OVERLAPPING B+TREES FOR TEMPORAL DATA

YANNIS MANOLOPOULOS AND GEORGE KAPETANAKIS

ARISTOTELIAN UNIVERSITY OF THESSALONIKI. GREECE.

ABSTRACT

Overlapping trees keep past data
unchanged and copy some subtrees to repre-—
sent the new data due to insertions, dele-—
tions or updates. In this report a stru-
cture based on B+trees 1is proposed and
Analy-

sis estimates the extra space needed each

some involved procedures are given.
time some records are updated. Experimen—
tation gives almost identical results to
those produced by the analysis. Overlap-
ping structures may be used in some appli-
cations such as for backup and recovery,
for storing variations of a standard file
or text files and especially for temporal

databases.

1. INTRODUCTION

Conventional databases do not store

many data versions, ie. updated and dele-

ted records are physically or at least

logically removed. However, nowadays there

is an increasing need for keeping many
data versions and making queries on past
data trend analysis for

or performing

decision making. These systems are called
temporal databases [11].

Since temporal database systems are
characterized by enormous space needs,
optical disks (either WORM’s or not) are
necessary for such applications. It has
been proposed fo partition the database in
[1,9].

and past data may be

two different storage media For

example, current

TH0326-9/90/0000/0491/$01.00 © 1990 IEEE

491

stored in magnetic and optical disks res-
pectively. Whenever a record update is
performed, the current record version may
be moved from the magnetic disk to the
optical one and the new version occupies
its former place.

Work database 1logical

on temporal

design is extensive. However, work for
temporal database oriented structures is
limited. The only works to our knowledge
are the ones by Burton and Kollias [2,3,
6], Easton [4] and Lomet [8].

B-trees by Burton and Kollias are stru-

Overlapping

ctures which keep past data unchanged and
copy some subtrees to represent new data
deletions or updates

In this

due to insertions,
(or any set of these operations).
report a structure based on B+trees is
examined. Under the new storage technology
perspectives it seems that B+trees as an
overlapping structure may be used effi-
ciently for future applications such as
for backup and recovery, for storing vari-
ations of standard or text files and espe-
cially for temporal databases.

The structure of this work is the
following. In the next section the over-
lapping B+tree structure is defined and
important for the stru-
In Section 3

an estimate of the extra space needed for

some procedures,

cture maintenance are given.

updating a set of records is derived ana-

lytically. In Section 4 some experimental

results are reported and discussed. Final-

1y, the conclusion follows and future

extensions are mentioned.

2. THE STRUCTURE
B+trees of order m have the following
properties [10]:
(a) The root node has at least 2 children
and at most m children (unless it is a
leaf).

(b) Internal nodes have at least [m/z]
children and at most m children. Internal
nodes contain only keys and addresses of
nodes of the next lower level.
(¢) An internal node with k& children con-
tains k-1 keys.
(d) All leaf nodes lie at the same level.
If the B+tree is used as a main file
then leaf nodes contain the data records.
The data node capacity in records is at
most DCap and at least DCap/2. Otherwise,
ie. if the B+tree is used for secondary
indexing then leaf nodes contain pairs of
keys and pointers to the main file (and
apparently their capacity is the same to
that of the index nodes). Therefore at the
last level all the keys appear as part
either of a data record or of a key-
pointer pair. Leaf nodes may also contain
the address of the next leaf node for
sequential processing.

Here, we propose a variation of B+
trees used as a main file. We assume that
individual versions of a file are repre-
sent as B+trees and we consider the over-
lapping B+tree structure for representing
a collection of files with similar content
by using common subtrees. An extra field
is used to determine if a substructure is
shared, the reference count. All nodes
with a reference count greater than 1,
together with all descendants of such
nodes constitute shared information. 1In
the following the structure is defined in
Pascal language and the most important
procedures are given. Procedure setpointer
manipulates the reference count field,
while procedures copy and newnode are used

to duplicate the path of nodes from the

root to the leaves due to an insertion,
deletion or an update. (nn is the data
node capacity, mm is the index node capa-
city.) The rest of the procedures may be
found in the appendix [5].

