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Abstract

We present a branching process that builds region quadtrees which represent random images obeying a general probability
distribution. As an example of the usefulness of this process we adapt it to images containing one or more sources of black colour.
In such images. which often appear in applications. the probability that a pixel is black depends upon its distance from one or more
given centres, the sources of black. The process presented can be used for driving a simulator for such an application: it can create and
pass to the simulator quadtrees obeying the above model directly, without creating the respective random image first.

Keywords: Quadtree; Branching: Binary image: Random image

1. Introduction

The region quadtree [1] is a very popular hierarchical
data structure for the representation of binary images.
We can view such an image as a 2" x 2" binary array, for
some natural number #, where an entry equal to 0 stands
for a white pixel and an entry equal to 1 stands for a
black pixel. If every pixel of this image is white (black),
its quadtree is made up of a single white (black) node. If,
however, the image is not unicolour, its quadtree is made
up of a grey root that points to four children (subtrees).
Each of these subtrees is a quadtree that represents a
quadrant of the image. We assume here that the first
(leftmost) child of the root corresponds to the North-
West quadrant, the second to the North-East quadrant,
the third to the South-West quadrant and the fourth
(rightmost) child of the root corresponds to the South-
East quadrant of the image.

An example of an 8 x 8 binary image and its quadtree
is shown in Figs 1(a) and 1(c), respectively. Note that
black (white) squares represent black (white) leaves,
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while circles represent grey nodes. The unicolour blocks,
to which this image is partitioned by the quadtree
external nodes, are depicted in Fig. 1(b).

There are many applications (scientific, industrial,
etc.) based on region quadtrees in which images obey a
random model based on “black sources’. More specifi-
cally. in such images there are one or more pixels
which are called sources. Consider one of these images.
Then, the probability that a pixel of this image is black
depends upon its distance(s) from the source(s) of black:
this probability is high when the pixel is close to any of
the sources, and gets lower as the distance of the pixel
from all the sources increases. For a number of reasons,
we are often interested in running a simulator during the
development of the respective system for such an appli-
cation. For example, we may want to test whether the
system works correctly, or we may want to estimate the
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Fig. 1. (a) An 8 x 8 binary image, (b) the partitioning to unicolour
quadrangular blocks, and (c) its quadtree.
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storage requirements and,/or the time efficiency of certain
algorithms. It is evident that testing often involves a vast
number of repetitions. Therefore, the space required for
storing a great number of different images would be
enormous. On the other hand, real-life or empirical
data could be unavailable or unknown. Therefore, one
way to run such a simulator would be to create a random
image obeying a specific model, build the respective
quadtree and pass it to the simulator.

In this paper, we develop a top-down method (a
branching process) that builds a quadtree directly, with-
out creating the respective image first. This process
creates quadtrees for random images obeying a general
probability distribution. These quadtrees can be pro-
duced, used and finally discarded in a one-by-one basis,
or they may be stored using an efficient method, such as
overlapping [2—4]. In any case, the net saving spacewise,
when compared to the alternative scenario of storing a
large image database, is considerable. Apart from intro-
ducing this general branching process, we show how it
can be adapted to images containing one or more sources
of black colour. The resulting process is suitable for
building quadtrees directly and passing them to a simu-
lator as described above. In this way, we save time by
overcoming the raster-to-quadtree conversion (an
overview of raster-to-quadtree conversion algorithms
appears in Samet [5]). As a consequence, we also save
intermediate memory space, since quadtrees often
require less memory than the respective images (an
analysis of the quadtree storage requirements appears
in [6]). To the best of our knowledge, there is lack in
the literature with respect to a method able to generate
asymmetric images (i.e. with black sources) via the con-
struction of quadtrees.

2. General probability distribution

We consider that our image array is the array
10---2" =1, 0---2" — 1]. We also consider that the
array element (0, 0) corresponds to the NW corner of
the image. This means that the array elements (2" — 1, 0),
0,2"—1) and (2" — 1, 2" — 1) correspond to the NE,
SW and SE corners of the image, respectively. The prob-
ability that the array element (j,k) is black, where
0<j,k<2"-1, independently of any other array
element is given by the function:

f{0 2 =1 x {02 1)~ [0,1]

The quadtree for I is of height n, at most. Let us call
such a tree a class-n quadtree. There are 2+ different
image arrays of this size. A node corresponding to a
single pixel is at level 0, while the root is at level n.
There are at most 4" nodes at level i,0<i<n,each
one representing a subarray of 2' x 2'(= 4') pixels.

