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Abstract

Nearest-neighbor collaborative filtering (CF) algo-
rithms are gaining widespread acceptance in recom-
mender systems and e-commerce applications. User rat-
ings are not expected to be independent, as users follow
trends of similar rating behavior. In terms of Text Min-
ing, this is analogous to the formation of higher-level
concepts from plain terms. In this paper, we propose
a novel CF algorithm which uses Latent Semantic In-
dexing (LSI) to detect rating trends and performs rec-
ommendations according to them. We perform an ex-
tensive experimental evaluation, with two real data sets,
and produce results that indicate its superiority over ex-
isting CF algorithms.

Introduction
The “information overload” problem affects our everyday
experience while searching for valuable knowledge. To
overcome this problem, we often rely on suggestions from
others who have more experience on a topic. In Web case,
this is more manageable with the introduction of Collabora-
tive Filtering (CF), which provides recommendations based
on the suggestions of users who have similar preferences.

Two types of CF algorithms have been proposed in the
literature: memory-based algorithms, which recommend ac-
cording to the preferences of nearest neighbors, and model-
based algorithms, which recommend by first developing a
model of user ratings. Related research has reported that
memory-based algorithms (a.k.a. nearest-neighbor algo-
rithms) present excellent performance, in terms of accuracy.
Their basic drawback is that they cannot handle scalability
and sparsity. This means that they face performance prob-
lems, when the volume of data is extremely big and sparse.

Latent Semantic Indexing (LSI) has been extensively used
in informational retrieval, to detect the latent semantic rela-
tionships between terms and documents. LSI constructs a
low-rank approximation to the term-document matrix. As a
result, it produces a less noisy matrix, which is better than
the original one. Thus, higher level concepts are generated
from plain terms. In CF, this is analogous to the formation
of users’ trends from individual preferences.
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In this paper, we propose a new algorithm that is based
on LSI to produce a condensed model for the user-item ma-
trix. This model comprises a matrix that captures the main
user trends and presents a two-fold advantage: (i) it removes
noise by focusing on main rating trends and not on particu-
larities of each individual user, (ii) its size is much smaller
than the original matrix, thus it can speedup the searching
for similar users/items.

Our contribution and novelty are summarized as follows:
(i) based on Information Retrieval, we include the pseudo-
user concept in order to compare it with our processed data.
This differs our method from related work (Sarwaret al.
2000b), where Singular Value Decomposition (SVD) meth-
ods have used only to summarize the user-item matrix for
dimensionality reduction. (ii) We implement a novel algo-
rithm, which tunes the number of principal components ac-
cording to the data characteristics. (iii)We generalize the
recommendation procedure for both user- and item-based
CF methods. (iv) We generate predictions based on the
users’ neighbors and not based on the test user itself, as it
has been reported in related work so far. (v) We propose a
new top-N generation list algorithm based on SVD and the
Highest Prediction Rated items.

The rest of this paper is organized as follows. We sum-
marize the related work and analyze the CF factors. We de-
scribe the proposed approach and give experimental results.
Finally, we conclude this paper.

Related work
In 1992, the Tapestry system (Goldberget al. 1992) in-
troduced Collaborative Filtering (CF). In 1994, the Grou-
pLens system (Resnicket al. 1994) implemented a CF al-
gorithm based on common users preferences. Nowadays, it
is known as user-based CF algorithm, because it employs
users’ similarities for the formation of the neighborhood
of nearest users. In 2001, another CF algorithm was pro-
posed. It is based on the items’ similarities for a neigh-
borhood generation of nearest items (Sarwaret al. 2001;
Karypis 2001) and is denoted as item-based CF algorithm.

All aforementioned algorithms are memory-based. Their
basic drawback is that they cannot handle scalability. This
means that they face performance problems, when the vol-
ume of data is extremely big. To deal with this problem,
many model-based algorithms have been developed (Breese,



Heckerman, & Kadie 1998). However, there are two con-
flicting challenges. If an algorithm spends less execution
time, this should not worse its quality. The best result would
be to improve quality with the minimum calculation effort.

