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Abstract
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in wireless sensor networks by evaluating relationships between entities of
the network (i.e., edges), and hence identifying different roles among them
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and analysis of EBC in comparison to other state-of-the-art topology control
algorithms shows that our algorithm outperforms the competitor ones in all
observed cases.
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1. Introduction

Recent advances in low-power and short-range-radio technology arisen
during last few years have enabled a rapid development of wireless sensor
networks (WSN). The range of applicability of WSN is very wide, and spans
from environmental sensor networks monitoring (environmental) parameters,
such as temperature and humidity, to industrial control robotics, from dis-
aster prevention systems to emergency management systems, and so forth.
Sensors are tiny, usually battery-operated devices with radio and computing
capabilities, which are used to cooperatively monitor physical or environmen-
tal conditions.

As regards research issues of sensor networks, several efforts have been
done by both the academic and industrial research community, mainly in the
context of routing algorithms [1, 2|, network coverage aspects [3, 4, 5], stor-
age issues [6, 7] and topology control [8, 9, 10]. The common denominator of
all these efforts is represented by the goal of maximizing energy conservation
across the network, in order to gain eficacy and efficiency, as maximizing en-
ergy conservation corresponds to maximizing network lifetime. For instance,
as regards specific data management issues over sensor networks [11], max-
imizing energy conservation means that multi-step maintenance and query
algorithms can be executed over the target sensor network, thus involving in
more effective data management capabilities rather than the case of single-
step algorithms. Another motivation of the need for energy conservation in
sensor networks relies on inherent technological properties of sensors. In fact,
sensors are unlikely to be recharged, especially since they may be deployed
in unreachable terrains, or, in some cases, they may be disposed after the
monitoring application running over the target network ends its execution.

In order to reduce energy consumption, topology control algorithms have
been proposed in literature [9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The
final goal of these algorithms consists in reasoning-over and managing the
topology of the graph modeling the target sensor network in order to reduce
energy consumption as much as possible hence increase network lifetime ac-
cordingly. A different line of research, which appeared recently, proposes
driving sensor network topology control in terms of Quality of Service (QoS)
requirements [14] over the target sensor network itself. Several QoS-based
requirements have been designed and developed in this context, depending
on the particular application scenario ranging from real-time video and con-
tent provisioning to time-critical control systems, and so forth (see [14] for



a complete survey of typical case studies). Given a set of nodes perform-
ing a specific task which is critical for the target sensor network application
(e.g., sink nodes in environmental sensor networks), the basic idea behind
topology control algorithms is to select from the target network appropriate
logical neighbors of the former nodes, namely a subset of physical neighbors
of the former nodes that can be used to perform application-specific pro-
cedures (e.g., message transmission) without the need of involving the rest
of physical neighbors during the execution of these procedures. QoS-based
topology control algorithms select the suitable set of logical neighbors such
that input QoS requirements can be satisfied.

Inspired by motivations above, in this paper we investigate the problem
of QoS-based topology control over homogenous WSN. Given (i) a set of
wireless nodes in a plane such that nodes have the same transmitting power
and bandwidth capacity, and (i) QoS requirements between node pairs, our
problem consists in finding a network topology that can simultaneously meet
the input QoS requirements and minimize the maximal power utilization
ratio of nodes. In particular, in our research QoS requirements are modeled in
terms of simple-yet-effective node connectivity, so that message transmission
can be ensured (while node connectivity can be preserved in order to ensure
correct message delivery), and network lifetime can be increased as much
as possible accordingly. In this scenario, avoidance of hotspots also needs
to be carefully considered. Therefore, adaptive tasks that depend on the
current logical neighbor seem to play the role of most promising strategy to
be investigated in order to avoid fast battery depletion.

Looking at deeper details, in our research we propose a weighted, bidirec-
tional topology control algorithm, called Edge Betweenness Centrality (EBC),
and experimentally evaluate this protocol against a set of low complexity, dis-
tributed topology control algorithms, namely Gabriel Graph (GG) [21], Rel-
ative Neighborhood Graph [22] and Closeness Centrality [23]. Fundamentals
of our approach can be found in the conceptual basis drawn by several cen-
trality measures that have been proposed in order to model and evaluate
the importance of a node in a network [24, 25]. These measures have been
initially applied in the context of Social Network Analysis (SNA), and later
to other areas as well, such as biological networks [26].