const nN=3; nn=6; m=30; mm=60;
type ref="page;
page=record
refcount:integer;
case data:boolean of
false: (c:0..mm;
key:array[1..mm] of integer;
p:array[0..mm] of ref);
true : (d:0..nn;
cle:array[1..nn] of integer;
info:array[1..nn]l of integer);

end;

procedure setpointer(var r:ref; q:ref);
var i:integer;
begin
if (r=nil) and (q¢{’nil) then
begin
r:=q;
q .refcount:=q .refcount+1
end
else if (r<>nil) and (g=nil) then
begin
r".refcount:=r"_.refcount-1;
if r".refcount=0 then
begin
if not r".data then
for i:=0 to r " .c do
setpointer(r .p[il,nil);
dispose(r)
end;

r:=q

else if (r{dnil) and (a<¢>nil) then
begin
setpointer(r,nil);
setpointer(r,q)
end

end;

procedure newnode(var r:ref; q:ref);

var i:integer;
begin
if (r{’nil) then setpointer(r.,nil);
new(r);
r’.refcount:=1; r’ .data:=q .data;
if not q .data then
begin
r-.c:=aq".c; r’.key:=q" .key;
for i:=0 to mm do r " .plil:=nil
end
else
begin
r .d:=q".d; r’.cle:=q .cle;
r’.info:=q .info
end

end;

procedure copy (var r:ref);
var i:integer; q:ref;
begin
q:=nil;
it rdd>nil then if r " _.refcount)>1 then
begin
newnode(a,r);
if not r " .data then
begin
for i:=0 to r " .c do
setpointer(a”.pli),r .p[i]);
setpointer(r,a);
setpointer(q,nil)
end
end

end;

[1l26 30, 40}

Loy
T

Overlapping B+tree of 3 versions.

[les26304d [24 26/ | [],38 40 |

~

Fig.1.

493

Figure 1 shows an overlapping B+tree
of
DCap=4 .
version has two index levels and one data

order m=5 and data node capacity

The tree has three versions; each
level. The first version contains 21 re-
cords at the last level and initially all
the reference count fields are set equal
to 1. The second version is produced from
the first one by inserting a set of two
records with key values 23 and 49 (This
set is symbolized by b.) The third version
is produced by inserting another two re-
cords with key values 28 and 39 in the
second version (b=2 again). The reference
fields of Figure 1 depict this final

Thus the value of this

count
state of the tree.
field in all root nodes is 1 and in other
nodes varies from 1 to 3.
3. ANALYSIS

that the block size 1is 8$
bytes and is common for index and data
nodes, PS bytes

is the pointer size and RS bytes is the

Assume
KS bytes is the key size,
record size. Assume also that the tree
consists of 1 index levels plus one data

level (the root lies in the first level).

The following table summarizes the problem

variables.

8BS Block S$ize in bytes

Ks Key Size in bytes

Ps Pointer Size in bytes

RS Record Size in bytes

ICap Index Capacity (or m)

DCap Data Capacity

N Total Number of Records

b Number of Updates

1 Number of Index Levels
Table I. List of variables.

The index node capacity in key-

ICap (or equivalently the
the definition),

pointer pairs,
variable m of is equal

to:

Icap = [(BS-PS] / (KS+PS) J
while the data node capacity in records,
DCap, is:

DCap = [8BS / RSJ

B+tree nodes are 1/2 full on the average
[12].
per data node is:

1z * DCap.

Therefore, the mean value of records

With a similar reasoning, the mean value

of children per any index node, the fan-
out, is:
1 * ICap
Therefore, the number of nodes at the
(k+1)-th level, is:
a,,=N/ (1m* DCap)

where N is the number of records.
The number of nodes at the k-th level is:
- *x

a = a / (1m ICsp)
and generally the number of nodes at the
i-th level is:

= x

a =a / (12 Icap)

where 1s5isk+1.

k+1-1i

Improving time and space performance
via batch operations in tree structured
organizations has been examined in [7].

Here, in the same respect, we assume that
during a time period a set of b, out of N,
distinct record updates has arrived. We
are concerned only with updates, not in-
sertions or deletions. The mean value of
data nodes in which the b records belong
is [13]:
LiPPle (1-(1—1/81“)b)
With a similar reasoning, expectedly these
node are indexed by the following number
of the 1-th level nodes:
a * (1-(1—1/al)b]

Therefore, finally the total number of
either index or data nodes which will be
accessed to search for the b records expe-
ctedly is:
1+1

a * (1-(1-1/5.)"]

i i

1

M

494

Evidently,

have to be duplicated to represent the new

this number of nodes will

record information. Since, for simplicity
we are not concerned with record inser-
tions or deletions, it follows that the
number of records and nodes per any tree
version remains constant with time. There-
the

updates per transaction remain constant,

fore, given that number of record

the number of nodes to be copied remains

constant with time too; the structure

augmentation is linear with time.