The position of a node is fully specified by a triplet

(i,x,y), where i is the level of this node and x, y are the
coordinates of the NW corner of the respective subarray
(or equivalently, x,y are the bit-strings that, when
interleaved, make up the path from the root to this
node). A node with position (7, x,y), where 0 <i<n
and 0 < x,y < -, corresponds to the subarray
I27%---2(x+1) — 1,2y --2"(y + 1) — 1]. If this node
is grey, the positions of its NW, NE, SW and SE children
are (i—1,2x,2y), (i—1,2x+4+ 1,2y),(i—1,2x,2y + 1)
and (i — 1,2x 4+ 1,2y + 1), respectively. Since the value
of function f for an array element is independent to the
value of this function for any other array element, we
have:

P(the subarray corresp. to (i, x, v) is all black)

2 x2iix=1-1
2y 2y )1

j=
k=

P(the subarray corresp. to (i, x, y) is all white)

= 11 1= £(j. k)
J=2x 2 (x=1) =1
k=2p2(p+1)-1

P(the subarray corresp. to (i, x, y) is not unicolour)
=1 — P(black, i, x,y) — P(white, i, x, )

Note that the above probabilities are probabilities of
distinct subimages and of sets of subimages. In the fol-
lowing, we will define sets of trees and subtrees and will
look for their probabilities.

3. Set of class-n quadtrees

In this section we define the set of all class-n region
quadtrees @, using a number of symbolic recursive
equations. These equations involve the cartesian product
and union operators and form a constructive top-down
definition. This definition leads us to a branching process
for building a class-n quadtree. Note that we can view a
region quadtree as a finite ordered tuple that consists of
grey, black and white nodes and corresponds to the pre-
order traversal of the tree. Thus, Q, is a finite set having
as elements variable length tuples. Analogous definitions
for other trees and combinatorial structures appear in
7.

In the rest of this paper, the + symbol will represent set
union. As class-i sub-quadtree we characterize a class-i
quadtree that has at least one grey node. We will use:

e the symbol S;, , to denote the set of all class-i sub-
quadtrees rooted at (i,x,y), where 1 <i<n and
0<x,p<2 -1,

e the symbol G; . , to denote the set that contains as its
only element the grey node at (i, x, y), where 1 <i<n
and 0 < x,y <2" 71—,

o the symbol W, . . to denote the set that contains as its
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only element the white node at (7, x. v), where 0 < i <n
and 0 < x.v < 2" — 1, and

o the symbol B; . , to denote the set that contains as its
only element the white node at (/. x. v),where0 <i<n
and 0 < x,p <2" ' -1

Every notation of the form (71, 72,73, T4), . . (where
each of the symbols T'1, T2, T3 and T4 represent one of
the symbols W, B or S) will denote the subset of S;
defined as the cartesian product:

LY

Gi,.\'.y>< Tlifl.l\:l_\' X Tzl'— 1.2x~1.2» X T31 120 20 4+
X T4 |a. 1.2r+1
Thus, the set of all class-n quadtrees is:

Qn=W,00+ B,oo+ Snoo

Sixy = (WWWB), .. +(WWBW), ., +(WBWW), .,
+ (BWWW), ., + (BBBW), ., +(BBWB), . ,

+ (BWBB), . (WBBB), , , + (BBWW), . ,
+ (BWWB), .+ (WWBB), .,
+(WBWB), , ,+(WBBW),  ,+(BWBW),  ,
+ (BBBS); ., + (BBSB), . .+ (BSBB), , ,
+ (SBBB), .., + (WWWS), .,
+ (WWSW),,, + (WSWW), .,
+ (SWWW), ., + (WWBS), .,
+ (WBWS), .+ (BWWS), . , +(WWSB), . ,
+ (WBSW), .+ (BWSW), .+ (WSWB), . ,
+(WSBW), ., +(BSWW), . ,+(SWWB), |
+ (SWBW), ., + (SBWW), .+ (BBWS), .,
+ (BWBS), ., + (WBBS), ., + (BBSW),
+ (BWSB), .+ (WBSB), . .+ (BSBW),  ,
+ (BSWB), ., + (WSBB), . + (SBBW),  ,
+ (SBWB),‘ .+ (SWBB), ., (WWSS)H .
4 (WSWS); ,  +(SWWS),  ,+(SWSW),
+ (SWSW)i\ o+ (SSWW), , + (BBSS), .,
+ (BSBS); , , + (SBBS), .., + (SBSB), , ,
+ (SBSBY, .. + (SSBB), ., + (WBSS), . ,
+ (WSBS), .., + (SWBS), . + (SWSB), .,
+ (SWSB),., + (SSWB), .., + (BWSW), .,
+ (BSWS), e+ (SBWS), + (SBSW), , ,
+ (SBSW), ., + (SSBW), ., + (SSSW), .,

+ (SSWS), (. +
+(SSSB); « , +
+ (BSSS);(, +
Sty = (WWWB), ., +{(WWBW), .,
+ (WBWW), ., + (BWWW), , ,
+ (BBBW), ., +(BBWB), . ,+ (BWBB), .,
+ (WBBB), . , + (BBWW), . ,
(
(

(SWSS)i ..+ (WSSS)icy
(SSBS), ., + (SBSS); .,
(SSSS) Vi>1

+ BWWB>1.,\'.)‘ + <WWBB>l.x,J'
+ WBWB)l\\+<WBBW>1V 13

[t is not difficult to see that Q, includes all the possible
class-n quadtrees, since its definition is a top-down con-
structive one, where all the possible configurations for
the children of a grey node appear (excluding the two
illegal configurations where all four children are uni-
colour leaves).