Freeman [23, 27] defines the betweenness of a node as a possible centrality
measure for detecting the importance of that node within the target network,
thus achieving the fundamental concept of betweenness centrality. This con-
cept founds on the property stating that vertices that occur on many shortest
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paths between other vertices have higher betweenness than those with lower
occurrences. Closeness centrality [23] pinpoints vertices that tend to have
short geodesic distances from other vertices with in the network. In net-
work analysis, closeness is preferred over shortest-path length, as closeness
gives higher values to more central vertices [23]. Finally, Eigenvector cen-
trality [28] assigns relative scores to all nodes in the network based on the
principle that connections to high-scoring nodes provide to the global score
of the actual node a higher contribution rather than the one provided by
connections to low-scoring nodes. For instance, Google’s PageRank [29] is
a variant of the eigenvector centrality measure. Our research focuses on a
meaningful variation of the betweenness centrality concept, namely edge be-
tweenness centrality [24, 30], and its application to the leading context of
sensor networks.
Summarizing, the contributions of this paper are the following:

e an innovative weighted, bidirectional topology control algorithm, EBC,
and its application to the leading context of sensor networks;

e a comprehensive experimental evaluation of algorithm EBC, and its
comparison with a very popular topology control algorithm, GG, on
top of the well-known simulation environment JSim [31];

e critical analysis and discussion on performance of the two comparison
topology-control algorithms, EBC and GG.

The rest of the paper is organized as follows. In Section 2 we discuss re-
lated work on topology control algorithms over networks. Section 3 describes
in detail algorithm EBC. Section 4 focuses on state-of-the-art distributed and
low complexity methods for topology control that are related to our research.
Section 5 is devoted to the experimental evaluation and analysis of EBC in
comparison to other state-of-the-art topology control algorithms. Finally,
Section 6 contains conclusions and future work of our research.

2. Related work

There exists considerable related work addressing topology control issues
over networks, even focalizing on QoS-based topology control. As regards
studies on topology management for energy conservation in networks, it has
been demonstrated that both powering off redundant nodes and lowering



radio power while maintaining node connections can contribute to efficient
power saving. In light of this assumption, Shen et al. [9] introduced the Local
Shortest Path (LSP) algorithm. In the LSP approach, each node makes
use of link weights in order to compute the shortest paths between itself
and neighboring nodes. Then, all second nodes on these shortest paths are
selected as logical neighbors. The final step of algorithm LSP involves in
adjusting the power transmission of so-selected logical nodes to save energy.

Li et al. [15] instead propose algorithm Localized Minimum Spanning
Tree (LMST), which computes a “power-reduced” network topology by con-
structing a minimum spanning tree over the network in a fully-distributed
manner. The aim of this approach relies in the evidence that the power-
reduced network is less energy-consuming than the original network.

EasiTPQ [14] is another QoS-based topology control algorithm. EasiTPQ
founds on the assumption that each node in the network has different func-
tionalities during data transmission, e.g., some nodes bear more data relay
tasks whereas some other nodes only transmit data generated by themselves.
In order to achieve the desired QoS, EasiTP(Q) schedules as active nodes that
are more involved in relaying data tasks rather than generating data flows.

Wattenhofer et al. [19] propose a simple-yet-effective distributed algo-
rithm according to which each node makes local decisions about its trans-
mission power, such that these local decisions then collectively guarantee
global connectivity of the network. Specifically, based on directional infor-
mation, a node grows it transmission power until it finds a neighbor node in
every possible direction. The resulting network topology increases network
lifetime by reducing transmission power, and, in turn, even traflic interfer-
ence, thanks to the deriving availability of low-degree nodes. Huang et al. [13]
further extend [19] to the case of using directional antennas.