Furnas, Deerwester et al. (Furnas, Deerwester, & Dumais
1988) proposed Latent Semantic Indexing (LSI) in Informa-
tion Retrieval area to deal with the aforementioned chal-
lenges. More specifically, LSI uses SVD to capture latent
associations between the terms and the documents. SVD
is a well-known factorization technique that factors a ma-
trix into three matrices. Berry et al. (Berry, Dumais, &
O’Brien 1994) carried out a survey of the computational
requirements for managing (e.g., folding-in1) LSI-encoded
databases. He claimed that the reduced-dimensions2 model
is less noisy than the original data.

Sarwar et al. (Sarwaret al. 2000b; 2002) applied di-
mensionality reduction for the user based CF approach.
He also used SVD for generating predictions. In con-
trast to our work, Sarwar et al. (Sarwaret al. 2000b;
2002) do not consider two significant issues: (i) Predic-
tions should be based on the users’ neighbors and not on the
test (target) user, as the ratings of the latter are not apriori
known. For this reason we rely only on the neighborhood
of the test user. (ii) The test users should not be included
in the calculation of the model, because they are not known
during the factorization phase. For this reason, we intro-
duce the notion of pseudo-user in order to include a new
user in the model (folding in), from which recommenda-
tions are derived. Other related work also includes Goldberg
et al. (Goldberget al. 2001), who applied Principal Com-
ponents Analysis (PCA) to facilitate off-line dimensionality
reduction for clustering the users, and therefore, managesto
have rapid on-line computation of recommendations. Hof-
mann (Hofmann 2004) proposed a model-based algorithm
which relies on latent Semantic and statistical models.

Factors affecting the CF process
In this section, we identify the major factors that critically
affect all CF algorithms. Our analysis focuses on the basic
operations of the CF process, which consists of three stages.
Stage 1: formation of user or item neighborhood, where ob-
jects inside the neighborhood have similar ratings and be-
havior. Stage 2: top-N list generation with algorithms that
construct a list of best items recommendations for a user.
Stage 3: quality assessment of the top-N list. Table 1 sum-
marizes the symbols that are used in the sequel.

First stage factors
Sparsity: In most real-world cases, users rate only a very
small percentage of items. This causes data sets to become
sparse. In such cases, the recommendation engine cannot
provide precise proposals, due to lack of sufficient infor-
mation. A similar problem of CF algorithms is the one of
cold-start (O’Mahonyet al. 2004).

1Folding in terms or documents is a simple technique that uses
existing SVD to represent new information.

2We use the term “Dimension” as it is defined in Linear Alge-
bra.

Symbol Definition
k number of nearest neighbors
N size of recommendation list
Pτ threshold for positive ratings
I domain of all items
U domain of all users

u, v some users
i, j some items
Iu set of items rated by useru
Ui set of users rated itemi
ru,i the rating of useru on itemi
ru mean rating value for useru
ri mean rating value for itemi

pu,i predicted rate for useru on itemi
c number of singular values
A original matrix
U Left singular vectors ofA
S Singular values ofA
V ′ Right singular vectors ofA
A∗ Approximation matrix ofA
u user vector

unew inserted user vector
n number of training users
m number of items

Table 1: Symbols and definitions.

Scalability: Scalability is important, because in real-world
applications the number of users/items is very large. As the
number of users/items grows, CF algorithms face perfor-
mance problems. For this reason dimensionality reduction
techniques have been proposed.
Training/Test data size: There is a clear dependence be-
tween the training set’s size and the accuracy of CF algo-
rithms (Sarwaret al. 2001). From our study we concluded
that an adequate training-set size should be chosen in order
to provide safe results.
Neighborhood size: The number,k, of nearest neighbors
used for the neighborhood formation is important because it
can affect substantially the system’s accuracy. In most re-
lated works (Herlockeret al. 1999; Sarwaret al. 2000a),k
has been examined in the range of values between 10 and
100. The optimumk depends on the data characteristics
(e.g., sparsity). Therefore, CF algorithms should be eval-
uated against varyingk, in order to tune it.
Similarity measure: The most extensively used sim-
ilarity measures are based on correlation and cosine-
similarity (Herlocker, Konstan, & Riedl 2002; Sarwaret al.
2001). Specifically, user-based CF algorithms mainly use
Pearson’s Correlation (Equation 1), whereas for item-based
CF algorithms, the Adjusted Cosine Measure is preferred
(Equation 2) (McLauglin & Herlocher 2004; Sarwaret al.
2001). The Adjusted Cosine Measure is a variation of the
simple cosine formula, that normalizes bias from subjective
ratings of different users. As default options, for user-based
CF we use the Pearson Correlation, whereas for item-based
we use the Adjusted Cosine Similarity, because they pre-
sented the best behavior overall.