4. EXPERIMENTATION
From extensive experimentation the
following figures are extracted. Figure 2

depicts the relation between the total
number of updates and the augmentation
percentage of the tree under the following
conditions. The file has A=4000 records,
maximum index capacity ICap=60, while the
DCap, takes the two

and the number of updates

maximum data capacity,
values 4 and 6,
per transaction, b, is 10 or 100. As expe-—
cted for increasing b the number of nodes
to be copied decreases. It is shown, also,
that for decreasing DCap the number of
This is

explained by considering that if the data

nodes to be copied increases.

capacity increases, then the probability
to access and copy a data node increases
too.

Figure 3 depicts the relation between
the number of updates and the augmentation
percentage of the tree under the following
The file has A=1000 records
and the ratio ICap/DCap is constant (=10).

conditions.

The values taken by ICap are 40, 60, 80,
100 and 120. This means that the tree
varies from deep and wide to shallow and
narrow. Evidently, the percentage tends
asymptotically to unity with increasing
number of updates, b, in one transaction.
Shallower and narrower (deeper and wider)
is the tree, the convergence to unity is

faster (slower).

N=4000, mm=60

100

75 4

50

Extra Spoce (=)

25

T T T

500 750 1000
Totel Updetes

Onn=4,b=10 Ann=4,b=100 Onn=6,b=10

T
@ 250

Xnn=6,5=100
Fig.2. Extra space needed as a function of

the total number of updates.

N=6000, Icap/Dcap=1 [%]

100

g P
: .

Extra Spoce (%)

&

T T
3000 4500

Updetes (b)

9 1500

Fig.3. Extra space needed as a function of

the number of updates per transaction.

N=6000, Icop/Dcap=10

100 -

75 A

50

Extro Spoce (=)

25 4

/] T T T
2} 1500 3000 4500 6000
Updatas (b)
Fig.4. Experiment vs. Analysis.

6000

495

.

experimental to
analytical results. the file has
AN=6000 records and the ratio ICap/DCap is
constant (=10} but ICap is equal to 40 and
120 only.

small deviation which is greater for lar-

Figure 4 compares

Agein,

It is remarked that there is a
ger ICap’s. This is explained by the fact
that the analysis is based on the expected
value of the node occupancy (1r2) and does
not consider the occupancy as a stochastic

variable.

S EPILOGUE

Database structures for applications
with time support have enormous disk capa-
city needs. With optical disk systems it
seems that in the near future temporal
databases will be commercially available.
In this work a data structure suitable for
this environment, called overlapping B+

tree, is proposed. Some basic procedures
(in Pascal language) for manipulating the
structure are provided. Analysis and expe-
rimental results for the space required
for successive updates of sets of records
(Note, that the

structure and the supporting algorithms

are reported. however,
may equally well be implemented in magne-
tic disk storage.) Future work will exami-
ne with more elaborated analysis and expe-—
rimentation the structure behavior in
insertions and deletions. Comparison with
variations of with time
support, such as the WOBT by Easton [4]
and the split tree by

fal,

other B+trees
Lomet and Saltzberg

needs further research.

ACKNOWLEDGEMENT
Kollias of the Natio-
had

Professor J.G.
nal Technical University of Athens
reviewed an earlier draft of this work.

His untimely death is hard to believe.

REFERENCES
[1]. Ahn I. and Snodgras R.: Partitioned
Storage for Temporal Databases, Informati-
on Systems, Vol.13, No.4, pp.369-391,
1988.
[2]. Burton F.W., Huntbach M.M and Kollias
J.G.: Multiple Generation Text Files using
Overlapping Tree Structures, The Computer
Journal,Vol.28, pp.414-416, 1985.
[3]. Burton F.W., Kollias J.G., Kollias
V.6 and Matsakis D.G.: Implementation of
Overlapping B-trees for Time and Space
Efficient Representation of Collection of
Similar Files, The Computer Journal, to
appear, 1990.
[4]. Easton M.C.: Key-sequence Data Sets
on Indelible Storage, IBM Journal of Rese-
arch &nd Development, Vol.30, No.3, pp
230-241, 1986.
[8]. Kapetanaskis G.: A B+tree Variation
for Temporal Databases, Diploma Thesis,
(in greek), EE Dept., AU of Thessaloniki,
1989.
[6]. Kollias J.6. and Matsakis D.G.: Chan-
ge Area B-tree to Cover Multiple Time
Periods, Proceedings of the Ewrinfo Confe-
rence, pp. 769-774, 1988.
[7]. vrLang s.D.,

J.H.: Improving the

Driscoll J.R. and Jou
Differential File
Technique via Batch Operations for Tree
Structured File Organizations, Proceedings
of IEEE Data Engineering Conference, pp.
524-532, 1986.