Ramanathan and Rosales-Hain [17] describe a centralized spanning tree
algorithm for building connected and bi-connected networks with the goal of
minimizing the maximum transmission power for each node. Two optimal,
centralized algorithms, namely CONNECT and BICONN-AUGMENT, are
proposed for the case of static networks. Both are greedy algorithms, and
resemble Kruskal’s minimum cost spanning tree algorithm [32]. For the case
of hoc wireless networks, two distributed heuristics hare proposed, namely
LINT and LILT. However, these heuristics do not guarantee network connec-
tivity.

Jia at al. [20] focus the attention on the problem of determining a net-
work topology able to meet input QoS requirements in terms of end-to-end



delay and bandwidth. The proposed scheme adopts an optimization crite-
rion whose goal is to minimize the maximum per-node power consumption.
In [20], authors demonstrate that, when network traffic is “splittable”, a sub-
optimal solution can be achieved by means of linear programming techniques.

Finally, alternative approaches to the topology control problem over sen-
sor networks have been proposed recently. [33, 34] are significant instances
of these classes of innovative topology control algorithms, where the topol-
ogy aspect is addressed from a different but relevant perspective. In more
detail, [33, 34] basically suggest to exploit the sensor motion to adaptively
propagate information based on local conditions (such as high placement
concentrations), so that the mobile sink gradually “learns” the network and
accordingly optimizes its motion as to collect data faster.

3. Edge Betweenness Centrality: a novel topology control protocol
for sensor networks

During past years, vertex betweenness has been studied in the vest of a
measure of the centrality and influence of nodes in networks [27, 23]. Given
a node v;, vertex betweenness is defined as the number of shortest paths
between pairs of nodes that run through v;. Vertex betweenness is a measure
of the influence of a node over the information flow among nodes of the
network, especially in scenarios such that information flowing over the target
network primarily follows shortest available paths.

In order to compute betweenness centrality, Brandes [35] proposes an
efficient backwards algorithm which starts from leaf nodes of a tree of short-
est paths and progressively accumulates the leaf-nodes’ betweenness values
moving bask towards the root node of the tree.

Girvan-Newman algorithm [24] extends the definition of betweenness cen-
trality from network vertices to network edges, via introducing the concept of
Edge Betweenness (EB). Let G = (V| E) be a connected undirected graph,
and v; and v; two nodes in G, respectively. Let o, denote the number
of shortest paths between nodes v; and v;. Let 0y,,,(e) denote the number
of shortest paths between v; and v; which go through e € E. Betweenness
centrality of an edge e € V', denoted by EB(e), is defined as follows:

EBle)=Y % UU—(e) (1)

V; eV Ui eV ViUj



In its original implementation [30], which focuses on unweighted, undi-
rected networks, EB analysis makes use of the algorithm breadth-first search
(BFS). Girvan-Newman algorithm [24] works in the opposite way. Instead
of trying to construct a measure that determines edges that are the “most
central” for network communities, it focuses on edges that are the “least
central” for network communities, i.e., edges that are “most between” for
network communities. Communities are detected by progressively removing
edges from the original graph, rather than by adding the strongest edges to
an initially empty network. In our research, we do not use the centrality
measure to find communities but instead to select the most important edges,
energy-wise, to propagate messages.

Specifically, steps that are used to compute the edge betweenness central-
ity index are the following:

1. compute shortest paths through the network by means of Dijkstra’s
algorithm [36];

2. for each edge, compute the edge betweenness centrality index like in [30],
but instead of un-weighted edges use the average energy of the two con-
necting nodes as edge weight.

Based on the edge betweenness centrality index, our algorithm EBC se-
lects logical neighbors of actual node based on the following rules:

e for each node, logical neighbors must cover the 2-hop node neighbor-

hood;

e 1-hop neighbors with the highest-scoring betweenness centrality index
are selected.

Moreover, in order to avoid hotspots, our algorithm recalculates the edge
betweenness centrality index based on the corresponding energy levels of each
node, therefore selecting different edges to be part of the logical neighborhood
of each node.