sim(u, v) =

∑
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√
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√
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(1)

sim(i, j) =

∑

∀u∈T

(ru,i − ru)(ru,j − ru)

√

∑

∀u∈Ui

(ru,i − ru)2
√

∑

∀u∈Uj

(ru,j − ru)2
, T = Ui∩Uj .

(2)
Pearson’s Correlation (Equation 1) takes into account

only the set of items,S, that areco-ratedby both users.
Moreover, in Equation 1 mean ratings(rv, ru) in numera-
tor are computed only from co-rated items. Similarly, the
Adjusted Cosine Measure (Equation 2) considers in the nu-
merator only the set of users,T , that co-rated both the exam-
ined pair of items, whereas means are taken over all ratings
for a user, not a subset of ratings shared with any other user.
In contrast, the denominator of Equation 2 does not consider
only the users that co-rated both the items.

Second stage factors
Recommendation list’s size:The size,N , of the recom-
mendation list is important for the quality of the system’s ac-
curacy. In related work (Karypis 2001; Sarwaret al. 2001),
N usually takes values between 10 and 50. Actually,N
should depend on the average number of rates given by each
user. That is,N is application dependent.
Generation of recommendation list: The most often used
technique for the generation of the top-N list, is the one that
counts the frequency of each item inside the found neighbor-
hood, and recommends theN most frequent ones (Sarwaret
al. 2000a). Henceforth, this technique is denoted as Most-
Frequent item recommendation (MF). MF can be applied to
both user-based and item-based CF algorithms.
Positive rating threshold: It is evident that recommenda-
tions should be “positive”. It is not success to recommend
an item that will be rated with 1 in scale 1-5. Nevertheless,
this issue is not clearly defined in several existing works.
We argue that “negatively” rated items should not contribute
to the increase of accuracy, and we use a rating-threshold,
Pτ , to recommended items whose rating is no less than this
value. If not aPτ value is used, then the results can become
misleading, since negative ratings can contribute to the mea-
surement of accuracy.

Third stage factors
Evaluation Metrics: For the evaluation of CF algorithms
several metrics have been used in related work (Herlocker,
Konstan, & Riedl 2002; Herlockeret al. 2004), for instance
the Mean Absolute Error (MAE) or the Receiving Operat-
ing Characteristic (ROC) curve. Although MAE has been
used in most of related works, it has received criticism as

well (McLauglin & Herlocher 2004). From our experimen-
tal study we understood that MAE is able to characterize
the accuracy of prediction, but is not indicative for the ac-
curacy of recommendation, as algorithms with worse MAE
many times produce more accurate recommendations than
others with better MAE. For this reason we focus on widely
accepted metrics from information-retrieval. For a test user
that receives a list ofN recommended items (top-N list), the
following are defined:
• Precisionis the ratio of the number of relevant items in the

top-N list (i.e., those in the top-N list that rated positively
by the test user) toN .

• Recall is the ratio of the number of relevant items in the
top-N list to the total number of relevant items (all items
rated positively by the test user).

In the following we also use F1, which is a metric that com-
bines both the aforementioned ones.

Proposed Method
Our approach, initially, applies Singular Value Decomposi-
tion (SVD) over the user-item matrixA. We tune the num-
ber, c, of principal components (i.e., dimensions) with the
objective to reveal the major trends. The tuning ofc is
determined by the information percentage that is preserved
compared to the original matrix. Therefore, ac-dimensional
space is created and each of thec dimensions corresponds
to a distinctive rating trend. Next, given the current ratings
of the target useru, we enter pseudo-user vector in thec-
dimensional space. Finally, we find thek nearest neighbors
of pseudo user vector in thec-dimensional space and ap-
ply either user- or item-based similarity to compute the top-
N recommended items. Conclusively, the provided recom-
mendations consider the existence of user rating trends, as
the similarities are computed in the reducedc-dimensional
space, where dimensions correspond to trends.