Note that the above symbolic equations (when fully
expanded) define the set of all class-n quadtrees as a large
expression made of union and cartesian product opera-
tors and a number of initial operands, the sets G, . |,
Wi..\'.vr and Bzﬂ.\’._v-

4. Branching process

These symbolic equations describe a branching pro-
cess by which we can construct any legal class-n region
quadtree. More specifically:

e At the start, we perform the initial branching: we
choose between the root being a black node, a white
node or a grey node (the tree being a member of the set
of class-n sub-quadtrees).

e Atany level i,n > i > 1, for any grey node at this level,
we perform a level-i branching: we choose between 79
different sub-quadtree subsets so that the subtree
rooted at this node belongs in the chosen set.

e Atlevel 1, for any grey node at this level, we perform a
level-1 branching: we choose between 14 different sub-
quadtree subsets so that the subtree rooted at this node
belongs in the chosen set.

A branching process for creating quadtrees was first
introduced in [8], where at each node (starting at the
root), we always choose between white, black and grey
colours; if we colour a node grey, we continue the process
recursively for each one of its children choosing always
between all these three colours. Note that according to
the approach of [8] a grey node may have four children
that are all black or white (the branching process is not
restricted so as not to produce four sibling leaves of the
same colour). The resulting set of trees is a superset of the
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usual quadtrees. The trees that belong in this set and are
not usual quadtrees loose (part of) the memory savings
introduced by creating maximal white and black blocks.
and are not used in practice. A branching process that
builds only usual region quadtrees is described in [9].
This process is similar to the process of this paper, how-
ever it is simpler since all level-i sub-quadtrees are treated
equivalently (the resulting random model is symmetrical
in regard to every grey node). Note that in the branching
process of this paper and in the branching process of [9]
except for the initial branching (where we choose
between different colours) at all other branchings we
choose between different sub-quadtree configurations
(we choose the sub-quadtree subset defined by a () nota-
tion in which the subtree rooted at the grey node of each
branching belongs). This approach is different to the
approach of [8], where we always choose between three
colours.

We can create a probabilistic model for our branch-
ing process by assigning probabilities to the different
choices for every branching. This process must be
legal under the fundamental probability axioms.
Thus, for every specific branching the probabilities
of all the different choices must sum to 1. We want
an assignment of probabilities that makes the branch-
ing process create trees which correspond to images
obeying the random model defined in Section 2. In
other words, the probability of a specific class-n quad-
tree (class-i sub- quadtree) is equal to the probability
of the image (subimage) it represents. By adding the
probabilities of the distinct trees (subtrees) present in
the related set of trees (subtrees), we get that:

e P(B; )= P(the subarray corresp. to (i,x,y) is all

black), where 0 <i<pmand 0 < x,y <2"7' — 1,

o P(W, . ,) = P(the subarray corresp. to (i.x,y) is all
white), where 0 <i<nand 0 < x,p < 2" ' -1,

e P(S;.,) = P(the subarray corresp. to (i, x,¥) is not
unicolour), where 1 <i<n and 0 < xy<2i o1
and

o for T1,72, T3, T4 c {{W", "B, 'S’}
P((T1,T2,T3,T4); )
= P(Tii—l‘l\'.lr)'P(Tzi—l.l.\'-#l..?y)
X P(T3; _{2v20-1) 'P(T41—1.2x+1.2y+1)

where | <i<nmand0<x,p<2" -1,
Our assignment of probabilities is:

o At the initial branching, the probability that our tree is
a white, black or grey node equals P(W, ¢ o), P(B, ¢0)
and P(S, o), respectively. Obviously, these probabil-
ities sum to 1.

e At any level-i branching, » > i > 1, the probability
of each of the 79 different choices of the form

P((T1,7T2,T3,T4); ) equals:

P((T1,T2,T3.T4); )
P(Si v y)

We had to divide by the probabiliiy that the subarray
corresponding to (i, x, y) is not unicolour in order for
the sum of all the 79 probabilities to be 1. This is
because the set of all 79 choices does not include the
two illegal configurations where all four children are
unicolour leaves.

e At any level-1 branching the probability of each of
the 14 different choices of the form P({T1, T2,
73.74), ) equals:

P((Tl. 172,73, T4>l\t)
P(Sl\l)

For the same reason as above, we had to divide by the
probability that the subarray corresponding to (1, x, y)
is not unicolour.