4. Distributed and low complexity competing methods for topol-
ogy control

In this section we present in more details some popular, distributed meth-
ods for topology control in wireless sensor networks, that comprise the basic
competitors of our proposed EBC algorthm.
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4.1. Topology control with the Gabriel Graph

Gabriel Graph has been introduced by Gabriel and Sokal in [21]. For-
mally, given a graph G = (V, E) and two vertices v; and vy in V', we say
that v; and v,y are adjacent if the closed disc of diameter v1v9 does not con-
tain other vertices of V. In the context of sensor networks, we extend the
basic adjacency concept above and we say that a sensor node s; is connected
with a sensor node s;, who lies within the s;’s transmission range, if there
not exist another node s, which is contained by the closed disc of diameter
;8. This simple-yet-effective method is used by algorithm GG to find logical
neighbors of a given sensor node.

In more detail, in our JSim-based experimental framework, logical neigh-
bors of a given sensor node are found by algorithm GG according to the
following steps:

1. each sensor node broadcasts its location — at the end, every node in the
sensor network knows its neighbors and their locations;

2. each sensor node s; determines its logical neighbor set L; by computing
the closed discs of diameters equal to the distance between the loca-
tion of s; and each other physical node belonging to the s;’s physical
neighborhood set P, — for each physical neighbor s, in F;, if the disc of
diameter s;5; does not contain other physical neighbors of P, then s;
becomes a logical neighbor of s;.

4.2. Topology control with the Relative Neighborhood Graph (RNG)

The relative neighborhood graph (RNG) of a point set is a straight line
graph that connects two points from the point set if and only if there is no
other point in the set that is closer to both points than they are to each
other. A triangu- lation of a point set is a maximal set of nonintersect- ing
line segments (called edges) with vertices in the point set.

The relative neighborhood graph of a graph G = (V, E), denoted by
RNG(G), is the set of all edges uv ¢ E such that there is no vertex or point
w where uw ¢ E, wv ¢ E and ||uw|| < ||uv|| and ||wo]| < [[uv]].

4.8. Topology control with the Closeness Centrality (CC)

In graph theory closeness is a centrality measure of a vertex within a
graph. Vertices that are 'shallow’ to other vertices (that is, those that tend to
have short geodesic distances to other vertices with in the graph) have higher
closeness. Closeness is preferred in network analysis to mean shortest-path



length, as it gives higher values to more central vertices, and so is usually
positively associated with other measures such as degree.

5. Experimental evaluation and analysis

In order to evaluate the performance of the proposed EBC topology con-
trol protocol, we set up a framework that simulates the basic factors of a
wireless environment and implemented in this framework the competitors

described in section 4, namely GG, RNG, and CC.

5.1. Simulation model

In our experimental framework, we have developed a simulation model
based on JSim, a well-known Java-based simulation environment for numer-
ical analysis [31]. In particular, in our simulation environment, the AODV
routing protocol [37] is deployed within the reference WSN. Also, we use
IEEE 802.11 as the MAC protocol and the free space model as the radio
propagation model. Wireless bandwidth is assumed to be 2 Mbps.

We performed a large number of experiments on top of various sensor
network topologies, and by ranging several experimental parameters, but for
the interest of space, here we present a subset of our experimental results.
Table 1 summarizes the simulation parameters.

‘ Parameter | Values
sensor node number 500, 750, 1000
terrain size 400 x 400
radio range 14dm, 17m
initial energy charge 10 Joules
transmission energy 0.001 Joules
wireless bandwidth 2 Mbps
Aes Aqg 0.128, 0.256, 0.512, 0.768

Table 1: Simulation parameters.

The simulation details are as followed:

e The simulation time was 300 seconds. The records were produced dur-
ing the first half of the simulation time, whereas the queries were sent
during the second half.



e While the record is propagated in the network, its TTL value (measured
in hops) is decreased by 1 each time the record is stored at a sensor.
The initial TTL value is 10.

e The events and queries are generated according to a Poisson distri-
bution with the rates A, and ), taking the values 0.128,0.256,0.512
and 0.768.

e The queries originate at sensors whose geographical position follows
the Zipfian distribution, i.e., some sensor generate more queries than
others.

5.2. Experimental results

As stated in previous sections, topology control algorithms over sensor
networks try to minimize the energy consumption of nodes by transmitting
data to a subset of a node’s physical neighbors. Therefore, given the actual
node, the first step deals with the issue of finding node’s physical neighbors.
Then, topology control algorithms are applied in order to select the subset
of logical neighbors that can propagate messages throughout the network
without any data loss, neither involving all the effective physical neighbors.