To ease the discussion, we will use the running example
illustrated in Figure 1 whereI1−4 are items andU1−4 are
users. As shown, the example data set is divided into train-
ing and test set. The null cells(no rating) are presented as
zeros.

I1 I1 I1 I1

U1 4 1 1 4
U2 1 4 2 0
U3 2 1 4 5

(a)

I1 I1 I1 I1

U4 1 4 1 0

(b)

Figure 1: (a) Training Set (n × m), (b) Test Set.



Applying SVD on training data
Initially, we apply SVD on training datan×m matrix A that
produces three matrices. These matrices obtained by SVD
can give by performing multiplication the initial matrix as
the following Equation 3 and Figure 2 show:

An×m = Un×n · Sn×m · V ′
m×m (3)

4 1 1 4
1 4 2 0
2 1 4 5

An×m

-0.61 0.28 -0.74
-0.29 -0.95 -0.12
-0.74 0.14 0.66

Un×n

8.87 0 0 0
0 4.01 0 0
0 0 2.51 0

Sn×m

-0.47 -0.28 -0.47 -0.69
0.11 -0.85 -0.27 0.45
-0.71 -0.23 0.66 0.13
-0.52 0.39 -0.53 0.55

V ′
m×m

Figure 2: Example of:An×m (initial matrix A), Un×m (left
singular vectors of A),Sn×m (singular values of A),V ′

m×m

(right singular vectors of A).

Preserving the Principal Components
It is possible to reduce then × m matrix S to have onlyc
largest singular values. Then, the reconstructed matrix isthe
closest rank-c approximation of the initial matrix A as it is
shown in Equation 4 and Figure 3:

A∗
n×m = Un×c · Sc×c · V

′
c×m (4)

2.69 0.57 2.22 4.25
0.78 3.93 2.21 0.04
3.17 1.38 2.92 4.78

A∗
n×i

-0.61 0.28
-0.29 -0.95
-0.74 0.14

Un×c

8.87 0
0 4.01

Sc×c

-0.47 -0.28 -0.47 -0.69
0.11 -0.85 -0.27 0.45

V ′
c×m

Figure 3: Example of:A∗
n×m (approximation matrix of A),

Un×c (left singular vectors ofA∗), Sc×c (singular values of
A∗), V ′

c×m (right singular vectors ofA∗).

We tune the number,c, of principal components (i.e.,
dimensions) with the objective to reveal the major trends.
The tuning ofc is determined by the information percentage
that is preserved compared to the original matrix. There-
fore, a c-dimensional space is created and each of thec
dimensions corresponds to a distinctive rating trend. We
have to notice that in the running example we create a 2-
dimensional space using 83% of the total information of the
matrix (12,88/15,39). In our experiments we have seen that
only a 10% is adequate to provide accurate results.

Inserting a test user in thec-dimensional space
Related work (Sarwaret al. 2000b) has studied SVD on
CF considering the test data as apriori known. It is evident
that, for user-based approach, the test data should be con-
sidered as unknown in thec-dimensional space. Thus a spe-
cialized insertion process should be used. Given the current
ratings of the test user u, we enter pseudo-user vector in the
c-dimensional space using the following Equation 5 (Furnas,
Deerwester, & Dumais 1988). In the current example,we in-
sertU4 into the 2-dimensional space, as it is shown in Fig-
ure 4:

unew = u · Vm×c · S
−1

c×c (5)

-0.23 -0.89

unew

1 4 1 0

u

-0.47 0.11
-0.28 -0.85
-0.47 -0.27
-0.69 0.45

Vm×c

0.11 0
0 0.25

S−1

c×c

Figure 4: Example of:unew (inserted new user vector),u
(user vector),Vm×c (two left singular vectors of V),S−1

c×c

(two singular values of inverseS).

