz, and FOAF algorithms, in terms of precision
and recall. This reveals the robustness of each algorithm
whereN is the number of users in the probe data sgtis  in attaining high recall with minimal losses in terms of
the number of relevant users to a Uﬂmnde‘GCiSiOTLu@k precision_ We examine the ranked |ist, which is recom-
is the precision value at thieth position in the recommen- mended to a target user, starting from the top friend. In
dation list foru. Notice that MAP takes into account both this sjtuation, the recall and precision vary with incregsi
precision and recall and is geometrically referred as tke ar number of recommended friends. For the Epinions 49K data
under the Precision-Recall curve. set, as shown in Figure 3e, our FriendLink algorithm again
e . . . . attains the best precision value of 55% when we recommend
C. Sensitivity Analysis for the FriendLink Algorithm a top-1 list of F:‘riends. The precision of FriendLink is

In this Section, we study the sensitivity of FriendLink impressive in this specific data set. The main reason is the
accuracy performance in real networks with: (i) differenttopological characteristics of Epinions 49K data set (i.e.
possible attenuation factors or (i) differefivalues for path  high LCC and small ASD). Thus, Epinions 49K can be
traversal. considered as a small-world network. This experiment shows

The attenuation factor that was mentioned in our algothat FriendLink is more robust in finding relevant users
rithm in Figure 1, weights paths according to their lengthfor the test user. The reason is that FriendLink exploits
¢. In this section, we test other possible attenuation factorproportionally the /-length pathways between two graph
to discover the best precision value that we can attain. Imodes. In contrast, RWR and Katz traverse globally the
particular, we have tested the following possible atteionat social network, missing to capture adequately the local
factors: (i) -5 (i) 5= (i) - (iv) m, and (v) the characteristics of the graph. Moreover, FOAF fails to previ

MAP =
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Figure 3. (a) Precision vs. number of recommended friend€Efonions 49K data set, (b) Precision vs. number of recontteérfriends for Hi5 63K
data sets. (c) Precision vs. Recall diagram for Epinions d8té set, (d) Precision vs. Recall diagram for Hi5 63K data se

Algorithm Epinions Hi5

accurate recommendations because it exploits only lehgth- 49K 63K
paths. FriendLink | 245 sec | 340 sec
For the Hi5 63K data set, as shown in Figure 3f, our RWR 380 sec | 520 sec
FriendLink algorithm attains the best results. Howeveg, th Katz 460 sec | 617 sec
overall performance of FriendLink, RWR and Katz algo- FOAF o5 sec | 221 sec
rithms is significantly decreased compared with the results Table II
in the Epinions data set. The first reason is the high sparsityrive comPARISON OF ALL TESTED ALGORITHMS FOR THE SYNTHETIC
(i.e. ADEG equal to 2.78) of the Hi5 63K data set. The AND REAL DATA SETS.

second reason is the fact that Hi5 cannot be considered as
a small-world network.

E. Time Comparison of FriendLink with other Methods users with an average of roughly 100 friends each. For

In this Section, we compare FriendLink against RWR,our algorithm to run for huge sized networks, it should
Katz and FOAF algorithms in terms of efficiency using bothpe adjusted to support a MapReduce [4] implementation.
real and synthetic data sets. We measured the clock time fanapReduce is a distributed computing model for processing
the off-line parts of all algorithms. The off-line part refe  large volumes of data. MapReduce is implemented in three
to the building of the similarity matrix between any pair steps: (i) Splitting up the computing job into chunks that
of nodes in a graph. The results are presented in Table Iktandard machines can process in a short time, (ii) parallel
As shown, FriendLink outperforms RWR and Katz, sinceprocessing on each sub-part by an independent machine
they calculate the inverse of anx n matrix. As expected, and, (iii) the collection of intermediate values, produced
FOAF algorithm, outperforms the other algorithms due to itshy each machine, to calculate the final result. In our case,
simpler complexity. Notice that the results depict the timethe calculation of the similarity matrix could be assigned
needed to compute the whole similarity matrix. On the otheto many machines in the following way. Each machine
hand, if we were to calculate the similarity matrix of only calculates one of the...¢-length paths for a specific pair
one user, then the computation would require only part of @f users and then sum up the paths to calculate the final
second to produce a recommendation. similarity value. An example is shown in Figure 4. As shown
in Figure 4, each Map function on every machine receives
as input a pair of users and produces the similarity value
for a designated path length All values for each pair of

There are many difficulties in the study of the link users are collected into one final value in the reduce phase.
prediction problem. A first problem is the huge size of In our example, the similarity values produced by the Map
real systems. For instance, Facebook has over 500 milliofunction, which are0.03, 0.2, 0.14 and 0.07 for path length

V. MAP REDUCE IMPLEMENTATION FORFRIENDL INK
ALGORITHM



¢ = 2,3,4,5 respectively, will be “reduced” to one final

FriendLink, as well as ways to improve our synthetic model

similarity value, which is 0.44, for the respective pair of to better resemble real networks and also learn the optimal

users.

Schema of map and reduce functions
map: input list(p, £, s)
reduce: list(p, £, s) output

Instantiation of the schema for similarity calculation
map: user pair list(user pair, length £, similarity)

reduce: (user pair, length £, similarity) ->(user pair, total similarity)

Example for similarity calculation

map: (userl, user2) - ((userl, user2, 2, 0.03), (userl, user2, 3, 0.2) ,
(userl, user2, 4, 0.14) , (userl, user2, 5, 0.07))

reduce: ((userl, user2, 2, 0.1), (userl, user2, 3, 0.4) , > ((userl, user2 ), 0.44)
(userl, user2, 4, 0.3) , (userl, user2, 5, 0.2))

Figure 4. Map and Reduce functions in MapReduce.

attenuation factor used in FriendLink instead of guessing i
In the future, we want to examine other ways of improving
friend recommendations based on other features that OSNs
offer, such as photo and video tagging, groups and common
applications. The combination of such features can provide
information on different ways that users are connected and
therefore yield to more accurate friend recommendations.
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