Our experimental analysis focuses on the comparison between algorithms
EBC, GG, RNG and CC in terms of logical neighbors found and energy
consumption that is needed to propagate messages through logical neighbors.
For each algorithm, we also analyze the impact of a change in network density
on algorithm’s performance.

Figure 1 shows the overall number of physical neighbors that exist in the
network for 500, 750 and 1000 nodes, respectively. The increase in the num-
ber of physical neighbors is due to the increase in the sensor transmission
radius from 14 to 17 meters. This means that each sensor node can commu-
nicate with nodes that exist in its wider vicinity. For a radius of 14m, the
number of physical neighbors are 1298,2640 and 4488, respectively. For a
radius of 17m, we instead have: 1958, 3984, and 6797.

Figure 2 illustrates the average number of physical neighbors of each
node in the network, for different sizes of the sensor network. In the first
case, i.e., a network with 500 nodes, the average number of physical nodes
per-sensor-node is 2.4 for a radius of 14m and 3.7 for a radius of 17m. The
respective numbers for a network with 750 nodes are: 3.5 (14m radius) and
5.3 (17m radius). Finally, for a network with 1000 nodes, retrieved numbers
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Figure 1: Number of physical neighbors.

are: 4.4 (14m radius) and 6.7 (17m radius). Notice that in all the cases
retrieved numbers are the same for all algorithms since they are not applied
to the initial step that finds the physical neighbors of each node.
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Figure 2: Average number of physical neighbors per-sensor-node.

Moving the attention on the proper experimental comparison of the four
investigated topology-control algorithms (i.e., EBC, GG, RNG and CC), Fig-
ure 3 shows the overall number of logical neighbors found after each algo-
rithm has been applied to each network setting with different size (500, 750
and 1000 nodes) when the radius is set to 14m. As shown in the Figure, GG
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and RNG find the most logical neighbors, starting from 1086 and 951 nodes
for the 500 nodes setting and reaching 3742 and 3145 for the 1000 nodes set-
ting respectively. EBC and CC on the other hand perform similarly but EBC
finds the least amount of logical neighbors between the two. The difference
between the two sets of algorithms increases as the number of sensor nodes
in the network increases. For 1000 nodes, algorithm GG found 3742 logical
neighbors, whereas algorithm EBC 1513 logical neighbors only.

Total Number of Logical Neighbors (14m Radius)
4000

3500

3000

2500

2000

1500

Total # of Logical Neighbors

1000 §
g

500 | | | !
500 600 700 800 900 1000

# of Sensor Nodes

Figure 3: Number of logical neighbors found (radius = 14m).

Figure 4 shows the performance of the algorithms in terms of average
logical neighbors found per-sensor-node, still with a radius equal to 14m. As
clearly follows from Figure 4, algorithm EBC delivers about the same average
number of logical neighbors per-sensor-node, i.e., about 1.5, irrespectively of
the size of the sensor network. On the other hand, algorithms GG and RNG
do not perform as well, since the average number of logical neighbors per-
sensor-node ranges from 2 up to 3.7 for GG and 1.9 to 3.1 for RNG. CC does
follow the same pattern as EBC but it still finds a smaller average of logical
neighbors than EBC, at a range of 1.7 to 1.9.

It should be noted that, in our experimental analysis, we overall consider
two sets of algorithms that perform very differently. Algorithms GG and
RNG, which belong to the first set, expose some limitations in maintaining
the number of logical neighbors small and, as a consequence, the average
number of logical neighbors increases significantly. The main reason of this
phenomenon is that performance of algorithms GG and RNG strongly de-

12



pends on the geodesic placement of sensors. Increasing the number of sensors
in an 400m x 400m area will lead to an increase of physical neighbors, which,
in turn, will lead to a relatively smaller increase of logical neighbors. Also,
EBC is actually a subset of GG, hence it is reasonable for the two algorithms
to perform similarly. On the other hand, algorithms CC and EBC, which
belong to the second set, retrieve the significance of a sensor node in a two-
hop neighborhood. As a consequence, even if the number of sensors in the
terrain increases, the average number of logical sensors in the newly created
two-hop neighborhood roughly ranges on the same interval values.