In Equation 5,unew denotes the mapped ratings of the
test useru, whereasVm×c andS−1

c×c are matrices derived
from SVD. Thisunew vector should be added in the end of
the Un×c matrix which is shown in Figure 3. Notice that
the inserted vector values of test userU4 are very similar to
these ofU2 after the insertion. This is reasonable, because
these two users have similar ratings as it is shown in Fig-
ure 1. Note that this process is omitted in the item-based ap-
proach, which means that this process is more applicable in
real applications in terms of complexity. In our experiments,
we will present this drawback of the user-based approach in
terms of execution time.

Generating the Neighborhood of users/items
Having a reduced dimensional representation of the origi-
nal space, we form the neighborhoods of users/items in that
space.



For the user based approach, we find thek nearest neigh-
bors of pseudo user vector in thec-dimensional space. The
similarities between training and test users can be based on
Cosine Similarity. First, we compute the matrixUn×c ·Sc×c

and then we perform vector similarity. Thisn × c matrix is
thec-dimensional representation for then users.

For the item based approach, we find thek nearest neigh-
bors of item vector in thec-dimensional space. First, we
compute the matrixSc×c ·Vc×m and then we perform vector
similarity. Thisc×m matrix is thec-dimensional represen-
tation for them items.

Generating the Recommendation List
As it is mentioned, in second stage of CF factors analysis,
existing ranking criteria, such as MF, are used for the gener-
ation of the top-N list in classic CF algorithms. We propose a
ranking criterion that uses the predicted values of a user for
each item. Predicted values are computed by Equations 6
and 7, for the cases of user-based and item-based CF, re-
spectively. These equations have been used in related work
for the purpose of MAE calculation, whereas we use them
for generation of top-N list.

pu,i = ru +

∑

v∈U sim(u, v)(rv,i − rv)
∑

v∈U |sim(u, v)|
(6)

pu,i = ri +

∑

j∈I
sim(i, j)(ru,j − rj)

∑

j∈I
|sim(i, j)|

(7)

Therefore, we sort (in descending order) the items accord-
ing to predicted rating value, and recommend the firstN
of them.3 This ranking criterion, denoted as Highest Pre-
dicted Rated item recommendation (HPR), is influenced by
the good accuracy of prediction that existing related work
reports through the MAE. HPR opts for recommending the
items that are more probable to receive a higher rating. As
our experimental results will demonstrate, HPR presents
poor performance for the classic CF algorithms, but dramat-
ically spectacular results when it is used in combination with
SVD. The reason is that in the latter it is based only on the
major trends of users.

Evaluation of the CF process
Related work (Sarwaret al. 2000b) proposed the Equation 8
for the generation of predictions.

pu,i = ru + Un×c ·
√

Sc×c

√

Sc×c · V
′
c∗m (8)

We test this equation and find out that the predicted val-
ues were calculated not from other users but from the user
himself. So, the information of an inserted inc-dimensional
space test user was used to predict his own real rates. These
predicted values were so close to the real ones. Therefore,

3If less thanN items have positive ratings (i.e., not less thanPτ ), then less than

N items remain in the list.

although the produced MAE may be good, this procedure
is not prediction, because the test user is considered apriori
known. In contrast, we use Equations 6 and 7 for prediction,
to exploit information from other users or items. Thus, we
use these predicted values for the calculation of MAE.

Experimental configuration
In the sequel, we study the performance of the described
SVD dimensionality reduction techniques against existing
CF algorithms, by means of a thorough experimental evalu-
ation. Both user-based and item-based algorithms are tested.
Several factors are considered, like the number of considered
dimensions, the similarity measures, and criteria for gener-
ating the top-N list. The additional factors, that are treated
as parameters, are the following: the neighborhood size (k,
default value 10), the size of the recommendation list (N ,
default value 20),and the size of training set (default value
75%). The metrics we use are recall, precision, and F1.

We perform experiments with two real data sets that have
been used as benchmarks in prior work. In particular, we
examined two MovieLens data sets(the default set is the for-
mer): (i) the first one with 100,000 ratings assigned by 943
users on 1,682 movies, and (ii) the second one with about 1
million ratings for 3,592 movies by 6,040 users. The range
of ratings is between 1(bad)-5(excellent) of the numerical
scale. The performance of the former has been verified with
the results of the other two (sparse) real data sets. Finally,
Pτ is set to 3 and the value of an unrated item is considered
equal to zero.