[8]). Lomet D. and Saltzberg B.: Access
Methods for Multiversion Data, Proceedings
of ACM SIGMOD Conference, pPp.315-324,
1989.

[9). Manolopoulos Y.: Reverse Chaining for
Answering Temporal Conjuctive Queries, 7he
Computer Journal, submitted.

[10]. saltzberg B.: File Structures - An
Analytic Approach, Prentice Hall, 1988.
[11]. Snodgras R. and Ahn I.: Temporal
IEEE Computer, Vol.19, No.9,
pp.35-42, 1986.

Databases,

[12]. Yao A.: Random 3-2 Trees, Acta In-
formatica, Vol.2, No.9, pp.159-179, 1978.
[13]. Yao S.B.: Approximating Block Acces-
ses in Database Organizations, Communica-
tions of ACM, Vol.20, No.4, pp.260-261,
1977.

APPENDIX
procedure search (x,val:integer;
var a:ref; var h:boolean; var v:item);
type item=record
key:integer;
p:ref; info:integer;
end;

var r:integer; found:boolean;

procedure movel(var y,z:ref;
ti,t2:integer; tag:boolean);
begin
if tag then
begin
y .cle[t1]l:=z".cle(t2];
y .infolt1l:=z".infolt2];
end
else
begin
y .key[t1]:=z" _key[t2];
y .pltil:=z".p[t2)
end

end; {movel}

procedure move2(var y:ref; w:item;
t:integer; tag:boolean);
begin
if tag then
begin
y .clelt]l:=w.key; y .infoltl:=w.info;
end
else
begin
y .key[tl:=w.key; ¥y .plt]:=w.p
end

end;

procedure bin_search (a:ref; data:
boolean; x:integer; var r:integer;
var found:boolean);

var l,k:integer;

begin
with a” do
begin
1l:=1;
if data then r:=d else r:=cj;
repeat
k:=(1+r) div 2;
if x{(=key[k] then r:=k-1;
if x)=keylk] then l:=k+1
until rd1;
found:=(1-r>1)
end
end;

procedure insert(var max,half,
num: integer);

var i:integer; b:ref;

begin
with a” do
begin
if num{max then
begin
num:=num+1; h:=false;
for i:=num downto r+2 do
movel(a,a,i,i-1,data);
move2(a,u,r+1,data)
end
else

begin {numzmax }

h:=true; new(b);

b .refcount:=1; b~ .data:=data;

if data then b’ .d:=half
else b .c:=half;
if r{(=half then
begin
for i:=1 to half do

movel(b,a,i,i+half,data);

if r<{half then

for i:=half+l downto r+2 do

movel(a,a,i,i-1,data);

move2(a,u,r+1,data)

end

else
begin {r)>half}
r:=r—half;
for i:=1 to r-1 do
movel(b,a,i,i+half+1,data);
move2(b,u,r,data);
for i:=r+1 to half do
movel(b,a, i, i+half,data)
end;
if tag then
begin
v.key:=cle[half+1];
v.info:=infolhalf+1];
num:=half+1
end
else
begin
v.key:=key[half+1];
b .p[0]:=plhalf+1];
num:=half
end;
v.p:=b

end {num2max}

end { with }
end; { insert }
begin { search }
copy(a);
if a=nil then
begin

h:=true; new(a);
with a” do
begin
refcount:=1;
data:=true; d:=1;
clel1]:=x; infol[i1l:=val
end;
v.key:=x3 v.p:=nil
end .
else
begin {a()nil}
with a” do
begin

bin_search(a, data, x,r, found) ;

497

end

end;

if found then
begin
h:=false;
if data then infol[r+1]):=val
else search(x,val,plrl,h,u)
end
else
begin {not found}
it data then
begin
U.key:=x; u.info:=val;
insert(nn,n,d)
end
else
begin {not found, not data}
search(x,val,plrl,h,u);
if h then insert(mm,m,c)
end
end
end

498