Average Number of Logical Neighbors (14m Radius)
4 T T T T

Avg. # of Logical Neighbors

500 600 700 800 900 1000
# of Sensor Nodes

Figure 4: Average number of logical neighbors per-sensor-node (radius = 14m).

The same experiment is performed for a radius of 17m. Figure 5 shows
the results obtained for this setting. As shown in the figure, when radius
increases the difference between the two algorithms’ performance is even more
noticeable. In fact, the number of logical neighbors found by algorithm GG
ranges from 1639 (500 nodes) to 5648 (1000 nodes). The respective numbers
for algorithm EBC range from 1014 (500 nodes) to 2052 (1000 nodes). RNG
and CC values lie in between the previous values. Therefore, it clearly follows
that EBC outperforms the other algorithms even under this experimental
analysis perspective.

Figure 6 confirms the superiority of algorithm EBC over the rest of the
algorithms in terms of the average number of logical neighbors found per-
sensor-node, still with a radius equals to 17m. It should be noticed again that
algorithm EBC remains practically insensitive to the increase in the number
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Figure 5: Number of logical neighbors found (radius = 17m).

of sensor nodes and provides an average number of 2 logical neighbors per-
sensor-node throughout the simulation. CC performs similarly but still finds
more logical neighbors on average than EBC. On the other hand, algorithms
GG and RNG perform poorly with an average number of logical neighbors
found per-sensor-node ranging from 3.1 to 5.6 for GG and 3 to 5.4 for RNG.

Similarly to the previous analysis, we again notice that the two sets of
algorithms (i.e., GG and RNG, and CC and EBC) perform differently, with
the evidence that GG and RNG are unable to effectively and efficiently cope
with the increase of the number of sensors placed in the terrain. Contrary to
this, CC and EBC focus on the two-hop neighborhood of each sensor node
which remains fairly stable throughout the experiment.

Looking at energy consumption minimization, the main goal of topology
control algorithms, Figure 7 shows the energy consumption per-node needed
to propagate a message to logical neighbors, when the radius is set to 14m.
Again, algorithm EBC requires an almost unchanged amount of energy to
this goal, i.e., about 0.0015 Joules, whereas algorithm GG requires an amount
of energy ranging from 0.0020 (500 nodes) to 0.0037 (1000 nodes) Joules to
perform the same operation. RNG is also not effective at all at reserving
energy, just like GG, while CC performs better but not as good as EBC.

Figure 8 shows the results for the same experiment when the radius is
set to 17m. Even in this experimental analysis, algorithm EBC outperforms
the other algorithms with a transmission energy consumption per-node equal
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Figure 6: Average number of logical neighbors per-sensor-node (radius = 17m).
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Figure 7: Transmission energy consumption per-node (radius = 14m).

to 0.002 Joules. Indeed, algorithms GG and RNG significantly increase the
energy requirement ranging from about 0.0031 to 0.0056 Joules. CC provides
better energy conservation but still not better than EBC.

The high energy consumption of GG and RNG can be explained by the
fact that sensors have more logical neighbors when these algorithms are em-
ployed. At a practical level, this means that packets must be sent to a larger
number of sensor nodes, hence leading to significant energy consumption. On
the other hand, CC and EBC do not impose such a burden to the transmis-
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sion of packets, and, as a consequence, expose a better energy efficient.
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Figure 8: Transmission energy consumption per-node (radius = 17m).

Apart from the number of logical neighbors and the transmission energy,
two other metrics that play an important role in the evaluation of the topol-
ogy control algorithms are latency and hit-ratio. Latency is considered to
be the time passed between issuing a query and receiving an answer to it.
Obviously, the lesser the latency the better the network response to queries.
Hit-ratio on the other hand, is considered to be the ratio of answers received
over the total number of queries that were produced.