Results for user-based CF algorithm
Firstly, we study the performance of SVD dimensionality
reduction in user-based approach. Each time, we preserve
a different fraction of principal components of SVD model.
More specifically, we preserve 90%, 70%, 50%, 30% and
10% of the total information of initial user-item matrix. The
results for precision and recall vs.k are displayed in Fig-
ure 5a and b, respectively.

As we can see, the performance of SVD50, SVD70,
SVD90 are similar in terms of precision and recall. The
reason is that SVD50 is adequate for producing a good ap-
proximation of the original matrix. Thus, we will continue
our study with two representative SVD models, SVD50 and
SVD10. These choices are indicative of the behavior of the
SVD model.

We now move on to comparison of existing user-based
CF algorithm that uses Pearson similarity against the two
representative SVD reductions. The results for precision and
recall vs.k are displayed in Figure 6a and b, respectively.

As shown, the existing Pearson measure, which is based
on co-rated items, performs worst than SDV reductions. The
two proposed reductions clearly outperform Pearson mea-
sure. The reason is that the MovieLens data set is sparse
and relatively large (highn value). The SVD reductions re-
veal the most essential dimensions and filter out the outliers
and misleading information. SVD50 performs a little bet-
ter than SVD10, as it uses more information. In contrast,
the latter SVD reduction uses only 11 dimensions instead
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Figure 5: Performance of SVD dimensionality reduction of
user-based CF vs.k: (a) precision, (b) recall.

of 157 of the former. This means that the performance of
the latter is faster than the former one. Both SVD50 and
SVD10 reach an optimum performance for a specifick. In
contrast, in the examined range ofk values, the performance
of Pearson increases with increasingk. Outside the exam-
inedk range (not displayed), it stabilizes and never exceeds
40% precision and 11% recall. This illustrates that SVD50
and SVD10 reach their best performance for much smaller
values ofk compared to Pearson.

We now examine the MAE metric. Results are illustrated
in Figure 7a. As expected, Pearson yields the lowest MAE
values. This fact supports our conviction that MAE is indica-
tive only for the evaluation of prediction and not of recom-
mendation, as Pearson measure did not attain the best per-
formance in terms of precision and recall.

To consider the impact of scalability, we also examine the
1M data set. The results for the F1 metric are depicted in
Figure 7b. In this case, the relative difference is more ex-
tent than the case of 100K data set. The reason is that 1M
data set is more sparse (the percentage of non rated items
exceeds 95%) than 100K data set (the corresponding per-
centage is 93%). Moreover, the rank (i.e., number of inde-
pendent dimensions) of the 1M data set is 3010 instead of
708 (all training users) for the 100K. This means, that there
are many dependent dimensions in the former that can be
compressed.
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Figure 6: Performance of user-based CF vs.k: (a) precision,
(b) recall.

Finally, we test the described criteria for the HPR top-N
list generation algorithm. The results for precision and re-
call are given in Figure 8. As shown, the combination of
the SVD similarity measure with HPR as list generation al-
gorithm, clearly outperforms the Pearson with HPR. This is
due to the fact that in the former the remaining dimensions
are the determinative ones and outliers users have been re-
jected. Note that in the SVD50 we preserve only 157 basic
dimensions instead of 708 for the latter.

Results for item-based CF algorithms

We perform similar measurements for the case of item-
based CF. Thus, we first examine the precision and recall for
the existing Adjusted Cosine Measure (considers co-rated
items) against SVD50 and SVD10 for the item-based case.
The results are depicted in Figure 9 and are analogous to
those of the user-based case. SVD50 and SVD10 clearly
outperform Adjusted Cosine. Notice that unlike the user-
based case, the difference between SVD50 and SVD10 is
greater. This mean that item based algorithm cannot pre-
serve accuracy in a satisfactory way when we decrease the
percentage of dimension’s information.