5. Models of black sources

In this section, we explain how the above branching
process can be adapted to images containing one or more
sources of black. To make the presentation simpler, we
consider that there is only one source of black in our
images, that is an element of / with coordinates x; and
¥ 2" = 12> x,, v, > 0. Function f should be replaced
with a function:

dey {0 2" =1} x {0---2"— 1} — [0, 1]

The value of this function for an element (x,y) of [
should depend on the distance of (x,y) from (xg,y,),
i.e. the smaller this distance, larger is the value of the
function, and vice versa. If we calculate the above prob-
abilities using function d,_, , our branching process is
fully specified and can be used to produce quadtrees
for images obeying the source-of-black random model.
Two popular distance functions are the euclidean dis-
tance and the manhattan distance. These functions
should be normalized with respect to the largest possible
value of each function in an image. This means that the
euclidean definition of function d,_,_ could be:

V0o =+ (= 2)
£.(2")

where g,(2") is a function which depends on the image
resolution and determines the degree of image coherence
(the aggregation of black pixels) around the sources of
black. This function should never give values equal to
zero, and in any case, it should be larger or equal to the
greatest distance for a specific resolution. An example of
this function is: g,( ) = v2(2" — 1). In a similar manner,

de o (x) =1
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Fig. 2. A 4 x 4 image containing a black centre ¢ and a black pixel p.
the manhattan definition of function d,_,_ could be:
(¥ + -

gm(2")
In this case, the function g,,(2") could be equal to
2(2" — 1). For example, consider the 2* x 2% image of

Fig. 2. The value of the cuclidean function d, , of
pixel p and black centre ¢ is calculated as:

2124+ (2-0) 5
\/( )+ ):1—£:o.47

V23 V23

whereas the value of the manhattan function d, , of

pixel p and black centre c is calculated as:

2-1+4+2-0
2.3 B

d,\}.,\'»;(xvy) =1-

dr2(1,0) =1 —

dz_)_(l,O):l— 0.5

It is not difficult to calculate (by using these definitions of
d, ) the probabilities for the different choices of each
branching. The basis of these calculations for the eucli-
dean d, , are the probabilities:

P(the subarray corresp. to (/. x,y) is all black)

1 . hl . b]

= n H \/('\'5 -/ )- + (y,\' - k)—
g2 )_/:z',\---z’(.\--nfl
k=2v 2%+ ) -1

P(the subarray corresp. to (7, x,y) is all white)

= 11 V202"~ 1)
J=20x 2 (=1 -
=220y +1)—1

— G =)+ — k7

and for the manhattan d, , are the probabilities:

P(the subarray corresp. to (i, x,y) is all black)

P(the subarray corresp. to (i, v, y) is all white)

1
gm(2 ),I’=2‘_vr~~2'(-\’+ h-1

A=2p2(r+1)-1

22" = 1) = (3, =j) = (3= k)

In an analogous manner, similar formulae can be pro-
duced for images with two or more black sources.

6. Conclusion

In this paper, we present a branching process that
can build region quadtrees for images obeying a
general probabilistic model. This model depends
upon the definition of a probability distribution

f:{0---2" =1} x{0---2" — 1} — [0, 1]. By defining f

appropriately. this branching process can build trees
for images obeying the source-of-black random model.
It is not difficult to extend the presented method to
include 1mages with more than one sources of black.
The process presented looks complicated, since in most
steps it distinguishes between 79 choices. However, we
had to consider that many cases to avoid creation of
illegal region quadtrees.

This branching process can be used for driving a simu-
lator for applications that involve region quadtrees and
images obeying the source-of-black random model or
another random model, according to the definition of
the general probability distribution f. Our method
saves time and memory space, since it does not create
temporary random images which then have to be trans-
formed to quadtrees. Moreover, we note that our
method saves space for an additional reason. During
the branching process, as presented above, probability
values are generated for each and every node of a full
quadtree. These probability values can be either ignored
and recalculated later on-the-fly at the cost of CPU over-
head. or otherwise they have to be stored. In the former
case. only a limited and constant number of floating
point parameters has to be stored, such as the black
source coordinates and the code to calculate the distance
function. In the latter case, the necessary space is con-
siderable, but again, it is negligible when compared to the
storage requirements of a large set of quadtrees repre-
senting an image database. Hence, for any image of a
non-trivial size, the saving with respect to storing the
values of all pixels is very significant, even if each pixel
requires just one bit.
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