The first experiment is performed for a setting of 500 nodes and a ra-
dius of 17m. As shown in Figure 9, GG and RNG perform similarly with
CC providing smaller latency values than both of them. EBC outperforms
the other algorithms, producing latency values ranging from 81 milliseconds
to 90 milliseconds. The same results occur at the second experiment where
the number of sensors inside the network is increased to 1000. Results are
shown in Figure 10. Again, EBC shows its superiority by producing latency
values ranging from 26 milliseconds to 55 milliseconds. Observe that the av-
erage latency is increased when we increase the number of sensors inside the
network. This is because collisions occur inside the network when multiple
sensors try to communicate at the same time and because it takes longer for
the record to be propagated through a denser sensor network.

The same principle applies when we increase the number of packets in-
side the network. The more packets occur, the more (packet) collisions occur,
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hence packets flow throughout the network more problematically. Another
critical evidence that is related to the previous phenomenon concerns with
the number of logical neighbors inside the network. When the target sensor
network employs GG or RNG as topology control algorithm, nodes expose
a significantly-larger number of logical neighbors, as shown by previous ex-
periments, and, as a consequence, an higher packet collision probability is
observed. Contrary to this, CC and EBC expose a fairly-stable number of
logical neighbors and, as a consequence, the packet collision probability re-
duces significantly.

Average Latency (500 sensors)
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event generation rate

Figure 9: Average latency per-node (500 nodes, radius = 17m).

Finally, the hit-ratio percentage metric measurements are essential to ap-
plication scenarios, such as a forest fire for example, where the need to obtain
answers to our queries is imperative. Figure 11 shows the hit-ratio percent-
age obtained for all four algorithms when the sensor network consists of 500
nodes. EBC performs the best with a lowest hit-ratio of 83% and a highest
of 94%. CC obtains the second best results, while GG and RNG algorithms
perform the worst with percentages ranging from about 50% to 65%.

In order to measure performance in a bigger network, we increase the
number of sensor nodes to 1000. Once again, EBC outperforms the other
algorithms, even though the hit-ratio values are decreased compared to the
values obtained in the 500 nodes setting. This is because more sensor nodes
exist inside the network and therefore more collisions occur, making it diffi-
cult for the messages to reach their destination. EBC performs at an average
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Figure

Hit ratio % (answers/queries)

Figure 11: Hit Ratio percentage, i.e., answers/queries (500 nodes, radius = 17m).

of about 70% while GG, RNG and CC perform at an average of 33%, 41%
and 60%, respectively. The TTL value plays an important role in this case,
since it is decreased at each hop. Therefore the larger the number of hops
that the message travels, the less possible it is to reach its destination. The
experimental results are thus convergent in the sense that both algorithms
GG and RNG create more logical neighbors inside the network than CC and
EBC. As a consequence, packets must flow longer distances throughout the
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network, hence an higher (packet) collision probability is observed.
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Figure 12: Hit Ratio percentage, i.e., answers/queries (1000 nodes, radius = 17m).

6. Conclusions and future work

Betweenness is a centrality measure for networks that has been initially
studied in the context of SNA. This measure states that vertices that occur
on many shortest paths between other vertices have higher betweenness than
those with lower occurrences. Therefore, nodes with high betweenness are
selected as nodes able to control the overall information flow within the net-
work. Topology control algorithms aim at providing high QoS by maximizing
network lifetime and ensuring message delivery. Inspired by these motiva-
tions, in this paper we have proposed a novel topology control algorithm
for sensor networks, EBC, which exploits the edge betweenness centrality
concept to ensure high QoS throughout the network. Our scheme can be
effectively combined with load balancing techniques such as those described
in [38]. Also, we performed a comprehensive campaign of experiments where
we compared the performance of algorithm EBC with the performance of
algorithms GG, RNG and CC under several perspectives of analysis. Ex-
perimental results have clearly demonstrated the superiority of algorithm
EBC over the other algorithms, in terms of logical neighbors found, energy
consumption, latency and hit-ratio.

As future work, we plan to devise alternative centrality measures for net-
works, looking at the wide literature available on the topic, and experimen-
tally compare these novel measures to edge betweenness centrality. Apart
from number of logical neighbors found, transmission energy consumption
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and scalability, which have been investigated in this paper, in the future
experimental analysis we will focus on other interesting experimental param-
eters that need more research efforts, such as message latency and message
delivery.
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