Next, we compare Adjusted Cosine, SVD50 and SVD10
against MAE. The results are illustrated in Figure 10a. Dif-
ferently from the case of user-based CF, all measures have
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Figure 7: Performance of user-based CF vs.k: (a) MAE, (b)
F1 for 1M Movielens data set.

similar MAE. The reason that Adjusted Cosine does not
present better MAE, is that in its denominator it considers
all items and not just the co-rated ones (see Equation 2).
This improves its performance for the task of recommenda-
tion and worsens the performance of prediction.

Regarding the examination of the larger data set (1M
Movielens), the results for the F1 metric are illustrated in
Figure 10b. As we can see, SVD50 is better in terms of pre-
cision but the difference is smaller than it was in user-based
algorithm. The reason is that the item based CF algorithm
has been used to deal with sparse data. So, in situations
where the sparsity level is greater, it performs better thanthe
user based CF.

Finally, we test the described criteria HPR for the top-
N list generation by item-based CF algorithms. Similarly
to the user-based case, HPR in combination with SVD50
performs satisfactory and clearly outperforms the Adjusted
Cosine combined with HPR.

Comparative results

In this section, we compare user-based and item-based
SVD50 reduction algorithms. With respect to the criterion
for the generation of the top-N list, for both of them we use
MF as generation list algorithm. The results for precision
and recall are displayed in Figure 11a and b, respectively.
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Figure 8: Comparison HPR criteria for the generation of top-
N list for user-based CF vs.k (a) precision, (b) recall

These results demonstrate that user-based SVD50 com-
pares favorably against item-based SVD50. The difference
in precision is larger than 10%, whereas with respect to re-
call, it exceeds 5%.

Regarding the execution time, we measured the wall-
clock time for the on-line parts of the user-based and item-
based algorithms. The results vs.k are presented in Fig-
ure 12a, whereas the results for varying percentage of pre-
served information, are depicted in Figure 12b (in the latter
measurement we setk = 10).

As already mentioned, item based CF needs less time to
provide recommendations than user-based CF. This holds
for both the aforementioned measurements. The reason is
that a user-rate vector in user-based approach has to be in-
serted in thec-dimensional space. Moreover, we have to
mention that the generation of top-N list for the user-based
approach further burdens the CF process. The reason is that
the algorithm finds, firstly, user neighbors in the neighbor-
hood matrix and then counts presences of items in the user-
item matrix. In contrast, with the item-based approach the
whole work is completed in the item neigborhood matrix.
So, in terms of execution item based approach is superior
over user based.
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Figure 9: Performance of item-based CF vs.k: (a) precision,
(b) recall.

Conclusions
We perform experimental comparison of the proposed
method against well known CF algorithms, like user-based
or item-based methods (that do not consider trends), with
real data sets.

• Our method shows significant improvements over ex-
isting CF algorithms, in terms of accuracy (measured
through recall/precision), because it is able to identify
more clearly the correct recommended items by focus-
ing on trends and isolating noisy users (e.g., outliers). In
terms of execution times, due to the use of smaller matri-
ces, execution times are dramatically reduced.

• In our experiments we have seen that only a 10% of the
original matrix is adequate to provide accurate results.

• The generation of the top-N list with a ranking criterion,
is a significant problem that worths further consideration.
The proposed HPR criterion in combination with SVD
can compete the existing MF, which has been used by the
majority of related work.

• Our results showed that, by applying SVD in user-based
and item-based CF, the former compares favorably to the
latter in terms of precision and recall.

• We should notice that the process of inserting test users
rated in the c-dimensional space, is omitted in the item
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Figure 10: Performance of item-based CF vs.k: (a) MAE,
(b) F1 for 1M Movielens data set.

based approach. Thus, this process is more applicable in
real applications in terms of complexity even if its accu-
racy results seems to be smaller than the user’s based ap-
proach.

Summarizing, on one hand, item-based algorithms are
more applicable for off-line computations and, thus, better in
on-line response. On the other hand, user-based algorithms
produce more accurate recommendations with a small frac-
tion of initial information. For this reason, in our future
work we will consider the issue of an approach that would
combine high accuracy recommendations in the minimum
responding time.
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